JP5268093B2 - Powder airflow conveying device and gasification equipment having the same - Google Patents

Powder airflow conveying device and gasification equipment having the same Download PDF

Info

Publication number
JP5268093B2
JP5268093B2 JP2008176170A JP2008176170A JP5268093B2 JP 5268093 B2 JP5268093 B2 JP 5268093B2 JP 2008176170 A JP2008176170 A JP 2008176170A JP 2008176170 A JP2008176170 A JP 2008176170A JP 5268093 B2 JP5268093 B2 JP 5268093B2
Authority
JP
Japan
Prior art keywords
powder
conveying device
airflow
flow path
airflow conveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008176170A
Other languages
Japanese (ja)
Other versions
JP2010014367A (en
Inventor
正行 田代
和芳 市川
円 大高
正美 芦澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008176170A priority Critical patent/JP5268093B2/en
Publication of JP2010014367A publication Critical patent/JP2010014367A/en
Application granted granted Critical
Publication of JP5268093B2 publication Critical patent/JP5268093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for air-feeding powder that can stably air-feed a cohesive powder at a high speed. <P>SOLUTION: The air feed apparatus includes a line 18 having a passage for axially conducting powder suspended with air, and a powder supply line 19 for supplying the powder to the line 18 by gravity fall. The powder supply line 19 comprises a cylindrical pipe axially continuous to the line 18 with the same cross section. The passage 18b has a width not smaller than the diameter of the powder supply line 19 and has a flat cross section. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は粉体の気流搬送装置及びこれを有するガス化設備に関し、特にガス化炉内に粉体燃料を噴射する粉体バーナに適用して有用なものである。   The present invention relates to a powder airflow conveying device and a gasification facility having the same, and is particularly useful when applied to a powder burner for injecting pulverized fuel into a gasification furnace.

木質系バイオマスや有機性廃棄物に対して適用可能な従来技術に係る炭化・ガス化方法に関する技術としては、例えば木質系バイオマス又は都市ごみ等の有機性廃棄物を300℃乃至800℃で炭化処理して得た炭化物と、水蒸気と、空気とを熱分解するガス化炉内に投入し、水性ガス化反応により可燃性ガスを得る熱分解ガス化装置がある(特許文献1参照)。   As a technique related to the carbonization / gasification method according to the prior art applicable to woody biomass and organic waste, for example, carbonization treatment of organic waste such as woody biomass or municipal waste at 300 ° C to 800 ° C There is a pyrolysis gasification apparatus in which a carbide, water vapor, and air obtained in this manner are put into a gasification furnace that thermally decomposes to obtain a combustible gas by a water gasification reaction (see Patent Document 1).

上記特許文献1以外にもバイオマス燃料を原料とする多くのガス化設備が提案されている(例えば特許文献2参照)。   In addition to Patent Document 1, many gasification facilities using biomass fuel as a raw material have been proposed (see, for example, Patent Document 2).

これらのガス化設備においては、バイオマス燃料を炭化機で炭化処理し、この結果得られるタール分を多く含む熱分解ガスと固定酸素や灰分を主成分とした粉末状の炭化物とに分離し、さらにこれらの熱分解ガス及び炭化物をガス化炉にそれぞれ供給して熱分解ガスの改質を行うとともに炭化物のガス分解を行って可燃性ガスを得ている。   In these gasification facilities, biomass fuel is carbonized with a carbonizer, and the resulting pyrolysis gas containing a large amount of tar and powdered carbides mainly composed of fixed oxygen and ash are separated. These pyrolysis gas and carbide are respectively supplied to a gasification furnace to reform the pyrolysis gas, and at the same time, gas decomposition of the carbide is performed to obtain a combustible gas.

この種のガス化設備は、ガス化炉内に粉体である炭化物を供給するための粉体バーナを備えている。また、かかる粉体バーナの一種として、一端をガス化炉内に臨ませた管路を流通する気流(通常は空気流)に上方から重力を利用して燃料である粉体炭化物を供給し、気流搬送により管路を流通させてガス化炉内に噴射するように構成したものがある。この場合、粉体バーナは粉体の気流搬送装置の一種として機能させている。   This type of gasification equipment includes a powder burner for supplying carbide, which is powder, into the gasification furnace. In addition, as a kind of such a powder burner, supply powder carbide as fuel using gravity from above to an air flow (usually an air flow) flowing through a pipe line with one end facing the gasification furnace, There is one configured to circulate a pipeline by airflow conveyance and inject it into the gasification furnace. In this case, the powder burner is made to function as a kind of powder airflow conveying device.

一方、増大し続ける都市ごみの処理問題等に有効に対処するため、都市ごみ等も含めた雑多なバイオマス燃料を処理し得るガス化設備の研究が行われている。この種のガス化設備は、雑多なバイオマス燃料を支障なく搬送することができ、バイオマス燃料の燃料種の拡大を実現し得る設備とする必要がある。具体的には、従来の木質系のバイオマス燃料に対しコーヒー滓等のワックス成分を多く含むバイオマスを燃料とするためにはその凝集性に起因する問題を解決する必要がある。すなわち、コーヒー滓等をバイオマス燃料とする場合には搬送の途中で凝集して管路等の閉塞を生起し易いので、これに対する対策を講じる必要がある。その有効な対策の一つとしてバイオマス燃料を炭化して得る粉体炭化物を気流搬送する際の搬送気流の高速化がある。   On the other hand, in order to effectively deal with the increasing problem of municipal waste, etc., research on gasification facilities capable of treating miscellaneous biomass fuel including municipal waste has been conducted. This type of gasification facility must be capable of transporting miscellaneous biomass fuel without hindrance and capable of realizing an expansion of the fuel type of biomass fuel. More specifically, in order to use biomass containing a large amount of wax components such as coffee cake with respect to conventional woody biomass fuel, it is necessary to solve the problem caused by the cohesiveness. That is, in the case of using coffee mash or the like as biomass fuel, it is necessary to take measures against this because it tends to agglomerate in the middle of conveyance and cause blockage of the pipes and the like. As one of the effective measures, there is speeding up the conveying air flow when the powdered carbide obtained by carbonizing the biomass fuel is air-conveyed.

