JP5267015B2 - Receiver, absolute direction detection system, and absolute direction detection method - Google Patents

Receiver, absolute direction detection system, and absolute direction detection method Download PDF

Info

Publication number
JP5267015B2
JP5267015B2 JP2008252077A JP2008252077A JP5267015B2 JP 5267015 B2 JP5267015 B2 JP 5267015B2 JP 2008252077 A JP2008252077 A JP 2008252077A JP 2008252077 A JP2008252077 A JP 2008252077A JP 5267015 B2 JP5267015 B2 JP 5267015B2
Authority
JP
Japan
Prior art keywords
sound
azimuth
absolute
transmitter
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008252077A
Other languages
Japanese (ja)
Other versions
JP2010087653A (en
Inventor
真二 肥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2008252077A priority Critical patent/JP5267015B2/en
Publication of JP2010087653A publication Critical patent/JP2010087653A/en
Application granted granted Critical
Publication of JP5267015B2 publication Critical patent/JP5267015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absolute direction detection system which accurately calculates an absolute direction even in a building, underground, or the like where an accuracy of an earth magnetism sensor deteriorates. <P>SOLUTION: An absolute direction detection system comprises a transmitter 1, and a receiver 2 having two microphones MIC1 and MIC2. In the transmitter 1, absolute direction information indicating an absolute direction is registered by an installer person when setting the person's own device. The transmitter 1 superimposes a release sound azimuth angle &Theta;<SB>S</SB>indicating a release sound direction from the absolute direction on an ultrasonic sound to be released to the release sound direction. The receiver 2 demodulates the received ultrasonic sound to obtain a release sound azimuthal angle &Theta;<SB>S</SB>. The receiver 2 then calculates a relative azimuth angle &Theta;<SB>L</SB>based on an arrival time difference (arrival distance difference &Delta;L) of the ultrasonic sound to the microphones MIC1 and MIC 2, and a distance L between the microphones MIC1 and MIC2. The receiver 2 calculates the absolute direction, based on the release sound azimuthal angle &Theta;<SB>S</SB>and the relative azimuthal angle &Theta;<SB>L</SB>. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、絶対方位の算出に用いる信号を送信する送信機と、該信号を受信して絶対方位を算出する受信機と、からなる絶対方位検出システム、及び絶対方位検出方法に関する。   The present invention relates to an absolute azimuth detection system and an absolute azimuth detection method including a transmitter that transmits a signal used to calculate an absolute azimuth and a receiver that receives the signal and calculates an absolute azimuth.

従来、受信機の方位を検出するための方位検出方法が各種考案されている(例えば、特許文献1参照。)。   Conventionally, various azimuth detection methods for detecting the azimuth of a receiver have been devised (see, for example, Patent Document 1).

特許文献1のアクティブタグ装置は、送信機からスペクトラム拡散符号で拡散された高周波信号を受信して、高周波信号の搬送波の伝搬位相差を測定することで、送信機からの方位(相対方位)を算出することができる。そして、アクティブタグ装置は、地磁気センサを用いて、絶対方位を算出している。
特許3991081号公報
The active tag device of Patent Literature 1 receives a high-frequency signal spread by a spread spectrum code from a transmitter and measures the propagation phase difference of the carrier wave of the high-frequency signal, thereby determining the direction (relative direction) from the transmitter. Can be calculated. Then, the active tag device calculates an absolute direction using a geomagnetic sensor.
Japanese Patent No. 3991081

しかしながら、建物の屋内や、地下等では、地磁気センサの精度が落ちるので、絶対方位を正確に算出することができない。   However, the accuracy of the geomagnetic sensor is reduced indoors, underground, etc., so the absolute direction cannot be calculated accurately.

そこで、この発明は、建物の屋内や地下等であっても、絶対方位を正確に検出することができる絶対方位検出システムを提供することを目的とする。   Accordingly, an object of the present invention is to provide an absolute azimuth detection system that can accurately detect an absolute azimuth even in a building or underground.

