JP5267150B2 - X-ray tube device - Google Patents

X-ray tube device Download PDF

Info

Publication number
JP5267150B2
JP5267150B2 JP2009009937A JP2009009937A JP5267150B2 JP 5267150 B2 JP5267150 B2 JP 5267150B2 JP 2009009937 A JP2009009937 A JP 2009009937A JP 2009009937 A JP2009009937 A JP 2009009937A JP 5267150 B2 JP5267150 B2 JP 5267150B2
Authority
JP
Japan
Prior art keywords
magnetic field
field generator
magnetic
yoke
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009009937A
Other languages
Japanese (ja)
Other versions
JP2010170718A (en
Inventor
定 冨田
昌昭 浮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009009937A priority Critical patent/JP5267150B2/en
Publication of JP2010170718A publication Critical patent/JP2010170718A/en
Application granted granted Critical
Publication of JP5267150B2 publication Critical patent/JP5267150B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray tube device capable of restraining temperature rise at a magnetic field generator. <P>SOLUTION: The magnetic field generator 4 is made up in a laminated structure of a magnetic part 4A and a high thermally conductive part 4B by adopting iron for the former 4A and copper for the latter 4B as a plurality of components with different coefficients of thermal conductivity. A coolant represented by cooling oil or the like or a fixing part for fixing the magnetic field generator 4 is to be kept in contact with the high thermally conductive part 4B so that the same 4B may have a heat radiation action as one with a higher coefficient of thermal conductivity. Heat generated at the magnetic field generator 4, due to such heat radiation action, is thermally conducted to the high thermally conductive part 4B to be dissipated. As a result, rise of temperature at the magnetic field generator 4 can be restrained. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、電子ビームの陽極への衝突によりX線を発生させるX線管装置に関する。   The present invention relates to an X-ray tube apparatus that generates X-rays by collision of an electron beam with an anode.

従来のX線管装置としては、陽極が外囲器と一体となって回転する外囲器回転型のX線管装置がある(例えば、特許文献1、2参照)。かかる外囲器回転型のX線管装置では、X線管本体内の軸中心に設けられた陰極の電子源から発生させた電子ビームを、X線管本体の外に設けられた磁場発生器で集束、偏向させて、陽極のターゲットディスク上の所定位置に焦点を形成する。磁場発生器はコイルと磁極とヨークとで構成され、電子ビームを集束させるための集束磁場を発生させるが、同時に、電子ビームを偏向させる偏向磁場を重畳して発生させることができる。そのような磁場発生器としては、例えば、四重極磁場レンズや八重極磁場レンズがある。外囲器回転型X線管の陽極は外囲器と一体となって回転するので、集束、偏向した電子ビームがターゲットディスク上の一点に衝突することがない。したがって、電子ビームの衝突で発生した熱はターゲットディスク上の円周領域に広がり、ターゲットディスクの溶融を防止することができる。また、電子ビームの衝突で発生した熱は外囲器と一体となった陽極のターゲットからX線管外へ熱伝導で放熱される。したがって、X線管の冷却効率が良く、冷却時間をとることなくX線の連続照射も可能となる。   As a conventional X-ray tube device, there is an envelope rotation type X-ray tube device in which an anode rotates integrally with an envelope (for example, see Patent Documents 1 and 2). In such an envelope rotation type X-ray tube apparatus, a magnetic field generator provided outside the X-ray tube main body with an electron beam generated from a cathode electron source provided at the axial center in the X-ray tube main body. And focus and deflect to form a focal point at a predetermined position on the target disk of the anode. The magnetic field generator includes a coil, a magnetic pole, and a yoke, and generates a focusing magnetic field for focusing the electron beam. At the same time, it can generate a superposed deflection magnetic field for deflecting the electron beam. Examples of such a magnetic field generator include a quadrupole magnetic lens and an octopole magnetic lens. Since the anode of the envelope rotating X-ray tube rotates together with the envelope, the focused and deflected electron beam does not collide with one point on the target disk. Therefore, the heat generated by the collision of the electron beam spreads to the circumferential region on the target disk, and the target disk can be prevented from melting. The heat generated by the collision of the electron beam is dissipated by heat conduction from the anode target integrated with the envelope to the outside of the X-ray tube. Therefore, the cooling efficiency of the X-ray tube is good, and continuous X-ray irradiation is possible without taking cooling time.

米国特許第4,993,055号明細書US Pat. No. 4,993,055 米国特許第5,883,936号明細書US Pat. No. 5,883,936

しかしながら、かかる磁場発生器はX線管本体である外囲器の外に置かれるので、電子ビームまで遠く、磁場発生器には高い起磁力(磁場発生器に流す電流とコイルの巻数との積)が必要でコイルの発熱量が増大する。特許文献2に記載の磁場発生器では、ヨークが熱伝導率の低い鉄のみで構成されているので、コイルで発生した熱が、効率的に磁場発生器の外に放熱されない。したがって、コイルやヨークの温度が上昇し、X線管からX線を連続照射できないという問題が生じる。また、コイル温度の上昇により高いエネルギのX線を照射できないという問題も生じる。それを防止するために、コイルの線径を太くする、あるいはコイルの巻数を増やすという手段があるが、コイルが大きくなるという問題が生じる。また、より高エネルギの電子ビームを集束、偏向させるためには、強い磁場を発生する必要があり、より大きな放熱が磁場発生器に必要になる。   However, since the magnetic field generator is placed outside the envelope that is the main body of the X-ray tube, it is far from the electron beam, and the magnetic field generator has a high magnetomotive force (the product of the current flowing through the magnetic field generator and the number of turns of the coil). ) Is required and the amount of heat generated by the coil increases. In the magnetic field generator described in Patent Document 2, since the yoke is composed only of iron having low thermal conductivity, the heat generated in the coil is not efficiently radiated outside the magnetic field generator. Therefore, the temperature of the coil or yoke rises, causing a problem that X-rays cannot be continuously irradiated from the X-ray tube. In addition, there is a problem that high energy X-rays cannot be irradiated due to an increase in coil temperature. In order to prevent this, there is a means of increasing the wire diameter of the coil or increasing the number of turns of the coil, but there arises a problem that the coil becomes large. Further, in order to focus and deflect a higher energy electron beam, it is necessary to generate a strong magnetic field, and a larger amount of heat radiation is required for the magnetic field generator.

この発明は、このような事情に鑑みてなされたものであって、磁場発生器における温度の上昇を抑制することができるX線管装置を提供することを目的とする。   This invention is made in view of such a situation, and it aims at providing the X-ray tube apparatus which can suppress the raise of the temperature in a magnetic field generator.

この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明は、電子ビームの陽極への衝突によりX線を発生させるX線管装置であって、電子ビームを集束、偏向させるために磁場を発生させる磁場発生器を備え、前記磁場発生器が、磁極とヨークとを含み、前記ヨークおよび前記磁極の少なくともいずれか1つを、熱伝導率が互いに異なる複数の部品からなる積層構造に構成し、前記部品のうち少なくとも1つを磁性材で形成することを特徴とするものである。
In order to achieve such an object, the present invention has the following configuration.
That is, the invention described in claim 1 is an X-ray tube device that generates X-rays by collision of an electron beam with an anode, and includes a magnetic field generator that generates a magnetic field to focus and deflect the electron beam. , the magnetic field generator comprises a magnetic pole and the yoke, at least one of the yoke and the magnetic pole, and provided in a multilayer structure thermal conductivity consists of a plurality of different components, at least one of the components One is formed of a magnetic material.

[作用・効果]請求項1に記載の発明によれば、磁場発生器が、磁極とヨークとを含み、上述したヨークおよび上述した磁極の少なくともいずれか1つを、熱伝導率が互いに異なる複数の部品からなる積層構造に構成し、上述した部品のうち少なくとも1つを磁性材で形成することで、磁場発生器で発生した熱は、部品のうち高い方の熱伝導率を有する部品に熱伝導して、放熱作用によって放熱する。その結果、磁場発生器のコイルで発生する熱による温度の上昇を抑制することができる。その結果、温度の上昇の抑制によりX線の連続差動時間を長くすることができる。また、従来よりも強い磁場を発生することができ、高いエネルギのX線を発生させることができる。また、温度の上昇の抑制により、磁場発生器のコイルの線径を太くしたり、コイルの巻数を増やす必要がなくなるので、コイルの線径を細くして、コイルの巻数が減って、コイルを小さくすることもできる。 [Operation / Effect] According to the invention of claim 1, the magnetic field generator includes a magnetic pole and a yoke, and at least one of the above-described yoke and the above-described magnetic pole has a plurality of different thermal conductivities. By forming at least one of the above-mentioned components with a magnetic material, the heat generated by the magnetic field generator is heated to the component having the higher thermal conductivity among the components. Conducted and dissipated by heat dissipation action. As a result, temperature rise due to heat generated in the coil of the magnetic field generator can be suppressed. As a result, the X-ray continuous differential time can be lengthened by suppressing the temperature rise. In addition, it is possible to generate a stronger magnetic field than before and to generate high energy X-rays. Also, by suppressing the rise in temperature, there is no need to increase the wire diameter of the coil of the magnetic field generator or increase the number of turns of the coil, so the coil wire diameter is reduced, the number of turns of the coil is reduced, It can also be made smaller.

上述した発明のX線管装置において、ヨークが、磁極支持してX線管本体の外周部を囲む環状のヨーク構成され上述したヨークのみを上述した積層構造に構成してもよいし(請求項2に記載の発明)、上述した磁極のみを上述した積層構造に構成してもよい(請求項3に記載の発明)。したがって、熱の発生箇所に応じて、ヨークを積層構造にせずに磁極を積層構造に構成してもよいし、磁極を積層構造にせずにヨークを積層構造に構成してもよいし、磁極およびヨークをともに積層構造に構成してもよい。 In X-ray tube apparatus of the invention described above, the yoke is constituted by an annular yoke that surrounds the outer periphery of the X-ray tube body to support the magnetic pole, to only the yoke described above may be provided in a multilayer structure as described above (Invention described in claim 2) Only the magnetic poles described above may be configured in the above-described laminated structure (invention described in claim 3). Therefore, depending on the heat generation location, the magnetic pole may be configured in a stacked structure without the yoke having a stacked structure, the yoke may be configured in the stacked structure without forming the magnetic pole in a stacked structure, Both yokes may have a laminated structure.

また、上述した構成の具体的な例として下記のようなものが挙げられる。例えば、冷媒を上述した部品のうち高い方の熱伝導率を有する部品に接触させることで、その部品が放熱作用を有する構成である。上述した部品のうち高い方の熱伝導率を有する部品は、その部品に接触された冷媒によって冷却される結果、放熱作用を有する Moreover, the following are mentioned as a specific example of the structure mentioned above. For example, the component has a heat dissipation effect by bringing the refrigerant into contact with a component having the higher thermal conductivity among the components described above. Among the components described above, a component having a higher thermal conductivity has a heat radiation effect as a result of being cooled by the refrigerant in contact with the component .

この発明に係るX線管装置によれば、磁場発生器が、磁極とヨークとを含み、上述したヨークおよび上述した磁極の少なくともいずれか1つを、熱伝導率が互いに異なる複数の部品からなる積層構造に構成し、上述した部品のうち少なくとも1つを磁性材で形成することで、磁場発生器で発生した熱は、部品のうち高い方の熱伝導率を有する部品に熱伝導して、放熱作用によって放熱する。その結果、磁場発生器における温度の上昇を抑制することができる。 According to the X-ray tube apparatus according to the present invention, the magnetic field generator includes a magnetic pole and a yoke, and at least one of the above-described yoke and the above-described magnetic pole is composed of a plurality of components having different thermal conductivities. By configuring at least one of the above-described components with a magnetic material, the heat generated by the magnetic field generator is thermally conducted to the component having the higher thermal conductivity among the components, Heat is dissipated by heat dissipation. As a result, the temperature rise in the magnetic field generator can be suppressed.

(a)は各実施例に係るX線管装置の概略側面図、(b)は実施例1に係るX線管装置の磁場発生器の概略正面図、(c)は(b)の磁場発生器におけるヨークの側面図である。(A) is a schematic side view of the X-ray tube apparatus according to each embodiment, (b) is a schematic front view of a magnetic field generator of the X-ray tube apparatus according to Embodiment 1, and (c) is a magnetic field generation of (b). It is a side view of the yoke in a container. (a)は実施例2に係るX線管装置の磁場発生器の概略正面図、(b)は(a)の磁場発生器におけるヨークおよびそれを固定する固定部の側面図である。(A) is a schematic front view of the magnetic field generator of the X-ray tube apparatus concerning Example 2, (b) is a side view of the yoke in the magnetic field generator of (a), and the fixing | fixed part which fixes it. (a)〜(c)は変形例に係る磁場発生器におけるヨークの側面図である。(A)-(c) is a side view of the yoke in the magnetic field generator concerning a modification.

以下、図面を参照してこの発明の実施例1を説明する。図1(a)は、各実施例に係るX線管装置の概略側面図であり、図1(b)は、実施例1に係るX線管装置の磁場発生器の概略正面図であり、図1(c)は、図1(b)の磁場発生器におけるヨークの側面図である。   Embodiment 1 of the present invention will be described below with reference to the drawings. 1A is a schematic side view of an X-ray tube apparatus according to each embodiment, and FIG. 1B is a schematic front view of a magnetic field generator of the X-ray tube apparatus according to Embodiment 1. FIG.1 (c) is a side view of the yoke in the magnetic field generator of FIG.1 (b).

後述する実施例2も含めて、図1(a)に示すように、本実施例1に係る外囲器回転型のX線管装置1は、電子ビームBを発生させる陰極2と、その陰極2を溝の中に取り付けた円筒電極3と、陰極2からの電子ビームBを集束、偏向させるために磁場を発生させる磁場発生器4と、その磁場発生器4によって集束、偏向した電子ビームBの衝突によりX線を発生させる陽極5と、陰極2,円筒電極3および陽極5を内部に収容し、陽極5と一体となって回転する外囲器6とを備えている。   As shown in FIG. 1A including Example 2 to be described later, an envelope rotating X-ray tube device 1 according to Example 1 includes a cathode 2 for generating an electron beam B, and the cathode 2 is installed in the groove, the magnetic field generator 4 generates a magnetic field for focusing and deflecting the electron beam B from the cathode 2, and the electron beam B focused and deflected by the magnetic field generator 4. An anode 5 that generates X-rays by the collision, and an envelope 6 that accommodates the cathode 2, the cylindrical electrode 3, and the anode 5 and rotates together with the anode 5.

電子ビームBの軸O中心に陰極2とともに円筒電極3を配設している。陰極2は、例えばタングステンで形成されたフィラメントで構成されている。フィラメントを高温に加熱することで熱電子を放出して電子ビームBを発生させる。陰極2は、フィラメントなどに代表される熱電子放出型の他に、電界放出型であってもよく特に限定されない。   A cylindrical electrode 3 is disposed together with the cathode 2 at the center of the axis O of the electron beam B. The cathode 2 is composed of a filament made of, for example, tungsten. The filament is heated to a high temperature to emit thermoelectrons to generate an electron beam B. The cathode 2 may be a field emission type in addition to a thermionic emission type typified by a filament or the like, and is not particularly limited.

本発明の磁場発生器4は、図1(b)に示すように、複数(図1(b)では4つ)の磁極4aとそれらを支持する多角形(図1(b)では八角形)のヨーク4bとで構成される。ヨーク4bは、図1(a)に示すように、X線管本体である外囲器6の外周部を囲む環状に構成されている。磁極4aにはコイル4cが直接巻かれている。別の構成として、コイル4cはボビン(筒)に巻かれ、そのボビンを磁極4aに差し込むことで、磁極4aにコイル4cを巻いてもよい。なお、後述するコイル4cに発生する熱を、ヨーク4bを介して逃がすために、磁極4aあるいはヨーク4bの後述する磁性部4A(図1(c)を参照)にコイル4cと接触させて、磁性部4Aに接触熱抵抗が低くなるように固定する。磁極4aは、この発明における磁極に相当し、ヨーク4bは、この発明におけるヨークに相当する。   As shown in FIG. 1B, the magnetic field generator 4 of the present invention includes a plurality of (four in FIG. 1B) magnetic poles 4a and polygons that support them (octagons in FIG. 1B). Yoke 4b. As shown in FIG. 1A, the yoke 4b is formed in an annular shape that surrounds the outer periphery of the envelope 6 that is an X-ray tube main body. A coil 4c is directly wound around the magnetic pole 4a. As another configuration, the coil 4c may be wound around a bobbin (cylinder), and the coil 4c may be wound around the magnetic pole 4a by inserting the bobbin into the magnetic pole 4a. In order to release heat generated in the coil 4c, which will be described later, via the yoke 4b, the magnetic part 4A (see FIG. 1C) of the magnetic pole 4a or the yoke 4b (see FIG. 1C) is brought into contact with the coil 4c, so that the magnetic It fixes to part 4A so that contact thermal resistance may become low. The magnetic pole 4a corresponds to the magnetic pole in the present invention, and the yoke 4b corresponds to the yoke in the present invention.

従来では、コイルに発生する熱は磁極とオイルを通じて放熱される。従来のように鉄のみのヨークでは、コイル周囲のオイル(図1(a)では「Oil」で表記)などに伝導し、コイル表面からの熱伝導がほとんどである。したがって、放熱効率が低くコイル温度が上昇してしまう。そこで、鉄よりも熱伝導率が高い材質(例えば銅やアルミ)でヨークを形成することが考えられるが、銅やアルミは非磁性材であり、ヨークとして適しない。   Conventionally, heat generated in the coil is radiated through the magnetic pole and oil. Conventionally, an iron-only yoke conducts to oil around the coil (indicated as “Oil” in FIG. 1A) and the like, and most of the heat is conducted from the coil surface. Therefore, the heat dissipation efficiency is low and the coil temperature rises. Thus, it is conceivable to form the yoke with a material having higher thermal conductivity than iron (for example, copper or aluminum), but copper or aluminum is a non-magnetic material and is not suitable as a yoke.