かかる高速化を実現し得る気流搬送装置としての粉体バーナの一例を図6に示す。同図に示す粉体バーナ012は、重力落下(図中の矢印方向)により管路01に炭化物を供給する円筒管で構成した粉体供給路02の形状は変えることなく、他の部分との接続等の利便性の観点から管路01の外径を変更することなく、管路01を流通する気流の速度を高速化するものである。そこで当該粉体バーナ012では大径の円筒外管03に小径の円筒内管04を同心配置して従来の管路と同一外径の管路01を形成するとともに、断面積が小さい円筒内管04の内部空間を流路05としてその軸方向(A方向)に空気流を流している。このように流路05の断面積を小さくすることにより供給空気量が同じ場合には断面積に逆比例して空気流の流速を高速化することができるからである。   FIG. 6 shows an example of a powder burner as an airflow conveying device capable of realizing such high speed. The powder burner 012 shown in the same figure is in contact with other parts without changing the shape of the powder supply path 02 constituted by a cylindrical tube for supplying carbide to the pipe line 01 by gravity drop (in the direction of the arrow in the figure). From the viewpoint of convenience of connection and the like, the speed of the airflow flowing through the pipeline 01 is increased without changing the outer diameter of the pipeline 01. Therefore, in the powder burner 012, a small-diameter cylindrical inner tube 04 is concentrically disposed on a large-diameter cylindrical outer tube 03 to form a conduit 01 having the same outer diameter as that of a conventional conduit, and a cylindrical inner tube having a small cross-sectional area. The internal space of 04 is used as a flow path 05, and an air flow is made to flow in the axial direction (direction A). This is because the flow velocity of the air flow can be increased in inverse proportion to the cross-sectional area when the supply air amount is the same by reducing the cross-sectional area of the flow channel 05 in this way.

一方、当該構造では円筒内管04の内部空間を流路05としたため、粉体供給路02の最下部にはテーパー部06を形成して絞り部の最小幅と同幅の案内通路07を円筒外管0
3と円筒内管04との間に形成し、案内通路07を介して粉体供給路02からの炭化物を流路05に案内するようになっている。
On the other hand, in this structure, since the internal space of the cylindrical inner tube 04 is the flow path 05, a tapered portion 06 is formed at the lowermost portion of the powder supply path 02, and a guide passage 07 having the same width as the minimum width of the throttle portion is formed in the cylindrical shape. Outer tube 0
3 and the cylindrical inner tube 04, and the carbide from the powder supply path 02 is guided to the flow path 05 through the guide path 07.

特開2004−35837号公報JP 2004-35837 A 特開2005−272530号公報JP 2005-272530 A

しかしながら、図6に示す粉体バーナ012においては、例え炭化物を粉体供給路02の横断面内に均等に分散させて落下させた場合でもテーパー部06を介して絞られ、より狭い横断面形状の案内通路07を介して流路05に供給されるので、凝集性が高い炭化物の場合には特に、途中のテーパー部06等に引っかかり供給に支障が出る虞がある。すなわち、搬送気体流の高速化は実現されても炭化物の流路05に対する円滑な供給という点については難がある構造となってしまう。   However, in the powder burner 012 shown in FIG. 6, even when the carbide is evenly dispersed and dropped in the cross section of the powder supply path 02, it is squeezed through the taper portion 06 and has a narrower cross section. Therefore, in the case of carbide with high cohesiveness, there is a possibility that the supply may be hindered due to the taper portion 06 in the middle. That is, even if speeding up of the carrier gas flow is realized, there is a structure that is difficult in terms of smooth supply of the carbide channel 05.

なお、本明細書で用いるバイオマス燃料とは、農林資源とその残漬物及び建築廃材等の木質系バイオマス、畜産・水産資源とその残漬物及び食品廃棄物や汚泥等の廃棄物系バイオマス、並びにこれらの混合バイオマスを意味する。したがって、その中にはコーヒー滓等、ワックス成分の多いバイオマスも含まれる。   Biomass fuel used in this specification refers to woody biomass such as agriculture and forestry resources and their pickles and building waste, livestock and fishery resources and their pickles, waste biomass such as food waste and sludge, and these Means mixed biomass. Therefore, the biomass includes a biomass having a large amount of wax components such as coffee lees.

以上の説明は粉体バーナ012に関するものであるが、同様の問題は、重力を利用して粉体供給路から気流が流通する管路に凝集性が高い粉体を供給してこの粉体を気流搬送する粉体の気流搬送装置において同様に発生する。   The above description relates to the powder burner 012. However, the same problem is caused by supplying a highly agglomerated powder from the powder supply path to the pipe through which airflow flows by using gravity. It occurs in the same manner in a powder airflow conveying device for airflow conveyance.

本発明は、上記従来技術に鑑み、凝集性が高い粉体を安定して高速で気流搬送することができる粉体の気流搬送装置を提供することを目的とする。   The present invention has been made in view of the above prior art, and an object of the present invention is to provide a powder airflow conveying device capable of stably conveying airflow having high cohesiveness at high speed.

上記目的を達成する本発明の第1の形態は、
気流に浮遊させた状態で粉体を軸方向に流通させる流路を有する管路と、この管路に前記粉体を重力を利用して落下・供給する粉体供給路とを有する気流搬送装置であって、
前記粉体供給路は、同一の横断面形状で前記管路まで軸方向に亘り連続する円筒状の管路で構成するとともに、
前記流路は、前記粉体供給路の径以上の幅を有して横断面が扁平な形状となるように構成したものであり、
さらに前記管路は、小径の円筒内管と大径の円筒外管とを同心状に配設してなり、前記円筒内管の外周面と前記円筒外管の内周面との間の空間に充填物を充填して前記空間に前記流路を形成したことを特徴とする粉体の気流搬送装置にある。
The first aspect of the present invention that achieves the above object is as follows.
Airflow conveying apparatus having a conduit having a flow path for allowing powder to flow in the axial direction while being suspended in an airflow, and a powder supply path for dropping and supplying the powder to the conduit using gravity Because
The powder supply path is composed of a cylindrical pipe line that is continuous in the axial direction to the pipe line with the same cross-sectional shape, and
The flow path state, and are not cross-sections have a width larger than the diameter of the powder feed channel is constructed as a flat shape,
Further, the conduit is formed by concentrically arranging a small-diameter cylindrical inner tube and a large-diameter cylindrical outer tube, and a space between the outer peripheral surface of the cylindrical inner tube and the inner peripheral surface of the cylindrical outer tube. The powder airflow conveying device is characterized in that the flow path is formed in the space by filling a filler .

本態様によれば、流路が前記粉体供給路の径以上の幅を有して横断面が扁平な形状となっているので、粉体供給路が円筒状の管路であっても粉体は粉体供給路を途中で絞ることなくストレートに流路に供給することができる。また、流路を流れる気流の速度はその幅と高さを調整することにより容易且つ任意に高速化することができる。   According to this aspect, since the flow path has a width equal to or larger than the diameter of the powder supply path and has a flat cross section, even if the powder supply path is a cylindrical pipe, The body can be supplied straight to the flow path without restricting the powder supply path. Moreover, the speed of the airflow flowing through the flow path can be easily and arbitrarily increased by adjusting the width and height.