この発明の送信機は、単一指向性の音声、例えば超音波を放音する放音手段(例えば、スピーカやスピーカアレイ)を備える。送信機は、所定の放音方位へ向けて、単一指向性の音声を放音する。この際、送信機は、絶対方位からの所定の放音方位を示す放音方位角を、単一指向性の音声に重畳して放音する。   The transmitter according to the present invention includes sound emitting means (for example, a speaker or a speaker array) for emitting unidirectional sound, for example, ultrasonic waves. The transmitter emits unidirectional sound toward a predetermined sound emitting direction. At this time, the transmitter emits a sound with a sound emitting azimuth indicating a predetermined sound emitting azimuth from the absolute azimuth superimposed on the unidirectional sound.

これにより、送信機は、絶対方位からの放音方位を示す放音方位角を重畳した音声信号を、該重畳した放音方位へ向けて放音することができる。   Thereby, the transmitter can emit a sound signal in which the sound emitting azimuth indicating the sound emitting direction from the absolute direction is superimposed toward the superimposed sound emitting direction.

また、この発明の送信機は、放音方位を指示する放音方位指示手段を備える。送信機は、放音方位指示手段が放音方位を変更すると、変更後の放音方位に基づいて、音声を放音手段から放音する。   The transmitter according to the present invention further includes sound emission direction instructing means for instructing the sound emission direction. When the sound emitting direction instruction means changes the sound emitting direction, the transmitter emits sound from the sound emitting means based on the changed sound emitting direction.

これにより、送信機は、放音方位を変更しながら、当該放音方位を示す放音方位角を重畳した音声を放音することができるので、音声を広範囲へ向けて放音することができる。   As a result, the transmitter can emit a sound in which the sound emitting azimuth indicating the sound emitting azimuth is superimposed while changing the sound emitting azimuth, so that the sound can be emitted toward a wide range. .

更に、この発明の受信機は、収音手段と、復調手段と、相対方位算出手段と、絶対方位算出手段と、を備える。収音手段は、例えば、シリコンマイクであり、上述の送信機から放音された音声を収音する。復調手段は、収音手段が収音した音声を復調して、音声に重畳された放音方位角を取得する。相対方位算出手段は、収音した音声を用いて、送信機からの方位を示す相対方位角を算出する。絶対方位算出手段は、取得した放音方位角と算出した相対方位角とを用いて絶対方位を算出する。   Furthermore, the receiver of the present invention includes sound collection means, demodulation means, relative azimuth calculation means, and absolute azimuth calculation means. The sound collection means is, for example, a silicon microphone, and collects sound emitted from the transmitter. The demodulating means demodulates the sound collected by the sound collecting means and obtains the sound emitting azimuth angle superimposed on the sound. The relative azimuth calculating means calculates a relative azimuth angle indicating the azimuth from the transmitter using the collected sound. The absolute azimuth calculating means calculates the absolute azimuth using the acquired sound emitting azimuth angle and the calculated relative azimuth angle.

これにより、受信機は、絶対方位を検出するための地磁気センサ等を自装置内に備えなくても、送信機から放音された音声を収音するだけで、絶対方位を正確に算出することができる。また、受信機は、算出した絶対方位に基づいて、自装置がどの方位を向いているか判断することができる。   As a result, the receiver can accurately calculate the absolute azimuth by simply collecting the sound emitted from the transmitter without having a geomagnetic sensor or the like for detecting the absolute azimuth in its own device. Can do. Further, the receiver can determine which direction the device is facing based on the calculated absolute direction.

加えて、この発明の絶対方位検出システムは、上述の送信機と受信機とから構成される。   In addition, the absolute azimuth detection system of the present invention includes the above-described transmitter and receiver.

