JP5266766B2 - Resin film structure - Google Patents

Resin film structure Download PDF

Info

Publication number
JP5266766B2
JP5266766B2 JP2008006667A JP2008006667A JP5266766B2 JP 5266766 B2 JP5266766 B2 JP 5266766B2 JP 2008006667 A JP2008006667 A JP 2008006667A JP 2008006667 A JP2008006667 A JP 2008006667A JP 5266766 B2 JP5266766 B2 JP 5266766B2
Authority
JP
Japan
Prior art keywords
membrane
resin
electrolyte
reinforcing material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008006667A
Other languages
Japanese (ja)
Other versions
JP2009170244A (en
Inventor
恭司郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008006667A priority Critical patent/JP5266766B2/en
Publication of JP2009170244A publication Critical patent/JP2009170244A/en
Application granted granted Critical
Publication of JP5266766B2 publication Critical patent/JP5266766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the dimensional change in the expansion direction and shrinkage direction that occurs in wet and dry cycles in the fuel cell operation in a reinforced electrolyte membrane 10A used in the fuel cell for example. <P>SOLUTION: A ceramic porous body-containing layer or a glass electrolyte powder-containing layer (a second reinforcement) is arranged on both surfaces of a PTFE expanded porous membrane (a first reinforcement). The whole of a laminate is wrapped with electrolyte resin 3. The first reinforcement suppresses expansion of the membrane and the second reinforcement suppresses shrinkage of the membrane. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は樹脂製の膜構造に関し、限定されないが、特に燃料電池で使用する固体高分子電解質膜の膜構造に関する。   The present invention relates to a resin-made membrane structure, and particularly, but not exclusively, relates to a membrane structure of a solid polymer electrolyte membrane used in a fuel cell.

燃料電池の一形態として固体高分子形燃料電池が知られている。固体高分子形燃料電池は他の形態の燃料電池と比較して作動温度が低く(−30℃〜120℃程度)、低コスト、コンパクト化が可能なことから、自動車の動力源等として期待されている。   A solid polymer fuel cell is known as one form of the fuel cell. The polymer electrolyte fuel cell has a lower operating temperature (about -30 ° C to 120 ° C) than other types of fuel cells, and is expected to be a power source for automobiles because of its low cost and compactness. ing.

図3に示すように、固体高分子形燃料電池Aは、膜電極接合体(MEA)Bを主要な構成要素とし、それを、燃料(水素)ガス流路21を備えたアノード側セパレータ20および空気(酸素)流路31を備えたカソード側セパレート30で挟持して、単セルと呼ばれる1つの燃料電池Aを形成している。膜電極接合体Bは、イオン交換膜である固体高分子電解質膜10の一方側にアノード側の触媒層13aとガス拡散層14aからなるアノード側電極15aを積層し、他方の側にカソード側の触媒層13bとガス拡散層14bからなるカソード側電極15bを積層した構造を持つ。   As shown in FIG. 3, the polymer electrolyte fuel cell A includes a membrane electrode assembly (MEA) B as a main component, which includes an anode-side separator 20 including a fuel (hydrogen) gas flow path 21, and One fuel cell A called a single cell is formed by being sandwiched by a cathode-side separate 30 having an air (oxygen) flow path 31. In the membrane electrode assembly B, an anode side electrode 15a composed of an anode side catalyst layer 13a and a gas diffusion layer 14a is laminated on one side of a solid polymer electrolyte membrane 10 which is an ion exchange membrane, and the cathode side is placed on the other side. The cathode side electrode 15b composed of the catalyst layer 13b and the gas diffusion layer 14b is laminated.

固体高分子型燃料電池において、電解質膜としては、フッ素系電解質樹脂(イオン交換樹脂)であるパーフルオロスルホン酸ポリマーの薄膜(米国、デュポン社、ナフィオン膜)が主に用いられる。また、電解質樹脂単独の薄膜では十分な強度が得られないことから、延伸多孔質の補強膜(例えば、PTFEやポリオレフィン樹脂等を延伸した多孔質薄膜)に、溶媒に溶解した電解質樹脂を含浸させ乾燥させた補強膜型電解質膜が用いられる(特許文献1、2等参照)。   In the polymer electrolyte fuel cell, as the electrolyte membrane, a thin film of perfluorosulfonic acid polymer (USA, DuPont, Nafion membrane) which is a fluorine-based electrolyte resin (ion exchange resin) is mainly used. Moreover, since a sufficient strength cannot be obtained with a thin film of an electrolyte resin alone, a stretched porous reinforcing film (for example, a porous thin film obtained by stretching PTFE or polyolefin resin) is impregnated with an electrolyte resin dissolved in a solvent. A dried reinforced membrane electrolyte membrane is used (see Patent Documents 1 and 2, etc.).

特開2004−059752号公報JP 2004-059752 A 特開2005−285757号公報JP 2005-285757 A

固体高分子型燃料電池で用いられる電解質樹脂は、吸湿により膨潤する特性を持つ樹脂であり、電解質膜は吸湿により膨潤する。従来の補強膜型電解質膜において、前記したPTFEやポリオレフィン樹脂等を延伸した多孔質補強膜は引張方向には強い耐性を示し、電解質樹脂の吸湿による膨潤挙動を抑え込み、電解質膜に膨張方向の寸法変化が生じるのを効果的に阻止している。しかし、従来の多孔質補強膜は収縮方向に対する耐性は低く、吸湿後に電解質樹脂が乾燥すると、電解質膜に収縮による皺を発生させることがあった。すなわち、従来の多孔質補強膜は、収縮方向には補強膜としての機能を果たしているとはいえない。   The electrolyte resin used in the polymer electrolyte fuel cell is a resin having a characteristic of swelling due to moisture absorption, and the electrolyte membrane swells due to moisture absorption. In the conventional reinforced membrane type electrolyte membrane, the porous reinforced membrane obtained by stretching PTFE or polyolefin resin has a strong resistance in the tensile direction, suppresses the swelling behavior due to moisture absorption of the electrolyte resin, and the dimension in the expansion direction of the electrolyte membrane. It effectively prevents changes from occurring. However, the conventional porous reinforcing membrane has low resistance to the shrinkage direction, and when the electrolyte resin is dried after moisture absorption, wrinkles due to shrinkage may be generated in the electrolyte membrane. That is, it cannot be said that the conventional porous reinforcing membrane functions as a reinforcing membrane in the shrinking direction.

電解質膜の収縮は、電解質膜に触媒層を接合する製造過程などで熱加工が行われるときなどでも発生し、それにより触媒層の剥がれなどが生じることも起こり得る。また、燃料電池の膜電極接合体として電池に組み込まれた後でも、燃料電池の運転環境により、電解質膜は乾湿のサイクルを経験するために、やはり電解質膜に収縮が発生し、電解質膜がダメージを受けやすくなり、燃料電池としての寿命が短くなるという問題も起こり得る。   The shrinkage of the electrolyte membrane occurs even when heat processing is performed in the manufacturing process for joining the catalyst layer to the electrolyte membrane, and the catalyst layer may be peeled off. In addition, even after being assembled into a battery as a membrane electrode assembly of a fuel cell, the electrolyte membrane experiences a cycle of dryness and humidity depending on the operating environment of the fuel cell, so that the electrolyte membrane also contracts and damages the electrolyte membrane. The problem that the life as a fuel cell becomes short may also occur.

また、上記の不都合は、固体高分子型燃料電池で用いられる電解質樹脂膜に限らず、吸湿により膨潤する特性を有する樹脂と、該樹脂に内包されており前記樹脂の膨潤を抑制する機能を備えた第1の強化材(補強膜)からなる樹脂製の膜においては、同様に生じている。   In addition, the above inconvenience is not limited to the electrolyte resin membrane used in the polymer electrolyte fuel cell, and has a function of swelling due to moisture absorption and a function of being contained in the resin and suppressing swelling of the resin. In the resin film made of the first reinforcing material (reinforcing film), the same occurs.

本発明は、上記のような事情に鑑みてなされたものであり、吸湿により膨潤する特性を有する樹脂と、該樹脂に内包されており前記樹脂の膨潤を抑制する機能を備えた第1の強化材からなる樹脂製の膜において、膜の収縮方向の寸法変化をも抑制できるようにした膜構造を得ることを課題とする。   The present invention has been made in view of the circumstances as described above, and is a first strengthening resin that has a property of swelling due to moisture absorption and a function that is contained in the resin and suppresses swelling of the resin. An object of the present invention is to obtain a film structure that can suppress a dimensional change in the shrinkage direction of a film in a resin film made of a material.

本発明による樹脂製の膜構造は、吸湿により膨潤する特性を有する樹脂と、該樹脂に内包されており前記樹脂の膨潤を抑制する機能を備えた第1の強化材からなる樹脂製の膜であって、前記樹脂製の膜は、前記第1の強化材に隣接して前記樹脂の収縮を抑制する機能を備えた第2の強化材をさらに内包した構造を持ち、前記第1および第2の補強材内には前記樹脂が含浸していることを特徴とする。   The resin film structure according to the present invention is a resin film made of a resin having a property of swelling due to moisture absorption and a first reinforcing material that is included in the resin and has a function of suppressing the swelling of the resin. The resin film has a structure further including a second reinforcing material having a function of suppressing shrinkage of the resin adjacent to the first reinforcing material, and the first and second reinforcing materials. The reinforcing material is impregnated with the resin.

本発明による膜構造では、第1の強化材が耐引っ張り強度を有して樹脂の膨潤を抑制し、第2の強化材が耐収縮強度を有して樹脂の収縮を抑制するので、樹脂の膨張および収縮の双方による膜の寸法変化に適切に対応することができる。   In the membrane structure according to the present invention, the first reinforcing material has tensile strength and suppresses resin swelling, and the second reinforcing material has shrinkage resistance and suppresses resin shrinkage. It is possible to appropriately cope with the dimensional change of the membrane due to both expansion and contraction.