この結果、粉体が凝集性の高いものであっても途中で閉塞等の不都合を生起することなく、良好に所定の気流搬送を行うことができる。
また、凝集性が高い粉体であっても重力で落下する粉体は最も円滑に管路を流通する気流に乗せることができる。一方、粉体を気流搬送する気流の速度は、円筒外管と円筒内管との間の空間の面積を調整することで容易に高速化を実現し得る。
この結果、粉体が凝集性の高いものであっても途中で閉塞等の不都合を生起することなく、良好に所定の気流搬送を行うことができる。
さらに、管路の外径は従来と同様に形成することもできるので、この場合には互換性を保ったまま、取替え作業等も容易に行うことができる。
As a result, even if the powder is highly cohesive, it is possible to carry out a predetermined air flow well without causing inconvenience such as blockage.
Moreover, even if it is a powder with high cohesion, the powder which falls by gravity can be most smoothly put on the airflow which distribute | circulates a pipe line. On the other hand, the speed of the airflow for conveying the powder by airflow can be easily increased by adjusting the area of the space between the cylindrical outer tube and the cylindrical inner tube.
As a result, even if the powder is highly cohesive, it is possible to carry out a predetermined air flow well without causing inconvenience such as blockage.
Furthermore, since the outer diameter of the pipe line can be formed in the same manner as in the prior art, in this case, replacement work or the like can be easily performed while maintaining compatibility.

本発明の第2の態様は、
第1の態様に記載する粉体の気流搬送装置において、
前記粉体供給路の内部の粉体に振動を与えるよう前記粉体供給路の下部に加振手段をさらに設けたことを特徴とする粉体の気流搬送装置にある。
The second aspect of the present invention is:
In the airflow conveying device for the powder described in the first aspect,
The powder airflow conveying device further includes a vibration means provided at a lower portion of the powder supply path so as to apply vibration to the powder inside the powder supply path.

本態様によれば、凝集性が高い粉体であっても一様に分散させることにより凝集を防止
して前記管路を流通する気流に一様に拡散させた状態で良好に乗せることができる。
According to this aspect, even a highly cohesive powder can be uniformly dispersed by preventing it from coagulating and uniformly diffusing into the airflow flowing through the pipe line. .

本発明の第3の態様は、
第1又は第2の態様に記載する粉体の気流搬送装置は、前記管路の一端が
ガス化炉の内部に臨み、前記粉体供給路を介して前記流路内に供給される燃料である前記
粉体を気流搬送して前記ガス化炉内に噴射する粉体バーナであることを特徴とする粉体の
気流搬送装置にある。
The third aspect of the present invention is:
The powder airflow conveyance device described in the first or second aspect is a fuel supplied to the flow path through the powder supply path, with one end of the pipe line facing the inside of the gasification furnace. It is a powder airflow conveying device characterized in that it is a powder burner for airflow conveying the powder and injecting it into the gasification furnace.

本態様によれば、燃料が凝集性の高いものであっても粉体バーナからガス化炉内に粉体を一様に噴射して良好な可燃性ガスの生成に資することができる。   According to this aspect, even if the fuel is highly cohesive, the powder can be uniformly injected from the powder burner into the gasification furnace, which can contribute to the generation of a good combustible gas.

本発明の第4の態様は、
第3の態様に記載する粉体の気流搬送装置を粉体バーナとして備えるとともにコーヒー
滓を含む凝集性が高いバイオマス燃料をガス化するガス化炉を有することを特徴とするガ
ス化設備にある。

The fourth aspect of the present invention is:
A gasification facility comprising a gas flow conveying device as described in the third aspect as a powder burner and a gasification furnace for gasifying a highly cohesive biomass fuel containing coffee cake.

本態様によれば、バイオマス燃料が凝集性の高いものであっても粉体バーナからガス化炉内に粉体炭化物を一様に噴射して良好な可燃性ガスの生成に資することができる。すなわち、凝集しやすいバイオマス燃料も含め、広い範囲のバイオマス燃料を用いて所望の可燃性ガスを生成することができる。   According to this aspect, even if the biomass fuel is highly cohesive, it is possible to uniformly inject the powdered carbide from the powder burner into the gasification furnace and contribute to the generation of good combustible gas. That is, a desired combustible gas can be generated using a wide range of biomass fuels, including biomass fuels that tend to aggregate.

本発明によれば、気流搬送の流速を容易に高速化し得るので、凝集性が高い粉体であっても微粒子のまま搬送することができる。この結果、途中で搬送粉体の閉塞を生起する等の問題を未然に防止して性状が異なる多種類の粉体の良好な気流搬送を実現し得る。   According to the present invention, since the flow velocity of airflow conveyance can be easily increased, even a powder having high cohesiveness can be conveyed as fine particles. As a result, it is possible to prevent problems such as the blocking of the conveying powder on the way, and to realize good air current conveyance of various types of powders having different properties.

かくして、凝集しやすいバイオマス燃料も含め、広い範囲から選択した任意のバイオマス燃料を用いて所望の可燃性ガスを得るガス化炉等にも良好に適用し得る。   Thus, it can be favorably applied to a gasification furnace or the like that obtains a desired combustible gas using an arbitrary biomass fuel selected from a wide range including a biomass fuel that easily aggregates.

以下本発明の実施の形態を図面に基づき詳細に説明する。図1は本形態に係るバイオマス燃料を用いたガス化設備を示すブロック図である。同図に示すように、炭化機1には原料バンカー2に貯留されているバイオマス燃料が燃料中間ホッパ3を介して供給される。この結果、炭化機1はバイオマス燃料を炭化処理して、このバイオマス燃料中の水分及び
揮発分を含んだ熱分解ガスと固定炭素や灰分を主成分とした炭化物とに分離する。具体的には、バイオマス燃料を300℃乃至500℃に加熱し、外気から遮断された無酸素状態の中で水分の蒸発と有機物の熱分解反応とにより炭化処理を行う。ここで、生成される熱分解ガスはタール分を多く含むガスであるため、さらにガス化炉4に供給してタール分を熱分解することにより高カロリーの可燃性ガスに改質している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a gasification facility using biomass fuel according to this embodiment. As shown in the figure, biomass fuel stored in the raw material bunker 2 is supplied to the carbonizer 1 via a fuel intermediate hopper 3. As a result, the carbonizer 1 carbonizes the biomass fuel and separates it into a pyrolysis gas containing moisture and volatile components in the biomass fuel and a carbide mainly composed of fixed carbon and ash. Specifically, the biomass fuel is heated to 300 ° C. to 500 ° C., and carbonization is performed by evaporation of moisture and thermal decomposition reaction of organic matter in an oxygen-free state blocked from outside air. Here, since the generated pyrolysis gas is a gas containing a large amount of tar, it is further reformed to a high calorie combustible gas by supplying it to the gasification furnace 4 and thermally decomposing the tar.

粉砕機5は炭化機1における炭化処理の結果生成される炭化物を粉砕処理するものである。すなわち、炭化機1から投入された炭化物をミクロンオーダーに粉砕して微粉状の炭化物にする。粉砕機5で粉砕した微粉状の炭化物は気流搬送系6により搬送される。   The pulverizer 5 pulverizes carbides generated as a result of carbonization in the carbonizer 1. That is, the carbide charged from the carbonizer 1 is pulverized to the micron order to form fine powdered carbide. The fine powdered carbide pulverized by the pulverizer 5 is conveyed by the air current conveying system 6.

気流搬送系6は粉砕機5とともに途中にサイクロン7、バグフィルタ8及び循環ブロワ9を管路で連通した循環系で構成している。すなわち、循環ブロワ9で発生する気流を粉砕機5に供給することにより微粉状の炭化物を気流に乗せて搬送するとともに、サイクロン7及びバグフィルタ8で所定粒径以上の炭化物を捕捉・回収し、循環ブロワ9により再度粉砕機5に向けて気流搬送している。かくして所定粒径未満の炭化物がサイクロン7及びバグフィルタ8から重力を利用してバーナ供給ホッパ11に供給され、さらに粉体バーナ12に供給されてこの粉体バーナ12を介しガス化炉4内へ噴射される。すなわち、気流搬送系6において、粉砕機5で微粉末に粉砕された炭化物は、垂直に立上がる立上配管10を含む搬送配管内を気流搬送され、サイクロン7及びバグフィルタ8を介してバーナ供給ホッパ11に貯留される。バーナ供給ホッパ11に貯留された炭化物はその底部に配設されたスクリューフィーダ(図示せず)により粉体バーナ12の粉体供給路19に供給される。   The airflow conveyance system 6 is constituted by a circulation system in which a cyclone 7, a bag filter 8 and a circulation blower 9 are communicated with each other along a pipeline along with the pulverizer 5. That is, by supplying the airflow generated in the circulation blower 9 to the pulverizer 5, the fine powdered carbide is carried on the airflow and captured and recovered by the cyclone 7 and the bag filter 8 with the carbide having a predetermined particle size or more. The circulating blower 9 transports the airflow toward the pulverizer 5 again. Thus, the carbide having a particle size smaller than the predetermined particle size is supplied from the cyclone 7 and the bag filter 8 to the burner supply hopper 11 using gravity, and further supplied to the powder burner 12 and into the gasification furnace 4 through the powder burner 12. Be injected. That is, in the airflow conveyance system 6, the carbide pulverized into fine powder by the pulverizer 5 is airflow-conveyed in the conveyance pipe including the rising pipe 10 that rises vertically, and is supplied to the burner via the cyclone 7 and the bag filter 8. Stored in the hopper 11. The carbide stored in the burner supply hopper 11 is supplied to the powder supply path 19 of the powder burner 12 by a screw feeder (not shown) arranged at the bottom thereof.

ガス化炉4は、二室二段の噴流床方式のガス化炉であり、炭化機1で生成され粉砕機5で粉砕されたミクロンオーダーの炭化物を下段のガス化・燃焼部4aで燃焼させて1500℃程度の高温ガスにして上段のガス改質部4bに送り出す。粉体バーナ12より供給される炭化物はガス化・燃焼部4a内に噴射される。ガス改質部4bでは高温ガスと炭化機1における炭化処理で発生する熱分解ガスとを接触させる。そして、シフト反応(具体的には、CO+HO←→CO+H)を主とした改質反応並びに熱分解ガス中のタールの分解により一酸化炭素(CO)と水素(H)とを主成分とした可燃性ガスを生成する。なお、熱分解ガス中のタールを分解するために、ガス改質部4bに送り込まれて可燃性ガスと接触した段階でガス改質部4b内のガス温度は1100℃以上であることが必要とされる。すなわち、ガス化炉4が良好なガス化性能を発揮するためには、ガス化・燃焼部4aに十分な熱量が投入される必要がある。かかる熱量は、ガス化・燃焼部4aに空気(又は空気と酸素との混合気体)を送り込むことによる燃焼反応により得ている。ここで、本形態では、炭化機1からガス化炉4に熱分解ガスを供給するためのガス供給配管13のガス化炉4側が分岐管13aと分岐管13bとの二つに分岐し、熱分解ガスをガス化炉4のガス化・燃焼部4a及びガス改質部4bの両方に供給可能な構成となっている。ガス化炉4で生成された可燃性ガスはガス精製部(図示せず)でガス精製されて、発電設備(図示せず)等に供給される。 The gasification furnace 4 is a two-chamber, two-stage spouted bed type gasification furnace in which micron-order carbides generated by the carbonizer 1 and pulverized by the pulverizer 5 are combusted in the lower gasification / combustion unit 4a. The high-temperature gas of about 1500 ° C. is sent to the upper gas reforming unit 4b. The carbide supplied from the powder burner 12 is injected into the gasification / combustion unit 4a. In the gas reforming unit 4b, the high-temperature gas is brought into contact with the pyrolysis gas generated by the carbonization treatment in the carbonizer 1. Then, carbon monoxide (CO) and hydrogen (H 2 ) are converted by reforming reaction mainly of shift reaction (specifically, CO + H 2 O ← → CO 2 + H 2 ) and decomposition of tar in the pyrolysis gas. It produces flammable gas with the main component. In addition, in order to decompose | disassemble the tar in pyrolysis gas, the gas temperature in the gas reforming part 4b needs to be 1100 degreeC or more in the step which was sent to the gas reforming part 4b and contacted with the combustible gas. Is done. That is, in order for the gasification furnace 4 to exhibit good gasification performance, it is necessary to input a sufficient amount of heat to the gasification / combustion unit 4a. This amount of heat is obtained by a combustion reaction by sending air (or a mixed gas of air and oxygen) into the gasification / combustion unit 4a. Here, in this embodiment, the gasification furnace 4 side of the gas supply pipe 13 for supplying the pyrolysis gas from the carbonizer 1 to the gasification furnace 4 branches into two branches, a branch pipe 13a and a branch pipe 13b. The cracked gas can be supplied to both the gasification / combustion unit 4 a and the gas reforming unit 4 b of the gasification furnace 4. The combustible gas produced | generated in the gasification furnace 4 is gas refined by a gas refinement | purification part (not shown), and is supplied to a power generation equipment (not shown) etc.