後述する実施例2も含めて、本実施例1では、図1(c)に示すように、少なくともヨーク4bを、鉄で形成された磁性部4Aと、それを挟み込んで積層した高熱伝導部4Bとで構成することを特徴とする。すなわち、ヨーク4bを、熱伝導率が互いに異なる複数の部品である磁性部4Aおよび高熱伝導部4Bからなる積層構造に構成し、上述した部品のうち少なくとも1つを磁性材で形成することを特徴とする。ここでは、磁性部4Aが磁性材として形成されている。高熱伝導部4Bは、磁性部4Aよりも熱伝導率が高い材質、例えば銅で形成する。磁性部4Aを高熱伝導部4Bが挟み込むことで、高熱伝導部4Bが、冷媒であるオイルに接触し、高熱伝導部4Bが鉄に比して大きな放熱作用を有することになる。つまり、コイル4c表面のみならず、高熱伝導部4Bにも熱伝導して有効放熱面積が増加し、放熱しやすくなる。   In Example 1, including Example 2 to be described later, as shown in FIG. 1 (c), at least a yoke 4b is composed of a magnetic part 4A made of iron and a high heat conduction part 4B in which the magnetic part 4A is sandwiched and laminated. It is characterized by comprising. That is, the yoke 4b is formed in a laminated structure including a plurality of magnetic parts 4A and high heat conduction parts 4B, which are parts having different thermal conductivities, and at least one of the parts described above is formed of a magnetic material. And Here, the magnetic part 4A is formed as a magnetic material. The high thermal conductivity portion 4B is formed of a material having a higher thermal conductivity than the magnetic portion 4A, for example, copper. By sandwiching the magnetic part 4A between the high heat conduction part 4B, the high heat conduction part 4B comes into contact with the oil as the refrigerant, and the high heat conduction part 4B has a larger heat dissipation action than iron. That is, not only the surface of the coil 4c but also the high heat conduction part 4B conducts heat, the effective heat radiation area increases, and heat radiation becomes easy.

以上をまとめると、磁場発生器4を、コイル4cと磁極4aとそれを支持してX線管本体(外囲器6)の外周部を囲む環状のヨーク4bとで構成し、また、熱伝導率が互いに異なる複数の部品として、磁性部4Aおよび高熱伝導部4Bを採用し、少なくともヨーク4bを、磁性部4A,高熱伝導部4Bの積層構造に構成する。鉄に比べ高い熱伝導率を有する部品である高熱伝導部4Bは大きな放熱作用を有する。   In summary, the magnetic field generator 4 is composed of the coil 4c, the magnetic pole 4a, and the annular yoke 4b that supports the coil 4c and surrounds the outer peripheral portion of the X-ray tube main body (envelope 6). As a plurality of parts having different rates, a magnetic part 4A and a high heat conduction part 4B are adopted, and at least the yoke 4b is configured in a laminated structure of the magnetic part 4A and the high heat conduction part 4B. The high thermal conductivity portion 4B, which is a component having a higher thermal conductivity than iron, has a large heat dissipation effect.

なお、少なくともヨーク4bを、磁性部4A,高熱伝導部4Bの積層構造に構成するのであれば、ヨーク4bのみを、磁性部4A,高熱伝導部4Bの積層構造に構成してもよいし、磁極4aおよびヨーク4bをともに磁性部4A,高熱伝導部4Bの積層構造に構成してもよい。また、必ずしも、ヨーク4bを上述した積層構造に構成する必要はなく、熱の発生箇所に応じて、ヨーク4bを上述した積層構造にせずに磁極4aを積層構造に構成してもよい。このように、磁場発生器4を、磁極4aとそれを支持してX線管本体(外囲器6)の外周部を囲む環状のヨーク4bとで構成し、少なくともヨーク4bを上述した積層構造に構成してもよいし、少なくとも磁極4aを上述した積層構造に構成してもよい。したがって、熱の発生箇所に応じて、ヨーク4bを積層構造にせずに磁極4aを積層構造に構成してもよいし、磁極4aを積層構造にせずにヨーク4bを積層構造に構成してもよいし、磁極4aおよびヨーク4bをともに積層構造に構成してもよい。   If at least the yoke 4b has a laminated structure of the magnetic part 4A and the high heat conducting part 4B, only the yoke 4b may have a laminated structure of the magnetic part 4A and the high heat conducting part 4B. Both the 4a and the yoke 4b may be formed in a laminated structure of the magnetic part 4A and the high heat conduction part 4B. In addition, the yoke 4b is not necessarily configured to have the above-described stacked structure, and the magnetic pole 4a may be configured to have a stacked structure without using the yoke 4b having the above-described stacked structure, depending on the heat generation location. Thus, the magnetic field generator 4 is composed of the magnetic pole 4a and the annular yoke 4b that supports the magnetic pole 4a and surrounds the outer peripheral portion of the X-ray tube main body (envelope 6), and at least the yoke 4b is the laminated structure described above. Alternatively, at least the magnetic pole 4a may be configured in the laminated structure described above. Therefore, depending on the heat generation location, the magnetic pole 4a may be configured in a stacked structure without the yoke 4b having a stacked structure, or the yoke 4b may be configured in a stacked structure without forming the magnetic pole 4a. In addition, both the magnetic pole 4a and the yoke 4b may be configured in a laminated structure.