本発明による樹脂製の膜構造を備えた膜の具体例として、固体高分子型燃料電池で用いられる固体高分子電解質膜、食塩電解で用いられるイオン交換膜などを例示することができる。前記樹脂製の膜が固体高分子電解質膜であるときに、前記第1の強化材には、例としてPTFE延伸多孔質膜またはポリオレフィン樹脂延伸多孔質膜を挙げることができ、前記第2の強化材には、例としてセラミックス多孔体含有層またはガラス電解質粉体含有層を挙げることができる。   Specific examples of the membrane having a resin membrane structure according to the present invention include a solid polymer electrolyte membrane used in a polymer electrolyte fuel cell and an ion exchange membrane used in salt electrolysis. When the resin membrane is a solid polymer electrolyte membrane, examples of the first reinforcing material include a PTFE stretched porous membrane or a polyolefin resin stretched porous membrane, and the second reinforcing material. Examples of the material include a porous ceramic body-containing layer or a glass electrolyte powder-containing layer.

前記第2の補強材がセラミックス多孔体のとき、その気孔率は30〜60%程度が好適である。気孔率が30%よりも小さいと、プロトン伝導の低下という不都合があり、気孔率が60%よりも大きいと、セラミックス多孔体強度の大幅低下という不都合があるので、好ましくない。このような気孔率を有するセラミックス多孔体の例としては、TiOの粉末を挙げることができる。TiOの粉末の場合、平均粒径は1〜3μm程度が好適である。 When the second reinforcing material is a ceramic porous body, the porosity is preferably about 30 to 60%. If the porosity is less than 30%, there is an inconvenience of a decrease in proton conduction, and if the porosity is more than 60%, there is an inconvenience of a significant decrease in the strength of the ceramic porous body. As an example of the ceramic porous body having such a porosity, TiO 2 powder can be mentioned. In the case of TiO 2 powder, the average particle size is preferably about 1 to 3 μm.

前記第2の強化材がガラス電解質粉体のとき、その具体例として、SiO−PO5,PbO−SrO−P,PbO−SrO−BaO−P,SiO−ZrO−P等の粉末を挙げることができる。このような材料がプロトン伝導性を有することは知られている。それらの材料は単独であってもよく、2つ以上の材料の組み合わせでもよい。いずれの場合も、平均粒径は2〜3μmであることが好ましい。 When the second reinforcing material is a glass electrolyte powder, specific examples thereof include SiO 2 —P 2 O 5, PbO—SrO—P 2 O 5 , PbO—SrO—BaO—P 2 O 5 , SiO 2 —ZrO. A powder such as 2- P 2 O 5 can be mentioned. It is known that such materials have proton conductivity. These materials may be used alone or in combination of two or more materials. In any case, the average particle size is preferably 2 to 3 μm.

本発明による膜構造を備えることにより、吸湿により膨潤する特性を有する樹脂を主材料とする膜において、膜の膨張と収縮の双方において、その寸法変化を抑制することができる。膜が電解質膜の場合には、従来よりも寸法安定性に優れた電解質膜とすることができ、燃料電池の膜電極接合体としたときに、寿命の長い燃料電池を得ることができる。   By providing the film structure according to the present invention, it is possible to suppress a dimensional change in both expansion and contraction of the film in a film mainly composed of a resin having a characteristic of swelling due to moisture absorption. When the membrane is an electrolyte membrane, it can be an electrolyte membrane that is more excellent in dimensional stability than before, and a fuel cell with a long life can be obtained when it is used as a membrane electrode assembly of a fuel cell.

以下、図面を参照して、本発明の一実施の形態を説明する。図1は、本発明による膜構造が燃料電池の補強膜型電解質膜の膜構造である場合での2つの態様を模式図を示しており、図2は従来の補強膜型電解質膜の膜構造を示す模式図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing two modes when the membrane structure according to the present invention is a membrane structure of a reinforced membrane type electrolyte membrane of a fuel cell, and FIG. 2 shows a membrane structure of a conventional reinforced membrane type electrolyte membrane. It is a schematic diagram which shows.

図1(a)に示す補強膜型電解質膜10Aは、PTFE延伸多孔質膜(第1の補強材)1の両面にセラミックス多孔体層(第2の補強材)2,2が配置され、その全体が電解質樹脂3の中に内包されている。電解質樹脂3は、PTFE延伸多孔質膜1およびセラミックス多孔体層2,2の双方の多孔質内にまで含浸している。セラミックス多孔体としては、TiO多孔体粉末が例として挙げられる。電解質樹脂は従来の燃料電池で用いられる電解質樹であってよく、例えば、デュポン社製のナフィオン(商標名)が例示される。 A reinforcing membrane type electrolyte membrane 10A shown in FIG. 1A has ceramic porous body layers (second reinforcing materials) 2 and 2 disposed on both sides of a PTFE stretched porous membrane (first reinforcing material) 1, The whole is enclosed in the electrolyte resin 3. The electrolyte resin 3 is impregnated into the porous bodies of both the PTFE stretched porous membrane 1 and the ceramic porous body layers 2 and 2. An example of the ceramic porous body is TiO 2 porous powder. The electrolyte resin may be an electrolyte tree used in a conventional fuel cell, for example, Nafion (trade name) manufactured by DuPont.

前記セラミックス多孔体層2,2に替えて、ガラス電解質粉体含有層を配置するようにしてもよい。ガラス電解質粉体としては、平均粒径が2〜3μm程度の、SiO−P,PbO−SrO−P,PbO−SrO−BaO−P,SiO−ZrO−P、などの粉体を例示できる。 Instead of the ceramic porous body layers 2 and 2, a glass electrolyte powder-containing layer may be disposed. Examples of the glass electrolyte powder include SiO 2 —P 2 O 5 , PbO—SrO—P 2 O 5 , PbO—SrO—BaO—P 2 O 5 , SiO 2 —ZrO 2 having an average particle diameter of about 2 to 3 μm. -P 2 O 5, powder such as may be exemplified.

図1(b)に示す補強膜型電解質膜10Bは、セラミックス多孔体層2の両面にPTFE延伸多孔質膜1、1が配置され、その全体が電解質樹脂3の中に内包されている。ここでも、電解質樹脂3は、セラミックス多孔体層2およびPTFE延伸多孔質膜1、1の双方の多孔質内にまで含浸している。ここでも、前記セラミックス多孔体層2に替えて、ガラス電解質粉体含有層を配置するようにしてもよい。なお、セラミックス多孔体およびガラス電解質粉体の材料は、図1(a)に示したものと同じである。   In the reinforced membrane electrolyte membrane 10B shown in FIG. 1B, the PTFE stretched porous membranes 1 and 1 are disposed on both surfaces of the ceramic porous body layer 2, and the whole is encapsulated in the electrolyte resin 3. Also here, the electrolyte resin 3 is impregnated into the porous bodies of both the ceramic porous body layer 2 and the PTFE stretched porous membranes 1 and 1. Here, instead of the ceramic porous body layer 2, a glass electrolyte powder-containing layer may be disposed. The materials for the ceramic porous body and the glass electrolyte powder are the same as those shown in FIG.

すでに記載したように、上記の樹脂製の膜構造では、PTFE延伸多孔質膜1は引っ張りに強く、セラミックス多孔体層(またはガラス電解質粉体含有層)2は収縮に強い。従って、2つを組み合わせることで、引っ張りにも収縮にも強い構造体10A,10Bが得られる。2つの補強膜を内包したことで、高分子固体電解質単独よりもイオン伝導度は低下するが、セラミックス多孔体層の場合には、多孔体中に電解質樹脂を含浸することで電解質膜としての性能を確保でき、また、ガラス電解質粉体含有層の場合には、補強材自体がイオン伝導度を持つことで、やはり電解質膜全体の性能を確保できる。   As described above, in the resin-made film structure, the PTFE stretched porous film 1 is resistant to pulling, and the ceramic porous body layer (or glass electrolyte powder-containing layer) 2 is resistant to shrinkage. Therefore, by combining the two, it is possible to obtain the structures 10A and 10B that are resistant to pulling and shrinking. By including two reinforcing membranes, the ionic conductivity is lower than that of the polymer solid electrolyte alone, but in the case of a ceramic porous layer, the performance as an electrolyte membrane can be achieved by impregnating the porous body with an electrolyte resin. In the case of the glass electrolyte powder-containing layer, the reinforcing material itself has ionic conductivity, so that the performance of the entire electrolyte membrane can be secured.

図2は、従来公知の補強膜型電解質膜10を模式的に示している。この補強膜型電解質膜10は、PTFE延伸多孔質膜(第1の補強材)1のみが電解質樹脂3に内包されている。ここでも、電解質樹脂3はPTFE延伸多孔質膜1の多孔内に含浸している。   FIG. 2 schematically shows a conventionally known reinforced membrane electrolyte membrane 10. In the reinforcing membrane type electrolyte membrane 10, only the PTFE stretched porous membrane (first reinforcing material) 1 is included in the electrolyte resin 3. Again, the electrolyte resin 3 is impregnated in the pores of the PTFE stretched porous membrane 1.

以下、実施例と比較例により本発明を説明する。
[実施例1]
1)PTFEファインパウダーからビード押出し、ロール圧延の通常の方法にて製造した厚み9mm、50mm×50mmサイズのPTFEテープを多軸延伸機にセットし、昇温し30倍に延伸加工を行い、厚み0.010mmの多孔体膜を得た。
2)チタンアルコキシド(Ti(OC)をエタノールに導入し、25℃において1時間加水分解反応を行い、アモルファスTiOを形成した。この溶液を、400℃、1時間の熱処理を行いTiO2の多孔体を得、ボールミルにて粉砕を行うことで、平均粒径2μmのTiO多孔体粉末を作製した。TiO多孔体粉末の気孔率は40%であった。
3)1)で得られた多孔体膜両面に、2)で得られた多孔体粉末を、水+エタノールでスラリー化して塗布乾燥し、その複合体膜の両面に、電解質樹脂の前駆体高分子(高分子鎖末端が−SOF、デュポン社製高分子NE111F)を押出し成形機にて厚み12μmに作製した薄膜を貼り付けた。
4)上記膜を、230℃真空環境下にて5kg/cmの圧力にて含浸処理を行い、膜を得た。
5)上記膜を、1mol/L水酸化ナトリウム水溶液とアルコールの混合溶液での加水分解後、1mol/L硫酸水溶液で高分子鎖末端を酸型(−SOH)に変換した。
7)イオン交換された純水により洗浄後、乾燥して厚さ約30μmの図1(a)に示す構造の補強型電解質膜を得た。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
[Example 1]
1) Bead extrusion from PTFE fine powder, PTFE tape of 9mm thickness and 50mm x 50mm size manufactured by the usual method of roll rolling is set in a multiaxial stretching machine, heated and stretched 30 times, thickness A 0.010 mm porous membrane was obtained.
2) Titanium alkoxide (Ti (OC 2 H 5 ) 4 ) was introduced into ethanol and hydrolyzed at 25 ° C. for 1 hour to form amorphous TiO 2 . This solution was heat-treated at 400 ° C. for 1 hour to obtain a TiO 2 porous body, and pulverized with a ball mill to prepare a TiO 2 porous body powder having an average particle diameter of 2 μm. The porosity of the TiO 2 porous material powder was 40%.
3) On both surfaces of the porous membrane obtained in 1), the porous powder obtained in 2) was slurried with water + ethanol, applied and dried, and the electrolyte polymer precursor polymer was applied on both sides of the composite membrane. A thin film prepared by extruding a polymer chain end of —SO 2 F and a polymer NE111F manufactured by DuPont with a thickness of 12 μm using an extrusion molding machine was attached.
4) The membrane was impregnated at a pressure of 5 kg / cm 2 in a 230 ° C. vacuum environment to obtain a membrane.
5) The membrane was hydrolyzed with a mixed solution of a 1 mol / L sodium hydroxide aqueous solution and an alcohol, and then the polymer chain end was converted to an acid form (—SO 3 H) with a 1 mol / L sulfuric acid aqueous solution.
7) Washed with ion-exchanged pure water and then dried to obtain a reinforced electrolyte membrane having a structure shown in FIG. 1A having a thickness of about 30 μm.

[実施例2]
1)実施例1と同様の多孔体膜を作製した。
2)プロトン伝導性を有するガラス材料であるPbO−SrO−BaO−Pをボールミルにて粉砕を行うことで、平均粒径2〜3μmのガラス電解質粉末を作製した。
3)1)で得られた多孔体膜両面に、2)で得られたガラス電解質粉末を、水+エタノールでスラリー化して塗布乾燥し、その複合多孔体膜の両面に、電解質樹脂の前駆体高分子(高分子鎖末端が−SOF、デュポン社製高分子NE111F)を押出し成形機にて厚み12μmに作製した薄膜を貼り付けた。
4)上記膜を、230℃真空環境下にて5kg/cmの圧力にて含浸処理を行い、膜を得た。
5)上記膜を、1mol/L水酸化ナトリウム水溶液とアルコールの混合溶液での加水分解後、1mol/L硫酸水溶液で高分子鎖末端を酸型(−SOH)に変換した。
7)イオン交換された純水により洗浄後、乾燥して厚さ約30μmの図1(a)に示す構造の補強型電解質膜を得た。
[Example 2]
1) A porous membrane similar to that in Example 1 was produced.
2) PbO—SrO—BaO—P 2 O 5 , which is a glass material having proton conductivity, was pulverized with a ball mill to produce a glass electrolyte powder having an average particle diameter of 2 to 3 μm.
3) On both surfaces of the porous membrane obtained in 1), the glass electrolyte powder obtained in 2) was slurried with water + ethanol, dried, and the electrolyte resin precursor on both sides of the composite porous membrane. A thin film in which a molecule (polymer chain end is —SO 2 F, polymer NE111F manufactured by DuPont) with a thickness of 12 μm was attached using an extrusion molding machine.
4) The membrane was impregnated at a pressure of 5 kg / cm 2 in a 230 ° C. vacuum environment to obtain a membrane.
5) The membrane was hydrolyzed with a mixed solution of a 1 mol / L sodium hydroxide aqueous solution and an alcohol, and then the polymer chain end was converted to an acid form (—SO 3 H) with a 1 mol / L sulfuric acid aqueous solution.
7) Washed with ion-exchanged pure water and then dried to obtain a reinforced electrolyte membrane having a structure shown in FIG. 1A having a thickness of about 30 μm.

[比較例1]
1)PTFEファインパウダーからビード押出し、ロール圧延の通常の方法にて製造した厚み18mm、50mm×50mmサイズのPTFEテープを多軸延伸機にセットし、昇温し30倍に延伸加工を行い、厚み0.020mmの多孔体膜を得た。
2)1)で得られた多孔体膜両面に、電解質樹脂の前駆体高分子(高分子鎖末端が−SOF、デュポン社製高分子NE111F)を押出し成形機にて厚み12μmに作製した薄膜を貼り付けた。
3)上記膜を、230℃真空環境下にて5kg/cmの圧力にて含浸処理を行い膜を得た。
4)上記膜を、1mol/L水酸化ナトリウム水溶液とアルコールの混合溶液での加水分解後、1mol/L硫酸水溶液で高分子鎖末端を酸型(−SOH)に変換した。
5)イオン交換された純水により洗浄後、乾燥して図2に示す構造の電解質膜を得た。
[Comparative Example 1]
1) A PTFE tape with a thickness of 18 mm and 50 mm x 50 mm produced by bead extrusion from PTFE fine powder and rolled by the usual method is set in a multiaxial stretching machine, heated to 30 times, and stretched. A 0.020 mm porous membrane was obtained.
2) A thin film obtained by forming an electrolyte resin precursor polymer (polymer end is —SO 2 F, polymer NE111F manufactured by DuPont) to a thickness of 12 μm on both sides of the porous membrane obtained in 1) with an extrusion molding machine. Was pasted.
3) The membrane was impregnated at a pressure of 5 kg / cm 2 in a 230 ° C. vacuum environment to obtain a membrane.
4) After the membrane was hydrolyzed with a mixed solution of 1 mol / L sodium hydroxide aqueous solution and alcohol, the end of the polymer chain was converted to acid form (—SO 3 H) with 1 mol / L sulfuric acid aqueous solution.
5) After washing with ion-exchanged pure water and drying, an electrolyte membrane having the structure shown in FIG. 2 was obtained.

[評価試験1]
実施例1,2および比較例で得られた電解質膜を、90℃の熱水中に2時間含浸し、膜を含水膨潤させ、さらに、その膜を80℃乾燥炉にて空気中で2時間乾燥収縮させたとき、それぞれの膜の寸法を測定し各膜の寸法安定性を評価した。その結果を表1に示した。さらに、実施例1,2および比較例で得られた電解質膜のイオン伝導度測定を行った。その結果も表1に示した。
[Evaluation Test 1]
The electrolyte membranes obtained in Examples 1 and 2 and the comparative example were impregnated in hot water at 90 ° C. for 2 hours to swell the membrane with water, and the membrane was further dried in air in an 80 ° C. drying oven for 2 hours. When drying and shrinking, the dimensions of each film were measured to evaluate the dimensional stability of each film. The results are shown in Table 1. Furthermore, the ionic conductivity of the electrolyte membranes obtained in Examples 1 and 2 and the comparative example was measured. The results are also shown in Table 1.

Figure 0005266766
Figure 0005266766

なお、寸法安定性は、初期の寸法を基準とし、MD方向、TD方向の平均の寸法変化率を示している。   The dimensional stability indicates an average dimensional change rate in the MD direction and the TD direction with reference to the initial dimension.

イオン伝導度測定は次のようにして行った。飽和含水させた試料を、1cm×1.5cmの短冊状に切り出し、試料の厚みtを測定する。そして、試料面内方向の伝導度を測定する2端子式の伝導度測定セルに装着する。このセルを常温(25℃)にて、試料にイオン交換水を付着させた状態で、交流インピーダンス法(周波数0.01Hz〜1MHz、印加電圧10mV)により抵抗(Ω)を測定する。得られた抵抗値Rを以下の式にてイオン伝導度σを導出した。   Ion conductivity measurement was performed as follows. The saturated water-containing sample is cut into a 1 cm × 1.5 cm strip and the thickness t of the sample is measured. And it mounts | wears with the 2 terminal type conductivity measuring cell which measures the conductivity of a sample in-plane direction. The resistance (Ω) is measured by an AC impedance method (frequency: 0.01 Hz to 1 MHz, applied voltage: 10 mV) with ion-exchanged water attached to the sample at room temperature (25 ° C.). Ionic conductivity σ was derived from the obtained resistance value R by the following equation.

式・・σ=L/(R×t×W)
ここで、σ:イオン伝導度(S/cm),L:膜長(cm),R:抵抗(Ω),t:膜厚(cm),W:膜幅(cm)
Formula · σ = L / (R × t × W)
Here, σ: ion conductivity (S / cm), L: film length (cm), R: resistance (Ω), t: film thickness (cm), W: film width (cm)

[評価]
評価試験1の結果から、本実施例の補強型電解質膜は、比較例の電解質膜よりも、イオン伝導度および含水時膨潤率はほぼ同等ながら、乾燥時収縮率が大幅に改善されており、本発明により、より寸法安定性に優れた補強膜型電解質膜が得られることがわかる。この電解質膜を使用することで、燃料電池製造時の寸法変化による皺の発生などによる製造歩留まり低下の回避、燃料電池運転時の乾湿サイクルによる劣化を抑制し、耐久性に優れた燃料電池を提供することができる。
[Evaluation]
From the result of the evaluation test 1, the reinforced electrolyte membrane of the present example has a drastic improvement in shrinkage during drying, while the ionic conductivity and the swelling rate when containing water are substantially the same as the electrolyte membrane of the comparative example. According to the present invention, it can be seen that a reinforced membrane electrolyte membrane having more excellent dimensional stability can be obtained. By using this electrolyte membrane, it is possible to avoid a decrease in manufacturing yield due to generation of soot due to dimensional changes during the manufacture of the fuel cell, and to suppress deterioration due to the wet and dry cycle during fuel cell operation, providing a fuel cell with excellent durability can do.

本発明による膜構造が燃料電池の補強膜型電解質膜の膜構造である場合での2つの態様を示す模式図。The schematic diagram which shows two aspects in case the membrane structure by this invention is a membrane structure of the reinforced membrane type electrolyte membrane of a fuel cell. 従来の補強膜型電解質膜の膜構造を示す模式図。The schematic diagram which shows the membrane structure of the conventional reinforcement membrane type electrolyte membrane. 固体高分子形燃料電池を説明するための図。The figure for demonstrating a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

10A,10B…補強膜型電解質膜、1…PTFE延伸多孔質膜(第1の補強材)、2…セラミックス多孔体層またはガラス電解質粉体含有層(第2の補強材)、3…電解質樹脂 DESCRIPTION OF SYMBOLS 10A, 10B ... Reinforcing membrane type electrolyte membrane, 1 ... PTFE stretched porous membrane (first reinforcing material), 2 ... Ceramic porous body layer or glass electrolyte powder containing layer (second reinforcing material), 3 ... Electrolyte resin

Claims (3)

吸湿により膨潤する特性を有する樹脂と、該樹脂に内包されており前記樹脂の膨潤を抑制する機能を備えた第1の強化材層と、該樹脂に内包されており前記第1の強化材層に隣接して前記樹脂の収縮を抑制する機能を備えた第2の強化材層とを備え、前記第1および第2の強化材層内には前記樹脂が含浸している膜構造を備えた固体高分子電解質膜であり、
前記第1の強化材層はPTFE延伸多孔質膜であり、前記第2の強化材層は気孔率が30〜60%の範囲であるセラミックス多孔体の粉末からなる層またはガラス電解質粉体からなる層であることを特徴とする固体高分子電解質膜。
A resin having a property of swelling due to moisture absorption, a first reinforcing material layer encapsulated in the resin and having a function of suppressing the swelling of the resin, and the first reinforcing material layer encapsulated in the resin And a second reinforcing material layer having a function of suppressing shrinkage of the resin, and a film structure impregnated with the resin is provided in the first and second reinforcing material layers. A solid polymer electrolyte membrane ,
The first reinforcing material layer is a PTFE stretched porous membrane, and the second reinforcing material layer is made of a ceramic porous material layer having a porosity in the range of 30 to 60% or a glass electrolyte powder. A solid polymer electrolyte membrane characterized by being a layer.
前記第2の強化材層がセラミックス多孔体の粉末からなる層である請求項1に記載の固体高分子電解質膜であって、前記セラミックス多孔体がTiOであることを特徴とする体高分子電解質膜。 It said second reinforcement layer is a solid polymer electrolyte membrane according to claim 1 is a layer consisting of a powder of the ceramic porous body, a solid high polymer, wherein the ceramic porous body is characterized in that it is a TiO 2 Electrolyte membrane. 前記第2の強化材層がガラス電解質粉体からなる層である請求項1に記載の固体高分子電解質膜であって、前記ガラス電解質粉体は、SiO−P,PbO−SrO−P,PbO−SrO−BaO−P,SiO−ZrO−Pのいずれかの粉末であることを特徴とする固体高分子電解質膜2. The solid polymer electrolyte membrane according to claim 1, wherein the second reinforcing material layer is a layer made of a glass electrolyte powder, wherein the glass electrolyte powder comprises SiO 2 —P 2 O 5 , PbO—SrO. -P 2 O 5, PbO-SrO -BaO-P 2 O 5, the solid polymer electrolyte membrane, which is a one of a powder of SiO 2 -ZrO 2 -P 2 O 5 .
JP2008006667A 2008-01-16 2008-01-16 Resin film structure Active JP5266766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006667A JP5266766B2 (en) 2008-01-16 2008-01-16 Resin film structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006667A JP5266766B2 (en) 2008-01-16 2008-01-16 Resin film structure

Publications (2)

Publication Number Publication Date
JP2009170244A JP2009170244A (en) 2009-07-30
JP5266766B2 true JP5266766B2 (en) 2013-08-21

Family

ID=40971193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006667A Active JP5266766B2 (en) 2008-01-16 2008-01-16 Resin film structure

Country Status (1)

Country Link
JP (1) JP5266766B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429137B2 (en) 2010-11-04 2014-02-26 トヨタ自動車株式会社 Fuel cell and fuel cell manufacturing method
JP6351739B2 (en) 2014-10-10 2018-07-04 日本ゴア株式会社 Electrolyte membrane for fuel cell
WO2020184681A1 (en) * 2019-03-13 2020-09-17 Agc株式会社 Membrane electrode assembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106202A (en) * 1998-09-30 2000-04-11 Toshiba Corp Fuel cell
JP4889873B2 (en) * 2000-09-08 2012-03-07 日産自動車株式会社 Exhaust gas purification system, exhaust gas purification catalyst used therefor, and exhaust purification method
JP4538198B2 (en) * 2002-04-18 2010-09-08 日揮触媒化成株式会社 Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
JP2003317748A (en) * 2002-04-23 2003-11-07 Araco Corp Solid polyelectrolyte film
JP2004063249A (en) * 2002-07-29 2004-02-26 Sony Corp Ion exchange membrane and its manufacturing method, as well as electrochemical device
JP4435560B2 (en) * 2002-12-26 2010-03-17 株式会社トクヤマ Ion exchange membrane and method for producing the same
JP4349826B2 (en) * 2003-03-27 2009-10-21 京セラ株式会社 Fuel cell and fuel cell
JP4613528B2 (en) * 2004-06-24 2011-01-19 コニカミノルタホールディングス株式会社 PROTON CONDUCTIVE ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND SOLID POLYMER TYPE FUEL CELL USING THE PROTON CONDUCTIVE ELECTROLYTE MEMBRANE
JP2006147278A (en) * 2004-11-18 2006-06-08 Konica Minolta Holdings Inc Electrolyte membrane-electrode assembly for solid fuel cell, and its manufacturing method
JP4833087B2 (en) * 2005-01-12 2011-12-07 日本板硝子株式会社 ELECTROLYTE MEMBRANE REINFORCEMENT, ELECTROLYTE MEMBRANE AND FUEL CELL USING SAME, AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE REINFORCEMENT
JP5002939B2 (en) * 2005-10-28 2012-08-15 日産自動車株式会社 Fuel cell electrolyte membrane and membrane electrode assembly
WO2008018171A1 (en) * 2006-08-08 2008-02-14 Kabushiki Kaisha Toshiba Composite electrolyte membrane and fuel cell
JP2008078099A (en) * 2006-09-25 2008-04-03 Toshiba Corp Solid electrolytic film, manufacturing method therefor, fuel cell equipped therewith, and manufacturing method of the fuel cell

Also Published As

Publication number Publication date
JP2009170244A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
EP3185345B1 (en) Reinforced composite membranes and method for manufacturing the same
EP2190047B1 (en) Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
KR100897104B1 (en) Method of electrolyte reinforced composite membrane with multi layer
JP5151063B2 (en) Porous material for electrolyte membrane for fuel cell, production method thereof, electrolyte membrane for polymer electrolyte fuel cell, membrane-electrode assembly (MEA), and fuel cell
WO2012046777A1 (en) Fluorine-containing polymer electrolyte membrane
KR101877753B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
JP2004079505A (en) Composite electrolyte for fuel cell
CN107004883B (en) Electrolyte membrane for fuel cell
JP2009016074A (en) Electrolyte membrane, and fuel cell using the same
EP2154744B1 (en) Process for producing solid polymer electrolyte membrane, and solid polymer electrolyte membrane
Park et al. Durability analysis of Nafion/hydrophilic pretreated PTFE membranes for PEMFCs
JP5488780B2 (en) Composite electrolyte membrane for fuel cells
JP2003077494A (en) Solid polymer electrolyte reinforcing material and solid polymer electrolyte reinforcement using the same
JP5266766B2 (en) Resin film structure
CN102008905B (en) Proton exchange film as well as preparation method and application thereof
JP5207582B2 (en) Manufacturing method of electrolyte membrane with little dimensional change
US20230343979A1 (en) Composite electrolyte membrane
JP5189394B2 (en) Polymer electrolyte membrane
JP2011146256A (en) Reinforcing membrane type electrolyte membrane
US9123963B2 (en) Direct coated membrane electrode assembly on external reinforcement for fuel cells
US10403905B2 (en) Structures and preparation methods for catalyst coated membranes for fuel cells
US20210167410A1 (en) Membrane electrode assembly
JP2008262822A (en) Starting and stopping method of fuel cell, and starting and stopping system of fuel cell
KR20210083195A (en) Polymer Electrolyte Membrane, Membrane-Electrode Assembly Comprising The Same, and Method for Measuring Durability Thereof
CN102019147B (en) Proton exchange membrane as well as preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R151 Written notification of patent or utility model registration

Ref document number: 5266766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151