以上が本形態に係るガス化設備の概要であるが、本形態ではバイオマス燃料の燃料種を拡大、特にワックス成分が多く凝集し易いコーヒー滓等を燃料とする場合でも燃料として有効に利用し得るようにするため気流搬送装置の一種である粉体バーナ12を特別に工夫した。   The above is the outline of the gasification facility according to this embodiment, but in this embodiment, the fuel type of biomass fuel can be expanded, and in particular, it can be effectively used as a fuel even when using coffee candy or the like that has a lot of wax components and easily aggregates. Therefore, the powder burner 12 which is a kind of air flow conveying device is specially devised.

図2は本形態における粉体バーナ12の部分を抽出して示す図で、(a)は縦断面図、(b)はA−A´線断面図、(c)はB−B´線断面図である。これらの図に示すように、粉体バーナ12は、管路18と粉体供給路19とを有するが、粉体供給路19は、同一の横断面形状で前記管路まで軸方向に亘り連続する円筒状の管路で構成してある。また、
管路18はその流路18bが粉体供給路19の径と同一幅で、横断面が扁平な形状となるように構成してある。さらに詳言すると、管路18は、小径の円筒内管18cと大径の円筒外管18dとを同心状に配設してなり、円筒内管18cの外周面と円筒外管18dの内周面との間の空間に充填物18eを充填して前記空間に受入口18aの径と同一幅の軸方向に伸びる空間である流路18bを形成している。気流搬送用の空気は受入口18aよりもガス化炉4の反対側で円筒内管18cと円筒外管18dとの間の空間に供給するようになっている。なお、円筒内管18cの内部空間には断熱材18fが充填されている。また、管路18の先端部はガス化炉4の断熱材4cを貫通してその内部に臨んでいる。
2A and 2B are diagrams showing an extracted portion of the powder burner 12 in this embodiment, where FIG. 2A is a longitudinal sectional view, FIG. 2B is a sectional view taken along the line AA ′, and FIG. 2C is a sectional view taken along the line BB ′. FIG. As shown in these drawings, the powder burner 12 has a pipe line 18 and a powder supply path 19, and the powder supply path 19 is continuous in the axial direction up to the pipe line with the same cross-sectional shape. It consists of a cylindrical pipe line. Also,
The pipe 18 is configured such that the flow path 18b has the same width as the diameter of the powder supply path 19 and has a flat cross section. More specifically, the pipe 18 is formed by concentrically arranging a small-diameter cylindrical inner tube 18c and a large-diameter cylindrical outer tube 18d, and the outer peripheral surface of the cylindrical inner tube 18c and the inner periphery of the cylindrical outer tube 18d. A space 18b is filled with a filler 18e, and a flow path 18b, which is a space extending in the axial direction having the same width as the diameter of the receiving port 18a, is formed in the space. The air for conveying the airflow is supplied to the space between the cylindrical inner tube 18c and the cylindrical outer tube 18d on the opposite side of the gasification furnace 4 from the receiving port 18a. The internal space of the cylindrical inner tube 18c is filled with a heat insulating material 18f. Moreover, the front-end | tip part of the pipe line 18 penetrates the heat insulating material 4c of the gasification furnace 4, and has faced the inside.

このように、本形態によれば、粉体供給路19の横断面の形状と粉体炭化物の受入口18aとの形状が同一であるので、重力で落下する粉体炭化物は途中で引っかかることなく最も円滑に管路18を流通する空気流に乗せることができる。そして、途中に通路の狭窄部を有することなく炭化物を空気流に一気に乗せることができるような条件の下で流路18bの幅を最小とすることで流路18bを流通する空気流の速度の最速化を実現し得る。管路18に供給する空気量が同じ場合には流路18bの断面積に比例して空気流の速度が高速化するからである。空気流速度の高速化を図った場合、粉体である炭化物は一気にガス化炉4内に供給されるため、凝集することなく粉砕時の微小な粒径を維持したままガス化炉4内に一様に分散される。   Thus, according to this embodiment, since the shape of the cross section of the powder supply passage 19 and the shape of the powder carbide receiving port 18a are the same, the powdered carbide falling by gravity is not caught on the way. The air flow that flows through the pipe line 18 can be carried most smoothly. And the speed of the air flow which distribute | circulates the flow path 18b is minimized by making the width | variety of the flow path 18b into the minimum under the conditions which can carry a carbide | carbonized_material in an air flow at a stretch without having the constriction part of a channel | path in the middle. Maximum speed can be achieved. This is because when the amount of air supplied to the pipe 18 is the same, the speed of the air flow increases in proportion to the cross-sectional area of the flow path 18b. When the air flow speed is increased, the powdered carbide is supplied into the gasification furnace 4 at once, so that the fine particle size at the time of pulverization is maintained in the gasification furnace 4 without agglomeration. Evenly distributed.

ここで、粉体供給路19の下部に加振機20を配設し(図2(b)参照)、粉体供給路19に振動を与えるように構成するのが望ましい。この場合には加振により炭化物を一様に分散させて管路18に供給することができるからである。特に、図2(b)に示すように、他の部分との干渉等を考慮した設置スペースの制限等により粉体供給路19が重力方向に対して傾斜している場合には、その傾斜角が大きければ大きい程傾斜部分で炭化物の凝集・閉塞を生起し易いが、かかる場合でも加振により良好に炭化物の凝集を防止して管路18への供給を良好に行うことができる。したがって、かかる構成により凝集性が高い粉体炭化物であっても一様に分散させることにより凝集を防止して管路18を流通する気流に良好に乗せることができる。また、本形態においては流路18bの幅を受入口18aの径(粉体供給路19の径)と同一に構成したがこれに限るものではない。流路18bの幅は、粉体供給路19の径以上であれば任意に選定することができる。ただ、流路18bの幅が粉体供給路19の径と同一である場合に最高流速が得られ、幅が広がるにつれ、流路18bの高さが同じ場合には搬送気流の流速は比例して低下する。   Here, it is desirable to arrange the vibrator 20 below the powder supply path 19 (see FIG. 2B) so that the powder supply path 19 is vibrated. This is because in this case, the carbide can be uniformly dispersed by vibration and supplied to the pipe 18. In particular, as shown in FIG. 2 (b), when the powder supply path 19 is inclined with respect to the direction of gravity due to the limitation of the installation space in consideration of interference with other parts, the inclination angle thereof. The larger the is, the easier it is to cause agglomeration / clogging of the carbides at the inclined portion, but even in such a case, the agglomeration of the carbides can be prevented satisfactorily by vibration and the supply to the pipe line 18 can be performed well. Therefore, even if it is a powder carbide with high cohesiveness by this structure, it can disperse | distribute uniformly and can be favorably put on the airflow which distribute | circulates the pipe line 18. In the present embodiment, the width of the flow path 18b is configured to be the same as the diameter of the receiving port 18a (the diameter of the powder supply path 19), but the present invention is not limited to this. The width of the flow path 18b can be arbitrarily selected as long as it is equal to or larger than the diameter of the powder supply path 19. However, the maximum flow rate is obtained when the width of the flow path 18b is the same as the diameter of the powder supply path 19, and as the width increases, the flow speed of the carrier air flow is proportional when the height of the flow path 18b is the same. Will drop.

