JP5268483B2 - Alloy fine particle carrier - Google Patents

Alloy fine particle carrier Download PDF

Info

Publication number
JP5268483B2
JP5268483B2 JP2008200841A JP2008200841A JP5268483B2 JP 5268483 B2 JP5268483 B2 JP 5268483B2 JP 2008200841 A JP2008200841 A JP 2008200841A JP 2008200841 A JP2008200841 A JP 2008200841A JP 5268483 B2 JP5268483 B2 JP 5268483B2
Authority
JP
Japan
Prior art keywords
source
sputtering
sputter
magnet
sputtering source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008200841A
Other languages
Japanese (ja)
Other versions
JP2009068103A (en
Inventor
六月 山崎
浩平 中山
義彦 中野
武 梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008200841A priority Critical patent/JP5268483B2/en
Publication of JP2009068103A publication Critical patent/JP2009068103A/en
Application granted granted Critical
Publication of JP5268483B2 publication Critical patent/JP5268483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for obtaining alloy particles which stably carry particulate elements with particle sizes of 2 to 10 nm on the surface of a particulate base material such as carbon. <P>SOLUTION: The apparatus for making fine alloy particles carried includes: a container which accommodates the particulate base material; a first sputtering source which is arranged so as to face the container, includes platinum and has a rectangular shape; a second sputtering source which is arranged adjacent to the first sputtering source and includes an element different from that included in the first sputtering source; a first magnet which is arranged at a side of the first sputtering source opposite to a side of facing to the container; and a second magnet which is arranged at a side of the second sputtering source opposite to a side of facing to the container. The magnetic flux density of a magnetic field in the vicinity of the surface of the first or the second sputtering source is varied by adjusting a distance between the first or the second sputtering source and the first or the second magnet corresponding to the respective sources, or a magnetic force of the first or the second magnet. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、粒径1μm以下の粒子状担体に粒径10nm以下の微粒子を担持させる合金微粒子担持装置に関するもので、より具体的には直接メタノール型燃料電池に利用可能な触媒の製造に関するものである。   The present invention relates to an alloy fine particle supporting device for supporting fine particles having a particle size of 10 nm or less on a particulate carrier having a particle size of 1 μm or less, and more specifically to the production of a catalyst that can be used in a direct methanol fuel cell. is there.

白金などの貴金属は装飾品以外にも化学触媒としても用いられている。例えば自動車の排ガス浄化装置、固体高分子型燃料電池などであるが、特にメタノール溶液を燃料としたメタノール型固体高分子型燃料電池は、低温での動作が可能であり小型軽量であるため、近年モバイル機器などの電源への応用を目的として盛んに研究されている。しかし幅広い普及には更なる性能の向上が望まれている。燃料電池は電極触媒反応によって生じる化学エネルギーを電力に変換するものであり、高性能化には高活性触媒が必要不可欠である。   Precious metals such as platinum are used as chemical catalysts in addition to decorative items. For example, automobile exhaust gas purification devices, polymer electrolyte fuel cells, etc. In particular, methanol polymer electrolyte fuel cells using methanol solution as a fuel are capable of operating at low temperatures and are small and lightweight. It has been actively researched for the purpose of application to the power supply of mobile devices. However, further improvement in performance is desired for widespread use. The fuel cell converts chemical energy generated by the electrocatalytic reaction into electric power, and a highly active catalyst is indispensable for high performance.

現在燃料電池のアノード触媒としては白金およびルテニウムからなる合金(以下、白金−ルテニウムと記載する)が一般的に使われている。ところが、この燃料電池は、電極触媒反応理論電圧が1.21Vであるのに対し、白金−ルテニウム触媒による電圧ロスが約0.3Vと大きく、これを小さくするために白金−ルテニウムを超える高活性(メタノール酸化活性)のアノード触媒が求められている。そこでメタノール酸化活性の向上を目的として、白金−ルテニウムに他の元素を加えることが検討されている。   Currently, platinum and ruthenium alloys (hereinafter referred to as platinum-ruthenium) are generally used as anode catalysts for fuel cells. However, this fuel cell has an electrocatalytic reaction theoretical voltage of 1.21 V, whereas the voltage loss due to the platinum-ruthenium catalyst is as large as about 0.3 V, and in order to reduce this, the high activity exceeding platinum-ruthenium is high. There is a need for (methanol oxidation activity) anode catalysts. Then, adding other elements to platinum-ruthenium has been studied for the purpose of improving methanol oxidation activity.

従来のスパッタ法あるいは蒸着法では、シート状に加工した炭素(以下カーボンペーパーと記載する)の上に触媒微粒子を担持させることが一般的であった。その場合はカーボンペーパーの表面だけにしか蒸着されないため、数nmの触媒微粒子を担持させた場合、発電に必要な担持量は得られなかった。また蒸着条件によっては、触媒を構成する合金は微粒子にならず薄膜になってしまう場合もあり、その場合には触媒の表面積が小さくなり、より発電性能は低下するという欠点があった。   In the conventional sputtering method or vapor deposition method, catalyst fine particles are generally supported on carbon processed into a sheet (hereinafter referred to as carbon paper). In this case, since the vapor deposition is performed only on the surface of the carbon paper, when a few nanometers of catalyst fine particles are supported, the supported amount necessary for power generation cannot be obtained. Further, depending on the deposition conditions, the alloy constituting the catalyst may become a thin film instead of fine particles. In this case, there is a drawback that the surface area of the catalyst is reduced and the power generation performance is further reduced.

一方、担体微粒子上に触媒金属を蒸着もしくはスパッタリングして触媒微粒子を担持させることが知られている(例えば、特許文献1参照)。   On the other hand, it is known that catalyst fine particles are supported on the carrier fine particles by vapor deposition or sputtering (see, for example, Patent Document 1).

この方法において炭素粒子を担体として用いた場合、炭素粉を攪拌しながらスパッタあるいは蒸着することになるが、この場合、電子顕微鏡で観察しても炭素以外の物質を見つけることはできなかった。その理由は被蒸着物である炭素微粒子の表面状態と蒸着された原子が金属微粒子を形成するプロセスに関わっている。すなわち真空プロセスで金属を物理蒸着する場合、熱あるいは運動エネルギーを利用して蒸着物を原子状にして飛ばし、被蒸着物に衝突させる。そこで蒸着原子はマイグレーション(担体表面の自由移動)してエネルギー的に安定なところに定着した後、そこを核に粒子が成長し、それらがつながって多結晶の膜になる。ところが粒径が1μm以下の炭素微粒子の場合、表面に欠陥が非常に多く存在するため、蒸着された原子がマイグレーションできる距離は非常に短く粒成長に必要な核が形成される確率が低い。従って炭素粉を攪拌しながら蒸着した場合は核が形成される前に粉が移動して蒸着物が飛来しなくなるため表面に原子状として付着しているだけで粒成長はおろか核生成すら起こらない。触媒として機能するためには粒径が2nm以上10nm以下の微粒子が炭素粉の表面に担持されていなければならないにもかかわらず、上記のように、金属原子が、担体表面に原子状で付着しているのでは触媒としての機能を発揮することは期待できない。
特開2005−264297公報
When carbon particles are used as a carrier in this method, the carbon powder is sputtered or vapor-deposited while stirring, but in this case, no substance other than carbon could be found even when observed with an electron microscope. The reason is related to the process of forming metal fine particles by the surface state of the carbon fine particles as the deposition target and the deposited atoms. That is, when a metal is physically vapor-deposited by a vacuum process, the vapor-deposited material is blown off in an atomic form using heat or kinetic energy, and collides with the vapor-deposited material. Therefore, the deposited atoms migrate (free movement on the surface of the carrier) and settle in an energy stable place, and then particles grow in the nucleus and connect to form a polycrystalline film. However, in the case of carbon fine particles having a particle size of 1 μm or less, since there are a large number of defects on the surface, the distance that the deposited atoms can migrate is very short and the probability that nuclei necessary for grain growth are formed is low. Therefore, when carbon powder is vapor-deposited with stirring, the powder moves before the nuclei are formed and the deposited material does not fly. . In order to function as a catalyst, although fine particles having a particle size of 2 nm or more and 10 nm or less must be supported on the surface of the carbon powder, metal atoms are attached to the support surface in the form of atoms as described above. Therefore, it cannot be expected to exert its function as a catalyst.
JP 2005-264297 A

本発明は、以上のような事情に鑑みてなされたもので、炭素などの粒子状母材の表面に安定的に粒径が2nm以上10nm以下の微粒子元素を担持させた合金粒子を得る合金微粒子担持装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and alloy fine particles for obtaining alloy particles in which fine particles having a particle diameter of 2 nm or more and 10 nm or less are stably supported on the surface of a particulate base material such as carbon. An object is to provide a carrier device.

上記の課題を達成するために、本発明の合金微粒子担持装置は、粒子状母材を収容する支持部材と、この支持部材と対峙して配置され、白金を含有する矩形状の第1のスパッタ源と、この第1のスパッタ源に隣接して配置され、前記第1のスパッタ源と異なる元素を含有する第2のスパッタ源と、前記第1のスパッタ源の前記支持部材と対峙する側とは反対側に配置された第1の磁石と、前記第2のスパッタ源の前記支持部材と対峙する側とは反対側に配置された第2の磁石と、を具備する合金微粒子担持装置において、前記第2のスパッタ源の前記支持部材と対峙する側とは反対側に、前記第2のスパッタ源より透磁率の高い部材を設け、前記第1或いは第2のスパッタ源とこれに応じた前記第1或いは第2の磁石間の距離、または、前記第1或いは第2の磁石の磁力を調整することにより、前記第1或いは第2のスパッタ源の表面近傍の磁場の磁束密度を変化させることを特徴としている。 In order to achieve the above object, an alloy fine particle supporting device of the present invention includes a support member that accommodates a particulate base material, and a rectangular first sputter that is disposed to face the support member and contains platinum. A source, a second sputtering source disposed adjacent to the first sputtering source and containing an element different from the first sputtering source, and a side of the first sputtering source facing the support member In the apparatus for supporting fine alloy particles, comprising: a first magnet disposed on the opposite side; and a second magnet disposed on the opposite side of the second sputtering source from the side facing the support member. A member having a higher magnetic permeability than the second sputtering source is provided on the side opposite to the side facing the support member of the second sputtering source, and the first or second sputtering source and the corresponding one are provided. The distance between the first or second magnets, or By adjusting one or magnetic force of the second magnet is characterized by changing the magnetic flux density of the magnetic field near the surface of the first or the second sputtering source.

また、本発明の合金微粒子担持装置は、粒子状母材を収容する支持部材と、この支持部材と対峙して配置され、白金を含有する矩形状の第1のスパッタ源と、この第1のスパッタ源に隣接して交互に配置された、前記第1のスパッタ源と異なる元素を含有する第2のスパッタ源と、前記第1のスパッタ源および前記第2のスパッタ源の前記支持部材と対峙する側とは反対側に配置された磁石と、を具備する合金微粒子担持装置において、前記第2のスパッタ源は前記第1のスパッタ源の間に、各々の長手方向を概ね平行にして短冊状に形成され、前記第2のスパッタ源の前記支持部材と対峙する側とは反対側に、前記第2のスパッタ源より透磁率の高い部材を設け、前記第1或いは第2のスパッタ源の長手方向に概ね直行する方向に、前記第1或いは第2のスパッタ源もしくは前記磁石を相対的に移動させることにより、前記磁場を前記第1或いは第2のスパッタ源の長手方向と直交する方向に順次発生させることを特徴としている。 The alloy fine particle supporting device of the present invention includes a support member that accommodates the particulate base material, a rectangular first sputter source that is disposed opposite to the support member and contains platinum, and the first sputtering source. A second sputtering source containing an element different from the first sputtering source, which is alternately arranged adjacent to the sputtering source, and the support member of the first sputtering source and the second sputtering source. And a magnet disposed on the opposite side of the first sputtering source, the second sputter source being in the form of a strip with the longitudinal directions thereof being substantially parallel between the first sputter sources. A member having a higher magnetic permeability than the second sputtering source is provided on the opposite side of the second sputtering source from the side facing the support member, and the longitudinal length of the first or second sputtering source is provided. In a direction generally perpendicular to the direction, Or by relatively moving a second sputtering source or said magnet is characterized by that sequentially generating the magnetic field in a direction orthogonal to the first or second longitudinal sputtering source.

さらに、本発明の合金微粒子担持装置は、請求項1または2に記載の合金微粒子担持装置において、前記粒子状母材は、炭素を主成分とする母材であることを特徴としている。   Furthermore, the alloy fine particle supporting apparatus of the present invention is the alloy fine particle supporting apparatus according to claim 1 or 2, wherein the particulate base material is a base material mainly composed of carbon.

さらにまた、本発明の合金微粒子担持装置は、請求項1乃至請求項3のいずれか1項に記載の合金微粒子担持装置において、前記第1或いは第2の磁石の位置を可変する機構を備えることを特徴としている。   Furthermore, an alloy fine particle supporting device of the present invention is the alloy fine particle supporting device according to any one of claims 1 to 3, further comprising a mechanism for changing the position of the first or second magnet. It is characterized by.

また、本発明の合金微粒子担持装置は、請求項1乃至請求項4のいずれか1項に記載の合金微粒子担持装置において、前記第2のスパッタ源は前記第1のスパッタ源の間に、各々の長手方向を概ね平行にして短冊状に形成されていることを特徴としている。   Moreover, the alloy fine particle supporting apparatus of the present invention is the alloy fine particle supporting apparatus according to any one of claims 1 to 4, wherein the second sputter source is between the first sputter sources. It is characterized in that it is formed in a strip shape with the longitudinal direction thereof being substantially parallel.

さらに、本発明の合金微粒子担持装置は、請求項1乃至請求項5のいずれか1項に記載の合金微粒子担持装置において、前記第1および第2のスパッタ源とは異なる元素を含有する第3のスパッタ源を有し、この第3のスパッタ源は前記第1のスパッタ源および/または第2のスパッタ源に隣接することを特徴としている。   Furthermore, an alloy fine particle carrying device of the present invention is the alloy fine particle carrying device according to any one of claims 1 to 5, wherein a third element containing an element different from the first and second sputtering sources is included. The third sputtering source is adjacent to the first sputtering source and / or the second sputtering source.

また、本発明の合金微粒子担持装置は、請求項2乃至請求項のいずれか1項に記載の合金微粒子担持装置において、前記第1および第2のスパッタ源または前記磁石の移動方向が、一定距離を走査した後、逆転することを特徴としている。 Further, the alloy fine particle supporting apparatus of the present invention is the alloy fine particle supporting apparatus according to any one of claims 2 to 6 , wherein the moving direction of the first and second sputtering sources or the magnet is constant. It is characterized by reverse after scanning the distance.

さらに、本発明の合金微粒子担持装置は、請求項2乃至請求項のいずれか1項に記載の合金微粒子担持装置において、前記第1および第2のスパッタ源または前記磁石の移動方向が逆転する領域近傍の前記第1のスパッタ源或いは前記第2のスパッタ源の厚さは、それ以外の領域における前記スパッタ源の厚さよりも厚いことを特徴としている。 Furthermore, the alloy fine particle supporting apparatus of the present invention is the alloy fine particle supporting apparatus according to any one of claims 2 to 7 , wherein the moving direction of the first and second sputtering sources or the magnet is reversed. The thickness of the first sputtering source or the second sputtering source in the vicinity of the region is characterized by being thicker than the thickness of the sputtering source in other regions.

またさらに、本発明の合金微粒子担持装置は、請求項2乃至請求項のいずれか1項に記載の合金微粒子担持装置において、前記第1のスパッタ源或いは前記第2のスパッタ源は、移動方向が逆転する領域近傍において、前記支持部材と対峙する側とは反対側に、前記第1のスパッタ源、前記第2のスパッタ源、SiO、TiO、WOおよびMnから選ばれる部材を設けることを特徴としている。 Still further, the alloy fine particle supporting device of the present invention is the alloy fine particle supporting device according to any one of claims 2 to 8 , wherein the first sputter source or the second sputter source is in a moving direction. A member selected from the first sputtering source, the second sputtering source, SiO 2 , TiO 2 , WO 3 and Mn is provided on the opposite side to the side facing the support member in the vicinity of the region where the rotation is reversed. It is characterized by that.

また、本発明の合金微粒子担持装置は、請求項乃至請求項のいずれか1項に記載の合金微粒子担持装置において、前記第1のスパッタ源或いは前記第2のスパッタ源は、移動方向が逆転する領域近傍において、前記支持部材と対峙する側とは反対側に、前記第1のスパッタ源或いは前記第2のスパッタ源より透磁率の高い部材を設けたことを特徴とする。 Further, the alloy fine particle supporting device of the present invention is the alloy fine particle supporting device according to any one of claims 2 to 9 , wherein the first sputtering source or the second sputtering source has a moving direction. A member having a higher magnetic permeability than the first sputtering source or the second sputtering source is provided in the vicinity of the reverse rotation region on the side opposite to the side facing the support member.

また、本発明の合金微粒子担持装置は、請求項2乃至請求項1のいずれか1項に記載の合金微粒子担持装置において、前記第1および第2のスパッタ源または前記磁石の移動速度は、前記第1および第2のスパッタ源または前記磁石の移動方向が逆転する領域近傍において、それ以外の領域における移動速度より大きいことを特徴としている。 Further, the alloy particulate carrier device of the present invention, the alloy particulate carrier device according to any one of claims 2 to 1 0, the moving speed of the first and second sputtering source or the magnet, In the vicinity of the region where the moving direction of the first and second sputtering sources or the magnet is reversed, the moving speed is higher in other regions.

また、本発明の合金微粒子担持装置は、請求項2に記載の合金微粒子担持装置において、前記磁石は、その移動方向および移動速度が常時一定であることを特徴としている。   In addition, the alloy fine particle supporting apparatus of the present invention is characterized in that, in the alloy fine particle supporting apparatus according to claim 2, the moving direction and moving speed of the magnet are always constant.

上記本発明の合金微粒子担持装置によれば、異なる複数のスパッタ源を均一に、かつ効率的に消費することができ、所定の粒径を有する合金粒子を、粒子状母材表面に形成することができる。   According to the alloy fine particle carrying device of the present invention, a plurality of different sputtering sources can be consumed uniformly and efficiently, and alloy particles having a predetermined particle diameter are formed on the surface of the particulate base material. Can do.

以下図面を参照して、本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の合金微粒子担持装置に用いるスパッタ源の平面模式図の一例である。スパッタ源1は矩形状の第1のスパッタ源2と同じく矩形状の第2のスパッタ源3から構成されており、白金を含有する第1のスパッタ源2が両側配置され、中央に隣接してその他の合金元素を含む第2のスパッタ源3が配置されている。第1のスパッタ源2と第2のスパッタ源3の表面近傍には、プラズマを補足する磁場4が形成されている。第1のスパッタ源2と第2のスパッタ源3の表面近傍の磁場4の磁束密度はお互い異なっている。   FIG. 1 is an example of a schematic plan view of a sputtering source used in the alloy fine particle supporting apparatus of the present invention. The sputter source 1 is composed of a rectangular second sputter source 3 similar to the rectangular first sputter source 2, and the first sputter source 2 containing platinum is disposed on both sides and adjacent to the center. A second sputtering source 3 containing other alloy elements is arranged. Near the surface of the first sputtering source 2 and the second sputtering source 3, a magnetic field 4 that supplements plasma is formed. The magnetic flux densities of the magnetic fields 4 near the surfaces of the first sputter source 2 and the second sputter source 3 are different from each other.