陽極5は外囲器6内部に、外囲器6と一体となって配設されている。陽極5にはターゲット傾斜部5aを設けており、集束、偏向した電子ビームBが、高電圧が作る電界により陽極5に向けて加速し、ターゲット傾斜部5aに衝突することでX線を発生させる。外囲器6は真空排気されている。外囲器6の陰極2側には陰極側回転軸7を配設しており、外囲器6の陽極5側には陽極側回転軸8を配設している。両回転軸7,8を回転させることで、陽極5と一体となって外囲器6が回転する。また、外囲器6の外部には、冷却用のオイル(図1(a)では「Oil」で表記)あるいは空気などで充填されている。   The anode 5 is disposed integrally with the envelope 6 inside the envelope 6. The anode 5 is provided with a target inclined portion 5a, and the focused and deflected electron beam B is accelerated toward the anode 5 by an electric field generated by a high voltage, and generates X-rays by colliding with the target inclined portion 5a. . The envelope 6 is evacuated. A cathode side rotating shaft 7 is disposed on the cathode 2 side of the envelope 6, and an anode side rotating shaft 8 is disposed on the anode 5 side of the envelope 6. By rotating both the rotating shafts 7 and 8, the envelope 6 rotates together with the anode 5. The outside of the envelope 6 is filled with cooling oil (indicated as “Oil” in FIG. 1A) or air.

本実施例1に係るX線管装置1によれば、磁場発生器4を、熱伝導率が互いに異なる複数の部品(各実施例では磁性部4Aおよび高熱伝導部4B)からなる積層構造に構成し、上述した部品のうち磁性部4Aを磁性材で形成することで、磁場発生器4で発生した熱は、部品のうち高い方の熱伝導率(各実施例では高熱伝導部4B)を有する部品に熱伝導して、放熱作用によって放熱する。オイルとの有効接触面積は、従来の鉄のみの場合では、例えば、40cm2であったが、本実施例1のように鉄(磁性部4A)および銅(高熱伝導部4B)の積層構造の場合では、320cm2と約8倍になる。したがって、磁場発生器4における温度の上昇を抑制することができる。その結果、温度の上昇の抑制によりX線の連続差動時間を長くすることができ、高エネルギのX線を発生させることができる。また、温度の上昇の抑制により、磁場発生器4のコイル4cの線径を太くする、コイル4cの巻数を増やす必要がなくなるので、コイル4cの線径を細くして、コイル4cの巻数が減って、コイル4cを小さくすることもできる。さらに、放熱効率が高く、冷却用のオイル中に磁場発生器4を置く必要がなく、空気中や真空中に置く事も可能となるという効果をも奏する。 According to the X-ray tube apparatus 1 according to the first embodiment, the magnetic field generator 4 is configured in a laminated structure including a plurality of parts having different thermal conductivities (in each embodiment, the magnetic portion 4A and the high thermal conductivity portion 4B). Then, by forming the magnetic part 4A out of the parts described above with a magnetic material, the heat generated by the magnetic field generator 4 has the higher thermal conductivity of the parts (the high heat conduction part 4B in each embodiment). Conducts heat to the part and dissipates heat by heat dissipation. The effective contact area with the oil was, for example, 40 cm 2 in the case of conventional iron alone, but the laminated structure of iron (magnetic part 4A) and copper (high heat conduction part 4B) as in Example 1 was used. If in is approximately eight times the 320cm 2. Therefore, the temperature rise in the magnetic field generator 4 can be suppressed. As a result, the X-ray continuous differential time can be lengthened by suppressing the temperature rise, and high-energy X-rays can be generated. Further, since the temperature rise is suppressed, it is not necessary to increase the wire diameter of the coil 4c of the magnetic field generator 4 and increase the number of turns of the coil 4c. Therefore, the wire diameter of the coil 4c is reduced and the number of turns of the coil 4c is reduced. Thus, the coil 4c can be made smaller. Furthermore, the heat radiation efficiency is high, and it is not necessary to place the magnetic field generator 4 in the cooling oil, and there is an effect that it can be placed in the air or in a vacuum.

次に、磁場発生器を真空中に置く例として、実施例2を説明する。図2(a)は、実施例2に係るX線管装置の磁場発生器の概略正面図であり、図2(b)は、図2(a)の磁場発生器におけるヨークおよびそれを固定する固定部の断面図である。なお、実施例2に係るX線管装置の概略側面図については、実施例1のX線管装置と同じであるので、図1(a)を用いる。また、磁場発生器4以外のX線管装置1の構成については、実施例1と同じ構成であるので、その説明を省略する。   Next, Example 2 will be described as an example of placing the magnetic field generator in a vacuum. FIG. 2A is a schematic front view of the magnetic field generator of the X-ray tube apparatus according to the second embodiment, and FIG. 2B is a view illustrating a yoke in the magnetic field generator of FIG. It is sectional drawing of a fixing | fixed part. Since the schematic side view of the X-ray tube apparatus according to the second embodiment is the same as that of the X-ray tube apparatus according to the first embodiment, FIG. Further, the configuration of the X-ray tube apparatus 1 other than the magnetic field generator 4 is the same as that of the first embodiment, and thus the description thereof is omitted.

本実施例2では、図2(a)に示すように、真空中で磁場発生器4を固定する固定部9を備えている。さらに、図2(b)に示すように、部品のうち高い方の熱伝導率を有する部品である高熱伝導部4Bに固定部9を接触させている。したがって、高熱伝導部4Bが固定部9を通じた放熱作用を有することになる。なお、実施例1と同様に、オイルなどに代表される冷媒を外囲器6(図1(a)を参照)の外部に充填させてもよい。固定部9は、この発明における固定部に相当する。   In the present Example 2, as shown to Fig.2 (a), the fixing | fixed part 9 which fixes the magnetic field generator 4 in a vacuum is provided. Further, as shown in FIG. 2 (b), the fixing portion 9 is brought into contact with the high heat conduction portion 4B which is a component having a higher thermal conductivity among the components. Therefore, the high heat conduction part 4B has a heat radiation action through the fixing part 9. As in the first embodiment, a refrigerant represented by oil or the like may be filled outside the envelope 6 (see FIG. 1A). The fixing portion 9 corresponds to the fixing portion in the present invention.

磁場発生器4を、磁性部4Aおよび高熱伝導部4Bの積層構造に構成し、固定部9が磁場発生器4を固定した場合において、コイル4cの発熱の放熱が改善する効果を計算で求めている。以下、その計算について具体的に説明する。   When the magnetic field generator 4 has a laminated structure of the magnetic part 4A and the high heat conduction part 4B, and the fixing part 9 fixes the magnetic field generator 4, the effect of improving the heat dissipation of the heat generation of the coil 4c is obtained by calculation. Yes. The calculation will be specifically described below.

図2(a)に示すように、固定部9による固定位置をPとし、熱源(コイル4c)と固定位置Pとの経路を熱の伝導経路Lとする。固定位置Pでのヨーク4bの温度が25℃で一定であるとし、コイル発熱量をQとする。鉄の熱伝導率は73W/m・K,銅の熱伝導率:394W/m・Kである。
従来の鉄のみの場合、ヨーク4bの断面積をSとし、コイル4c付近の温度をTとすると、温度Tは熱伝導方程式から求められ
=25℃+Q[W]×L[m]/(S[m]×73[W/m・K]) …(1)
となる。
一方、本実施例2のように鉄(磁性部4A)および銅(高熱伝導部4B)の積層構造の場合、ヨーク4bの断面積をS,Sとし、コイル4c付近の温度をTとすると、温度Tは熱伝導方程式から求められ
=25℃+Q[W]×L[m]/(S[m]×73[W/m・K]+
[m]×394[W/m・K]) …(2)
となる。
上記(1)式、(2)式により、従来の鉄のみの場合のコイル付近の温度Tと、本実施例2のように鉄(磁性部4A)および銅(高熱伝導部4B)の積層構造の場合のコイル4c付近の温度Tを求める。例えば、Q=50W,L=0.03m,S=1×10−4,S=S=0.5×10−4であれば、T=230℃,T=89℃である。
As shown in FIG. 2A, a fixing position by the fixing portion 9 is P, and a path between the heat source (coil 4c) and the fixing position P is a heat conduction path L. It is assumed that the temperature of the yoke 4b at the fixed position P is constant at 25 ° C., and the coil heating value is Q. The thermal conductivity of iron is 73 W / m · K, and the thermal conductivity of copper is 394 W / m · K.
If only conventional iron, the cross-sectional area of the yoke 4b and S, when the temperature in the vicinity of the coils 4c and T 1, temperatures T 1 is determined from the heat conduction equation T 1 = 25 ℃ + Q [ W] × L [m ] / (S [m 2 ] × 73 [W / m · K]) (1)
It becomes.
On the other hand, if the laminated structure of iron as in the second embodiment (magnetic portion 4A) and copper (high thermal conductive portion 4B), and the cross-sectional area of the yoke 4b S F, and S C, the temperature in the vicinity of the coil 4c T 2 Then, the temperature T 2 is obtained from the heat conduction equation. T 2 = 25 ° C. + Q [W] × L [m] / (S F [m 2 ] × 73 [W / m · K] +
S C [m 2 ] × 394 [W / m · K]) (2)
It becomes.
According to the above formulas (1) and (2), the temperature T 1 near the coil in the case of conventional iron only, and the lamination of iron (magnetic part 4A) and copper (high heat conduction part 4B) as in the second embodiment determining the temperature T 2 of the vicinity of the coils 4c in the case of the structure. For example, if Q = 50 W, L = 0.03 m, S = 1 × 10 −4 m 2 , S F = S C = 0.5 × 10 −4 m 2 , T 1 = 230 ° C., T 2 = 89 ° C.

このように、従来の鉄のみの場合には、コイル付近の温度Tが230℃に達して、コイル銅線が熱で損傷する。一方、本実施例2のように鉄(磁性部4A)および銅(高熱伝導部4B)の積層構造の場合には、コイル4c付近の温度Tが89℃となり、問題はない。 Thus, in the case of only conventional iron, the temperature T 1 near the coil reaches 230 ° C., and the coil copper wire is damaged by heat. On the other hand, in the case of a laminated structure of iron as in the second embodiment (magnetic portion 4A) and copper (high thermal conductivity portion. 4B), temperature T 2 in the vicinity of the coil 4c is 89 ° C., and the there is no problem.

本実施例2に係るX線管装置1によれば、実施例1と同様に、磁場発生器4を、熱伝導率が互いに異なる複数の部品(各実施例では磁性部4Aおよび高熱伝導部4B)からなる積層構造に構成し、上述した部品のうち磁性部4Aを磁性材で形成することで、磁場発生器4で発生した熱は、部品のうち高い方の熱伝導率(高熱伝導部4B)を有する部品に熱伝導して、放熱作用によって放熱する。その結果、磁場発生器4における温度の上昇を抑制することができる。   According to the X-ray tube apparatus 1 according to the second embodiment, similarly to the first embodiment, the magnetic field generator 4 includes a plurality of components having different thermal conductivities (in each embodiment, the magnetic part 4A and the high heat conduction part 4B). ), And the magnetic part 4A among the above-described parts is formed of a magnetic material, so that the heat generated by the magnetic field generator 4 has a higher thermal conductivity (high heat conduction part 4B). ) Is conducted to the part having heat and is dissipated by the heat radiation action. As a result, the temperature rise in the magnetic field generator 4 can be suppressed.

上述した実施例1と相違して、本実施例2では、真空中に磁場発生器4を固定するとともに、その固定部9を上述した部品のうち高い方の熱伝導率(各実施例では高熱伝導部4B)を有する部品に接触させることで、その部品が放熱作用を有する。   Unlike the first embodiment described above, in the second embodiment, the magnetic field generator 4 is fixed in a vacuum, and the fixing portion 9 has a higher thermal conductivity among the components described above (high heat in each embodiment). By contacting the component having the conductive portion 4B), the component has a heat dissipation action.

この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。   The present invention is not limited to the above-described embodiment, and can be modified as follows.

(1)非破壊検査機器などの工業用装置やX線診断装置などの医用装置にも適用することができる。   (1) The present invention can also be applied to industrial devices such as non-destructive inspection equipment and medical devices such as an X-ray diagnostic device.

(2)上述した各実施例では、磁性部4Aを高熱伝導部4Bが挟み込む積層構造であったが、図3(a)に示すように、磁性部4Aおよび高熱伝導部4Bを交互に積層する構造であってもよい。また、図3(b)に示すように、オイルなどに代表される冷媒あるいは固定部に接触する側に高熱伝導部4Bを積層する構造であってもよい。また、オイルなどに代表される冷媒あるいは固定部に接触する側に向かって徐々に熱伝導率を高くするように、磁場発生器を、熱伝導率が互いに異なる3つ以上の部品からなる積層構造に構成してもよい。また、図3(a)、図3(b)では、各層の厚さは均一であるが、各層が異なる厚さであってもよい。   (2) In each of the above-described embodiments, the magnetic part 4A is sandwiched between the high thermal conduction parts 4B. However, as shown in FIG. 3A, the magnetic parts 4A and the high thermal conduction parts 4B are alternately laminated. It may be a structure. Further, as shown in FIG. 3 (b), a structure in which the high heat conducting portion 4B is laminated on the side contacting the refrigerant or the fixed portion typified by oil or the like may be used. In addition, the magnetic field generator has a laminated structure composed of three or more parts having different thermal conductivities so as to gradually increase the thermal conductance toward the side of the refrigerant or the fixed part typified by oil. You may comprise. In FIGS. 3A and 3B, the thickness of each layer is uniform, but each layer may have a different thickness.

(3)上述した各実施例では、オイルなどに代表される冷媒あるいは固定部に接触する側に、部品のうち高い方の熱伝導率を有する部品が積層される構造であったが、例えば、上述した実施例2のように固定部9を備えた場合に、図3(c)に示すように、固定部9による固定位置P(図2(a)を参照)を除く箇所では部品のうち高い方の熱伝導率を有する部品(例えば高熱伝導部4B)を内包し、部品のうち高い方の熱伝導率を有する部品を固定位置Pに接触させるように構成してもよい。   (3) In each of the above-described embodiments, a component having a higher thermal conductivity among components is laminated on the side in contact with a refrigerant typified by oil or the like or a fixed portion. When the fixing portion 9 is provided as in the second embodiment described above, as shown in FIG. 3C, the parts other than the fixing position P (see FIG. 2A) by the fixing portion 9 A component having a higher thermal conductivity (for example, the high thermal conductivity portion 4B) may be included, and a component having a higher thermal conductivity among the components may be configured to contact the fixed position P.

(4)上述した各実施例では、磁性部4Aは鉄で、部品のうち高い方の熱伝導率を有する部品である高熱伝導部4Bは銅であったが、これらの材質を形成する物質については特に限定されない。磁場発生器4を、熱伝導率が互いに異なる複数の部品からなる積層構造に構成し、上述した部品のうち少なくとも1つを磁性材で形成するのであれば、部品のうち高い方の熱伝導率を有する部品としては、銅以外の物質であってもよく、例えば、アルミ、黄銅、りん青銅、銅アルミ合金でもよい。また、部品のうち高い方の熱伝導率を有する部品としては必ずしも銅などのような非磁性材に限定されず、磁場発生器4を、熱伝導率が互いに異なる複数の磁性材からなる積層構造、あるいは熱伝導率が互いに異なる複数の磁性材および非磁性材からなる積層構造に構成して、部品のうち高い方の熱伝導率を有する部品も磁性材で形成してもよい。したがって、実施例に適用した場合には、部品のうち高い方の熱伝導率を有する磁性材からなる部品に冷媒や固定部を接触させることも可能である。また、磁性材であれば鉄以外の物質であってもよく、ニッケル、鉄ニッケル合金でもよい。また、ここで例示された物質を、上述した実施例や変形例(1)〜(3)に組み合わせてもよい。   (4) In each of the embodiments described above, the magnetic part 4A is iron, and the high heat conduction part 4B, which is a part having a higher thermal conductivity among the parts, is copper. Is not particularly limited. If the magnetic field generator 4 is configured in a laminated structure composed of a plurality of parts having different thermal conductivities and at least one of the parts described above is formed of a magnetic material, the higher thermal conductivity of the parts. As a component having copper, a material other than copper may be used. For example, aluminum, brass, phosphor bronze, or a copper aluminum alloy may be used. In addition, the component having the higher thermal conductivity among the components is not necessarily limited to a non-magnetic material such as copper, and the magnetic field generator 4 is a laminated structure composed of a plurality of magnetic materials having different thermal conductivities. Alternatively, a component having a higher thermal conductivity among components may be formed of a magnetic material by forming a laminated structure including a plurality of magnetic materials and nonmagnetic materials having different thermal conductivities. Therefore, when applied to the embodiment, it is possible to bring the refrigerant or the fixed portion into contact with a component made of a magnetic material having a higher thermal conductivity among the components. Moreover, as long as it is a magnetic material, it may be a substance other than iron, or nickel or an iron-nickel alloy. Moreover, you may combine the substance illustrated here in the Example and modification (1)-(3) which were mentioned above.

(5)上述した各実施例では、八角形に代表される多角形のヨーク4bからなる磁場発生器(磁場発生器4)で説明したが、環状のヨークであれば形状については特に限定されず、例えば、円環状であってもよい。また、磁場発生器は、四重極磁場レンズや八重極磁場レンズなどに例示されるように、磁極の数は特に限定されるものではない。   (5) In each of the above-described embodiments, the magnetic field generator (magnetic field generator 4) including the polygonal yoke 4b represented by an octagon has been described. However, the shape is not particularly limited as long as it is an annular yoke. For example, an annular shape may be used. Further, the number of magnetic poles of the magnetic field generator is not particularly limited, as exemplified by a quadrupole magnetic lens and an octupole magnetic lens.

(6)積層する方法には、ネジ止め、接着などが考えられるが、これらの方法に限定されない。   (6) As a method of laminating, screwing, adhesion, etc. can be considered, but it is not limited to these methods.

(7)高熱伝導部4Bは連続した一体構造が望ましいが、製作上2個以上に分割されていてもよい。   (7) The high heat conduction portion 4B is preferably a continuous and integral structure, but may be divided into two or more in terms of production.

4 … 磁場発生器
4a … 磁極
4b … ヨーク
4A … 磁性部
4B … 高熱伝導部
5 … 陽極
6 … 外囲器
9 … 固定部
B … 電子ビーム
Oil … (冷却用の)オイル
DESCRIPTION OF SYMBOLS 4 ... Magnetic field generator 4a ... Magnetic pole 4b ... Yoke 4A ... Magnetic part 4B ... High heat conduction part 5 ... Anode 6 ... Enclosure 9 ... Fixed part B ... Electron beam Oil ... Oil for cooling

Claims (4)

電子ビームの陽極への衝突によりX線を発生させるX線管装置であって、電子ビームを集束、偏向させるために磁場を発生させる磁場発生器を備え、前記磁場発生器が、磁極とヨークとを含み、前記ヨークおよび前記磁極の少なくともいずれか1つを、熱伝導率が互いに異なる複数の部品からなる積層構造に構成し、前記部品のうち少なくとも1つを磁性材で形成することを特徴とするX線管装置。 An X-ray tube device for generating X-rays by collision of an electron beam with an anode, comprising: a magnetic field generator for generating a magnetic field for focusing and deflecting the electron beam , the magnetic field generator comprising a magnetic pole, a yoke, And at least one of the yoke and the magnetic pole is formed in a laminated structure including a plurality of parts having different thermal conductivities , and at least one of the parts is formed of a magnetic material. X-ray tube device. 請求項1に記載のX線管装置において、前記ヨークが、磁極支持してX線管本体の外周部を囲む環状のヨーク構成され前記ヨークのみを前記積層構造に構成することを特徴とするX線管装置。 In X-ray tube apparatus according to claim 1, wherein the yoke is composed of an annular yoke that surrounds the outer periphery of the X-ray tube body to support the pole, constituting only the yoke in the lamination structure X-ray tube device. 請求項1に記載のX線管装置において、前記ヨークが、磁極支持してX線管本体の外周部を囲む環状のヨーク構成され前記磁極のみを前記積層構造に構成することを特徴とするX線管装置。 In X-ray tube apparatus according to claim 1, wherein the yoke is composed of an annular yoke that surrounds the outer periphery of the X-ray tube body to support the pole, constituting only the pole to the laminated structure X-ray tube device. 請求項1から請求項3のいずれかに記載のX線管装置において、冷媒を前記部品のうち高い方の熱伝導率を有する部品に接触させることを特徴とするX線管装置。   The X-ray tube apparatus according to any one of claims 1 to 3, wherein the refrigerant is brought into contact with a component having a higher thermal conductivity among the components.
JP2009009937A 2009-01-20 2009-01-20 X-ray tube device Expired - Fee Related JP5267150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009009937A JP5267150B2 (en) 2009-01-20 2009-01-20 X-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009009937A JP5267150B2 (en) 2009-01-20 2009-01-20 X-ray tube device

Publications (2)

Publication Number Publication Date
JP2010170718A JP2010170718A (en) 2010-08-05
JP5267150B2 true JP5267150B2 (en) 2013-08-21

Family

ID=42702677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009009937A Expired - Fee Related JP5267150B2 (en) 2009-01-20 2009-01-20 X-ray tube device

Country Status (1)

Country Link
JP (1) JP5267150B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284900B2 (en) * 2010-10-26 2012-10-09 General Electric Company Apparatus and method for improved transient response in an electromagnetically controlled X-ray tube
CN104756222B (en) 2012-10-22 2016-11-23 株式会社岛津制作所 X-ray tube device
CN105470081B (en) * 2015-11-23 2017-10-17 沈阳东软医疗系统有限公司 Control method, device and the equipment of beam-defining clipper

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612698C1 (en) * 1996-03-29 1997-08-14 Siemens Ag X=ray generator with cooled rotary anode
DE19631899A1 (en) * 1996-08-07 1998-02-12 Siemens Ag X=ray tube
JP3950389B2 (en) * 2002-08-14 2007-08-01 浜松ホトニクス株式会社 X-ray tube
JP2008027852A (en) * 2006-07-25 2008-02-07 Shimadzu Corp Envelope rotating x-ray tube device
JP4967854B2 (en) * 2007-06-27 2012-07-04 株式会社島津製作所 X-ray tube device

Also Published As

Publication number Publication date
JP2010170718A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP6039282B2 (en) Radiation generator and radiation imaging apparatus
US9916961B2 (en) X-ray tube having magnetic quadrupoles for focusing and steering
JP5200103B2 (en) Thermionic electron emitter and x-ray source including the same
EP2450933B1 (en) X-ray tube apparatus
US10008359B2 (en) X-ray tube having magnetic quadrupoles for focusing and magnetic dipoles for steering
JP2013055041A (en) Radiation generating apparatus and radiographic apparatus
US20150117617A1 (en) X-ray tube
JP6502514B2 (en) X-ray tube with dual grid and dual filament cathode for electron beam steering and focusing
JP2013051154A (en) Transmission x-ray generator and x-ray imaging device using the same
WO2012118155A1 (en) Cooling structure for open x-ray source, and open x-ray source
JP2016126969A (en) X-ray tube device
JP2014197534A (en) X-ray generating tube, x-ray generator including x-ray generating tube, and radiography system
JPWO2020261339A1 (en) X-ray generator, X-ray generator and X-ray imager
JP5267150B2 (en) X-ray tube device
JP2014229388A (en) X-ray tube
EP0550983B1 (en) X-ray tube with ferrite core filament transformer
WO2017073109A1 (en) Rotating anode x-ray tube
US6975704B2 (en) X-ray tube with housing adapted to receive and hold an electron beam deflector
JP2011233365A (en) Rotating anode x-ray tube and rotating anode x-ray tube assembly
US6977991B1 (en) Cooling arrangement for an X-ray tube having an external electron beam deflector
JP7196046B2 (en) X-ray tube
JP2010080399A (en) Rotary anode type x-ray tube assembly
JP5942247B2 (en) Rotating anode X-ray tube device
JP2010021011A (en) Rotary anode type x-ray tube device
JP5574672B2 (en) X-ray tube device and X-ray device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R151 Written notification of patent or utility model registration

Ref document number: 5267150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees