JP5268383B2 - Molded body for forming a plurality of microdroplets and molding method thereof - Google Patents

Molded body for forming a plurality of microdroplets and molding method thereof Download PDF

Info

Publication number
JP5268383B2
JP5268383B2 JP2008027693A JP2008027693A JP5268383B2 JP 5268383 B2 JP5268383 B2 JP 5268383B2 JP 2008027693 A JP2008027693 A JP 2008027693A JP 2008027693 A JP2008027693 A JP 2008027693A JP 5268383 B2 JP5268383 B2 JP 5268383B2
Authority
JP
Japan
Prior art keywords
capillaries
molded body
resin
resin material
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008027693A
Other languages
Japanese (ja)
Other versions
JP2009183227A (en
Inventor
護 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008027693A priority Critical patent/JP5268383B2/en
Publication of JP2009183227A publication Critical patent/JP2009183227A/en
Application granted granted Critical
Publication of JP5268383B2 publication Critical patent/JP5268383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a formed article capable of producing a cell array composed of different kinds of cells on the same plane without using a complicated apparatus constitution while keeping the surviving condition of the cells. <P>SOLUTION: The formed article has the first, the second and the third planes parallel to each other, a plurality of independent capillaries passing through the first and the third planes and a region between the first and the second planes and perpendicular to the first and the second planes, wherein all capillaries contained therein are parallel to each other and the distance between an arbitrarily selected capillary and all remaining capillaries in the parallel planes between the second plane and the third plane increases toward the third plane. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は微小液滴を格子状に並べるための樹脂成型体に関する。   The present invention relates to a resin molded body for arranging micro droplets in a lattice pattern.

近年異なる細胞間にどのような相互作用が働くのか、といった細胞間相互作用の機構の解析に関心が注がれている。こうした細胞間の相互作用を調べるためには、まず異種の細胞を、同じ容器内に高密度に並べることが必要となる。   In recent years, interest has been focused on the analysis of the mechanism of cell-cell interaction such as what kind of interaction works between different cells. In order to examine such interaction between cells, it is first necessary to arrange different kinds of cells in the same container at high density.

しかしながら特許文献1に開示されているように、従来細胞をならべるには多数の微小容器を並べる方法が行われるが、異種の細胞を同じ容器内に高密度並べる場合には、この方法は用いることが出来ない。   However, as disclosed in Patent Document 1, a conventional method of arranging a large number of micro containers is used to arrange cells, but this method is used when different types of cells are arranged in a high density in the same container. I can't.

また特許文献2に見られるように、半導体プロセスを応用して、多数のオリゴヌクレオチドを同一容器内に高密度に並べるための技術はすでに確立されているが、この技術を用いて多数の細胞を同一容器内に高密度に並べる方法は知られていない。   Moreover, as seen in Patent Document 2, a technology for arranging a large number of oligonucleotides in a single container at a high density by applying a semiconductor process has already been established. There is no known method for arranging them in the same container at a high density.

また特許文献3に見られるように、核酸あるいは蛋白を含む複数の試料を注入して移動させることができるキャピラリアレイを用いて電気泳動のバンドを検出する技術は知られているが、キャピラリアレイのような複数の毛細管を用いて異種細胞のアレイを作製する方法は知られていない。
特開2005-059524号公報 特許第3495702号公報 特開2002-131282号公報
Further, as seen in Patent Document 3, a technique for detecting an electrophoresis band using a capillary array that can inject and move a plurality of samples containing nucleic acids or proteins is known. A method for producing an array of heterogeneous cells using such a plurality of capillaries is not known.
JP 2005-059524 A Japanese Patent No. 3495702 Japanese Patent Laid-Open No. 2002-131282

毛細管を用いて高密度の異種細胞アレイを平面上に形成させるためには、毛細管ごとに異なる液体を導入する必要があるため、異種細胞アレイを形成させるために多種の液体試料を扱うためには装置の構成は簡便であることが望ましい。また、細胞の生理条件や温度等の環境条件を維持することも必要となる。   In order to form a high-density heterogeneous cell array on a flat surface using capillaries, it is necessary to introduce a different liquid for each capillary, so in order to handle various liquid samples to form a heterogeneous cell array It is desirable that the configuration of the apparatus is simple. It is also necessary to maintain environmental conditions such as physiological conditions and temperature of the cells.

よって本発明の目的は、複雑な装置構成を取ることなく、細胞の生存条件を維持しながら、異種細胞からなる細胞アレイを同一平面上に作製することができる成型体を提供することにある。   Accordingly, an object of the present invention is to provide a molded body that can produce a cell array composed of heterogeneous cells on the same plane while maintaining the cell survival conditions without taking a complicated apparatus configuration.

さらに本発明の他の目的は、異種細胞のアレイを作製するための成型体の製造方法を提供することにある。   Still another object of the present invention is to provide a method for producing a molded body for producing an array of heterogeneous cells.

本発明に係る毛細管アレイの作製方法は、数の線状物質を束ねた集合体を形成する工程と、該集合体に未硬化の樹脂材料を流し込み、該樹脂材料を硬化させる工程と、前記複数の線状物質を除去し、複数の貫通した毛細管を有する樹脂成形体を得る工程と、を有する、複数の毛細管を有する毛細管アレイの成型方法において、
前記毛細管アレイは、前記複数の毛細管の末端からもう一端に向かうにつれて毛細管同士の間隔が近くなる第1の部分と、
該第1の部分に接続し、毛細管同士が平行に配置された第2の部分と、2つの異なる集束構造を有しており、
前記毛細管アレイの前記第1の部分に対応する前記集合体の部分に未硬化の樹脂材料を流し込み、該樹脂材料を硬化させる第1の樹脂成型工程と、
前記毛細管アレイの前記第2の部分に対応する前記集合体の部分に未硬化の樹脂材料を流し込み、該樹脂材料を硬化させる第2の樹脂成型工程と、
を有することを特徴とする毛細管アレイの成形方法である。
The method for manufacturing a capillary array according to the present invention includes the steps of forming an aggregate formed by bundling a linear material multiple, pouring a resin material uncured wherein the collection, and curing the resin material, the Removing a plurality of linear substances and obtaining a resin molded body having a plurality of penetrated capillaries, and a method for molding a capillary array having a plurality of capillaries,
The capillary array has a first portion in which the distance between the capillaries becomes closer toward the other end from the ends of the plurality of capillaries;
A second portion connected to the first portion, the capillaries being arranged in parallel, and two different focusing structures;
A first resin molding step of pouring an uncured resin material into a portion of the assembly corresponding to the first portion of the capillary array, and curing the resin material;
A second resin molding step in which an uncured resin material is poured into a portion of the assembly corresponding to the second portion of the capillary array, and the resin material is cured;
A method for forming a capillary array, comprising:

本発明の成型体は、平面上に微細な異種細胞アレイを簡易に配置することができる。また、複雑な機構を有さず、かつ毛細管ごとに異なる液体を導入することが出来る構造を有するため、複雑な操作やメインテナンスを必要とせずに、多種の細胞からなる細胞アレイを作製することができる。さらに、熱などのエネルギーを与えずに微小液滴アレイを形成することができるため、細胞を生存させた状態で細胞アレイを形成することができる。   In the molded article of the present invention, a fine heterogeneous cell array can be easily arranged on a plane. In addition, since it has a structure that does not have a complicated mechanism and can introduce different liquids for each capillary, it is possible to produce a cell array composed of various cells without requiring complicated operations and maintenance. it can. Furthermore, since the microdroplet array can be formed without applying energy such as heat, the cell array can be formed in a state where the cells are alive.

本発明は、単純な樹脂成型体によって、複雑な装置構成を取ることなく、複数の微小液滴を同一平面上に高密度に配置することができる成型体に係わる。同一平面上に配置するとは、容器や壁などの仕切りにより隔離されることなく、同じ平面上に複数の微小液滴が配置されることを意味する。成型体は、細胞を含む微小液滴を形成することができる構造を有するため、異種細胞のアレイの作製に好適に用いることができる。   The present invention relates to a molded body capable of arranging a plurality of minute droplets at high density on the same plane without taking a complicated apparatus configuration by a simple resin molded body. Arranging on the same plane means that a plurality of micro droplets are arranged on the same plane without being separated by partitions such as containers and walls. Since the molded body has a structure capable of forming microdroplets containing cells, it can be suitably used for preparing an array of heterogeneous cells.

図1は本発明であるところの成型体1の一例を表す。複数の毛細管3が上部から下部へと貫通する毛細管アレイ構造を有し、複数の微小液滴2を高密度に押印、形成することが出来る。   FIG. 1 shows an example of a molded body 1 according to the present invention. A plurality of capillaries 3 have a capillary array structure penetrating from the upper part to the lower part, and a plurality of micro droplets 2 can be imprinted and formed at a high density.

図2に基づいて、成型体を詳しく説明する。成型体は互いに平行な第一の面4、第二の面5、および第三の面6を有する。第一の面は、微小液滴を排出して平面に押印する面(微小液滴押印面)であり、第三の面は、微小液滴を形成する液体を成型体内部に導入する面(液体導入面)であり、第二の面は、第一の面および第三の面に平行に存在する成型体の断面である。第一と第三の面6を貫く、独立した複数の毛細管3は第一と第二の面5間の領域(以下、第一の領域とも記す)において、前記第一と第二の面5に垂直でかつ全ての毛細管3が平行並立する構造を有している。また毛細管3は第二の面5と第三の面6間の領域(以下、第二の領域とも記す)において、任意に選んだ毛細管3と残る全ての毛細管の平行面内における距離が、第三の面6に近づくほど遠ざかる構造を有する。   Based on FIG. 2, the molded body will be described in detail. The molded body has a first surface 4, a second surface 5, and a third surface 6 that are parallel to each other. The first surface is a surface that discharges micro droplets and imprints on a flat surface (micro droplet imprinting surface), and the third surface is a surface that introduces liquid that forms micro droplets into the molded body ( The second surface is a cross section of the molded body existing in parallel with the first surface and the third surface. A plurality of independent capillaries 3 penetrating the first and third surfaces 6 are formed in the first and second surfaces 5 in a region between the first and second surfaces 5 (hereinafter also referred to as a first region). And all the capillaries 3 are arranged in parallel. Further, in the region between the second surface 5 and the third surface 6 (hereinafter also referred to as the second region), the capillary 3 has a distance in the parallel plane between the capillary 3 selected arbitrarily and all the remaining capillaries. It has a structure that moves away as it approaches the third surface 6.

前記第一の領域における毛細管間の間隔は、マイクロプレート底面に形成される微小液滴間の距離に相当する。そのため、高密度の微小液滴アレイを形成する程度に当該間隔は狭くなっている必要があり、ゆえに第一の領域では複数の毛細管が集束した構造(毛細管アレイ)を形成する。第一の領域の長手方向の寸法は、微小液滴アレイ形成の対象となるマイクロプレートの深さに対応できるように設計することが好ましい。   The space between the capillaries in the first region corresponds to the distance between the microdroplets formed on the bottom surface of the microplate. Therefore, the interval needs to be narrow enough to form a high-density microdroplet array. Therefore, a structure in which a plurality of capillaries are converged (capillary array) is formed in the first region. The dimension in the longitudinal direction of the first region is preferably designed so as to correspond to the depth of the microplate to be formed with the microdroplet array.

前記第二の領域における毛細管は第三の面に近づくほど互いに遠ざかる構造を有していれば特に限定されることはないが、第三の面に露出する毛細管の孔どうしの間隔は、手操作分注によって個別に液体を供給できる程度に広いことが好ましい。手操作分注により、それぞれの孔に異なる液体を導入することができる結果、押印面から押印される微小液滴パターンには異なる液体を含むことができる。よって、異種細胞を夫々含む微小液滴からなる微小液体パターンの形成に好適に用いることができる。   The capillaries in the second region are not particularly limited as long as the capillaries have structures that move away from each other as they approach the third surface, but the gap between the capillaries exposed on the third surface is manually controlled. It is preferable that it is wide enough to supply liquids individually by dispensing. As a result of being able to introduce different liquids into the respective holes by manual operation, different liquids can be included in the microdroplet pattern imprinted from the imprinting surface. Therefore, it can be suitably used for forming a micro liquid pattern composed of micro liquid droplets each containing different cells.

成型体の有する毛細管アレイ構造の成型は、線状物質を鋳型として樹脂などにより成型することにより形成することができる。毛細管の鋳型となる線状物質として細く剛性を有さない材料を用いことにより、2段階の成型ステップを用いて上記第一の領域および第二の領域からなる毛細管アレイ構造を簡便に成型することができる。具体的に、図3と図4に基づいて、成型体の作製方法の一例を説明する。図3(A)は集束部8をもつ線状の集合体を形成する工程を表す。集束部8の部材は高密度に複数の貫通孔をもつ枚葉の部材7bであり、線状物質9が束ねられている。また線状の集合体を形成する線状物質の一端は、手分注操作可能な程度に低密度な貫通孔をもつ枚葉の部材7aに通される。図のとおり、枚葉の部材7aと枚葉の部材7bとの間に線状の集合体を形成することができる。この線状の集合体は集束構造を有していない領域である。次に図3(B)は集束構造を有さない領域において線状の集合体を成型する工程を表す。図4の半割できる鋳型13aと13bに樹脂を流し込み、線状の集合体を成型する。この工程で成型体10が形成される。続いて図3(C)は、成型体10の成型後、集束部8を線状の集合体の他端の側(枚葉の部材7aに通された側の反対側)に移動させ、集束構造を有する線状の集合体を形成する工程を表す。集束構造は、移動前の集束部8の位置と移動後の集束部8との間において形成される。続いて図3(D)は、移動後の前記集束部まで樹脂を流し込み、集束構造を有する領域を成型する工程を表す。成型体11が形成される。全ての樹脂が硬化後、鋳型となる部材(線状物質9含む)を除去する。樹脂としては、実施例で示すPDMSのように、硬化後に適度に弾性を有する材料を用いることが、押印時の液漏れを防止することができるため好ましい。また、PDMSのようにガス透過性を有する材料を用いることは、培養環境に適したものとなるため好ましい。また、成型体10または成型体11のいずれかを成型する工程において、微細加工を施したSiウエハを鋳型の一部分に用いることができる。   The capillary array structure of the molded body can be formed by molding a linear substance as a mold with a resin or the like. By using a thin and non-rigid material as a linear material for a capillary mold, the capillary array structure composed of the first region and the second region can be easily molded using a two-step molding step. Can do. Specifically, an example of a method for producing a molded body will be described with reference to FIGS. FIG. 3A shows a process of forming a linear assembly having the converging portion 8. A member of the converging part 8 is a single-wafer member 7b having a plurality of through holes at high density, and the linear substances 9 are bundled. Further, one end of the linear substance forming the linear assembly is passed through a single-wafer member 7a having through holes that are low in density to allow manual dispensing operation. As shown in the figure, a linear assembly can be formed between the sheet member 7a and the sheet member 7b. This linear assembly is a region having no focusing structure. Next, FIG. 3B shows a process of forming a linear assembly in a region having no focusing structure. The resin is poured into the molds 13a and 13b that can be halved in FIG. 4 to form a linear assembly. In this step, the molded body 10 is formed. 3C, after the molded body 10 is molded, the converging portion 8 is moved to the other end side of the linear assembly (opposite side through the sheet member 7a) to focus. The process of forming the linear aggregate | assembly which has a structure is represented. The focusing structure is formed between the position of the focusing unit 8 before movement and the focusing unit 8 after movement. Subsequently, FIG. 3D shows a process of pouring the resin to the converging part after movement and molding a region having the converging structure. A molded body 11 is formed. After all the resin is cured, the member (including the linear substance 9) that becomes the mold is removed. As the resin, it is preferable to use a material having moderate elasticity after curing, such as PDMS shown in the examples, because liquid leakage at the time of stamping can be prevented. In addition, it is preferable to use a gas-permeable material such as PDMS because it is suitable for the culture environment. Further, in the process of molding either the molded body 10 or the molded body 11, a Si wafer that has been finely processed can be used as a part of the mold.

図4に示すとおり、半割の鋳型13a、13bはネジ12で合体される。集束部8は、鋳型側に保持部14a、14bを設けてよい。保持部14a、14bは枚葉の部材7a、枚葉の部材7bを保持できる形状とすることができる。線状物質9は糸または極細管を用いることが出来る。例えばナイロン糸、ガラスファイバー糸、極細ビニールチューブ、極細ガラス管など挙げることが出来る。集束部8を形成する枚葉の部材としては、例えば貫通エッチングを施したステンレス板、Siウエハ、ガラス板、一定のポアザイズでメッシュ状に織り込んだナイロン、テフロンなどの布を用いることが出来る。   As shown in FIG. 4, the half molds 13 a and 13 b are combined with screws 12. The converging part 8 may be provided with holding parts 14a and 14b on the mold side. The holding portions 14a and 14b can be shaped to hold the sheet member 7a and the sheet member 7b. The linear substance 9 can be a thread or a microtubule. For example, nylon thread, glass fiber thread, extra fine vinyl tube, extra fine glass tube, etc. can be mentioned. As the sheet member forming the converging portion 8, for example, a stainless steel plate subjected to through etching, a Si wafer, a glass plate, a cloth such as nylon or Teflon woven in a mesh shape with a certain pore size can be used.

ただし、液体混合防止を図るために第一の面4の毛細管の孔に凸部を持たせる場合は、
Siウエハを集束部を形成する枚葉の部材として用いて、DEEP-RIEなどの微細加工方法によって、貫通エッチングして加工することが望ましい。図5の(B)から(E)に凸部形状の一例を示す。また(A)にSiウエハ断面15を示す。樹脂が流し込まれ、凸部が形成される。
However, in order to prevent liquid mixing, when providing a convex portion in the capillary hole of the first surface 4,
It is desirable that the Si wafer is used as a single-wafer member for forming the converging portion and processed by through etching by a fine processing method such as DEEP-RIE. An example of the convex shape is shown in FIGS. Further, (A) shows a cross section 15 of the Si wafer. Resin is poured and a convex part is formed.

尚本発明で都合よく作製できる成型体は、数十ミクロンから数百ミクロンまでの径を有する毛細管が望ましい。また都合に応じて毛細管内部を親水性、疎水性に処理、コーティングしても良い。   The molded body that can be conveniently produced in the present invention is preferably a capillary having a diameter of several tens to several hundreds of microns. Further, the inside of the capillary tube may be treated and coated with hydrophilicity or hydrophobicity according to circumstances.

使いこなし(管内に液体をピペッティングする際)の面から、管内を親水性にコーティングすれば液体を入れやすくすることができる。一般的には、半径r の毛細管を考えると、管の一端から圧力P をかけて、管内の流体(密度ρ、液柱h)を移動させるためには、P > 2 T cos θ/r −ρghであるとよい。ここでT は表面張力、θは液体と管の接触角、g は重力加速度である。したがってθが90 °よりも小さければ、管内の液体を移動させるに要する圧力は、r が小さくなればなるほど、大きな値が必要となる。   From the aspect of mastering (when pipetting the liquid into the tube), it is possible to easily put the liquid by coating the inside of the tube with a hydrophilic property. In general, considering a capillary tube with a radius r, in order to move the fluid (density ρ, liquid column h) in the tube by applying pressure P from one end of the tube, P> 2T cos θ / r − It should be ρgh. Where T is the surface tension, θ is the contact angle between the liquid and the tube, and g is the gravitational acceleration. Therefore, if θ is smaller than 90 °, the pressure required to move the liquid in the tube requires a larger value as r 1 becomes smaller.

また本発明の成型体は、マイクロウエルプレート等の底面に押印、形成させるための用途に用いられる。例えば96ウエルプレートに押印する場合、第一の面4の大きさは、9.3mm未満でなくてはならない。48ウエルプレートであれば、11.0mm未満でなくてはならない。かつ本発明の成型体は、分注操作が容易であることが望ましい。したがって第一の面4の大きさに加え、かつ第三の面6を貫く毛細管のピッチが分注操作容易な距離とすることが出来る。この距離は、例えば1536ウエルプレートの規格である2.25mmピッチを用いることで自動化に対応することが出来る。   Moreover, the molded body of the present invention is used for the purpose of stamping and forming on the bottom surface of a microwell plate or the like. For example, when imprinting on a 96-well plate, the size of the first surface 4 must be less than 9.3 mm. For a 48-well plate, it must be less than 11.0 mm. Moreover, it is desirable that the molded body of the present invention is easy to dispense. Accordingly, in addition to the size of the first surface 4, the pitch of the capillaries penetrating the third surface 6 can be a distance that facilitates the dispensing operation. This distance can be automated by using a 2.25 mm pitch, which is a standard for 1536 well plates, for example.

(Siウエハの加工)
成型体の第一の面を形成する枚葉の部材7aとしてSiウエハを用い、DEEP-RIE法によって加工し、凸部形状を形成するためにSiウエハ上に凹部を作製する。まず凸部形状となるマスクパターンを描き、マスクを作製する。マスクは、Siウエハの表面からエッチングするパターンと裏面からエッチングするパターンの2種類を作製する。
(Si wafer processing)
A Si wafer is used as the sheet member 7a that forms the first surface of the molded body and is processed by the DEEP-RIE method to form a concave portion on the Si wafer to form a convex shape. First, a mask pattern having a convex shape is drawn to produce a mask. Two types of masks are produced: a pattern etched from the front surface of the Si wafer and a pattern etched from the back surface.

厚膜レジストAZ4903(AZ エレクトロニックマテリアルズ株式会社)をSiウエハ表面にスピンコート、露光、現像する。ICPエッチング装置(MUC-21:STS社製)にウエハを入れ、350μmほどほぼ垂直にエッチングする。エッチング:パッシベーション時間の比率は7:2にする。エッチング終了後、アセトンでレジスト除去、洗浄する。次にウエハ裏面について、先ほどのレジストAZ4903をスピンコートし、両面アライナーにて表面のエッチングパターンとアライメント後、露光、現像する。表面側にリーク防止用テーピング処理を施した後、先ほどのICPエッチング装置にウエハを入れ、貫通するまでエッチングをする。ウエハを所望の大きさにダイシングする。   Thick film resist AZ4903 (AZ Electronic Materials Co., Ltd.) is spin coated, exposed and developed on the Si wafer surface. The wafer is put into an ICP etching apparatus (MUC-21: manufactured by STS) and etched approximately vertically by about 350 μm. The ratio of etching: passivation time is 7: 2. After the etching is completed, the resist is removed and washed with acetone. Next, the resist AZ4903 is spin-coated on the back surface of the wafer, and after alignment with the etching pattern on the surface with a double-sided aligner, exposure and development are performed. After performing a taping process for preventing leakage on the surface side, the wafer is put into the ICP etching apparatus, and etching is performed until it penetrates. The wafer is diced to a desired size.

尚厚膜レジストの場合は、パターンが60μm程度の場合に使用し、それ以上の微細なマスクパターンの場合にはリフトオフプロセスによってメタルマスクに置き換える。メタルはクロム2000Å程度蒸着する。   In the case of a thick film resist, it is used when the pattern is about 60 μm, and in the case of a finer mask pattern larger than that, it is replaced with a metal mask by a lift-off process. The metal is deposited about 2000mm of chrome.

集束部を形成する枚葉の部材7bとして用いるSiウエハについても、貫通孔を形成し、所望の大きさにダイシングする。
貫通孔間の間隔は、枚葉の部材7aが1536ウエルプレートの規格である2.25mmで、枚葉の部材7bが250μmとしている。
A through-hole is also formed in the Si wafer used as the single-wafer member 7b forming the converging portion, and dicing to a desired size is performed.
The interval between the through holes is 2.25 mm, which is a standard for 1536 well plates, and the sheet member 7b is 250 μm.

(集束部をもつ線状の集合体の形成)
図6に集束部をもつ線状の集合体とそれを格納する鋳型の写真を示す。線状物質はナイロン糸100μmを用いる。貫通エッチング、ダイシングの終了した、上下2種類のSi加工済みウエハに、拡大鏡を用いてナイロン糸を通す(写真上部)。
(Formation of linear assembly with converging part)
FIG. 6 shows a photograph of a linear assembly having a converging portion and a mold for storing it. As the linear material, nylon thread of 100 μm is used. Nylon thread is passed through the upper and lower Si processed wafers after through etching and dicing using a magnifying glass (upper photo).

(線状の集合体を成型)
PDMS(ポリジメチルシロキサン)樹脂(SYLGARD184:ダウコーニング(株))を添付の重合開始剤と10:1に混合し、遠心脱泡する。上記形成した線状の集合体を鋳型に収め、PDMS樹脂を流し込む。冷暗所で一晩、成型させる。
(Mold linear assembly)
PDMS (polydimethylsiloxane) resin (SYLGARD 184: Dow Corning Co., Ltd.) is mixed 10: 1 with the attached polymerization initiator and centrifugally degassed. The linear assembly formed above is placed in a mold, and PDMS resin is poured. Mold overnight in a cool dark place.

(集束部の移動および成型)
鋳型から硬化したPDMS樹脂をはずし、集束部を後方に移動させる。再度鋳型に収め、できた空間に先ほどのPDMS樹脂を流し込み、成型させる。
(Movement and molding of converging part)
The cured PDMS resin is removed from the mold, and the converging part is moved backward. The mold is put in the mold again, and the previous PDMS resin is poured into the space thus formed.

図7(A)に成型の終了した成型体を示す。また図7(B)に凸部形状の先端部を示す。また図7(C)に凸部形状の鋳型となるSiウエハ加工面の写真を示す。写真の凹部に樹脂を流し込むことで、凸部形状が形成される。   FIG. 7A shows the molded body after molding. FIG. 7B shows a tip portion having a convex shape. FIG. 7C shows a photograph of the processed surface of the Si wafer that becomes the convex mold. A convex shape is formed by pouring resin into the concave portion of the photograph.

本発明は異種の細胞間に働く相互作用を解析する上で重要なツールとなる。本発明の成型体内で、ハンギングドロップ培養他、通常の培養を行っても良い。また単に異なる液体のスポットアレイを作る場合にも使用可能である。   The present invention is an important tool for analyzing the interaction between different types of cells. In the molded body of the present invention, normal culture other than hanging drop culture may be performed. It can also be used to simply create spot arrays of different liquids.

本発明の成型体の一例を表す。An example of the molded object of this invention is represented. 本発明の成型体説明図を表す。The molded object explanatory drawing of this invention is represented. 本発明の成型体作製方法の説明図を表す。Explanatory drawing of the molded object production method of this invention is represented. 本発明の成型体鋳型の一例を表す。An example of the molded object casting_mold | template of this invention is represented. 凸部形状の一例を表す。An example of the convex shape is shown. 集束部をもつ線状の集合体および格納する鋳型の写真。A photograph of a linear assembly with a converging part and a mold to be stored. (A)成型体の写真。(B)凸部形状の先端部写真。(C)凸部形状の鋳型となるSiウエハ加工面写真。(A) Photograph of the molded body. (B) Photo of the tip of the convex shape. (C) Si wafer processing surface photograph used as a convex-shaped mold.

符号の説明Explanation of symbols

1 成型体
2 微小液滴
3 毛細管
4 第一の面
5 第二の面
6 第三の面
7a、7b 枚葉の部材
8 集束部
9 線状物質
10 成型体(工程B)
11 成型体(工程D)
12 ネジ
13a、13b 半割の鋳型
14a、14b 保持部
15 Siウエハ断面
DESCRIPTION OF SYMBOLS 1 Molded body 2 Micro droplet 3 Capillary 4 First surface 5 Second surface 6 Third surface 7a, 7b Single-wafer member 8 Converging part 9 Linear substance 10 Molded body (process B)
11 Molded body (Process D)
12 Screws 13a, 13b Half molds 14a, 14b Holding part 15 Si wafer cross section

Claims (3)

数の線状物質を束ねた集合体を形成する工程と、
該集合体に未硬化の樹脂材料を流し込み、該樹脂材料を硬化させる工程と、
前記複数の線状物質を除去し、複数の貫通した毛細管を有する樹脂成形体を得る工程と、を有する、複数の毛細管を有する毛細管アレイの成型方法において、
前記毛細管アレイは、前記複数の毛細管の末端からもう一端に向かうにつれて毛細管同士の間隔が近くなる第1の部分と、
該第1の部分に接続し、毛細管同士が平行に配置された第2の部分と、2つの異なる集束構造を有しており、
前記毛細管アレイの前記第1の部分に対応する前記集合体の部分に未硬化の樹脂材料を流し込み、該樹脂材料を硬化させる第1の樹脂成型工程と、
前記毛細管アレイの前記第2の部分に対応する前記集合体の部分に未硬化の樹脂材料を流し込み、該樹脂材料を硬化させる第2の樹脂成型工程と、
を有することを特徴とする毛細管アレイの成形方法。
Forming an aggregate formed by bundling a linear material multiple,
Pouring an uncured resin material into the assembly and curing the resin material;
Removing the plurality of linear substances and obtaining a resin molded body having a plurality of penetrated capillaries, and a method for molding a capillary array having a plurality of capillaries,
The capillary array has a first portion in which the distance between the capillaries becomes closer toward the other end from the ends of the plurality of capillaries;
A second portion connected to the first portion, the capillaries being arranged in parallel, and two different focusing structures;
A first resin molding step of pouring an uncured resin material into a portion of the assembly corresponding to the first portion of the capillary array, and curing the resin material;
A second resin molding step in which an uncured resin material is poured into a portion of the assembly corresponding to the second portion of the capillary array, and the resin material is cured;
A method for forming a capillary array, comprising:
前記複数の毛細管は、前記第1の部分の前記末端において、複数の貫通孔を有するSiウエハの該貫通孔にそれぞれ接続している請求項1に記載の成形方法。 The molding method according to claim 1, wherein the plurality of capillaries are respectively connected to the through holes of the Si wafer having a plurality of through holes at the end of the first portion. 前記樹脂材料が、PDMS(ポリジメチルシロキサン)である請求項1または2に記載の成形方法。 The resin material, molding method according to claim 1 or 2 is a PDMS (polydimethylsiloxane).
JP2008027693A 2008-02-07 2008-02-07 Molded body for forming a plurality of microdroplets and molding method thereof Expired - Fee Related JP5268383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027693A JP5268383B2 (en) 2008-02-07 2008-02-07 Molded body for forming a plurality of microdroplets and molding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027693A JP5268383B2 (en) 2008-02-07 2008-02-07 Molded body for forming a plurality of microdroplets and molding method thereof

Publications (2)

Publication Number Publication Date
JP2009183227A JP2009183227A (en) 2009-08-20
JP5268383B2 true JP5268383B2 (en) 2013-08-21

Family

ID=41067197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027693A Expired - Fee Related JP5268383B2 (en) 2008-02-07 2008-02-07 Molded body for forming a plurality of microdroplets and molding method thereof

Country Status (1)

Country Link
JP (1) JP5268383B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6291301A (en) * 2000-02-22 2001-09-03 Genospectra, Inc. Microarray fabrication techniques and apparatus
JP2003344433A (en) * 2002-05-22 2003-12-03 Okutekku:Kk Micro-array, micro-array system and measuring method of test material
JP2004191255A (en) * 2002-12-12 2004-07-08 Olympus Corp High-density microchannel array
JP2005262522A (en) * 2004-03-17 2005-09-29 Pentax Corp Polymer sheet manufacturing method

Also Published As

Publication number Publication date
JP2009183227A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
Faustino et al. Biomedical microfluidic devices by using low-cost fabrication techniques: A review
EP1810743B1 (en) Process and device for producing a microsphere
DE112011104891B4 (en) 3D microfluidic devices based on openwork thermoplastic elastomer membranes
US20080295909A1 (en) Microfluidic Device for Passive Sorting and Storage of Liquid Plugs Using Capillary Force
US20020108860A1 (en) Fabrication of polymeric microfluidic devices
CN101598717A (en) Mould the method that legal system is equipped with polydimethylsiloxanechip chip based on the liquid of hydrogel planar micro-patterning
JP2008064748A (en) Apparatus for metering slight amount of liquid, microchip having same, and method for metering slight amount of liquid
US20090087019A1 (en) Method fo rthe simultaneous deposition of a set of patterns on a substrate by a macrostamp
Rahmanian et al. Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling
Broom et al. Water drop impacts on regular micropillar arrays: The impact region
US7682541B2 (en) Manufacturing method of a microchemical chip made of a resin
KR101486413B1 (en) Microfluidic Chip Using Micro-post And Fabricating Method Thereof
JP5268383B2 (en) Molded body for forming a plurality of microdroplets and molding method thereof
US20090104709A1 (en) Fluid transfer devices
Chen et al. Surface-tension-confined droplet microfluidics☆
JP4622617B2 (en) Method for producing a mold for producing a microchannel substrate
JP4356109B2 (en) Manufacturing method of microreactor
US20120301370A1 (en) Apparatus and Process for Producing Patterned, Micron and Nanometer Size Reaction and Mixing Zones for Fluids Deposited on Smooth, Rough and Porous Surfaces and Applications of that Process
KR102146284B1 (en) Apparatus of forming liquid-mediated material pattern, method of manufacturing the same, method of forming liquid-mediated pattern using the same, and liquid-mediated pattern
JP4513626B2 (en) Method for producing a mold for producing a microchannel substrate
JP4581784B2 (en) Method for producing a mold for producing a microchannel substrate
NAGAI et al. Rapid prototyping of PDMS microchannels for animal and plant cells using cutting plotter and double casting
Pandey et al. Nano-Dispenser: A microfluidic Liquid Handler with the Help of a Pneumatic Controlled Transparent Micronozzle Array
WO2022050247A1 (en) Fluid device and use thereof
TWI316873B (en) Apparatus of manufacturing biochip and manufacture method of biochip tip array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

LAPS Cancellation because of no payment of annual fees