図2は本発明の合金微粒子担持装置に用いるスパッタ源とこれに応じた磁石、そして磁力線を表した平面模式図の一例である。第1のスパッタ源2と第2のスパッタ源3は図2に示すように背後のバッキングプレート21にInなどの導電性接着材料あるいは図示しない固定治具を用いて固定されている。さらにバッキングプレート21の下には第1および第2のスパッタ源に対応した第1の磁石23と第2の磁石24を配置する。   FIG. 2 is an example of a schematic plan view showing a sputtering source used in the apparatus for supporting fine alloy particles of the present invention, a magnet corresponding thereto, and lines of magnetic force. As shown in FIG. 2, the first sputtering source 2 and the second sputtering source 3 are fixed to the back backing plate 21 using a conductive adhesive material such as In or a fixing jig (not shown). Further, below the backing plate 21, a first magnet 23 and a second magnet 24 corresponding to the first and second sputtering sources are arranged.

第1のスパッタ源2と第2のスパッタ源3の磁場の磁束密度は、第1の磁石23、第2の磁石24を可動とすることで調整する。たとえば第1のスパッタ源2に比べて第2のスパッタ源3のスパッタ速度が速い場合は、第1のスパッタ源2に応じた第1の磁石23を遠ざけ、第2のスパッタ源に応じた第2の磁石24を近づける。この機構により、蒸着物の組成の調整が容易に行え、各々のスパッタ源の材料が変わっても最適な組成が得られる。   The magnetic flux density of the magnetic field of the first sputtering source 2 and the second sputtering source 3 is adjusted by making the first magnet 23 and the second magnet 24 movable. For example, when the sputtering rate of the second sputtering source 3 is higher than that of the first sputtering source 2, the first magnet 23 corresponding to the first sputtering source 2 is moved away and the first sputtering source 2 corresponding to the second sputtering source 2 is moved away. The two magnets 24 are brought close to each other. By this mechanism, the composition of the deposited material can be easily adjusted, and an optimum composition can be obtained even if the material of each sputtering source is changed.

図3は本発明の合金微粒子担持装置に用いる磁石の断面模式図の一例である。図2の磁第1の磁石23、第2の磁石24を断面的に見ると、外周を取り巻く磁石31と極性の異なる中央の磁石32とから構成されている。第1の磁石23、第2の磁石24を第1のスパッタ源2、第2のスパッタ源3に近づけると図2に示すように、第1のスパッタ源2と第2のスパッタ源3の表面近傍には磁力線22が生じ、それによってプラズマの捕捉密度が増大するため、図1の4に示すような磁場が形成される。スパッタ速度は材料によって異なるが、磁束密度に依存し、第1の磁石23、第2の磁石24の断面積、磁力、スパッタ源との距離Rによって変化する。   FIG. 3 is an example of a schematic cross-sectional view of a magnet used in the alloy fine particle supporting apparatus of the present invention. When the magnetic first magnet 23 and the second magnet 24 in FIG. 2 are viewed in cross section, they are composed of a magnet 31 surrounding the outer periphery and a central magnet 32 having a different polarity. When the first magnet 23 and the second magnet 24 are brought close to the first sputtering source 2 and the second sputtering source 3, as shown in FIG. 2, the surfaces of the first sputtering source 2 and the second sputtering source 3. Magnetic field lines 22 occur in the vicinity, thereby increasing the trapping density of the plasma, so that a magnetic field as shown by 4 in FIG. 1 is formed. Although the sputtering rate varies depending on the material, it depends on the magnetic flux density and varies depending on the cross-sectional areas of the first magnet 23 and the second magnet 24, the magnetic force, and the distance R from the sputtering source.

なお、第1のスパッタ源2と第2のスパッタ源3の配置のしかたおよび磁場の形成のしかたは、図4ないし図10に示すような方法がある。   The arrangement of the first sputtering source 2 and the second sputtering source 3 and the formation of the magnetic field include methods as shown in FIGS.

図4では図1と対比して第1のスパッタ源2と第2のスパッタ源3の各々の磁場4の磁束密度の大小関係を逆にし、第1のスパッタ源2とこれに応じた第1の磁石23の距離Rを大きくし、第2のスパッタ源3とこれに応じた第2の磁石24の距離Rを小さくすることで磁場を拡げ原料の利用効率を上げようとしたものである。   In FIG. 4, the magnitude relationship of the magnetic flux density of the magnetic field 4 of each of the first sputter source 2 and the second sputter source 3 is reversed as compared with FIG. 1, and the first sputter source 2 and the first sputter source corresponding to this. By increasing the distance R of the magnet 23 and decreasing the distance R between the second sputter source 3 and the second magnet 24 corresponding thereto, the magnetic field is expanded to increase the utilization efficiency of the raw material.

また、図5ではルテニウムなどを含有する第3のスパッタ源51と第2のスパッタ源3の長手方向が平行になるように第1のスパッタ源2と第2のスパッタ源3の間に配置したものである。磁場4の磁束密度は蒸着物が適正な組成を得られるように第1のスパッタ源2、第2のスパッタ源3とこれらに応じた第1の磁石23、第2の磁石24の距離Rを調整する。なお、第1のスパッタ源2と第2のスパッタ源3、そして第3のスパッタ源51を合金にせず、単一の元素で形成しているため、それぞれのスパッタ源を再度原料として使用する時、再加工費が下げられる。なお、第3のスパッタ源51に応じた磁石は特に設けない。   Further, in FIG. 5, the third sputtering source 51 containing ruthenium or the like and the second sputtering source 3 are arranged between the first sputtering source 2 and the second sputtering source 3 so that the longitudinal directions thereof are parallel to each other. Is. The magnetic flux density of the magnetic field 4 is set so that the distance R between the first sputter source 2 and the second sputter source 3 and the first magnet 23 and the second magnet 24 corresponding to the first sputter source 2 and the second sputter source 3 can be obtained. adjust. Since the first sputter source 2, the second sputter source 3, and the third sputter source 51 are made of a single element without being alloyed, each sputter source is used again as a raw material. Rework costs are reduced. Note that a magnet corresponding to the third sputtering source 51 is not particularly provided.

また、図6のように第3のスパッタ源51を第2のスパッタ源3の中央に長手方向が概ね平行になるように配置することができる。この場合さらに蒸着物の組成のばらつきを少なくすることができる。   Further, as shown in FIG. 6, the third sputtering source 51 can be arranged at the center of the second sputtering source 3 so that the longitudinal direction is substantially parallel. In this case, the variation in the composition of the deposited material can be further reduced.

また、図7のように第3のスパッタ源51を第2のスパッタ源3の中央に長手方向が概ね直交するように配置しに、さらに第3のスパッタ源51が第1のスパッタ源2と接するように配置することもできる。   Further, as shown in FIG. 7, the third sputter source 51 is arranged in the center of the second sputter source 3 so that the longitudinal direction thereof is substantially orthogonal, and the third sputter source 51 is connected to the first sputter source 2. It can also arrange so that it may touch.

なお、小型のスパッタ源1を用いる場合などは図8のように第1のスパッタ源2、第2のスパッタ源3、第3のスパッタ源51に跨った一つの連続する磁場4をスパッタ源全体にわたって形成してもよい。この場合、スパッタ源1全体に応じた大きさの磁石を用意することになる。   When a small sputtering source 1 is used, as shown in FIG. 8, one continuous magnetic field 4 straddling the first sputtering source 2, the second sputtering source 3, and the third sputtering source 51 is applied to the entire sputtering source. You may form over. In this case, a magnet having a size corresponding to the entire sputtering source 1 is prepared.

逆に、スパッタ源1がやや大きい場合などは図9のように図8の磁場4を複数形成してもよい。これによりスパッタ速度を上げ、かつ原料の利用効率を上げることができる。   Conversely, when the sputtering source 1 is slightly larger, a plurality of magnetic fields 4 shown in FIG. 8 may be formed as shown in FIG. Thereby, the sputtering rate can be increased and the utilization efficiency of the raw material can be increased.

加えて、第1のスパッタ源2の組成比が高い触媒を得る場合には図10のように複数の磁場4を有し、かつ連続する磁場4の一部が第2のスパッタ源3および第3のスパッタ源51上に形成されていてもよい。   In addition, in the case of obtaining a catalyst having a high composition ratio of the first sputter source 2, a plurality of magnetic fields 4 are provided as shown in FIG. 10, and a part of the continuous magnetic field 4 is the second sputter source 3 and the second sputter source 3. 3 sputter sources 51 may be formed.

ところでマグネトロンスパッタリング法では、スパッタ源のエロージョン領域(スパッタリング現象により構成元素がはじき飛ばされてスパッタ源が消耗する範囲)に穴が開いてしまう直前に新しい原料に交換し、残材は再生処理を施すことがある。通常エロージョン領域のスパッタ速度は周囲に比べて2桁以上速いので極端にその領域だけがなくなるためのスパッタリングに使用できる原料の割合は10%から20%程度である。したがって頻繁に再生処理を行わなければならず、そのためコストが製品の及ぼす影響が大きくなってしまう。   By the way, in the magnetron sputtering method, a new raw material is replaced immediately before a hole is opened in the erosion region of the sputtering source (a range where the constituent elements are repelled by the sputtering phenomenon and the sputtering source is consumed), and the remaining material is regenerated. There is. Usually, since the sputtering speed in the erosion region is two orders of magnitude or more faster than the surroundings, the ratio of the raw materials that can be used for sputtering is extremely about 10% to 20% because only that region is extremely lost. Therefore, it is necessary to frequently perform the regeneration process, and the influence of the product on the cost becomes large.

図11は本発明の合金微粒子担持装置に用いるスパッタ源と磁場を示した平面模式図の一例である。   FIG. 11 is an example of a schematic plan view showing a sputtering source and a magnetic field used in the alloy fine particle supporting apparatus of the present invention.

本発明ではスパッタ源の利用効率を向上させるため、量産向けのスパッタ源とし図11に示すようにスパッタ源1を白金を含む第1のスパッタ源2と第2のスパッタ源3を互い違いに長手方向を平行にして形成し、磁場は、その長手方向と概ね直交するように帯状また矩形状に形成し、スパッタ源全体1と図示しないがこれに応じた磁石を相対的に第1のスパッタ源2或いは第2のスパッタ源3の長手方向に移動させて、順次走査しながらスパッタリングすることを特徴としている。   In the present invention, in order to improve the utilization efficiency of the sputtering source, as a sputtering source for mass production, as shown in FIG. 11, the first sputtering source 2 containing platinum and the second sputtering source 3 are alternately arranged in the longitudinal direction. Are formed in parallel, and the magnetic field is formed in a band shape or a rectangular shape so as to be substantially orthogonal to the longitudinal direction thereof, and the sputter source 1 as a whole and a magnet corresponding to the first sputter source 2 are relatively shown although not shown. Alternatively, the second sputtering source 3 is moved in the longitudinal direction, and sputtering is performed while sequentially scanning.

以上のようなスパッタ源1を用いることでスパッタリング時の投入電力が同じとしても材料のスパッタ速度または結合エネルギーに応じて磁束密度を適宜調整しながら、合金のスパッタ源を用いることなく蒸着物の組成を制御できる。局所的に削られ、使用不可能になったスパッタ源1の残材は溶解して再加工するが、第1のスパッタ源2と第2のスパッタ源3が他の元素を混入していなければ、再加工しやすく、再生コストを抑えられ結果的に効率的にスパッタリングできるので好ましい。   By using the sputter source 1 as described above, even if the input power during sputtering is the same, the composition of the deposited material can be adjusted without using the sputter source of the alloy while appropriately adjusting the magnetic flux density according to the sputtering speed or the binding energy of the material. Can be controlled. The remaining material of the sputter source 1 that has been locally scraped and becomes unusable is melted and reprocessed. However, if the first sputter source 2 and the second sputter source 3 are not mixed with other elements. It is preferable because it is easy to rework, and the regeneration cost can be suppressed, resulting in efficient sputtering.

図12は図11のA−A面の断面図であり、スパッタ源とこれに応じた磁石の位置関係を示した一例である。   FIG. 12 is a cross-sectional view of the AA plane of FIG. 11, which is an example showing the positional relationship between the sputtering source and the magnet corresponding thereto.

図12に示すように予め磁石121の位置を第1のスパッタ源2と第2のスパッタ源3に対して調整して、走査しながらスパッタリングすることもできる。なお、図12の場合、走査方向は紙面に対して表裏の方向である。   As shown in FIG. 12, the position of the magnet 121 can be adjusted in advance with respect to the first sputtering source 2 and the second sputtering source 3, and sputtering can be performed while scanning. In the case of FIG. 12, the scanning direction is the front and back direction with respect to the paper surface.

以下にスパッタ源全体1とこれに応じた磁石を相対的に移動させ順次走査を行いながらスパッタリングする際のスパッタ源の変形例を図13ないし図17に示す。   13 to 17 show modified examples of the sputtering source when sputtering is performed while sequentially scanning the entire sputtering source 1 and the magnet corresponding to the entire movement.

図13は図11とほぼ同様で、スパッタ源全体1において表面近傍に磁場4を帯状または矩形状に形成するが、常に端部131は第2のスパッタ源3上にあるようにしている。端部131はスパッタ速度が速いため、その原料は適宜交換が求められる。   FIG. 13 is substantially the same as FIG. 11, and the magnetic field 4 is formed in the vicinity of the surface in the entire sputtering source 1 in a band shape or a rectangular shape, but the end 131 is always on the second sputtering source 3. Since the end portion 131 has a high sputtering rate, it is necessary to replace the raw material as appropriate.

図14は図13とほぼ同様であるが、磁場4の端部141の磁束密度を少しだけ小さくするように形成している。端部の磁束密度は磁石の磁力を小さいものにするか、バッキングプレートからの距離を離す、あるいは磁石を抜いてもよく、それらのいずれかの方法により調整する。この走査により特定の原料の交換を頻繁に行わなくてもよく、生産性が向上する。   FIG. 14 is substantially the same as FIG. 13, but the magnetic flux density at the end portion 141 of the magnetic field 4 is slightly reduced. The magnetic flux density at the end may be adjusted by any one of these methods by reducing the magnetic force of the magnet, increasing the distance from the backing plate, or removing the magnet. This scanning does not require frequent replacement of specific raw materials, improving productivity.

図15は第1のスパッタ源2と第2のスパッタ源3の長手方向両端に第1のスパッタ源2を配置した図である。走査された磁場4が同一の場所に留まる時間を極力少なくする。そうすると蒸着物の組成の均一性を保ちつつ、貴金属原料の利用効率をさらに向上することができる。   FIG. 15 is a diagram in which the first sputtering source 2 is disposed at both longitudinal ends of the first sputtering source 2 and the second sputtering source 3. The time during which the scanned magnetic field 4 stays in the same place is reduced as much as possible. If it does so, the utilization efficiency of a noble metal raw material can further be improved, maintaining the uniformity of a composition of a deposit.

図16は第1のスパッタ源2と第2のスパッタ源3の長手方向が概ね平行になるように配置した後、その外周を第1のスパッタ源2に比べて1桁以上スパッタ速度が低い材料161で囲む。たとえば、酸化ケイ素、酸化チタニウム、酸化ジルコニウム、酸化タングステン、酸化モリブデンが挙げられる。これらを構成する金属元素は触媒の活性を向上させる効果があり、金属酸化物であっても微量であれば悪影響はない。または、高分子化合物で構成してもよく、特にテフロン(R)は結晶化度が高く、モノマーの解離が少ないので好適である。   In FIG. 16, the first sputter source 2 and the second sputter source 3 are arranged so that the longitudinal directions thereof are substantially parallel, and the outer periphery of the first sputter source 2 and the second sputter source 3 has a lower sputter rate than the first sputter source 2 by one digit or more. 161. Examples thereof include silicon oxide, titanium oxide, zirconium oxide, tungsten oxide, and molybdenum oxide. The metal elements constituting these have an effect of improving the activity of the catalyst, and even if it is a metal oxide, there is no adverse effect as long as it is a trace amount. Alternatively, it may be composed of a polymer compound, and in particular, Teflon (R) is preferable because it has a high crystallinity and less monomer dissociation.

この場合、図17のように磁場を低スパッタ速度の部材161領域まで移動させると、スパッタ源全体1の厚さが均一に減少するので望ましい。この際、第1のスパッタ源2と第2のスパッタ源3の一部が一度蒸発したあと周囲の低スパッタ速度の部材161に付着することがあるが、それらを再度スパッタリングすることも可能であり、より貴金属材料の利用効率を高めることができる。   In this case, it is desirable to move the magnetic field to the member 161 region having a low sputtering speed as shown in FIG. 17 because the thickness of the entire sputtering source 1 is reduced uniformly. At this time, a part of the first sputtering source 2 and the second sputtering source 3 may evaporate once and then adhere to the surrounding member 161 having a low sputtering rate. However, they can be sputtered again. Therefore, the utilization efficiency of the noble metal material can be improved.

また、スパッタ源の効率的な利用をするための一例として、図21のように、第2のスパッタ源の支持部材と対峙する側とは反対側に透磁率の高い部材を設けることができる。すなわち、スパッタ速度の高い材料212と、磁石215の間に透磁率の高い部材213を設ける。具体的には、透磁率の高い部材213は、Ni、Fe、Coから選ばれ、バッキングプレート214の中に保持される。スパッタ速度によって透磁率の高い部材213を所望の厚さに設定でき、磁場の強さを調整することができる。   As an example for efficiently using the sputtering source, as shown in FIG. 21, a member having a high magnetic permeability can be provided on the side opposite to the side facing the support member of the second sputtering source. That is, a member 213 having a high magnetic permeability is provided between the material 212 having a high sputtering rate and the magnet 215. Specifically, the member 213 having a high magnetic permeability is selected from Ni, Fe, and Co, and is held in the backing plate 214. The member 213 having a high magnetic permeability can be set to a desired thickness depending on the sputtering speed, and the strength of the magnetic field can be adjusted.

合金微粒子の生産性を上げようとする場合、エロージョン領域を複数設けることが考えられる。すなわち、2つの磁石215を同時に走査することを例に考えると、スパッタ源211、212の長手方向中央付近で、走査方向を逆転しなければならない。ここで問題となるのが、走査方向を逆転する際、一度磁石215の走査が止まるため、長手方向中央付近のスパッタ時間が長くなり、それ以外の領域よりもスパッタ源211、212の消耗度が高くなることである。スパッタ時間が長くなれば、スパッタ源211、211に孔が空いてしまうことも考えられる。   In order to increase the productivity of alloy fine particles, it is conceivable to provide a plurality of erosion regions. In other words, when the scanning of the two magnets 215 is considered as an example, the scanning direction must be reversed near the center in the longitudinal direction of the sputtering sources 211 and 212. The problem here is that when the scanning direction is reversed, since the scanning of the magnet 215 stops once, the sputtering time near the center in the longitudinal direction becomes longer, and the degree of wear of the sputtering sources 211 and 212 is higher than in other regions. To be higher. If the sputtering time becomes long, it is conceivable that holes are formed in the sputtering sources 211 and 211.

そこで、図21のB−B断面図のように、スパッタ源211、212の長手方向の中央付近にそれと直行する方向に透磁率の高い部材213を設置する。あるいは、スパッタ源211、212の長手方向の中央付近のスパッタ速度をそれ以外の領域の80%以上、95%以下とすることで、スパッタ源211、21全体の消耗度を一定にすることができ、効率的な利用ができる。   Therefore, as shown in the BB cross-sectional view of FIG. 21, a member 213 having a high magnetic permeability is installed in the direction perpendicular to the center of the sputter sources 211 and 212 in the longitudinal direction. Alternatively, by setting the sputtering rate near the center in the longitudinal direction of the sputtering sources 211 and 212 to be 80% or more and 95% or less of the other regions, the degree of wear of the entire sputtering sources 211 and 21 can be made constant. Efficient use.

80%に満たないと、透磁率の高い部材213がある部分とない部分での差が大きく明確な境界ができてしまい好ましくなく、95%を超える場合は磁石の走査方向を逆転するために停止している時間が短いため駆動装置に高い精度が要求されコストアップになり好ましくない。更に好ましくは上記範囲で連続的に変化させるとより有効である。すなわちスパッタ源211、212の長手方向の中央付近において中央より離れるに従ってスパッタ速度の減少幅を小さくする。具体的にはスパッタ源211、212の長手方向の中央付近に設けられた透磁率の高い部材213の厚みを中央より離れるに従って薄くする。これにより、より均一にスパッタ源を使用することができる。   If it is less than 80%, the difference between the portion with and without the high-permeability member 213 is large, and it is not preferable because a clear boundary is formed. If it exceeds 95%, it stops to reverse the magnet scanning direction. Since the driving time is short, high accuracy is required for the driving device, which increases the cost, which is not preferable. More preferably, it is more effective to change continuously within the above range. That is, as the distance from the center in the vicinity of the center in the longitudinal direction of the sputtering sources 211 and 212 is decreased, the reduction rate of the sputtering rate is reduced. Specifically, the thickness of the member 213 having a high magnetic permeability provided near the center in the longitudinal direction of the sputtering sources 211 and 212 is reduced as the distance from the center increases. Thereby, a sputtering source can be used more uniformly.

また、図22のように、複数の磁石221の走査方向が逆転する領域Aにおいて、それ以外の領域Bよりも磁石221の移動速度を5%以上、10%以下速くすることも考えられる。   Further, as shown in FIG. 22, in the region A where the scanning directions of the plurality of magnets 221 are reversed, it is conceivable that the moving speed of the magnet 221 is made 5% or more and 10% or less faster than the other regions B.

5%に満たないと、磁石の走査方向を逆転するために停止している時間が短いため駆動装置に高い精度が要求されコストアップになり好ましくなく、10%を超えると明確な境界ができてしまい好ましくない。   If it is less than 5%, the time during which the magnet is stopped to reverse the scanning direction of the magnet is short, so that high accuracy is required for the driving device, which is not preferable. It is not preferable.

さらに、図23のようにスパッタ源233の中央付近の厚さを、その他の領域より厚くすることができる。厚さの基準は、磁石の走査方向を逆転するために停止している時間とスパッタ速度に依存しており、中央付近の厚さはその他の領域の1.1倍から1.3倍程度が好ましい。   Further, as shown in FIG. 23, the thickness near the center of the sputtering source 233 can be made thicker than other regions. The standard for the thickness depends on the time during which the magnet is stopped to reverse the scanning direction of the magnet and the sputtering speed, and the thickness near the center is about 1.1 to 1.3 times that of other regions. preferable.

またさらに、図24のようにスパッタ源243の中央付近に、スパッタ源243と同じ材料、SiO2、TiO2、WO3、Mnから選ばれる板状の部材244を設けることができる。この部材244によって、スパッタ源243の一部分に孔があいてもスパッタリングし続けることができる。   Furthermore, as shown in FIG. 24, a plate-like member 244 selected from the same material as that of the sputtering source 243, SiO2, TiO2, WO3, and Mn can be provided near the center of the sputtering source 243. By this member 244, sputtering can be continued even if a hole is formed in a part of the sputtering source 243.

また、図25のように複数のスパッタ源253を土台254に設置し、回転ローラ255を回転することで、ベルトコンベア状に複数のスパッタ源253を一方向に走査する装置も考えられる。この装置によって、スパッタ源253の消耗度が抑えられ、長時間にわたってスパッタリングを行うことができる。   In addition, as shown in FIG. 25, an apparatus that scans the plurality of sputtering sources 253 in one direction like a belt conveyor by installing a plurality of sputtering sources 253 on the base 254 and rotating the rotating roller 255 is also conceivable. With this apparatus, the degree of wear of the sputtering source 253 is suppressed, and sputtering can be performed for a long time.

ところで、本発明の合金微粒子担持装置では、図26に示すように複数のスパッタ源263、264、265と炭素を主成分とする粒子状母材266の距離Lを変化させることにより、粒子状母材266の面内の合金微粒子の濃度に分布を施すことができる。図27は3種類の異なる材料を周期的に並べたスパッタ源を用いた場合に得られた位置と堆積速度の関係を示している。ここで、第1のスパッタ源263をPt、第2のスパッタ源264をRu、第3のスパッタ源265をWMoとした場合、Lを10mmにすると、Ptの直下では堆積速度が100nm/min.であるが、Ruの直下では、20〜40nm/min.まで低下する。Lを大きくするにつれて、場所による堆積速度の差が小さくなっていくことが確認された。   By the way, in the alloy fine particle supporting apparatus of the present invention, as shown in FIG. 26, by changing the distance L between the plurality of sputtering sources 263, 264, 265 and the particulate base material 266 mainly composed of carbon, Distribution can be applied to the concentration of alloy fine particles in the plane of the material 266. FIG. 27 shows the relationship between the position and the deposition rate obtained when a sputtering source in which three different materials are periodically arranged is used. Here, when the first sputter source 263 is Pt, the second sputter source 264 is Ru, and the third sputter source 265 is WMo, when L is 10 mm, the deposition rate is 100 nm / min. However, immediately below Ru, 20 to 40 nm / min. To fall. It was confirmed that the difference in the deposition rate depending on the location became smaller as L was increased.

さて、粒子状母材またはシート状母材に合金微粒子の濃度分布がある方が良い場合がある。   Now, it may be better that the particulate base material or the sheet-like base material has a concentration distribution of alloy fine particles.

例えば、図28にアクティブ方式と呼ばれる直接メタノール型燃料電池(以下DMFCと記す)を示す。DMFC281では、発電に必要なメタノールと水を適当な混合比になるようにそれぞれ設けた燃料タンク284、水タンク285から燃料ポンプ286によりセル282に送る。   For example, FIG. 28 shows a direct methanol fuel cell (hereinafter referred to as DMFC) called an active system. In the DMFC 281, methanol and water necessary for power generation are sent to the cell 282 by the fuel pump 286 from the fuel tank 284 and the water tank 285 that are respectively provided at an appropriate mixing ratio.

図28にDMFCのセル内部の断面図を示す。セル291には流路がアノード292及びカソード293に設けられており、アノード292では混合燃料、カソード293では空気が流れる。その間にメタノールは発電に使用されるので燃料入口294に近いところではメタノールの濃度が高く、燃料出口295に近づくに連れて濃度が下がる。発電時に発生した水は水のタンク285に戻され再利用される。   FIG. 28 shows a cross-sectional view of the inside of the DMFC cell. In the cell 291, a flow path is provided in the anode 292 and the cathode 293, and mixed fuel flows in the anode 292 and air flows in the cathode 293. In the meantime, methanol is used for power generation, so the concentration of methanol is high near the fuel inlet 294, and the concentration decreases as the fuel outlet 295 is approached. Water generated during power generation is returned to the water tank 285 and reused.

DMFCの電極ではメタノール濃度に合った触媒量を有することが発電効率、寿命などの点で重要である。したがって、燃料入口294付近では触媒量を多くし、燃料出口295に近づくにつれて触媒量が少なくなっている膜・電極複合体(MEA)298はこの方式には有利である。   It is important in terms of power generation efficiency, life, etc. that the DMFC electrode has a catalyst amount that matches the methanol concentration. Therefore, a membrane / electrode assembly (MEA) 298 having an increased amount of catalyst near the fuel inlet 294 and decreasing as the fuel outlet 295 is approached is advantageous for this method.

このような電極は従来の湿式法でも触媒層の厚さを変化させることにより作製可能と思われがちであるが、触媒層の厚さは燃料の拡散特性に影響を及ぼすのでかえって特性が悪くなり実現は困難である。それに対し本発明では触媒層の厚さを変えることなく容易に合金微粒子を面内で変えることができる。具体的には、Ptに対するRu及びHf,Ta,Mo,W,Ni,Siなどの添加元素の量(混合比)も変えることができる。Pt量の減少に伴いRu及びその他の元素の量が増えるが、添加元素によっては低濃度のメタノール燃料に対して発電効率が高くなるので好ましい。   Such an electrode tends to be produced by changing the thickness of the catalyst layer even in the conventional wet method, but the thickness of the catalyst layer affects the diffusion characteristics of the fuel, so the characteristics deteriorate. Realization is difficult. On the other hand, in the present invention, the alloy fine particles can be easily changed in the plane without changing the thickness of the catalyst layer. Specifically, the amount (mixing ratio) of Ru and Hf, Ta, Mo, W, Ni, Si and other additive elements with respect to Pt can be changed. As the amount of Pt decreases, the amount of Ru and other elements increases. However, depending on the additive element, it is preferable because the power generation efficiency becomes higher with respect to low-concentration methanol fuel.

(実施例1)
本実施例では、白金とタングステンをスパッタ速度4:1になるように、矩形状の第1のスパッタ源と第2のスパッタ源の面積、および各々のスパッタ源とこれに応じた磁石の位置などを調整した。具体的にはタングステンは白金よりスパッタ速度は少し速いので面積は1:2とし、更に第2のスパッタ源に応じた第2の磁石の表面近傍の磁束密度を、白金の第1のスパッタ源に応じた第1の磁石と比較して80%とした。
Example 1
In this embodiment, the areas of the first and second sputtering sources having a rectangular shape and the positions of the respective sputtering sources and the magnets corresponding thereto are set so that platinum and tungsten have a sputtering rate of 4: 1. Adjusted. Specifically, since tungsten has a slightly higher sputter rate than platinum, the area is 1: 2, and the magnetic flux density near the surface of the second magnet corresponding to the second sputter source is used as the first sputter source for platinum. 80% compared to the corresponding first magnet.

図18に、以上のように形成したスパッタ源181を用いて粒子状母材にスパッタリングした際の断面模式図を示す。形成したスパッタ源181(スパッタ源に応じた磁石は図示しない)の下に対峙するように、平均粒径1μm以下、表面積50m/g以上の炭素を母体とした粒子状母体182を収容した支持部材183を置き、以下の条件で10時間スパッタリングを行った。この際、真空チャンバー184の外に設置したマグネティックスターラ185を用いて予め支持部材の中に入れておいた磁性体にテフロン(登録商標;デュポン社製)コートした回転子186を一定周期ごとに一定時間回転させて粒子状母体を撹拌した。 FIG. 18 is a schematic cross-sectional view when sputtering is performed on a particulate base material using the sputtering source 181 formed as described above. A support containing a particulate matrix 182 whose base is carbon having an average particle diameter of 1 μm or less and a surface area of 50 m 2 / g or more so as to face under the formed sputtering source 181 (a magnet corresponding to the sputtering source is not shown). The member 183 was placed, and sputtering was performed for 10 hours under the following conditions. At this time, a rotor 186 in which Teflon (registered trademark; manufactured by DuPont) is coated on a magnetic material previously placed in a support member by using a magnetic stirrer 185 installed outside the vacuum chamber 184 is fixed at regular intervals. The particulate matrix was stirred by rotating for a period of time.


圧力;1×10−2Pa
撹拌しない時間;100秒
撹拌時間;5秒
蒸着量;1×1015atoms/cm・秒

これにより担持率(炭素の重量に対する触媒の重量)50%の白金−タングステン触媒担持炭素粉体を100g作製した。

Pressure: 1 × 10 −2 Pa
Time not stirred; 100 seconds stirring time; 5 seconds deposition amount; 1 × 10 15 atoms / cm 2 · second

As a result, 100 g of a platinum-tungsten catalyst-supported carbon powder having a loading ratio (weight of catalyst with respect to the weight of carbon) of 50% was produced.

図19に本発明の実施例に関わる触媒評価用の膜・電極複合体の模式図を示す。また、図20にその膜・電極複合体を組み込んだ直接メタノール形燃料電池の単セルの模式図を示す。   FIG. 19 is a schematic diagram of a membrane / electrode composite for catalyst evaluation according to an example of the present invention. FIG. 20 shows a schematic diagram of a single cell of a direct methanol fuel cell incorporating the membrane-electrode assembly.

得られた粉体を用いてカソード電極191、アノード電極192をそれぞれを作製し、カソード電極191とアノード電極192の間にナフィオン(登録商標;デュポン社製)からなるプロトン伝導性固体高分子膜193を挟んで、125℃、10分、30kg/cm2の圧力で熱圧着して、膜・電極複合体(MEA)を作製した。この膜・電極複合体と流路板201、燃料浸透部202、気化部203、セパレータ204、リード線205を用いて直接メタノール形燃料電池の単セルを作製した。この単セルに燃料としての1Mメタノール水溶液、流量0.6ml/min.でアノード電極192に供給すると共に、カソード電極191に空気を200ml/分の流量で供給し、セルを65℃に維持した状態で150mA/cm2電流密度を保つように放電させ、30分後のセル電圧を測定したところ0.6Vの電圧が得られた。得られた電圧は同じ貴金属量で作製した場合と比較して20%以上高い値であった。このように真空プロセスで作製した場合、スパッタリングしたルテニウムが酸化していないため、発電過程で生ずる蟻酸による溶出が少なく、長期間使用した場合の特性劣化が少ないと思われる。白金、タングステンのスパッタ源はほぼ均一に消費され、効率的に蒸着物に担持できた。また、スパッタ源の再加工もしやすかった。なお、得られた合金粒子の平均粒径は4nmであった。 Using the obtained powder, a cathode electrode 191 and an anode electrode 192 were respectively produced, and a proton conductive solid polymer membrane 193 made of Nafion (registered trademark; manufactured by DuPont) between the cathode electrode 191 and the anode electrode 192. The membrane / electrode assembly (MEA) was produced by thermocompression bonding at 125 ° C. for 10 minutes at a pressure of 30 kg / cm 2. A single cell of a direct methanol fuel cell was fabricated using this membrane / electrode composite, the flow path plate 201, the fuel permeation section 202, the vaporization section 203, the separator 204, and the lead wire 205. In this single cell, a 1M aqueous methanol solution as a fuel, a flow rate of 0.6 ml / min. In addition to supplying to the anode electrode 192, air was supplied to the cathode electrode 191 at a flow rate of 200 ml / min, and the cell was discharged to maintain a current density of 150 mA / cm 2 while maintaining the cell at 65 ° C. When the cell voltage was measured, a voltage of 0.6 V was obtained. The obtained voltage was 20% or more higher than that produced with the same amount of noble metal. Thus, when produced by a vacuum process, since the sputtered ruthenium is not oxidized, there is little elution by formic acid generated during the power generation process, and it is considered that there is little deterioration in characteristics when used for a long time. The platinum and tungsten sputtering sources were consumed almost uniformly and could be efficiently carried on the deposited material. Moreover, it was easy to rework the sputtering source. The average particle size of the obtained alloy particles was 4 nm.

(実施例2)
以下の実施例は、実施例1と異なる部分を中心に説明し、実施例1と同一の機構については省略した。実施例1では触媒の組成及び合金の構成元素に合わせて予め磁石の磁力を変えてスパッタ源表面近傍の磁束密度を変えていたが、本実施例では合金の構成元素が変わっても適正な組成が得られるように、図2に示す機構で磁束密度を調整した。スパッタ源は白金とニオブを選び、白金とニオブの比が4:1の合金を担持させることとした。ニオブのスパッタ速度は白金より速いので、スパッタ源の面積は1/2にして、さらに磁束密度が30%小さくなるように磁石をバッキングプレートから10mm離した。その他の条件は実施例1と同様にして10時間、スパッタリングを行い、単セルで評価したところ、0.6Vの電圧が得られた。これは同じ貴金属量で作製した場合と比較して20%以上高い値である。白金、ニオブのスパッタ源はほぼ均一に消費され、効率的に蒸着物に担持できた。また、スパッタ源の再加工も容易に行うことができた。なお、得られた合金粒子の平均粒径は4nmであった。
(Example 2)
In the following examples, parts different from those in Example 1 were mainly described, and the same mechanism as Example 1 was omitted. In Example 1, the magnetic flux density near the surface of the sputtering source was changed in advance by changing the magnetic force of the magnet in accordance with the composition of the catalyst and the constituent elements of the alloy. The magnetic flux density was adjusted by the mechanism shown in FIG. As the sputtering source, platinum and niobium were selected, and an alloy having a platinum to niobium ratio of 4: 1 was supported. Since the sputtering rate of niobium was faster than that of platinum, the area of the sputtering source was halved and the magnet was separated from the backing plate by 10 mm so that the magnetic flux density was 30% smaller. As for other conditions, sputtering was performed for 10 hours in the same manner as in Example 1 and evaluated by a single cell. As a result, a voltage of 0.6 V was obtained. This is a value that is 20% or more higher than that produced with the same amount of noble metal. The platinum and niobium sputtering sources were consumed almost uniformly and could be efficiently carried on the deposit. In addition, the sputtering source could be easily reworked. The average particle size of the obtained alloy particles was 4 nm.

(実施例3)
実施例1及び実施例2ではスパッタ源のエロージョン領域に穴が開く直前に新しい原料に交換し、残材は再生した。本実施例では原料の利用効率を上げるため、図11に示す構成を採用した。スパッタ源は白金を含む第1のスパッタ源とバナジウムを含む第2のスパッタ源とした。その他の条件は実施例1と同様にして20時間、スパッタリングを行った。単セルで評価したところ、0.6Vの電圧が得られた。これは同じ貴金属量で作製した場合と比較して20%以上高い値である。その結果発電効率も向上した。その一方矩形板状原料もほぼ均一にスパッタされ利用効率を80%以上にすることができた。白金、バナジウムのスパッタ源はほぼ均一に消費され、効率的に蒸着物に担持できた。白金、バナジウムの利用効率を高めることができ、貴金属材料の再加工もしやすかった。なお、得られた合金粒子の平均粒径は4nmであった。
(Example 3)
In Example 1 and Example 2, the raw material was replaced with a new material immediately before a hole was opened in the erosion region of the sputtering source, and the remaining material was regenerated. In this example, the configuration shown in FIG. 11 was adopted in order to increase the utilization efficiency of raw materials. The sputtering source was a first sputtering source containing platinum and a second sputtering source containing vanadium. Other conditions were the same as in Example 1, and sputtering was performed for 20 hours. When evaluated with a single cell, a voltage of 0.6 V was obtained. This is a value that is 20% or more higher than that produced with the same amount of noble metal. As a result, power generation efficiency has also improved. On the other hand, the rectangular plate material was also sputtered almost uniformly, and the utilization efficiency could be increased to 80% or more. The platinum and vanadium sputtering sources were consumed almost uniformly and could be efficiently carried on the deposited material. The utilization efficiency of platinum and vanadium could be increased, and rework of precious metal materials was easy. The average particle size of the obtained alloy particles was 4 nm.

本発明によれば、粒径1μm以下の粒子状担体に粒径10nm以下の微粒子を担持させる方法および担持装置を提供でき、用途としては当該粉末を触媒に利用した直接メタノール形燃料電池が挙げられる。   According to the present invention, it is possible to provide a method and an apparatus for supporting fine particles having a particle size of 10 nm or less on a particulate carrier having a particle size of 1 μm or less, and the use includes a direct methanol fuel cell using the powder as a catalyst. .

本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源およびこれに応じた磁石の一例を示す概略断面図。The schematic sectional drawing which shows an example of the sputtering source of the alloy fine particle supporting apparatus which can be used by this invention, and the magnet according to this. 本発明で用いることができる合金微粒子担持装置の磁石の一例を示す概略平面図。The schematic plan view which shows an example of the magnet of the alloy fine particle support apparatus which can be used by this invention. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源およびこれに応じた磁石の一例を示す概略断面図。The schematic sectional drawing which shows an example of the sputtering source of the alloy fine particle supporting apparatus which can be used by this invention, and the magnet according to this. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置のスパッタ源の配置と磁場の一例を示す概略平面図。The schematic plan view which shows an example of arrangement | positioning of a sputter | spatter source of an alloy fine particle support apparatus which can be used by this invention, and a magnetic field. 本発明で用いることができる合金微粒子担持装置の一例を示す概略断面図。The schematic sectional drawing which shows an example of the alloy fine particle support apparatus which can be used by this invention. 本発明の実施例に関わる膜・電極複合体の概略断面図Schematic sectional view of a membrane / electrode composite according to an embodiment of the present invention 本発明の実施例に関わる直接メタノール形燃料電池の単セルの概略断面図。1 is a schematic cross-sectional view of a single cell of a direct methanol fuel cell according to an embodiment of the present invention. 本発明で用いることができる合金微粒子担持装置のスパッタ源およびこれに応じた磁石の一例を示す概略平面図および概略断面図。The schematic plan view and schematic sectional drawing which show an example of the sputtering source of the alloy fine particle supporting apparatus which can be used by this invention, and a magnet according to this. 本発明で用いることができる合金微粒子担持装置のスパッタ源およびこれに応じた磁石の一例を示す概略断面図。The schematic sectional drawing which shows an example of the sputtering source of the alloy fine particle supporting apparatus which can be used by this invention, and the magnet according to this. 本発明で用いることができる合金微粒子担持装置のスパッタ源およびこれに応じた磁石の一例を示す概略断面図。The schematic sectional drawing which shows an example of the sputtering source of the alloy fine particle supporting apparatus which can be used by this invention, and the magnet according to this. 本発明で用いることができる合金微粒子担持装置のスパッタ源およびこれに応じた磁石の一例を示す概略断面図。The schematic sectional drawing which shows an example of the sputtering source of the alloy fine particle supporting apparatus which can be used by this invention, and the magnet according to this. 本発明で用いることができる合金微粒子担持装置のスパッタ源およびこれに応じた磁石の一例を示す概略断面図。The schematic sectional drawing which shows an example of the sputtering source of the alloy fine particle supporting apparatus which can be used by this invention, and the magnet according to this. 本発明で用いることができる合金微粒子担持装置のスパッタ源と粒子状母材の距離を示す概略断面図。The schematic sectional drawing which shows the distance of the sputter | spatter source of the alloy fine particle support apparatus which can be used by this invention, and a particulate-form base material. 本発明で用いることができる合金微粒子担持装置のスパッタ源と粒子状母材の距離と堆積速度の関係を示す図。The figure which shows the relationship between the distance of the sputtering source of the alloy fine particle support apparatus which can be used by this invention, a particulate-form base material, and the deposition rate. 直接メタノール型燃料電池の模式図。The schematic diagram of a direct methanol fuel cell. 直接メタノール型燃料電池用セルの模式断面図。The schematic cross section of the cell for direct methanol type fuel cells.

符号の説明Explanation of symbols

1 スパッタ源
2 第1のスパッタ源
3 第2のスパッタ源
4 磁場
21 バッキングプレート
22 磁力線
23 第1の磁石
24 第2の磁石
31 磁石
32 磁石
51 第3のスパッタ源
121 磁石
131 磁場の端部
141 磁束密度の少し低い磁場
161 低スパッタ速度の材料
181 スパッタ源
182 粒子状母材
183 支持部材
184 真空チャンバー
185 マグネティックスターラ
186 磁性体回転子
191 カソード電極
192 アノード電極
193 プロトン伝導性固体高分子膜
201 流路板
202 燃料浸透部
203 気化部
204 セパレータ
205 リード線
211、263 第1のスパッタ源
212、264 第2のスパッタ源
213 透磁率の高い部材
214、222、232、242、252、262 バッキングプレート
215、221、231、241、251、261 磁石
223、233、243、253 スパッタ源
244 板状の部材
254 土台
255 回転ローラ
265 第3のスパッタ源
266 粒子状母材
267 支持部材
281 直接メタノール型燃料電池
282、291 直接メタノール型燃料電池用セル
283 送気ポンプ
284 燃料タンク
285 水タンク
286 ポンプ
292 アノード
293 カソード
294 燃料入口
295 燃料出口
296 空気入口
297 空気出口
298 膜・電極複合体
DESCRIPTION OF SYMBOLS 1 Sputter source 2 1st sputter source 3 2nd sputter source 4 Magnetic field 21 Backing plate 22 Magnetic field line 23 1st magnet 24 2nd magnet 31 Magnet 32 Magnet 51 3rd sputter source 121 Magnet 131 End 141 of a magnetic field Magnetic field 161 having a slightly low magnetic flux density Low sputtering rate material 181 Sputter source 182 Particulate base material 183 Support member 184 Vacuum chamber 185 Magnetic stirrer 186 Magnetic rotor 191 Cathode electrode 192 Anode electrode 193 Proton conductive solid polymer film 201 Flow Road plate 202 Fuel permeation section 203 Vaporization section 204 Separator 205 Lead wires 211, 263 First sputter source 212, 264 Second sputter source 213 Highly permeable members 214, 222, 232, 242, 252, 262 Backing plate 215 , 221, 2 1, 241, 251, 261 Magnet 223, 233, 243, 253 Sputter source 244 Plate member 254 Base 255 Rotating roller 265 Third sputter source 266 Particulate base material 267 Support member 281 Direct methanol fuel cells 282, 291 Direct methanol fuel cell 283 Air pump 284 Fuel tank 285 Water tank 286 Pump 292 Anode 293 Cathode 294 Fuel inlet 295 Fuel outlet 296 Air inlet 297 Air outlet 298 Membrane / electrode complex

Claims (12)

粒子状母材またはシート状母材を収容する支持部材と、
この支持部材と対峙して配置され、白金を含有する矩形状の第1のスパッタ源と、
この第1のスパッタ源に隣接して配置され、前記第1のスパッタ源と異なる元素を含有する第2のスパッタ源と、
前記第1のスパッタ源の前記支持部材と対峙する側とは反対側に配置された第1の磁石と、
前記第2のスパッタ源の前記支持部材と対峙する側とは反対側に配置された第2の磁石と、
を具備する合金微粒子担持装置において、
前記第2のスパッタ源の前記支持部材と対峙する側とは反対側に、前記第2のスパッタ源より透磁率の高い部材を設け、
前記第1或いは第2のスパッタ源とこれに応じた前記第1或いは第2の磁石間の距離、または、前記第1或いは第2の磁石の磁力を調整することにより、
前記第1或いは第2のスパッタ源の表面近傍の磁場の磁束密度を変化させることを特徴とする
合金微粒子担持装置。
A support member for accommodating the particulate base material or the sheet-like base material;
A rectangular first sputter source disposed opposite to the support member and containing platinum;
A second sputter source disposed adjacent to the first sputter source and containing an element different from the first sputter source;
A first magnet disposed on a side opposite to the side facing the support member of the first sputtering source;
A second magnet disposed on the opposite side of the second sputtering source from the side facing the support member;
In an apparatus for supporting fine alloy particles comprising:
On the opposite side of the second sputtering source from the side facing the support member, a member having a higher magnetic permeability than the second sputtering source is provided.
By adjusting the distance between the first or second sputtering source and the corresponding first or second magnet, or the magnetic force of the first or second magnet,
An apparatus for supporting alloy fine particles, wherein a magnetic flux density of a magnetic field in the vicinity of the surface of the first or second sputtering source is changed.
粒子状母材またはシート状母材を収容する支持部材と、
この支持部材と対峙して配置され、白金を含有する矩形状の第1のスパッタ源と、
この第1のスパッタ源に隣接して交互に配置された、前記第1のスパッタ源と異なる元素を含有する第2のスパッタ源と、
前記第1のスパッタ源および前記第2のスパッタ源の前記支持部材と対峙する側とは反対側に配置された磁石と、
を具備する合金微粒子担持装置において、
前記第2のスパッタ源は前記第1のスパッタ源の間に、各々の長手方向を概ね平行にして短冊状に形成され、
前記第2のスパッタ源の前記支持部材と対峙する側とは反対側に、前記第2のスパッタ源より透磁率の高い部材を設け、
前記第1或いは第2のスパッタ源の長手方向に概ね直行する方向に、前記第1或いは第2のスパッタ源もしくは前記磁石を相対的に移動させることにより、
前記磁場を前記第1或いは第2のスパッタ源の長手方向と直交する方向に順次発生させることを特徴とする
合金微粒子担持装置。
A support member for accommodating the particulate base material or the sheet-like base material;
A rectangular first sputter source disposed opposite to the support member and containing platinum;
A second sputter source containing elements different from the first sputter source, alternately disposed adjacent to the first sputter source;
A magnet disposed on a side of the first sputtering source and the second sputtering source opposite to the side facing the support member;
In an apparatus for supporting fine alloy particles comprising:
The second sputter source is formed in a strip shape between the first sputter sources, with each longitudinal direction being substantially parallel.
On the opposite side of the second sputtering source from the side facing the support member, a member having a higher magnetic permeability than the second sputtering source is provided.
By relatively moving the first or second sputtering source or the magnet in a direction substantially perpendicular to the longitudinal direction of the first or second sputtering source,
An alloy fine particle supporting apparatus, wherein the magnetic field is sequentially generated in a direction orthogonal to a longitudinal direction of the first or second sputtering source.
前記粒子状母材またはシート状母材は、炭素を主成分とする母材であることを特徴とする請求項1または2に記載の合金微粒子担持装置。   3. The alloy fine particle supporting device according to claim 1, wherein the particulate base material or the sheet-like base material is a base material mainly composed of carbon. 前記第1或いは第2の磁石の位置を可変する機構を備えることを特徴とする請求項1乃至請求項3のいずれか1項に記載の合金微粒子担持装置。   The alloy fine particle carrier device according to any one of claims 1 to 3, further comprising a mechanism for changing a position of the first or second magnet. 前記第2のスパッタ源は前記第1のスパッタ源の間に、各々の長手方向を概ね平行にして短冊状に形成されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の合金微粒子担持装置。   The second sputtering source is formed in a strip shape between the first sputtering sources with their longitudinal directions substantially parallel to each other. The alloy fine particle carrying device according to 1. 前記第1および第2のスパッタ源とは異なる元素を含有する第3のスパッタ源を有し、この第3のスパッタ源は前記第1のスパッタ源および/または第2のスパッタ源に隣接することを特徴とする請求項1乃至請求項5のいずれか1項に記載の合金微粒子担持装置。   A third sputter source containing an element different from the first and second sputter sources, the third sputter source being adjacent to the first sputter source and / or the second sputter source; The alloy fine particle carrier device according to any one of claims 1 to 5, wherein: 前記第1および第2のスパッタ源または前記磁石の移動方向は、一定距離を走査した後、逆転することを特徴とする請求項2乃至請求項6のいずれか1項に記載の合金微粒子担持装置。   7. The alloy fine particle carrier according to claim 2, wherein the moving directions of the first and second sputtering sources or the magnets are reversed after scanning a predetermined distance. 8. . 前記第1および第2のスパッタ源または前記磁石の移動方向が逆転する領域近傍の前記第1のスパッタ源或いは前記第2のスパッタ源の厚さは、それ以外の領域における前記スパッタ源の厚さよりも厚いことを特徴とする請求項2乃至請求項7のいずれか1項に記載の合金微粒子担持装置。   The thickness of the first sputter source or the second sputter source in the vicinity of the first and second sputter sources or the region where the moving direction of the magnet is reversed is greater than the thickness of the sputter source in the other regions. The apparatus for supporting fine alloy particles according to any one of claims 2 to 7, wherein the apparatus is also thick. 前記第1のスパッタ源或いは前記第2のスパッタ源は、移動方向が逆転する領域近傍において、前記支持部材と対峙する側とは反対側に、前記第1のスパッタ源、前記第2のスパッタ源、SiO2、TiO2、WO3およびMnから選ばれる部材を設けることを特徴とする請求項2乃至請求項8のいずれか1項に記載の合金微粒子担持装置。   The first sputter source or the second sputter source is located on the opposite side to the side facing the support member in the vicinity of the region where the moving direction is reversed. 9. The alloy fine particle supporting device according to claim 2, wherein a member selected from SiO 2, TiO 2, WO 3 and Mn is provided. 前記第1のスパッタ源或いは前記第2のスパッタ源は、移動方向が逆転する領域近傍において、前記支持部材と対峙する側とは反対側に、前記第1のスパッタ源或いは前記第2のスパッタ源より透磁率の高い部材を設けたことを特徴とする請求項2乃至請求項9のいずれか1項に記載の合金微粒子担持装置。   The first sputter source or the second sputter source is located on the opposite side to the side facing the support member in the vicinity of the region where the moving direction is reversed. 10. The alloy fine particle supporting device according to claim 2, wherein a member having a higher magnetic permeability is provided. 11. 前記第1および第2のスパッタ源または前記磁石の移動速度は、前記第1および第2のスパッタ源または前記磁石の移動方向が逆転する領域近傍において、それ以外の領域における移動速度より大きいことを特徴とする請求項2乃至請求項10のいずれか1項に記載の合金微粒子担持装置。   The moving speed of the first and second sputter sources or the magnet is greater than the moving speed in other areas in the vicinity of the area where the moving direction of the first and second sputter sources or the magnet is reversed. 11. The alloy fine particle carrying device according to claim 2, wherein the alloy fine particle carrying device is any one of claims 2 to 10. 前記磁石は、その移動方向および移動速度が常時一定であることを特徴とする請求項2に記載の合金微粒子担持装置。   3. The alloy fine particle supporting device according to claim 2, wherein the moving direction and moving speed of the magnet are always constant.
JP2008200841A 2007-08-23 2008-08-04 Alloy fine particle carrier Active JP5268483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008200841A JP5268483B2 (en) 2007-08-23 2008-08-04 Alloy fine particle carrier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007217354 2007-08-23
JP2007217354 2007-08-23
JP2008200841A JP5268483B2 (en) 2007-08-23 2008-08-04 Alloy fine particle carrier

Publications (2)

Publication Number Publication Date
JP2009068103A JP2009068103A (en) 2009-04-02
JP5268483B2 true JP5268483B2 (en) 2013-08-21

Family

ID=40604670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008200841A Active JP5268483B2 (en) 2007-08-23 2008-08-04 Alloy fine particle carrier

Country Status (1)

Country Link
JP (1) JP5268483B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201162043Y (en) * 2008-03-21 2008-12-10 北京京东方光电科技有限公司 Magnetron sputtering target structure and equipment
JP5314910B2 (en) * 2008-03-26 2013-10-16 株式会社東芝 Methanol oxidation catalyst and method for producing the same
CN101805889B (en) * 2009-02-13 2012-01-11 北京京东方光电科技有限公司 Magnetic target and magnetron sputtering device having same
WO2011036834A1 (en) * 2009-09-28 2011-03-31 パナソニック株式会社 Direct oxidation fuel cell
DE102010046780A1 (en) * 2010-09-28 2012-03-29 Singulus Technologies Ag Coating substrates with an alloy by sputtering

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179871A (en) * 1988-12-28 1990-07-12 Matsushita Electric Ind Co Ltd Formation of thin film and magnetron sputtering device
JP3863932B2 (en) * 1995-10-02 2006-12-27 三井金属鉱業株式会社 Magnetron sputtering method using split target
JPH11350123A (en) * 1998-06-05 1999-12-21 Hitachi Ltd Thin film production apparatus and production of liquid crystal display substrate
JP4061575B2 (en) * 2001-06-01 2008-03-19 ソニー株式会社 Conductive catalyst particles and method for producing the same, gas diffusive catalyst electrode, and electrochemical device
JP4575268B2 (en) * 2005-10-18 2010-11-04 株式会社東芝 Catalyst, electrode for fuel cell fuel electrode, and fuel cell

Also Published As

Publication number Publication date
JP2009068103A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US20090068503A1 (en) Sputtering apparatus
Qin et al. Intermetallic hcp-PtBi/fcc-Pt core/shell nanoplates enable efficient bifunctional oxygen reduction and methanol oxidation electrocatalysis
Wang et al. Core–shell-structured low-platinum electrocatalysts for fuel cell applications
Tomboc et al. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance
Alexeeva et al. Application of the magnetron sputtering for nanostructured electrocatalysts synthesis
Chen et al. Effects of catalyst processing on the activity and stability of Pt–Ni nanoframe electrocatalysts
Zhang et al. Solvent-mediated shape tuning of well-defined rhodium nanocrystals for efficient electrochemical water splitting
Kang et al. Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts
Song et al. Ultralow loading and high-performing Pt catalyst for a polymer electrolyte membrane fuel cell anode achieved by atomic layer deposition
Zhou et al. Improvement of oxygen reduction performance in alkaline media by tuning phase structure of Pd–Bi nanocatalysts
Huang et al. Multimetallic high-index faceted heterostructured nanoparticles
Dubau et al. Implementing structural disorder as a promising direction for improving the stability of PtNi/C nanoparticles
Yuan et al. Electrochemical hydrogen peroxide synthesis from selective oxygen reduction over metal selenide catalysts
Kakade et al. Highly active bimetallic PdPt and CoPt nanocrystals for methanol electro-oxidation
Lori et al. Recent advances in synthesis and utilization of ultra‐low loading of precious metal‐based catalysts for fuel cells
JP5268483B2 (en) Alloy fine particle carrier
Gao et al. External and internal interface-controlled trimetallic PtCuNi nanoframes with high defect density for enhanced electrooxidation of liquid fuels
Xu et al. Triangular Ag–Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction
JP2010033759A (en) Manufacturing method of catalyst-layer-carrying base substrate, catalyst-layer-carrying base substrate, membrane electrode assembly, and fuel cell
KR20040012834A (en) Conductive catalyst particle and its manufacturing method, gas- diffusing catalyst electrode, and electrochemical device
US20090114061A1 (en) De-alloyed platinum nanoparticles
JP2007317641A (en) Carried catalyst, manufacturing method of carried catalyst, catalyst, manufacturing method of catalyst, membrane electrode assembly and fuel cell
Xiao et al. De-alloyed ternary electrocatalysts with high activity and stability for oxygen reduction reaction
US11264623B2 (en) Palladium-tin shell electrocatalysts, the preparation thereof, and using the same for fuel cells
JP2013163137A (en) Core-shell type catalyst, electrode, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R151 Written notification of patent or utility model registration

Ref document number: 5268483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350