図3は図6の従来技術と比較した場合の本形態における粉体バーナ12の部分の横断面図である。図3に示すように、重力落下(図中の矢印方向)により受入口18aを介して流路18bに供給される粉体炭化物は、粉体供給路19の途中で引っかかることなくスムーズにその軸方向(A方向)の空気流に乗って搬送される。一方、流路18bの断面積は図6の流路05と同一であるので、同様の高搬送速度が得られる。なお、図3中、図2と同一番号には同一番号を付してある。   FIG. 3 is a cross-sectional view of the portion of the powder burner 12 in this embodiment when compared with the prior art of FIG. As shown in FIG. 3, the powdered carbide supplied to the flow path 18 b via the receiving port 18 a by gravity drop (in the direction of the arrow in the figure) is smoothly caught without being caught in the middle of the powder supply path 19. It is carried on the air flow in the direction (direction A). On the other hand, since the cross-sectional area of the flow path 18b is the same as the flow path 05 of FIG. 6, the same high conveyance speed is obtained. In FIG. 3, the same numbers as those in FIG.

図4は本形態に係る粉体バーナ12と比較するため、本形態と同一径の二重管構造を有する従来技術に係る当該部分を抽出して示す図で、(a)は縦断面図、(b)はC−C´線断面図である。これらの図に示すように、従来技術における粉体バーナ012も本形態と同様の粉体供給路19を有するが、管路018を構成する円筒内管018cと円筒外管018dとの間の空間全てが炭化物を気流搬送する流路018bとして構成してある。したがって粉体供給路19からの炭化物の受入口018aは流路018bの幅(本例の場合は流路018bの外周長)の数倍となっており、同一量の空気を流路018bに供給した場合には流路018bの径方向の寸法が同じでも流路018bを流通する空気流の流速が流路018bの断面積に逆比例して小さくなる。   FIG. 4 is a diagram illustrating an extracted portion of the related art having a double-pipe structure having the same diameter as that of the present embodiment for comparison with the powder burner 12 according to the present embodiment. (B) is CC 'sectional view taken on the line. As shown in these drawings, the powder burner 012 in the prior art also has the same powder supply path 19 as in this embodiment, but the space between the cylindrical inner pipe 018c and the cylindrical outer pipe 018d constituting the pipe 018. All are configured as a flow path 018b for air-conveying carbide. Therefore, the carbide receiving port 018a from the powder supply channel 19 is several times the width of the channel 018b (in this example, the outer peripheral length of the channel 018b), and the same amount of air is supplied to the channel 018b. In this case, even if the dimensions of the flow path 018b are the same in the radial direction, the flow velocity of the air flow flowing through the flow path 018b decreases in inverse proportion to the cross-sectional area of the flow path 018b.

したがって、本形態における粉体バーナ12は管路18を構成する円筒内管18c及び円筒外管18dの径を従来と変更することなく流路18bを流通する空気流の高速化を実現し得たものということができる。この結果、他の管路等との接続条件は変更する必要がない。したがって、本形態における粉体バーナ12は他の部品の使用の変更を要することなく従来との互換性を維持したまま気流搬送速度を所望の速度とすることができる。なお、図4中、図2と同一部分には同一番号を付し重複する説明は省略する。   Therefore, the powder burner 12 in the present embodiment can realize a high-speed air flow through the flow path 18b without changing the diameters of the cylindrical inner pipe 18c and the cylindrical outer pipe 18d constituting the pipe path 18 from the conventional one. Things can be said. As a result, it is not necessary to change the connection conditions with other pipes and the like. Therefore, the powder burner 12 according to the present embodiment can set the airflow conveyance speed to a desired speed while maintaining compatibility with the conventional one without changing the use of other parts. In FIG. 4, the same parts as those in FIG.

上記実施の形態では、既存の部品等との関係を考慮して図2に示す構成としたが、原理的には図5に示すような構成のものであれば気流搬送の際の気流速度を容易かつ任意に高速化し得る。   In the above embodiment, the configuration shown in FIG. 2 is considered in consideration of the relationship with existing parts and the like. However, in principle, the configuration of the configuration shown in FIG. It can be easily and arbitrarily speeded up.

図5は、本発明の他の実施の形態に係る粉体バーナを概念的に示す説明図である。同図に示すように当該粉体バーナ42も管路48と粉体供給路49とを有する。ここで、管路48その流路48bに粉体供給路49を介して供給される炭化物を気流に浮遊させた状態で軸方向に流通させるとともに一端部がガス化炉4内に臨んでいる。粉体供給路49は、バーナ供給ホッパ11から管路48に炭化物を重力を利用して落下・供給する円筒形状の管路であり、同一の横断面形状で管路48まで軸方向に亘り連続している。すなわち、粉体供給路49は同一径のまま管路48の受入口48aにつながっている。ここで、粉体供給路49は、炭化物を受け入れる受入口48aの径が粉体供給路49の径と同一になるように形成するとともに気流搬送のための流路48bの幅が受入口48aの径と同一になるように構成してある。   FIG. 5 is an explanatory view conceptually showing a powder burner according to another embodiment of the present invention. As shown in the figure, the powder burner 42 also has a pipe line 48 and a powder supply path 49. Here, the carbide supplied through the powder supply path 49 to the flow path 48b of the pipe line 48 is circulated in the axial direction in a state of being suspended in the air flow, and one end portion faces the gasification furnace 4. The powder supply path 49 is a cylindrical pipe that drops and supplies carbide from the burner supply hopper 11 to the pipe 48 using gravity, and is continuous in the axial direction to the pipe 48 with the same cross-sectional shape. doing. That is, the powder supply path 49 is connected to the receiving port 48a of the pipe line 48 with the same diameter. Here, the powder supply path 49 is formed so that the diameter of the receiving port 48a for receiving the carbide is the same as the diameter of the powder supply path 49, and the width of the flow path 48b for airflow conveyance is the width of the receiving port 48a. It is configured to be the same as the diameter.

この結果、本形態でも粉体供給路49の横断面の形状と粉体炭化物の受入口48aとの形状が同一であるので、重力で落下する粉体炭化物は途中で引っかかることなく最も円滑に管路48を流通する空気流に乗せることができる。そして、途中に通路の狭窄部を有することなく炭化物を空気流に一気に乗せることができるような条件の下で流路48bの幅を最小とすることで流路48bを流通する空気流の速度の最速化を実現し得る。ちなみに流路48bの幅が受入口48aの幅よりも大きければ粉体供給路49からの炭化物の供給はスムーズに行われるが、流路48bの高さが同じ場合には流路48bの断面積がその分増加するので気流搬送の気流の流速を高速化する場合の障害となる。   As a result, also in this embodiment, since the shape of the cross section of the powder supply passage 49 and the shape of the powder carbide receiving port 48a are the same, the powdered carbide falling by gravity is most smoothly piped without being caught on the way. It can be carried by the airflow that circulates through the path 48. Then, the speed of the air flow flowing through the flow path 48b is minimized by minimizing the width of the flow path 48b under the condition that the carbide can be put on the air flow at a stroke without having a narrow portion of the passage in the middle. Maximum speed can be achieved. Incidentally, if the width of the flow path 48b is larger than the width of the receiving port 48a, the carbide is smoothly supplied from the powder supply path 49. However, if the height of the flow path 48b is the same, the cross-sectional area of the flow path 48b. Increases accordingly, which is an obstacle to increasing the flow velocity of the airflow of the airflow conveyance.

したがって本形態のおける粉体バーナ42であっても空気流速の高速化を図って炭化物を一気にガス化炉4内に供給することができる。この結果、凝集性の高い炭化物であっても粉砕時の微小な粒径を維持したままガス化炉4内に一様に分散供給することができる。   Therefore, even with the powder burner 42 according to this embodiment, the carbide can be supplied into the gasification furnace 4 at once by increasing the air flow rate. As a result, even a highly agglomerated carbide can be uniformly dispersed and supplied into the gasification furnace 4 while maintaining a fine particle size during pulverization.

また、上記実施の形態において加振機20は粉体供給路19に配設するものとして説明したが、これに限る必要はない。搬送中に炭化物の詰まりを生起する虞がある部分には適宜配設しておいたほうが好ましい。ちなみに、バイオマス燃料としてコーヒー滓を使用した場合、その炭化物は凝集性が高く、安息角が大きいため(木質系のバイオマス燃料の45度に対し、コーヒー滓は60度)、コーン角度60度未満のバグフィルタ8やバーナ供給ホッパ11の内部でブリッジングやラットホールが多発し、またサイクロン7やバグフィルタ8から粉体バーナ12に至る配管(重力で搬送する配管)では、傾斜角度が60度未満のものは閉塞も生起する虞がある。そこで、これらの部分に加振機20を設置することで炭化物による閉塞という問題に対処し得る。   Moreover, although the vibration exciter 20 was demonstrated as what is arrange | positioned in the powder supply path 19 in the said embodiment, it does not need to restrict to this. It is preferable to arrange appropriately in a portion where there is a possibility of causing clogging of carbides during transportation. By the way, when coffee lees are used as biomass fuel, the charcoal is highly cohesive and has a large angle of repose (60 degrees for coffee liquor versus 45 degrees for woody biomass fuel), so the cone angle is less than 60 degrees. Bridging and ratholes frequently occur inside the bag filter 8 and the burner supply hopper 11, and the inclination angle of the pipe from the cyclone 7 or the bag filter 8 to the powder burner 12 (pipe carried by gravity) is less than 60 degrees. There is a possibility that the blockage may occur. Therefore, the problem of clogging with carbides can be addressed by installing the vibration exciter 20 at these portions.

さらに、上記実施の形態はバイオマス燃料を使用するガス化設備として説明したが、勿論これに限るものではない。同様に粉体を燃料とし、同様に粉体を気流搬送する必要がある例えば石炭ガス設備にも同様に適用できる。また、気流搬送装置として粉体バーナに限定するものでもない。粉体を気流搬送する装置であれば制限なく適用し得る。適用した場合には容易に搬送速度の高速化を実現し得る。   Furthermore, although the said embodiment demonstrated as gasification equipment which uses biomass fuel, of course, it does not restrict to this. Similarly, the present invention can be similarly applied to, for example, a coal gas facility in which powder is used as fuel and the powder needs to be transported in the same manner. Further, the airflow conveying device is not limited to the powder burner. Any device that transports powder by airflow can be used without limitation. When applied, it is possible to easily increase the transport speed.

本発明は粉体の気流搬送を行う産業分野、すなわちガス化設備の有効利用を図る都市ごみの処理等、石炭ガス発電等に関連する産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field in which powder is conveyed by air, that is, in the industrial field related to coal gas power generation, such as the treatment of municipal waste for effective use of gasification facilities.

本発明の実施の形態に係るバイオマス燃料を用いたガス化設備を示すブロック図である。It is a block diagram showing gasification equipment using biomass fuel concerning an embodiment of the invention. 上記実施の形態における気体搬送装置の一種である粉体バーナの部分を抽出して示す図で、(a)は縦断面図、(b)はA−A´線断面図、(c)はB−B´線断面図である。It is a figure which extracts and shows the part of the powder burner which is 1 type of the gas conveying apparatus in the said embodiment, (a) is a longitudinal cross-sectional view, (b) is an AA 'sectional view, (c) is B FIG. 図2に示す粉体バーナを図6との比較において示す横断面図である。It is a cross-sectional view which shows the powder burner shown in FIG. 2 in comparison with FIG. 上記実施の形態における粉体バーナと比較するため、従来技術に係る当該部分を抽出して示す図で、(a)は縦断面図、(b)はC−C´線断面図である。In order to compare with the powder burner in the said embodiment, it is the figure which extracts and shows the said part which concerns on a prior art, (a) is a longitudinal cross-sectional view, (b) is CC 'sectional view taken on the line. 本発明の他の実施の形態に係る粉体バーナを概念的に示す説明図である。It is explanatory drawing which shows notionally the powder burner which concerns on other embodiment of this invention. 従来技術に係る粉体バーナを示す横断面図である。It is a cross-sectional view showing a powder burner according to the prior art.

符号の説明Explanation of symbols

1 炭化機
4 ガス化炉
5 粉砕機
6 気流搬送系
11 バーナ供給ホッパ
12 粉体バーナ
14 ガス精製部
18、48 管路
18a、48a 受入口
18b、48b 流路
18c 円筒内管
18d 円筒外管
19、49 粉体供給路
20 加振機
DESCRIPTION OF SYMBOLS 1 Carbonizer 4 Gasifier 5 Crusher 6 Airflow conveyance system 11 Burner supply hopper 12 Powder burner 14 Gas purification part 18, 48 Pipe lines 18a, 48a Inlet 18b, 48b Channel 18c Cylindrical pipe 18d Cylindrical outer pipe 19 49 Powder supply path 20 Vibrator

Claims (4)

気流に浮遊させた状態で粉体を軸方向に流通させる流路を有する管路と、この管路に前記粉体を重力を利用して落下・供給する粉体供給路とを有する気流搬送装置であって、
前記粉体供給路は、同一の横断面形状で前記管路まで軸方向に亘り連続する円筒状の管路で構成するとともに、
前記流路は、前記粉体供給路の径以上の幅を有して横断面が扁平な形状となるように構成したものであり、
さらに前記管路は、小径の円筒内管と大径の円筒外管とを同心状に配設してなり、前記円筒内管の外周面と前記円筒外管の内周面との間の空間に充填物を充填して前記空間に前記流路を形成したことを特徴とする粉体の気流搬送装置。
Airflow conveying apparatus having a conduit having a flow path for allowing powder to flow in the axial direction while being suspended in an airflow, and a powder supply path for dropping and supplying the powder to the conduit using gravity Because
The powder supply path is composed of a cylindrical pipe line that is continuous in the axial direction to the pipe line with the same cross-sectional shape, and
The flow path state, and are not cross-sections have a width larger than the diameter of the powder feed channel is constructed as a flat shape,
Further, the conduit is formed by concentrically arranging a small-diameter cylindrical inner tube and a large-diameter cylindrical outer tube, and a space between the outer peripheral surface of the cylindrical inner tube and the inner peripheral surface of the cylindrical outer tube. A powder airflow conveying device in which a filling material is filled to form the flow path in the space .
請求項1に記載する粉体の気流搬送装置において、
前記粉体供給路の内部の粉体に振動を与えるよう前記粉体供給路の下部に加振手段をさらに設けたことを特徴とする粉体の気流搬送装置。
In the powder airflow conveying device according to claim 1,
A powder airflow conveying device, further comprising a vibration means provided at a lower portion of the powder supply passage so as to apply vibration to the powder inside the powder supply passage.
請求項1または請求項2に記載する粉体の気流搬送装置は、前記管路の一端がガス化炉の内部に臨み、前記粉体供給路を介して前記流路内に供給される燃料である前記粉体を気流搬送して前記ガス化炉内に噴射する粉体バーナであることを特徴とする粉体の気流搬送装置。 The powder airflow conveying device according to claim 1 or 2 , wherein one end of the pipe line faces the inside of the gasification furnace, and the fuel is supplied into the flow path through the powder supply path. A powder airflow conveying device, wherein the powder is a powder burner that airflows the powder and injects the powder into the gasification furnace. 請求項に記載する粉体の気流搬送装置を粉体バーナとして備えるとともにコーヒー滓を含む凝集性が高いバイオマス燃料をガス化するガス化炉を有することを特徴とするガス化設備。 A gasification facility comprising the powder airflow conveying device according to claim 3 as a powder burner and a gasification furnace for gasifying a biomass fuel having high cohesiveness including coffee cake.
JP2008176170A 2008-07-04 2008-07-04 Powder airflow conveying device and gasification equipment having the same Active JP5268093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176170A JP5268093B2 (en) 2008-07-04 2008-07-04 Powder airflow conveying device and gasification equipment having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176170A JP5268093B2 (en) 2008-07-04 2008-07-04 Powder airflow conveying device and gasification equipment having the same

Publications (2)

Publication Number Publication Date
JP2010014367A JP2010014367A (en) 2010-01-21
JP5268093B2 true JP5268093B2 (en) 2013-08-21

Family

ID=41700635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176170A Active JP5268093B2 (en) 2008-07-04 2008-07-04 Powder airflow conveying device and gasification equipment having the same

Country Status (1)

Country Link
JP (1) JP5268093B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5397878B2 (en) * 2008-07-04 2014-01-22 一般財団法人電力中央研究所 Gasification facility and gasification power generation facility using biomass fuel
JP5068829B2 (en) 2010-01-26 2012-11-07 日本写真印刷株式会社 Simultaneous injection-molded decorative product with antenna, method for manufacturing the same, and feeding structure of housing with antenna
JP5767554B2 (en) * 2011-10-17 2015-08-19 株式会社Ihi Raw material input device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525711Y2 (en) * 1987-11-16 1993-06-29
JP3009570B2 (en) * 1993-10-19 2000-02-14 三菱重工業株式会社 Operating method of two-stage spouted bed gasifier and gasifier
JPH11148635A (en) * 1997-11-20 1999-06-02 Daido Steel Co Ltd Fly ash supplying device for fly ash melting furnace
CA2664769C (en) * 2006-09-27 2013-03-19 Babcock-Hitachi Kabushiki Kaisha Burner, and combustion equipment and boiler comprising burner

Also Published As

Publication number Publication date
JP2010014367A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
US20090277090A1 (en) Gas distribution arrangement for a rotary reactor
KR20090127796A (en) Gas distriburor for a rotary kiln
CN101688134A (en) gasifier
CN102365350A (en) Two stage dry feed gasification system and process
JP5268093B2 (en) Powder airflow conveying device and gasification equipment having the same
JP5118338B2 (en) Carbonization and gasification method and system
CN105885950A (en) Three-bed combination pyrolysis gasification and tar cracking integrated system for solid waste
JP5397878B2 (en) Gasification facility and gasification power generation facility using biomass fuel
JP5450800B2 (en) Coal pyrolysis gasification method and coal pyrolysis gasification device
US9862899B2 (en) Gas distribution arrangement for rotary reactor
JPS6215600B2 (en)
JP5358984B2 (en) Raw material supply equipment for double tower gasifier
CN107001957B (en) Reactor for producing product gas from fuel
US7784415B2 (en) Solid fuel burner-gasifier methods and apparatus
JP5319450B2 (en) Fluidized bed heat treatment apparatus and method
CN205740917U (en) A kind of solid waste three combination pyrolytic gasification and coke tar cracking integral system
CN102985516A (en) Method and device for carbon injection and recirculation of synthesis gas when producing synthesis gas
JP2012246503A (en) Carbonization and gasification method and system
JP5990978B2 (en) Fluidized bed system and biomass introduction method
JPWO2014157466A1 (en) Waste gasification and melting apparatus and waste gasification and melting method
KR20140083916A (en) Carbon Fuel Pneumatic Dryer
JP2007238701A (en) Gasification oven
JP2004182903A (en) Method and apparatus for gasifying biomass
CN109312918A (en) Method and apparatus for evenly distributing solid propellant material
JP2021109734A (en) Solid fuel carrier device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250