また、この発明の絶対方位検出方法は、送信機が単一指向性の音声を放音する。この際、送信機は、絶対方位からの放音方位を示す放音方位角を音声に重畳する。また、受信機は、送信機から放音された音声を収音して復調し、放音方位角を取得するとともに、送信機からの相対方位角を算出する。具体的に例えば、受信機は、送信機から放音された音声を収音する到達時間差等に基づいて、相対方位角を算出する。そして、受信機は、取得した放音方位角と算出した相対方位角とに基づいて、絶対方位を算出する。   In the absolute direction detection method of the present invention, the transmitter emits unidirectional sound. At this time, the transmitter superimposes the sound emitting azimuth angle indicating the sound emitting azimuth from the absolute azimuth on the voice. The receiver picks up and demodulates the sound emitted from the transmitter, acquires the sound emitting azimuth, and calculates the relative azimuth from the transmitter. Specifically, for example, the receiver calculates the relative azimuth based on the arrival time difference for collecting the sound emitted from the transmitter. Then, the receiver calculates the absolute azimuth based on the acquired sound emission azimuth angle and the calculated relative azimuth angle.

この発明の送信機と受信機とからなる絶対方位検出システム、及び絶対方位検出方法では、地磁気センサの精度が落ちる建物の屋内や地下等であっても、絶対方位を正確に算出することができる。   In the absolute direction detection system and the absolute direction detection method comprising the transmitter and the receiver according to the present invention, the absolute direction can be accurately calculated even indoors or underground of a building where the accuracy of the geomagnetic sensor falls. .

本発明に係る送信機1及び受信機2からなる絶対方位検出システムについて、図1〜3を参照して説明する。図1は、絶対方位の検出方法に関する説明図である。図2は、絶対方位検出システムの機能・構成を示すブロック図である。図2(A)は、送信機を示し、図2(B)は、受信機を示す。図3は、絶対方位の検出方法の具体例を示す図である。   An absolute azimuth detection system including a transmitter 1 and a receiver 2 according to the present invention will be described with reference to FIGS. FIG. 1 is an explanatory diagram regarding a method of detecting an absolute direction. FIG. 2 is a block diagram showing the function and configuration of the absolute direction detection system. FIG. 2A shows a transmitter, and FIG. 2B shows a receiver. FIG. 3 is a diagram illustrating a specific example of a method for detecting an absolute direction.

図1に示すように、本発明の絶対方位検出システムは、スピーカSPから超音波を放音する送信機1と、当該超音波を収音するマイクMIC1,MIC2を有する受信機2と、から構成される。受信機2は、各ユーザが携帯する装置であり、例えば、携帯電話端末、補聴器、時計等である。この受信機2は、送信機1からの超音波を受信して、絶対方位を算出する。なお、図1では、絶対方位を真北方位(地球自転北軸からの方位角)としたが、真北方位に限らない。   As shown in FIG. 1, the absolute azimuth detection system of the present invention includes a transmitter 1 that emits ultrasonic waves from a speaker SP, and a receiver 2 that includes microphones MIC1 and MIC2 that collect the ultrasonic waves. Is done. The receiver 2 is a device carried by each user, and is, for example, a mobile phone terminal, a hearing aid, a clock or the like. The receiver 2 receives the ultrasonic wave from the transmitter 1 and calculates an absolute azimuth. In FIG. 1, the absolute azimuth is the true north azimuth (azimuth angle from the earth rotation north axis), but is not limited to the true north azimuth.

次に、送信機1と受信機2との機能、構成について、図2を参照して説明する。図2(A)に示すように、送信機1は、スピーカSP、記憶部11、放音方位指示部12、方位データ生成部13、変調部14、及び制御部15から構成される。   Next, functions and configurations of the transmitter 1 and the receiver 2 will be described with reference to FIG. As shown in FIG. 2A, the transmitter 1 includes a speaker SP, a storage unit 11, a sound emitting direction instruction unit 12, a direction data generation unit 13, a modulation unit 14, and a control unit 15.

スピーカSPは、非可聴領域(例えば、20kHz以上の周波数帯域)の音声である超音波を放音する。   The speaker SP emits an ultrasonic wave that is a sound in a non-audible region (for example, a frequency band of 20 kHz or more).

記憶部11は、絶対方位を示す絶対方位情報を記憶している。この絶対方位情報は、送信機1の設置時に、設置者により登録される。例えば、設置者は、ジャイロセンサと超音波とによる複合センサ等を用いて絶対方位を計測し、計測結果を記憶部11に登録する。   The storage unit 11 stores absolute azimuth information indicating the absolute azimuth. This absolute orientation information is registered by the installer when the transmitter 1 is installed. For example, the installer measures the absolute azimuth using a composite sensor using a gyro sensor and an ultrasonic wave, and registers the measurement result in the storage unit 11.

放音方位指示部12は、記憶部11から絶対方位情報を取得して、スピーカSPから放音する超音波の絶対方位からの放音方位を示す放音方位角Θを決定する。そして、放音方位指示部12は、超音波の放音方位を制御部15へ指示するとともに、放音方位角Θを方位データ生成部13へ出力する。 The sound emission direction instructing unit 12 acquires the absolute direction information from the storage unit 11 and determines the sound emission direction angle Θ S indicating the sound emission direction from the absolute direction of the ultrasonic wave emitted from the speaker SP. The sound emission direction instructing unit 12 then instructs the sound emission direction of the ultrasonic waves to the control unit 15 and outputs the sound emission direction angle Θ S to the direction data generating unit 13.

方位データ生成部13は、放音方位指示部12から入力された放音方位角Θを示す方位データを生成して、変調部14へ出力する。 The azimuth data generation unit 13 generates azimuth data indicating the sound emission azimuth angle Θ S input from the sound emission direction instruction unit 12 and outputs it to the modulation unit 14.

変調部14は、方位データを超音波に重畳する。この重畳方式は、ODFM(直交周波数分割多重方式)方式や、スペクトラム拡散方式等である。また、この際、変調部14は、非可聴領域に方位データを重畳する。そして、変調部14は、重畳後の超音波を制御部15へ出力する。   The modulation unit 14 superimposes the azimuth data on the ultrasonic wave. This superposition method is an ODFM (Orthogonal Frequency Division Multiplexing) method, a spread spectrum method, or the like. At this time, the modulation unit 14 superimposes the azimuth data on the non-audible area. Then, the modulation unit 14 outputs the superposed ultrasonic wave to the control unit 15.

制御部15は、放音方位指示部12から指示された放音方位に向けて超音波を放音するように、スピーカSPの放音方位を制御する。スピーカSPは、制御部15から入力された超音波を放音する。   The control unit 15 controls the sound emitting direction of the speaker SP so as to emit ultrasonic waves toward the sound emitting direction designated by the sound emitting direction instruction unit 12. The speaker SP emits an ultrasonic wave input from the control unit 15.

図2(B)に示すように、受信機2は、2台のマイクMIC1,MIC2、BPF21A,21B、復調部22A,22B、相対方位算出部23、及び絶対方位算出部24から構成される。   As shown in FIG. 2B, the receiver 2 includes two microphones MIC1, MIC2, BPF 21A, 21B, demodulation units 22A, 22B, a relative direction calculation unit 23, and an absolute direction calculation unit 24.

マイクMIC1,MIC2は、非可聴領域の音声である超音波を収音可能なシリコンマイクである。マイクMIC1、MIC2は、収音した音声信号をそれぞれBPF21A,21Bへ出力する。なお、マイクMIC1,MIC2は、シリコンマイクに限らず、非可聴領域の音声を収音することができるマイクであればよい。   The microphones MIC1 and MIC2 are silicon microphones that can pick up ultrasonic waves that are sounds in a non-audible area. The microphones MIC1 and MIC2 output the collected audio signals to the BPFs 21A and 21B, respectively. Note that the microphones MIC1 and MIC2 are not limited to silicon microphones, and may be any microphones that can pick up sounds in a non-audible area.

BPF21A,21Bは、バンドパスフィルタであり、それぞれマイクMIC1,MIC2から入力された音声信号から、方位データを重畳した周波数帯域の音声信号を取得して、復調部22A,22Bへ出力する。   The BPFs 21A and 21B are band pass filters, and acquire audio signals in a frequency band on which azimuth data is superimposed from audio signals input from the microphones MIC1 and MIC2, respectively, and output them to the demodulation units 22A and 22B.

復調部22A,22Bは、BPF21A,21Aからそれぞれ入力された音声信号を復調して、放音方位角Θを取得し、相対方位算出部23へ出力する。 The demodulation units 22A and 22B demodulate the audio signals input from the BPFs 21A and 21A, acquire the sound emission azimuth angle Θ S , and output it to the relative direction calculation unit 23.

相対方位算出部23は、復調部22A,22Bから放音方位角Θが入力される時間差(すなわち、超音波の到達時間差)に基づいて、到達距離差ΔLを算出する。相対方位算出部23は、マイクMIC1,MIC2間の距離Lと到達距離差ΔLとに基づいて、送信機1からの自装置(厳密には、受信機2のマイクMIC1,MIC2の収音面)への方位を示す相対方位角Θを算出する。この相対方位角Θは、式1により算出することができる。そして、相対方位算出部23は、放音方位角Θと算出した相対方位角Θを絶対方位算出部24へ出力する。 The relative azimuth calculation unit 23 calculates the arrival distance difference ΔL based on the time difference (that is, the arrival time difference of the ultrasonic waves) in which the sound emission azimuth angle Θ S is input from the demodulation units 22A and 22B. Based on the distance L between the microphones MIC1 and MIC2 and the arrival distance difference ΔL, the relative azimuth calculation unit 23 is the own device from the transmitter 1 (strictly speaking, the sound collecting surfaces of the microphones MIC1 and MIC2 of the receiver 2). The relative azimuth angle Θ L indicating the azimuth to This relative azimuth angle Θ L can be calculated by Equation 1. Then, the relative azimuth calculation unit 23 outputs the sound emission azimuth angle Θ S and the calculated relative azimuth angle Θ L to the absolute azimuth calculation unit 24.

絶対方位算出部24は、相対方位算出部23から入力された放音方位角Θと相対方位角Θとに基づいて、絶対方位角Θを算出する。この絶対方位角Θは、式2により算出することができる。 The absolute azimuth calculating unit 24 calculates the absolute azimuth angle Θ based on the sound emitting azimuth angle Θ S and the relative azimuth angle Θ L input from the relative azimuth calculating unit 23. This absolute azimuth angle Θ can be calculated by Equation 2.

例えば、図3に示すように、送信機1が絶対方位から南東の方位(放音方位角Θ=135度)に向けて超音波を放音し、送信機1から受信機2に対する方位が45度(相対方位角Θ=45度)と算出された場合、絶対方位角Θは、Θ=135−45=90度となる。この場合、受信機2のマイクMIC1,MIC2の収音面の向きから90度の方向が絶対方位であることが分かる。すなわち、受信機2は、マイクMIC1,MIC2の収音面が西の方位を向いている(自装置が西の方位を向いている)ことが判断できる。 For example, as shown in FIG. 3, the transmitter 1 emits an ultrasonic wave from the absolute direction toward the southeast direction (sound emitting azimuth angle Θ S = 135 degrees), and the direction from the transmitter 1 to the receiver 2 is When calculated as 45 degrees (relative azimuth angle Θ L = 45 degrees), the absolute azimuth angle Θ is Θ = 135−45 = 90 degrees. In this case, it can be seen that the direction of 90 degrees from the direction of the sound collection surface of the microphones MIC1 and MIC2 of the receiver 2 is the absolute direction. That is, the receiver 2 can determine that the sound collection surfaces of the microphones MIC1 and MIC2 are facing the west direction (the device is facing the west direction).

以上より、受信機2は、自装置内に地磁気センサを備えなくよいため、地磁気センサの精度が落ちる建物の屋内や地下等であっても、送信機1から放音された超音波を受信するだけで、絶対方位角Θを算出することができ、自装置の向きがわかる。また、送信機1は、放音方位を変更しながら超音波を放音することができるので、広範囲に向けて超音波を放音することができる。   As described above, since the receiver 2 does not have to include a geomagnetic sensor in its own device, the ultrasonic wave emitted from the transmitter 1 is received even in an indoor or underground area of a building where the accuracy of the geomagnetic sensor is reduced. Can calculate the absolute azimuth angle Θ, and the orientation of the device itself can be known. Further, since the transmitter 1 can emit ultrasonic waves while changing the sound emitting direction, it can emit ultrasonic waves over a wide range.

このような受信機2を各ユーザが携帯することで、屋内ナビとして用いることができる。例えば、巨大ショッピングモールにおいて、顧客は、自身がどの方位に向いているかがわからなくなってしまうことが多々ある。そこで、モール内に送信機1を設置することで、顧客に自身の向きを教えることができる。   Each user carries such a receiver 2 and can be used as an indoor navigation system. For example, in a large shopping mall, customers often do not know which direction they are facing. Therefore, by installing the transmitter 1 in the mall, the customer can be instructed of his / her direction.

また、例えば、地図を用いて宝探しの時間を競う屋内のアミューズメントに用いることができる。この場合、ゲームの参加者は、地図を所有しても、宝箱への方位を知ることができない。そこで、チェックポイントに送信機1を設置しておき、アイテムとして受信機2を用意しておく。アイテム(受信機2)を取得することができた参加者は、自身がどの方位を向いているかをチェックポイントで把握することができるので、受信機2を取得できなかった参加者に比べて、短時間で宝を見つけることができる。   Also, for example, it can be used for an indoor amusement in which a map is used to compete for treasure hunting time. In this case, the game participant cannot know the direction to the treasure box even if he owns the map. Therefore, the transmitter 1 is installed at the check point, and the receiver 2 is prepared as an item. Participants who have been able to acquire the item (receiver 2) can grasp which direction they are facing at the checkpoint, so compared to the participant who could not acquire the receiver 2, You can find treasure in a short time.

なお、上述の実施形態では、放音方位を変更しながら放音したが、放音方位を一定値に固定して放音してもよい。この場合、送信機1の設置時に、送信機1の放音方位を固定するとともに、方位データを生成して記憶部11に記憶しておく。運用時に、変調部14が記憶部11から方位データを取得すればよいため、放音方位指示部12、方位データ生成部13は、必須の構成ではない。   In the above-described embodiment, sound is emitted while changing the sound emitting direction, but sound may be emitted with the sound emitting direction fixed to a constant value. In this case, when the transmitter 1 is installed, the sound emitting azimuth of the transmitter 1 is fixed, and azimuth data is generated and stored in the storage unit 11. At the time of operation, the modulation unit 14 only needs to acquire the azimuth data from the storage unit 11, and thus the sound emission direction instruction unit 12 and the azimuth data generation unit 13 are not essential components.

また、上述の実施形態では、記憶部11に絶対方位情報を記憶した。しかし、送信機1は、記憶部11に代えて、絶対方位を検出可能な地磁気センサを備えてもよい。この場合、地磁気センサは、絶対方位を正確に検出することができる場所(屋外等)に設置されており、検出した絶対方位を放音指示部12へ出力する。   In the above-described embodiment, the absolute azimuth information is stored in the storage unit 11. However, the transmitter 1 may include a geomagnetic sensor capable of detecting an absolute direction instead of the storage unit 11. In this case, the geomagnetic sensor is installed in a location (such as outdoors) where the absolute azimuth can be accurately detected, and outputs the detected absolute azimuth to the sound emitting instruction unit 12.

更に、上述の実施形態では、送信機1は1台のスピーカSPを備えたが、複数台のスピーカSPからなるスピーカアレイを備えてもよい。この場合、送信機1は、同時に複数の音声ビームを生成して放音することができるので、絶対方位角を同時に検出可能な範囲を広範囲に広げることができる。   Further, in the above-described embodiment, the transmitter 1 includes one speaker SP, but may include a speaker array including a plurality of speakers SP. In this case, since the transmitter 1 can generate and emit a plurality of sound beams at the same time, the range in which the absolute azimuth angle can be detected simultaneously can be broadened.

加えて、上述の実施形態では、超音波を用いる例を示したが、単一指向性の音声であればよい。   In addition, in the above-described embodiment, an example in which ultrasonic waves are used has been described, but any unidirectional sound may be used.

絶対方位の検出方法に関する説明図である。It is explanatory drawing regarding the detection method of an absolute azimuth | direction. 絶対方位検出システムの機能・構成を示すブロック図である。It is a block diagram which shows the function and structure of an absolute azimuth | direction detection system. 絶対方位の検出方法の具体例を示す図である。It is a figure which shows the specific example of the detection method of an absolute azimuth | direction.

1…送信機,11…記憶部,12…放音方位指示部,13…方位データ生成部,14…変調部,15…制御部,2…受信機,21A,21B…BPF,22A,22B…復調部,23…相対方位算出部,24…絶対方位算出部,Θ…放音方位角,Θ…相対方位角,Θ…絶対方位角,L…距離,MIC1,MIC2…マイク,SP…スピーカ DESCRIPTION OF SYMBOLS 1 ... Transmitter, 11 ... Memory | storage part, 12 ... Sound emission direction instruction | indication part, 13 ... Direction data generation part, 14 ... Modulation part, 15 ... Control part, 2 ... Receiver, 21A, 21B ... BPF, 22A, 22B ... Demodulator 23 ... Relative azimuth calculator 24 ... Absolute azimuth calculator Θ S ... Sound emission azimuth angle Θ L ... Relative azimuth angle Θ ... Absolute azimuth angle L ... Distance, MIC1, MIC2 ... Microphone, SP ... Speaker

Claims (4)

絶対方位からの放音方位を示す放音方位角が重畳された単一指向性の音声を収音する収音手段と、
前記収音手段が収音した音声を復調して、前記放音方位角を取得する復調手段と、
自装置に対する前記単一指向性の音声の放音方位である相対方位角を算出する相対方位算出手段と、
前記放音方位角と前記相対方位角に基づいて、絶対方位を算出する絶対方位算出手段と、を備えた受信機。
A sound collecting means for collecting unidirectional sound on which a sound emitting azimuth indicating a sound emitting direction from an absolute direction is superimposed ;
Demodulating means for demodulating the sound collected by the sound collecting means to obtain the sound emitting azimuth;
A relative azimuth calculating means for calculating a relative azimuth angle which is a sound emitting azimuth of the unidirectional voice with respect to the device;
A receiver comprising absolute azimuth calculating means for calculating an absolute azimuth based on the sound emitting azimuth and the relative azimuth.
送信機及び請求項1に記載の受信機からなる絶対方位検出システムであって、
前記送信機は、前記単一指向性の音声を放音する放音手段を備え、
前記放音手段は、前記絶対方位からの放音方位を示す放音方位角を、音声に重畳して、該放音方位へ向けて放音し、
前記収音手段は、前記送信機からの音声を収音することを特徴とする絶対方位検出システム
An absolute orientation detection system comprising a transmitter and the receiver according to claim 1,
The transmitter includes sound emitting means for emitting the unidirectional sound,
It said sound emitting means, the sound azimuth indicating the sound emission direction from the absolute direction, is superimposed on the voice, and sound toward dissipating sound orientation,
The absolute direction detection system characterized in that the sound collection means picks up sound from the transmitter .
前記送信機は、前記放音手段の前記放音方位を指示する放音方位指示手段を更に備え、
前記放音手段は、前記放音方位指示手段が放音方位を変更すると、変更後の放音方位に基づいて、前記音声を放音する請求項に記載の絶対方位検出システム
The transmitter further includes a sound emitting azimuth indicating means for instructing the sound emitting azimuth of the sound emitting means,
The absolute direction detection system according to claim 2 , wherein the sound emitting unit emits the sound based on the changed sound emitting direction when the sound emitting direction instruction unit changes the sound emitting direction.
送信機が、絶対方位からの放音方位を示す放音方位角を重畳した単一指向性の音声を、該放音方位に向けて放音する手順と、
受信機が、前記送信機から収音した音声を復調して前記放音方位角を取得する手順と、
前記受信機が、前記送信機からの方位である相対方位角を算出する手順と、
前記受信機が、前記放音方位角と前記相対方位角とに基づいて、絶対方位を算出する手順と、からなる絶対方位検出方法。
A procedure in which a transmitter emits a unidirectional sound in which a sound emitting azimuth indicating a sound emitting direction from an absolute direction is superimposed, toward the sound emitting direction;
The receiver demodulates the sound collected from the transmitter to obtain the sound emission azimuth;
The receiver calculates a relative azimuth that is an azimuth from the transmitter;
An absolute azimuth detection method comprising: a procedure in which the receiver calculates an absolute azimuth based on the sound emitting azimuth angle and the relative azimuth angle.
JP2008252077A 2008-09-30 2008-09-30 Receiver, absolute direction detection system, and absolute direction detection method Expired - Fee Related JP5267015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252077A JP5267015B2 (en) 2008-09-30 2008-09-30 Receiver, absolute direction detection system, and absolute direction detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252077A JP5267015B2 (en) 2008-09-30 2008-09-30 Receiver, absolute direction detection system, and absolute direction detection method

Publications (2)

Publication Number Publication Date
JP2010087653A JP2010087653A (en) 2010-04-15
JP5267015B2 true JP5267015B2 (en) 2013-08-21

Family

ID=42251195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252077A Expired - Fee Related JP5267015B2 (en) 2008-09-30 2008-09-30 Receiver, absolute direction detection system, and absolute direction detection method

Country Status (1)

Country Link
JP (1) JP5267015B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239701B2 (en) * 2008-09-30 2013-07-17 ヤマハ株式会社 Transmitter, guide terminal, and navigation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163368A (en) * 1985-01-16 1986-07-24 トヨタ自動車株式会社 Vehicle position calculator

Also Published As

Publication number Publication date
JP2010087653A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US11051105B2 (en) Locating wireless devices
Lazik et al. ALPS: A bluetooth and ultrasound platform for mapping and localization
Höflinger et al. Acoustic self-calibrating system for indoor smartphone tracking (assist)
CN107211216B (en) For providing the method and apparatus of virtual audio reproduction
JP5971768B2 (en) Speech positioning using speech signal encoding and recognition
JP5239701B2 (en) Transmitter, guide terminal, and navigation system
US9024748B2 (en) PASS-Tracker: apparatus and method for identifying and locating distressed firefighters
US10820093B2 (en) Sound collecting terminal, sound providing terminal, sound data processing server, and sound data processing system using the same
US10034145B2 (en) Localizing mobile device in vehicle
US20160161595A1 (en) Narrowcast messaging system
WO2013132393A1 (en) System and method for indoor positioning using sound masking signals
US20170270775A1 (en) PASS-Tracker: Apparatus and Method for Identifying and Locating Distressed Firefighters
US10704914B2 (en) Positioning method using broadcast speeches
CN110967670A (en) Asynchronous indoor positioning method based on intelligent terminal and ultrasonic communication
JP2009243894A (en) Position detection system and position detection device
JP5267015B2 (en) Receiver, absolute direction detection system, and absolute direction detection method
JP2012194443A (en) Positional information system, portable terminal device and program
US20230232153A1 (en) A sound output unit and a method of operating it
García-Requejo et al. Positioning Android devices in large indoor spaces and transitioning to outdoors by sensor fusion
WO2013171679A1 (en) Handheld-device-based indoor localization system and method
KR101673812B1 (en) Sound Collecting Terminal, Sound Providing Terminal, Sound Data Processing Server and Sound Data Processing System using thereof
KR101616361B1 (en) Apparatus and method for estimating location of long-range acoustic target
JP6483743B2 (en) Impersonation signal determination device
JP2006209214A (en) System for stamp rally
JP2004264070A (en) Bistatic azimuth detection system and detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees