JP5266092B2 - Light emitting element - Google Patents
Light emitting element Download PDFInfo
- Publication number
- JP5266092B2 JP5266092B2 JP2009040654A JP2009040654A JP5266092B2 JP 5266092 B2 JP5266092 B2 JP 5266092B2 JP 2009040654 A JP2009040654 A JP 2009040654A JP 2009040654 A JP2009040654 A JP 2009040654A JP 5266092 B2 JP5266092 B2 JP 5266092B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- organic
- layer
- metal nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010410 layer Substances 0.000 claims description 173
- 239000002082 metal nanoparticle Substances 0.000 claims description 76
- 238000009826 distribution Methods 0.000 claims description 55
- 239000002245 particle Substances 0.000 claims description 9
- 239000011247 coating layer Substances 0.000 claims description 8
- 238000005401 electroluminescence Methods 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 31
- 239000000758 substrate Substances 0.000 description 25
- 239000000463 material Substances 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000004075 alteration Effects 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 6
- 230000005672 electromagnetic field Effects 0.000 description 5
- 230000005525 hole transport Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- YLYPIBBGWLKELC-RMKNXTFCSA-N 2-[2-[(e)-2-[4-(dimethylamino)phenyl]ethenyl]-6-methylpyran-4-ylidene]propanedinitrile Chemical compound C1=CC(N(C)C)=CC=C1\C=C\C1=CC(=C(C#N)C#N)C=C(C)O1 YLYPIBBGWLKELC-RMKNXTFCSA-N 0.000 description 1
- DNTVTBIKSZRANH-UHFFFAOYSA-N 4-(4-aminophenyl)-3-(3-methylphenyl)aniline Chemical compound CC1=CC=CC(C=2C(=CC=C(N)C=2)C=2C=CC(N)=CC=2)=C1 DNTVTBIKSZRANH-UHFFFAOYSA-N 0.000 description 1
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000000366 colloid method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
Description
本発明は、有機エレクトロルミネッセンス素子(以下有機EL素子という)を用いた発光素子に関するものである。 The present invention relates to a light emitting device using an organic electroluminescence device (hereinafter referred to as an organic EL device).
従来から、陽極層と陰極層との間に有機発光層を挟んだ有機EL素子が知られている。有機EL素子は、大面積に形成するのが比較的容易で、低消費電力で発光することが可能なことから、照明用途などの発光素子として研究開発が行われている。 Conventionally, an organic EL element in which an organic light emitting layer is sandwiched between an anode layer and a cathode layer is known. An organic EL element is relatively easy to form in a large area and can emit light with low power consumption. Therefore, research and development have been conducted as a light-emitting element for lighting applications.
この種の有機EL素子10は、例えば、図6に示すように、ガラス材料からなる透光性の基板5の一表面側(図面の下側)に、陽極層1と、該陽極層1上に正孔注入層6、正孔輸送層7を介して有機発光層3と、該有機発光層3上に電子輸送層8を介して陰極層2と、を備えている。また、有機発光層3には、主発光波長が異なる複数層(例えば、赤色の光(R)を放射する赤色発光層3a、緑色の光(G)を放射する緑色発光層3bおよび青色の光(B)を放射する青色発光層3c)が形成されている。このような有機EL素子10は、一対の電極となる陽極層1と陰極層2との間に電圧を印加されると、有機発光層3の各発光層3a,3b,3cそれぞれから主発光波長の異なる光R,G,Bが放射され、光出射面側となる基板5から白色の光が放出されて見える。 For example, as shown in FIG. 6, this type of organic EL element 10 includes an anode layer 1 and an anode layer 1 on one surface side (lower side of the drawing) of a translucent substrate 5 made of a glass material. Are provided with an organic light emitting layer 3 via a hole injection layer 6 and a hole transport layer 7, and a cathode layer 2 via an electron transport layer 8 on the organic light emitting layer 3. The organic light emitting layer 3 includes a plurality of layers having different main light emission wavelengths (for example, a red light emitting layer 3a that emits red light (R), a green light emitting layer 3b that emits green light (G), and blue light. A blue light emitting layer 3c) that emits (B) is formed. When such an organic EL element 10 is applied with a voltage between the anode layer 1 and the cathode layer 2 serving as a pair of electrodes, the main emission wavelength is emitted from each of the light emitting layers 3a, 3b, 3c of the organic light emitting layer 3. Are emitted, and white light is emitted from the substrate 5 on the light exit surface side.
ところで、有機発光層3から放射された主発光波長が異なる光R,G,Bは、媒体に対する屈折率が異なるので、例えば、図7に示すようにガラス材料からなる基板5中で同じ光路を辿った光R,G,Bであっても、スネルの法則に従ってガラスから空気へ屈折方向が分かれて放射されることになる。そのため、有機EL素子10の基板5から放射される光に色収差が発生し、有機EL素子10から放射された光の被照射面においては色むらとして観測されることになる。人間の目は、白色の光の色収差に対して敏感であり、少しの違いでも大きな色の違いとして認識する。そのため、このような有機EL素子10の構成では、均一な白色となる良質の光が求められる照明用途に用いるには十分ではない。 By the way, the light R, G, and B having different main emission wavelengths emitted from the organic light emitting layer 3 have different refractive indexes with respect to the medium. Therefore, for example, as shown in FIG. Even the traced light R, G, B will be emitted from the glass in the direction of refraction according to Snell's law. Therefore, chromatic aberration occurs in the light emitted from the substrate 5 of the organic EL element 10, and color unevenness is observed on the irradiated surface of the light emitted from the organic EL element 10. The human eye is sensitive to the chromatic aberration of white light, and even small differences are perceived as large color differences. Therefore, such a configuration of the organic EL element 10 is not sufficient for use in lighting applications that require high-quality light that is uniform white.
また、照明用途においては、光源からの光を狭角配光させて所望の方向に光を取り出すニーズがある。そのため、有機EL素子10の光出射面側に、配光制御部として配光レンズを設け所望の配光を得る発光素子とすることが考えられる。ところで、照明系の光学設計では、前記配光レンズは、通常、光線追跡法を用いた幾何学光学設計により形成されるのが一般的であるが、幾何学光学設計では、屈折率が変化する界面での屈折率により光の進行方向を制御することを前提としており、狭角配光させるには前記配光レンズの厚み寸法を大きくする必要がある。そのため、前記配光レンズを用いた発光素子では、光の進行方向の制御範囲にも限界があり、前記配光レンズの厚み寸法が大きくなるにつれ、光路長が長くなることによる色収差も大きくなるという問題もある。 In illumination applications, there is a need to extract light from a light source in a desired direction by narrow-angle light distribution. Therefore, it is conceivable to provide a light distribution lens as a light distribution control unit on the light emitting surface side of the organic EL element 10 to obtain a desired light distribution. By the way, in the optical design of the illumination system, the light distribution lens is generally formed by a geometric optical design using a ray tracing method, but the refractive index changes in the geometric optical design. It is premised on that the traveling direction of light is controlled by the refractive index at the interface, and it is necessary to increase the thickness dimension of the light distribution lens in order to achieve narrow-angle light distribution. Therefore, in the light emitting element using the light distribution lens, there is a limit to the control range of the light traveling direction, and as the thickness dimension of the light distribution lens increases, the chromatic aberration due to the increase in the optical path length increases. There is also a problem.
また、他の有機EL素子10’の構成として、図8に示すように、基板5と、該基板5の一表面側(図面の上側)に陽極層1’と、有機発光層3’と、陰極層2’とが形成され、有機発光層3’が、同一平面において互いに主発光波長の異なる複数の発光部(例えば、赤色の光(R)を放射する発光層3a’、緑色の光(G)を放射する発光層3b’および青色の光(B)を放射する発光層3c’)を備え、陽極層1’を金属材料からなる凹凸構造にした有機EL素子10’が提案されている(例えば、特許文献1参照)。 As another organic EL element 10 ′, as shown in FIG. 8, a substrate 5, an anode layer 1 ′ on one surface side of the substrate 5 (upper side in the drawing), an organic light emitting layer 3 ′, A cathode layer 2 ′ is formed, and an organic light emitting layer 3 ′ has a plurality of light emitting portions (for example, a light emitting layer 3a ′ that emits red light (R), green light ( There has been proposed an organic EL element 10 ′ having a light-emitting layer 3b ′ that emits G) and a light-emitting layer 3c ′ that emits blue light (B), and the anode layer 1 ′ having an uneven structure made of a metal material. (For example, refer to Patent Document 1).
ここで、各発光層3a’,3b’,3c’から放出される光R,G,Bは、前記凹凸構造により表面プラズモンが誘起され、光出射面に対して垂直な軸に沿う方向に光出力を高めて陰極層2’側から放射される。なお、図8においては、有機EL素子10’を用い表示装置として構成しているため、基板5上に薄膜トランジスタからなるTFT層14、第一の絶縁層13、パターン化された陽極層1’および第二の絶縁層12を含んで構成されている。TFT層14は、各発光層3a’,3b’,3c’が個別に発光できるように陽極層1’と陰極層2’との間の電流を制御する。また、陰極層2’上には、有機EL素子10’を保護するための保護膜11が設けられるとともに、有機EL素子10’の光出射面側をカバー15で覆い前記表示装置を構成してある。 Here, the light R, G, B emitted from each of the light emitting layers 3a ′, 3b ′, 3c ′ is light in a direction along an axis perpendicular to the light emitting surface, with surface plasmons induced by the uneven structure. The output is increased and emitted from the cathode layer 2 'side. In FIG. 8, since the organic EL element 10 ′ is used as a display device, the TFT layer 14 made of a thin film transistor, the first insulating layer 13, the patterned anode layer 1 ′ and the substrate 5 are formed on the substrate 5. The second insulating layer 12 is included. The TFT layer 14 controls the current between the anode layer 1 'and the cathode layer 2' so that each of the light emitting layers 3a ', 3b', 3c 'can emit light individually. A protective film 11 for protecting the organic EL element 10 ′ is provided on the cathode layer 2 ′, and the light emitting surface side of the organic EL element 10 ′ is covered with a cover 15 to constitute the display device. is there.
ところで、上記特許文献1に開示された図8の構成の有機EL素子10’を照明用途に応用しようとする場合、有機EL素子10’は、陽極層1’の前記凹凸構造で表面プラズモンが誘起されることにより光出射面に対して垂直な軸に沿う方向に光出力を高めることが可能である。しかしながら、陽極層1’の前記凹凸構造は、光を出射させる方向に合わせて自由に設計することも難しく、配光制御が可能な範囲も制限される。また、陽極層1’の前記凹凸構造によって有機EL素子10’の各発光層3a’,3b’,3c’から放射された光の指向性が高まると、別途に拡散板などを用いて混色させ均一な白色の光にさせる必要がある。 By the way, when the organic EL element 10 ′ having the configuration shown in FIG. 8 disclosed in Patent Document 1 is to be applied to lighting applications, surface plasmon is induced in the organic EL element 10 ′ by the uneven structure of the anode layer 1 ′. By doing so, it is possible to increase the light output in the direction along the axis perpendicular to the light emitting surface. However, it is difficult to design the concavo-convex structure of the anode layer 1 ′ according to the direction in which light is emitted, and the range in which light distribution control is possible is limited. Further, when the directivity of light emitted from each of the light emitting layers 3a ′, 3b ′, 3c ′ of the organic EL element 10 ′ is increased by the uneven structure of the anode layer 1 ′, the color is separately mixed using a diffusion plate or the like. It is necessary to make uniform white light.
そのため、有機EL素子10’の陽極層1’を前記凹凸構造にして、有機発光層3’から光出射面に対して垂直な軸に沿う方向に光出力を高めたとしても、前記拡散板により光が散乱され光の進行方向を制御しがたいという問題がある。また、前記拡散板により、光取り出し効率が低下するという問題も生ずる。 Therefore, even if the anode layer 1 ′ of the organic EL element 10 ′ has the concavo-convex structure and the light output is increased in the direction along the axis perpendicular to the light emitting surface from the organic light emitting layer 3 ′, the diffusion plate There is a problem that light is scattered and it is difficult to control the traveling direction of the light. Further, the diffusion plate also causes a problem that the light extraction efficiency is lowered.
本発明は上記事由に鑑みてなされたものであり、その目的は、色収差が少なく、且つ特定の方向に配光制御が可能な発光素子を提供することにある。 The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a light-emitting element that has less chromatic aberration and can control light distribution in a specific direction.
請求項1の発明は、陽極層と陰極層との間に少なくとも有機発光層が設けられた有機エレクトロルミネッセンス素子と、該有機エレクトロルミネッセンス素子の光出射面側に設けられた配光制御部とを有する発光素子であって、前記有機エレクトロルミネッセンス素子の有機発光層は、主発光波長が異なる2層以上が積層されてなるとともに、前記配光制御部は、前記有機発光層からの光に対して表面プラズモンを誘起可能であって、光を出射させる方向と平行な方向に沿って設けられた柱状形状の金属ナノ粒子を備えてなることを特徴とする。 The invention of claim 1 includes an organic electroluminescent element in which at least an organic light emitting layer is provided between an anode layer and a cathode layer, and a light distribution control unit provided on the light emitting surface side of the organic electroluminescent element. The organic light-emitting layer of the organic electroluminescence element includes two or more layers having different main emission wavelengths, and the light distribution control unit is configured to prevent light from the organic light-emitting layer. Surface plasmons can be induced, and columnar-shaped metal nanoparticles are provided along a direction parallel to a direction in which light is emitted.
この発明によれば、有機発光層からの光に対して表面プラズモンを誘起可能であって、光を出射させる方向と平行な方向に沿って設けられた柱状形状の金属ナノ粒子を備えていることにより、表面プラズモンを誘発させ、色収差が少なく、且つ特定の方向に配光制御が可能な発光素子とすることができる。 According to this invention, surface plasmons can be induced with respect to light from the organic light emitting layer, and the columnar-shaped metal nanoparticles are provided along a direction parallel to the direction in which the light is emitted. Thus, it is possible to provide a light emitting element that induces surface plasmon, has little chromatic aberration, and can control light distribution in a specific direction.
請求項2の発明は、陽極層と陰極層との間に少なくとも有機発光層が設けられた有機エレクトロルミネッセンス素子と、該有機エレクトロルミネッセンス素子の光出射面側に設けられた配光制御部とを有する発光素子であって、前記有機エレクトロルミネッセンス素子の有機発光層は、主発光波長が異なる2層以上が積層されてなるとともに、前記配光制御部は、前記有機発光層からの光に対して表面プラズモンを誘起可能であって、光を出射させる方向と平行な方向に沿って設けられた鎖状形状となる金属ナノ粒子の積設物を備えてなることを特徴とする。 According to a second aspect of the present invention, there is provided an organic electroluminescent element in which at least an organic light emitting layer is provided between an anode layer and a cathode layer, and a light distribution control unit provided on the light emitting surface side of the organic electroluminescent element. The organic light-emitting layer of the organic electroluminescence element includes two or more layers having different main emission wavelengths, and the light distribution control unit is configured to prevent light from the organic light-emitting layer. A surface plasmon can be induced, and there is provided a stacked structure of metal nanoparticles having a chain shape provided in a direction parallel to a direction in which light is emitted.
この発明によれば、有機発光層からの光に対して表面プラズモンを誘起可能であって、光を出射させる方向と平行な方向に沿って設けられた鎖状形状となる金属ナノ粒子の積設物を備えていることにより、表面プラズモンを誘発させ、色収差が少なく、且つ特定の方向に配光制御が可能な発光素子とすることができる。 According to this invention, surface plasmons can be induced with respect to light from the organic light emitting layer, and the metal nanoparticles having a chain shape provided along the direction parallel to the direction in which the light is emitted are stacked. By providing the object, it is possible to provide a light emitting element that induces surface plasmon, has little chromatic aberration, and can control light distribution in a specific direction.
請求項3の発明は、請求項1または請求項2の発明において、前記配光制御部は、前記金属ナノ粒子と、該金属ナノ粒子が含有された透光性被覆層からなることを特徴とする。 The invention according to claim 3 is the invention according to claim 1 or 2, wherein the light distribution control unit includes the metal nanoparticles and a translucent coating layer containing the metal nanoparticles. To do.
この発明によれば、金属ナノ粒子を透光性被覆層に含ませることで、金属ナノ粒子の凝集や形状崩れを防止することができる。 According to this invention, the aggregation and shape collapse of the metal nanoparticles can be prevented by including the metal nanoparticles in the translucent coating layer.
請求項4の発明は、請求項1または請求項3の発明において、前記柱状形状の金属ナノ粒子は、長軸長が1nm以上200nm以下であることを特徴とする。 The invention of claim 4 is characterized in that, in the invention of claim 1 or claim 3, the columnar metal nanoparticles have a major axis length of 1 nm or more and 200 nm or less.
この発明によれば、表面プラズモンを誘起することができるとともに、柱状形状の金属ナノ粒子におけるアスペクト比を制御することにより増強波長の制御が可能で、金属ナノ粒子の光出射面に対する傾きを制御することで配光制御をすることができる。 According to the present invention, it is possible to induce surface plasmons and to control the enhancement wavelength by controlling the aspect ratio of the columnar metal nanoparticles, and to control the inclination of the metal nanoparticles with respect to the light exit surface. Therefore, light distribution can be controlled.
請求項5の発明は、請求項2または請求項3の発明において、前記鎖状形状を構成する金属ナノ粒子は、粒径が1nm以上200nm以下であることを特徴とする。 The invention of claim 5 is characterized in that, in the invention of claim 2 or claim 3, the metal nanoparticles constituting the chain shape have a particle size of 1 nm or more and 200 nm or less.
この発明によれば、表面プラズモンを誘起することができるとともに、金属ナノ粒子の粒径制御や鎖状形状を制御することで増強波長の制御や配光制御をすることができる。 According to the present invention, surface plasmon can be induced, and control of the enhancement wavelength and light distribution can be performed by controlling the particle size control and chain shape of the metal nanoparticles.
請求項1の発明は、有機EL素子の有機発光層が主発光波長の異なる2層以上に積層されてなるとともに、前記有機EL素子の光出射面側に設けられた配光制御部が前記有機発光層からの光に対して表面プラズモンを誘起可能であって、光を出射させる方向と平行な方向に沿って設けられた柱状形状の金属ナノ粒子を備えていることにより、色収差が少なく、且つ特定の方向に配光制御が可能な発光素子とすることができるという効果がある。 According to the first aspect of the present invention, the organic light emitting layer of the organic EL element is laminated in two or more layers having different main emission wavelengths, and the light distribution control unit provided on the light emitting surface side of the organic EL element includes the organic light emitting layer. Surface plasmons can be induced with respect to light from the light-emitting layer, and the columnar-shaped metal nanoparticles provided along the direction parallel to the direction in which the light is emitted provide less chromatic aberration, and There is an effect that a light emitting element capable of controlling light distribution in a specific direction can be obtained.
請求項2の発明は、有機EL素子の有機発光層が主発光波長の異なる2層以上に積層されてなるとともに、前記有機EL素子の光出射面側に設けられた配光制御部が前記有機発光層からの光に対して表面プラズモンを誘起可能であって、光を出射させる方向と平行な方向に沿って設けられた鎖状形状となる金属ナノ粒子の積設物を備えていることにより、色収差が少なく、且つ特定の方向に配光制御が可能な発光素子とすることができるという効果がある。 In the invention of claim 2, the organic light emitting layer of the organic EL element is laminated in two or more layers having different main light emission wavelengths, and the light distribution control unit provided on the light emitting surface side of the organic EL element includes the organic light emitting layer. By providing a stack of metal nanoparticles that can induce surface plasmons with respect to light from the light emitting layer and is provided along a direction parallel to the direction in which the light is emitted. Thus, there is an effect that a light-emitting element with little chromatic aberration and capable of controlling light distribution in a specific direction can be obtained.
(実施形態1)
以下、本実施形態の発光素子について、図1を用いて説明する。
(Embodiment 1)
Hereinafter, the light emitting device of this embodiment will be described with reference to FIG.
本実施形態の発光素子20は、図1に、基板5の一表面側(図面の下側)に陽極層1と、該陽極層1上に正孔注入層6、正孔輸送層7を介して形成された有機発光層3と、該有機発光層3上に電子輸送層8を介して形成された陰極層2とを備えた有機EL素子10と、該有機EL素子10の光出射面側に設けられた配光制御部4とを有している。ここで、有機EL素子10の有機発光層3は、主発光波長が異なる赤色発光層3a、緑色発光層3b、青色発光層3cが積層されてなるとともに、配光制御部4は、有機発光層3からの光に対して表面プラズモンを誘起可能であって、光を出射させる方向と平行な方向に沿って設けられた柱状形状の金属ナノ粒子4aを備えている。 The light emitting element 20 of this embodiment is shown in FIG. 1 with an anode layer 1 on one surface side (lower side of the drawing) of the substrate 5 and a hole injection layer 6 and a hole transport layer 7 on the anode layer 1. An organic light emitting layer 3 formed on the organic light emitting layer 3 and a cathode layer 2 formed on the organic light emitting layer 3 via the electron transport layer 8, and a light emitting surface side of the organic EL device 10 The light distribution control unit 4 is provided. Here, the organic light emitting layer 3 of the organic EL element 10 is formed by laminating a red light emitting layer 3a, a green light emitting layer 3b, and a blue light emitting layer 3c having different main light emission wavelengths, and the light distribution control unit 4 includes an organic light emitting layer. Surface plasmons can be induced with respect to the light from 3, and the columnar-shaped metal nanoparticles 4a are provided along a direction parallel to the direction in which the light is emitted.
以下、本実施形態の発光素子20に用いられる各構成について、詳述する。 Hereinafter, each component used for the light emitting element 20 of this embodiment is explained in full detail.
本実施形態の発光素子20は、有機EL素子10と、該有機EL素子10の光出射面側に設けられた配光制御部4から構成されている。 The light emitting element 20 of the present embodiment includes an organic EL element 10 and a light distribution control unit 4 provided on the light emitting surface side of the organic EL element 10.
有機EL素子10には、陽極層1、有機発光層3や陰極層2を形成するために基板5が用いられ、基板5は、陽極層1、有機発光層3や陰極層2などが支持可能であり成膜方法によっては耐熱性が要求される場合がある。また、有機発光層3からの光を基板5から取り出す場合は、透光性を有することが好ましく、基板5の材料は、例えば、ホウ珪酸クラウン光学ガラスなどのガラス材料や透光性プラスチック材料を用いることができる。 In the organic EL element 10, a substrate 5 is used to form the anode layer 1, the organic light emitting layer 3, and the cathode layer 2. The substrate 5 can support the anode layer 1, the organic light emitting layer 3, the cathode layer 2, and the like. Depending on the film formation method, heat resistance may be required. Moreover, when taking out the light from the organic light emitting layer 3 from the board | substrate 5, it is preferable to have translucency, and the material of the board | substrate 5 is glass materials and translucent plastic materials, such as a borosilicate crown optical glass, for example. Can be used.
有機EL素子10の陽極層1は、有機発光層3に正孔を効率よく注入させるものが好ましい。また、有機発光層3に対し陽極層1を光出射面側に配置させた場合、有機発光層3が放射した光の波長に対して透光性の高いものが好ましい。本実施形態においては、有機EL素子10を白色光源として利用しているため、陽極層1の材料としてインジウム・スズ酸化物(ITO)を好適に利用することができる。その他、陽極層1の材料として、例えば、ニッケル、金、銀、白金、パラジウムやこれらの合金、インジウム・亜鉛酸化物(IZO)やアンチモン・スズ酸化物などの透明導電性膜を用いることもできる。 The anode layer 1 of the organic EL element 10 is preferably one that efficiently injects holes into the organic light emitting layer 3. Further, when the anode layer 1 is disposed on the light emitting surface side with respect to the organic light emitting layer 3, a material having high translucency with respect to the wavelength of light emitted from the organic light emitting layer 3 is preferable. In this embodiment, since the organic EL element 10 is used as a white light source, indium tin oxide (ITO) can be suitably used as the material of the anode layer 1. In addition, as a material of the anode layer 1, for example, a transparent conductive film such as nickel, gold, silver, platinum, palladium, alloys thereof, indium / zinc oxide (IZO), antimony / tin oxide, or the like can be used. .
有機EL素子10の陰極層2は、有機発光層3に正孔と再結合するための電子を効率よく注入可能なものが好ましい。また、有機発光層3に対し陽極層1側だけを光出射面側とする場合は、有機発光層3を介して陽極層1と対向面側に配置された陰極層2は、有機発光層3で発光した光を効率よく反射するものが好ましい。本実施形態においては、有機EL素子10を白色光源として利用しているため、陰極層2の材料としては、可視光域の波長に対して反射率が高いアルミニウムやマグネシウム銀合金などを好適に用いることができる。その他の陰極層2の材料として、例えば、マグネシウム、マグネシウムインジウム合金、マグネシウムアルミニウム合金やアルミニウムリチウム合金などを用いてもよい。 The cathode layer 2 of the organic EL element 10 is preferably one that can efficiently inject electrons for recombination with holes into the organic light emitting layer 3. When only the anode layer 1 side is the light emitting surface side with respect to the organic light emitting layer 3, the cathode layer 2 disposed on the surface facing the anode layer 1 through the organic light emitting layer 3 is the organic light emitting layer 3. Those that efficiently reflect the light emitted in step 1 are preferred. In this embodiment, since the organic EL element 10 is used as a white light source, aluminum, magnesium silver alloy, or the like having high reflectivity with respect to the wavelength in the visible light region is preferably used as the material of the cathode layer 2. be able to. As other materials for the cathode layer 2, for example, magnesium, a magnesium indium alloy, a magnesium aluminum alloy, an aluminum lithium alloy, or the like may be used.
有機EL素子10に用いられる有機発光層3としては、主発光波長が異なる2層以上が積層されるものであり、例えば、照明用途の白色光源とさせるため、赤色の光が発光可能な赤色発光層3aとして、トリス(8−ヒドロキシキナリナト)アルミニウム(以下、Alq3という)に[2−[2−[4−(ジメチルアミノ)フェニル]エチニル]−6−メチル−4H−イリデン]−プロパネプロパンジニトリル(DCM色素)をドープさせた層を、緑色の光が発光可能な緑色発光層3bとして、Alq3からなる層を、青色の光が発光可能な青色発光層3cとして、ビス(2−メチル−8−キノリトラト、パラ−フェニルフェノラト)アルミニウム(BAlq3)にペニレンをドープした層をそれぞれ積層させたものを用いることができる。 As the organic light emitting layer 3 used in the organic EL element 10, two or more layers having different main light emission wavelengths are laminated. For example, red light emission capable of emitting red light to make a white light source for illumination use. As layer 3a, [2- [2- [4- (dimethylamino) phenyl] ethynyl] -6-methyl-4H-ylidene] -propanepropane was added to tris (8-hydroxyquinalinato) aluminum (hereinafter referred to as Alq3). A layer doped with dinitrile (DCM dye) is used as a green light emitting layer 3b capable of emitting green light, a layer made of Alq3 is used as a blue light emitting layer 3c capable of emitting blue light, and bis (2-methyl). -8-quinolitolate, para-phenylphenolato) aluminum (BAlq3) in which layers each doped with penylene can be used.
有機発光層3は、主発光波長が異なる2以上が積層される場合、より光出射面に近い有機発光層3側に、より長波長が発光可能な発光層を積層させることで、光取り出し効率を向上させることができ、例えば、光出射面側となる基板5上に陽極層1を介して有機発光層3として赤色発光層3a、緑色発光層3b、青色発光層3cを順に積層させ、有機発光層3上に陰極層2を形成させることができる。これにより効率よく基板5から各光R,G,Bを取り出すことができる。同様に、有機発光層3は、主発光波長が補色関係にある2種類の発光層を持つものとして、例えば、黄色発光層および青色発光層を積層させたものでもよい。 When two or more organic light emitting layers 3 having different main light emission wavelengths are stacked, a light emitting layer capable of emitting a longer wavelength is stacked on the side of the organic light emitting layer 3 closer to the light emitting surface, so that the light extraction efficiency is increased. For example, a red light emitting layer 3a, a green light emitting layer 3b, and a blue light emitting layer 3c are sequentially laminated as an organic light emitting layer 3 on the substrate 5 on the light emitting surface side via the anode layer 1 to form an organic The cathode layer 2 can be formed on the light emitting layer 3. Thereby, each light R, G, and B can be efficiently extracted from the substrate 5. Similarly, the organic light emitting layer 3 may have, for example, a laminate of a yellow light emitting layer and a blue light emitting layer as having two types of light emitting layers whose main light emission wavelengths are complementary.
有機EL素子10に好適に用いられる正孔注入層6としては、正孔注入のエネルギー障壁を低減させるものであって、正孔注入層6の材料として、例えば、ポリチオフェン誘導体などを用いることができる。 The hole injection layer 6 preferably used for the organic EL element 10 is to reduce the energy barrier for hole injection. As the material of the hole injection layer 6, for example, a polythiophene derivative or the like can be used. .
有機EL素子10に好適に用いられる正孔輸送層7としては、正孔を効率よく有機発光層3に輸送し有機EL素子10の駆動電圧を低減させるため、適度なイオン化ポテンシャルと正孔移動度が高いものが好ましく、有機発光層3からの過剰の電子が漏れでないようにするため電子親和力が小さいことが好ましい。このような正孔輸送層7の材料としては、例えば、ビス[N−(1−ナフキブ)−N−フェニル]ベンジジン(以下、α−NDPという)やN,N−ジフェニル−N,N−ビス(3−メチルフェニル)1,1’−ビフェニル−4,4’−ジアミン(以下、TPDという)などを用いることができる。 As the hole transport layer 7 suitably used for the organic EL element 10, in order to efficiently transport holes to the organic light emitting layer 3 and reduce the driving voltage of the organic EL element 10, an appropriate ionization potential and hole mobility are obtained. In order to prevent excessive electrons from the organic light emitting layer 3 from leaking, it is preferable that the electron affinity is small. Examples of the material for the hole transport layer 7 include bis [N- (1-naphthkib) -N-phenyl] benzidine (hereinafter referred to as α-NDP) and N, N-diphenyl-N, N-bis. (3-Methylphenyl) 1,1′-biphenyl-4,4′-diamine (hereinafter referred to as TPD) can be used.
有機EL素子10に好適に用いられる電子輸送層8としては、電子を効率よく有機発光層3に輸送可能で有機発光層3からの正孔が流れ込むのを抑制可能なものが好ましい。このような電子輸送層8の材料は、例えば、フッ化リチウム(LiF)などを用いることができる。 As the electron transport layer 8 suitably used for the organic EL element 10, a material that can efficiently transport electrons to the organic light emitting layer 3 and can suppress the flow of holes from the organic light emitting layer 3 is preferable. For example, lithium fluoride (LiF) can be used as the material of the electron transport layer 8.
このような陽極層1、有機発光層3や陰極層2は、基板5上に真空蒸着法などを用いてそれぞれ積層させて形成することができ、正孔注入層6、正孔輸送層7や電子輸送層8は必ずしも設ける必要はない。 The anode layer 1, the organic light emitting layer 3 and the cathode layer 2 can be formed by laminating them on the substrate 5 by using a vacuum vapor deposition method or the like. The hole injection layer 6, the hole transport layer 7, The electron transport layer 8 is not necessarily provided.
次に、本実施形態の配光制御部4は、有機EL素子10の光出射面側に設けられ、光を出射させる方向と平行な方向に沿って設けられた柱状形状の金属ナノ粒子4aであって、有機発光層3からの光に対して表面プラズモンを誘起可能に構成してある。ここで、表面プラズモンとは、金属の表面に存在する電子が集団振動する振動モードのことであり、金属中の自由電子が光と相互作用を起こす現象のことである。通常、金属中の電子は、光と相互作用をしないが、nmレベルの微粒子のような光の波長に比べ粒径の小さい金属粒子においては、微小表面において電子と光が共鳴を起こす。特に、金属の誘電率の実部(ε’=n2−k2,n:屈折率、k:消衰係数)の符号がマイナスで、かつ絶対値が大きい材料(例えば、AuやAgなど)の場合に相互作用が強い。 Next, the light distribution control unit 4 of the present embodiment is a columnar-shaped metal nanoparticle 4a provided on the light emitting surface side of the organic EL element 10 and provided along a direction parallel to the direction of emitting light. Thus, the surface plasmon can be induced with respect to the light from the organic light emitting layer 3. Here, the surface plasmon is a vibration mode in which electrons existing on the surface of the metal collectively vibrate, and is a phenomenon in which free electrons in the metal interact with light. Normally, electrons in a metal do not interact with light, but in a metal particle having a particle diameter smaller than the wavelength of light, such as nanometer-sized fine particles, the electron and light resonate on a minute surface. In particular, the material of the real part of the dielectric constant of metal (ε ′ = n 2 −k 2 , n: refractive index, k: extinction coefficient) is negative and has a large absolute value (for example, Au, Ag, etc.) In the case of, the interaction is strong.
したがって、表面プラズモンを誘起させるためには、柱状形状の金属ナノ粒子4aを有機発光層3からの光の波長よりも十分に小さくすればよい。金属ナノ粒子を200nm以下、さらに望ましくは20nm以下の微粒子にすることにより、相互作用がさらに強くなる。 Therefore, in order to induce surface plasmons, the columnar metal nanoparticles 4 a may be made sufficiently smaller than the wavelength of light from the organic light emitting layer 3. By making the metal nanoparticles into fine particles of 200 nm or less, more desirably 20 nm or less, the interaction is further strengthened.
次に、有機EL素子10の光出射面と垂直方向に沿って柱状形状の金属ナノ粒子4aを設けた発光素子20について、発光素子20を発光させた場合の金属ナノ粒子4aの周辺光強度をFDTD法(Finite-Difference Time-Domain method)を用いて、電磁界シミュレーションした結果を図2に示す。電磁界シミュレーションは、電磁界の時間変化を記述するMaxwellの方程式を空間的・時間的に差分化し、電磁界の時間変化を追跡しようとするものであり、図2(a)に柱状形状の金属ナノ粒子4aとして、短軸長が50nmのAgナノロッドを用いた発光素子20の斜視図を計算モデルとして示してある。図2(a)では、金属ナノ粒子4aを円柱形状で図示し、直交座標系でXYZ軸を示している。ここでは、XY平面を有機EL素子10の光出射面と平行方向で、XY平面と直交するZ軸方向が前記円柱形状の長軸方向として示している。また、金属ナノ粒子4aの周辺の光強度のシミュレーション結果を図2(b)と図2(c)に示してある。図2(b)は、図2(a)におけるXZ断面であり、図中、中央の矩形断面形状が金属ナノ粒子4aを示し、有機EL素子10の表面における発光強度を基準として発光強度を示している。図2(b)から柱状形状の金属ナノ粒子4aの長軸方向の側面に沿って発光強度が高くなっており、表面プラズモン共鳴が起こっていることがわかる。また、図2(c)は、図2(a)のXY断面であり、図中、中央の円形断面形状が柱状形状の金属ナノ粒子4aを示し、有機EL素子10の表面における発光強度を基準として発光強度を示している。図2(c)から柱状形状の金属ナノ粒子4aは、その軸方向の一部において発光強度が高くなっている。したがって、図2から柱状形状の金属ナノ粒子4aの近傍で光の振幅(強度)が局所的に増幅されていることがわかる。 Next, regarding the light emitting element 20 provided with the columnar metal nanoparticles 4a along the direction perpendicular to the light emitting surface of the organic EL element 10, the peripheral light intensity of the metal nanoparticles 4a when the light emitting element 20 is caused to emit light is expressed. FIG. 2 shows the result of electromagnetic field simulation using the FDTD method (Finite-Difference Time-Domain method). In the electromagnetic field simulation, Maxwell's equation describing the time variation of the electromagnetic field is differentiated spatially and temporally to track the time variation of the electromagnetic field. FIG. The perspective view of the light emitting element 20 using Ag nanorods having a short axis length of 50 nm as the nanoparticles 4a is shown as a calculation model. In FIG. 2A, the metal nanoparticles 4a are illustrated in a cylindrical shape, and the XYZ axes are illustrated in an orthogonal coordinate system. Here, the XY plane is parallel to the light emitting surface of the organic EL element 10, and the Z-axis direction orthogonal to the XY plane is shown as the long axis direction of the cylindrical shape. Moreover, the simulation result of the light intensity around the metal nanoparticles 4a is shown in FIG. 2 (b) and FIG. 2 (c). 2 (b) is an XZ cross section in FIG. 2 (a), in which the rectangular cross section at the center indicates the metal nanoparticles 4a, and the light emission intensity is shown on the basis of the light emission intensity on the surface of the organic EL element 10. FIG. ing. From FIG. 2B, it can be seen that the emission intensity increases along the side surface in the major axis direction of the columnar-shaped metal nanoparticles 4a, and surface plasmon resonance occurs. FIG. 2C is an XY cross section of FIG. 2A. In the drawing, the center circular cross section shows the columnar metal nanoparticles 4a, and the emission intensity on the surface of the organic EL element 10 is used as a reference. The emission intensity is shown as. From FIG.2 (c), the columnar-shaped metal nanoparticle 4a has high light emission intensity in a part of the axial direction. Therefore, it can be seen from FIG. 2 that the amplitude (intensity) of light is locally amplified in the vicinity of the columnar metal nanoparticles 4a.
次に、本実施形態の発光素子10における光の配光制御を図3を用いて説明する。通常、有機EL素子10の有機発光層3から発光した光R,G,Bは、光出射面側である基板5を通してさまざまな方向に放射される。しかしながら、基板5と空気の界面近傍付近に特定形状の金属ナノ粒子4aを配置すると、表面プラズモン共鳴により特定の波長成分が特定の方向に強く光を発する。 Next, light distribution control in the light emitting element 10 of the present embodiment will be described with reference to FIG. Usually, the light R, G, B emitted from the organic light emitting layer 3 of the organic EL element 10 is radiated in various directions through the substrate 5 on the light emitting surface side. However, when the metal nanoparticles 4a having a specific shape are arranged in the vicinity of the interface between the substrate 5 and the air, a specific wavelength component strongly emits light in a specific direction due to surface plasmon resonance.
表面プラズモンの共鳴に寄与する光の波長や方向は、金属ナノ粒子4aの配置間隔や形状により制御することができる。また、金属ナノ粒子4aの形状や金属ナノ粒子4aをコーティング等した場合には、コーティング材の誘電率に依存して特定の波長を強く発光させることもできる。 The wavelength and direction of light contributing to the surface plasmon resonance can be controlled by the arrangement interval and shape of the metal nanoparticles 4a. In addition, when the shape of the metal nanoparticle 4a or the metal nanoparticle 4a is coated, a specific wavelength can be strongly emitted depending on the dielectric constant of the coating material.
本実施形態のように有機発光層3が主発光波長が異なる2層以上に積層され有機発光層3から複数の主発光波長を同時に放射する場合には、金属ナノ粒子4aをランダムな配置とすることで表面プラズモン共鳴が起きる波長をランダムにすることができる。そのため、この状態で光の伝播方向を均一になるように金属ナノ粒子4aを制御すれば、配光制御したまま混色性を向上することが可能となる。 When the organic light emitting layer 3 is laminated in two or more layers having different main light emission wavelengths and emits a plurality of main light emission wavelengths simultaneously from the organic light emission layer 3 as in the present embodiment, the metal nanoparticles 4a are randomly arranged. Thus, the wavelength at which surface plasmon resonance occurs can be made random. Therefore, if the metal nanoparticles 4a are controlled so that the light propagation direction is uniform in this state, the color mixing property can be improved while the light distribution is controlled.
金属ナノ粒子4aは、気相法、液相法や固相法により形成することができ、気相法としては、各種CVD法、金属塩化物の還元・酸化・窒化法、水素中還元法、溶媒蒸発法、エピタキシャル成長法、ガス中蒸発法、レーザーアブレーション法、金属蒸気合成法、流動油状真空蒸発法などを用いることが挙げられる。また、液相法としては、コロイド法、水熱合成法、ゾルーゲル法、中和分解法、加水分解法、化学沈殿法、共沈法、アトマイジング法、逆ミセル法、エマルジョン法などを用いることができる。さらに、固相法としては、再結晶法、熱分解法、焼成法、黒鉛化法、熱還元法、粉砕法などが挙げられ、種々用いることができる。 The metal nanoparticles 4a can be formed by a gas phase method, a liquid phase method, or a solid phase method. Examples of the gas phase method include various CVD methods, metal chloride reduction / oxidation / nitridation methods, hydrogen reduction methods, Examples thereof include a solvent evaporation method, an epitaxial growth method, a gas evaporation method, a laser ablation method, a metal vapor synthesis method, and a fluid oily vacuum evaporation method. In addition, as a liquid phase method, a colloid method, hydrothermal synthesis method, sol-gel method, neutralization decomposition method, hydrolysis method, chemical precipitation method, coprecipitation method, atomizing method, reverse micelle method, emulsion method, etc. should be used. Can do. Furthermore, examples of the solid phase method include a recrystallization method, a thermal decomposition method, a firing method, a graphitization method, a thermal reduction method, and a pulverization method, and various methods can be used.
このような方法で形成された金属ナノ粒子4aを有機EL素子10の光出射面側に配置させると、有機発光層3が放出した光のうち特定の波長の光エネルギーが自由電子に移転される共鳴現象が起こるようになる。その結果として、表面プラズモン共鳴が生じ、入射光が反射光に変化せずに、金属ナノ粒子4aの表面に沿って伝達されるようになる。したがって、各発光波長の位相分布を均等にし、混色性を向上させるためには、金属ナノ粒子4aを前記光出射面と垂直な方向に沿って配列するのが望ましい。また、金属ナノ粒子4aを有機EL素子10の前記光出射面側に対して特定の傾斜で配置させることで、発光素子20の指向性を制御することも可能となる。 When the metal nanoparticles 4a formed by such a method are arranged on the light emitting surface side of the organic EL element 10, light energy of a specific wavelength among the light emitted from the organic light emitting layer 3 is transferred to free electrons. A resonance phenomenon occurs. As a result, surface plasmon resonance occurs, and incident light is not changed into reflected light, but is transmitted along the surface of the metal nanoparticles 4a. Therefore, in order to make the phase distribution of each emission wavelength uniform and improve the color mixing property, it is desirable to arrange the metal nanoparticles 4a along the direction perpendicular to the light emitting surface. In addition, the directivity of the light emitting element 20 can be controlled by arranging the metal nanoparticles 4 a with a specific inclination with respect to the light emitting surface side of the organic EL element 10.
なお、有機発光層3が発したそれぞれの光R,G,Bに対して表面プラズモンを誘起できる限り、金属ナノ粒子4aの体積平均一次粒径、調整条件や形状等に依存する体積平均凝集径は特に限られない。したがって、柱状形状の金属ナノ粒子4aは、長軸長を約200nm以下でランダムに形成させることができる。また、制御のしやすさから約1nm以上でランダムに形成させることが好ましい。 In addition, as long as surface plasmon can be induced with respect to each light R, G, B emitted from the organic light emitting layer 3, the volume average aggregate diameter depending on the volume average primary particle diameter, adjustment conditions, shape, etc. of the metal nanoparticles 4a. Is not particularly limited. Therefore, the columnar metal nanoparticles 4a can be randomly formed with a major axis length of about 200 nm or less. Moreover, it is preferable to form at random about 1 nm or more from the ease of control.
また、表面プラズモンの吸収波長は、金属種類、金属粒子のサイズ、コーティングの可否、およびコーティング物質の誘電率に伴って波長シフトが起こる。体積平均一次粒径および体積平均凝集径が大きくなるにしたがって、吸収波長が短波長側にシフトする傾向にある。また、表面プラズモンの吸収ピークはミー共鳴状態(Mie reseonance condition)によって予測することが可能であり、例えば、金、銀および銅の表面プラズモンの吸収は、それぞれ約400nm、530nmおよび570nmとなる。また、金を二酸化珪素でコーティングした場合には、約510nmないし約540nmで共鳴し、二酸化チタンでコーティングした場合には、約640nmで共鳴が起こる。これは、二酸化珪素が二酸化チタンよりも誘電率が大きいためである。また、銀を二酸化珪素でコーティングした場合は、約425nmで共鳴することになる。 Further, the wavelength of the surface plasmon absorption wavelength shifts with the metal type, the size of the metal particles, the possibility of coating, and the dielectric constant of the coating substance. As the volume average primary particle diameter and the volume average aggregate diameter increase, the absorption wavelength tends to shift to the short wavelength side. Further, the absorption peak of surface plasmon can be predicted by the Mie resonance condition. For example, the absorption of surface plasmon of gold, silver and copper is about 400 nm, 530 nm and 570 nm, respectively. In addition, when gold is coated with silicon dioxide, resonance occurs at about 510 nm to about 540 nm, and when coated with titanium dioxide, resonance occurs at about 640 nm. This is because silicon dioxide has a higher dielectric constant than titanium dioxide. In addition, when silver is coated with silicon dioxide, resonance occurs at about 425 nm.
異方性微粒子である柱状形状の金属ナノ粒子4aは、光を出射させる方向と平行な方向に沿って傾けることによりマクロな光学的性質を制御することが可能であり、金属ナノ粒子4bを鎖状形状に積設させた積設物に比べて配光指向制御に向いている。また、例えば、柱状形状の金属ナノ粒子4aは、そのアスペクト比(長軸長/短軸長)を制御することで、可視光から近赤外線までの任意の特定波長で、表面プラズモン共鳴を起こすことが可能である。従って、主発光波長が異なる光R,G,Bの配光制御を行う場合には、長軸長や短軸長がランダムに異なる柱状形状の金属ナノ粒子4aを有機EL素子10の光出射面に特定の傾きで設けて配光制御部4を形成すればよい。 The columnar-shaped metal nanoparticles 4a that are anisotropic fine particles can control macro optical properties by being tilted along a direction parallel to the direction in which light is emitted, and the metal nanoparticles 4b are chained. It is suitable for light distribution directivity control as compared with a stacked object stacked in a shape. Further, for example, the columnar metal nanoparticles 4a cause surface plasmon resonance at any specific wavelength from visible light to near infrared by controlling the aspect ratio (long axis length / short axis length). Is possible. Therefore, when performing light distribution control of the light R, G, and B having different main emission wavelengths, the columnar-shaped metal nanoparticles 4a having randomly different major axis lengths and minor axis lengths are used as the light emitting surface of the organic EL element 10. The light distribution control unit 4 may be formed with a specific inclination.
そのため、例えば、予め精製した柱状形状の金属ナノ粒子4aをゲル状材料の中に分散し、有機EL素子10の光出射面側となる透光性の基板5に塗布する。続いて、配光制御部4を形成させるため、これに特定方向から電界を印加し基板5上に柱状形状の金属ナノ粒子4aを特定方向に配置させた後、前記ゲル状材料をエッチング等により除去することで配光制御部4を形成することも考えられる。 Therefore, for example, columnar-shaped metal nanoparticles 4a that have been purified in advance are dispersed in a gel-like material and applied to the light-transmitting substrate 5 on the light emitting surface side of the organic EL element 10. Subsequently, in order to form the light distribution control unit 4, an electric field is applied from a specific direction to the columnar metal nanoparticles 4a on the substrate 5, and the gel-like material is etched or the like. It is also conceivable to form the light distribution control unit 4 by removing it.
(実施形態2)
本実施形態の発光素子20における基本構成は実施形態1と略同一であり、柱状形状の金属ナノ粒子4aの代わりに、図4に示すように鎖状形状となる金属ナノ粒子4bの積設物を用いた点が異なる。なお、実施形態1と同様の構成要素には、同一の符号を付して説明を適宜省略する。
(Embodiment 2)
The basic configuration of the light emitting device 20 of the present embodiment is substantially the same as that of the first embodiment, and a stacked structure of metal nanoparticles 4b having a chain shape as shown in FIG. 4 instead of the columnar metal nanoparticles 4a. The point using is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.
本実施形態の発光素子20は、配光制御部4が有機発光層3からの光に対して表面プラズモンを誘起可能であって、光を出射させる方向と平行な方向に沿って設けられた鎖状形状となる金属ナノ粒子4bの積設物を備えている。 In the light emitting element 20 according to the present embodiment, the light distribution control unit 4 can induce surface plasmons with respect to the light from the organic light emitting layer 3 and is provided along a direction parallel to the direction in which the light is emitted. A stack of metal nanoparticles 4b having a shape is provided.
このようなナノ構造となる金属ナノ粒子4bは、実施形態1と同様にして比較的簡単に形成することができ、有機EL素子10の有機発光層3に対する光出射面側に光を出射させる方向と平行な方向に沿って、積設させればよい。また、有機発光層3が発したそれぞれの光R,G,Bに対して、表面プラズモンを誘起できる限り、金属ナノ粒子4bの体積平均一次粒径、調整条件や形状等に依存する体積平均凝集径は特に限られないが、金属ナノ粒子4bは、粒子径が1nmから200nmの間にあることで表面プラズモンの誘起が容易となり粒径制御や鎖状の長さを制御することで増強波長の制御をすることもがきる。また、鎖状の形状を制御することで指向性を制御することもできる。 The metal nanoparticles 4b having such a nanostructure can be formed relatively easily in the same manner as in the first embodiment, and the direction in which light is emitted to the light emitting surface side of the organic EL element 10 with respect to the organic light emitting layer 3 is provided. May be stacked along a direction parallel to the. Moreover, as long as surface plasmon can be induced with respect to each light R, G, and B emitted from the organic light emitting layer 3, the volume average aggregation depending on the volume average primary particle diameter of the metal nanoparticles 4b, adjustment conditions, shapes, etc. Although the diameter is not particularly limited, the metal nanoparticle 4b has an enhanced wavelength by controlling the particle size and the chain length by facilitating the induction of surface plasmon when the particle diameter is between 1 nm and 200 nm. You can also control it. In addition, the directivity can be controlled by controlling the chain shape.
なお、少なくとも一部が鎖状形状となる金属ナノ粒子4bの積層物を備えた配光制御部4を有機EL素子の光出力面側に設けるためには、例えば、予め金属からなる前記粒子をゲル状溶液の中に分散させ、有機EL素子10の光出射面側となる透光性の基板5に塗布した後、前記ゲル状溶液をエッチング等で除去すればよい。このとき、前記ゲル状溶液の粘度、前記ゲル状溶液と金属ナノ粒子4bとの比重差、前記ゲル状溶液に対する金属ナノ粒子4bの含有量を調整することで、鎖状形状となる金属ナノ粒子4bの積設物を種々形成できると考えられる。 In order to provide the light distribution control unit 4 provided with a laminate of metal nanoparticles 4b, at least a part of which is in a chain shape, on the light output surface side of the organic EL element, for example, the particles made of metal in advance are used. After being dispersed in a gel-like solution and applied to the light-transmitting substrate 5 on the light emitting surface side of the organic EL element 10, the gel-like solution may be removed by etching or the like. At this time, by adjusting the viscosity of the gel solution, the specific gravity difference between the gel solution and the metal nanoparticles 4b, and the content of the metal nanoparticles 4b with respect to the gel solution, the metal nanoparticles having a chain shape It is considered that various types of the 4b stack can be formed.
(実施形態3)
本実施形態の発光素子20における基本構成は実施形態1と略同一であり、図5に示すように配光制御部4を、柱状形状の金属ナノ粒子4aに加え、金属ナノ粒子4aを被覆する透光性被覆層4cで形成した点が異なる。なお、実施形態1と同様の構成要素には、同一の符号を付して説明を適宜省略する。
(Embodiment 3)
The basic configuration of the light emitting element 20 of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 5, the light distribution control unit 4 is added to the columnar metal nanoparticles 4a to cover the metal nanoparticles 4a. The difference is that the light-transmitting coating layer 4c is formed. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.
本実施形態の発光素子20では、図5に示すように配光制御部4が金属ナノ粒子4aと、該金属ナノ粒子4aが含有された透光性被覆層4cから構成されている。 In the light emitting device 20 of the present embodiment, as shown in FIG. 5, the light distribution control unit 4 is composed of metal nanoparticles 4a and a translucent coating layer 4c containing the metal nanoparticles 4a.
金属ナノ粒子4aが表面プラズモンを効率よく誘起させるためには、均一粒度であることが望ましく、金属ナノ粒子4aに融着や凝集が生じ大きくなりすぎると、表面プラズモンを誘起させることが難しくなる傾向にある。 In order for the metal nanoparticles 4a to induce surface plasmons efficiently, it is desirable to have a uniform particle size. If the metal nanoparticles 4a are fused and aggregated too much, it is difficult to induce surface plasmons. It is in.
本実施形態の配光制御部4を形成するためには、予め精製した金属ナノ粒子4aをゲル状材料の中に分散し、有機EL素子10の光出射面側となる透光性の基板5に塗布して配光制御部4を形成する、あるいは直接ガラス材料からなる基板5の中に分散させて発光素子20の配光制御部4を形成するなどの方法で、有機EL素子10の光出射面側に形成された配光制御部4における金属ナノ粒子4aの凝集や融着などの劣化を防止することが可能となる。 In order to form the light distribution control unit 4 of the present embodiment, the metal nanoparticles 4a that have been purified in advance are dispersed in a gel-like material, and the light-transmitting substrate 5 that becomes the light emission surface side of the organic EL element 10. The light distribution control unit 4 is formed by coating on the substrate, or the light distribution control unit 4 of the light emitting device 20 is formed by directly dispersing in the substrate 5 made of a glass material. It becomes possible to prevent deterioration such as aggregation and fusion of the metal nanoparticles 4a in the light distribution control unit 4 formed on the emission surface side.
また、他の方法として、配光制御部4は、例えば予め精製したAgからなる球形の金属微粒子を透光性被覆層4cとなる透光性ポリイミド中に含有させる。続いて、加熱延伸処理を利用して前記透光性ポリイミド樹脂中に含有された球形の前記金属微粒子を延伸方向に伸長することで、Agからなる柱状形状の金属ナノ粒子4aを形成することができる。このような前記透光性ポリイミド樹脂を有機EL素子10の光出射面となる基板5上に接着することで、特定方向に揃い凝集や融着などを防止可能な柱状形状の金属ナノ粒子4aを形成させることもできる。 As another method, the light distribution control unit 4 contains spherical metal fine particles made of, for example, Ag that has been purified in advance, in the light-transmitting polyimide serving as the light-transmitting coating layer 4c. Subsequently, columnar-shaped metal nanoparticles 4a made of Ag can be formed by extending the spherical metal fine particles contained in the light-transmitting polyimide resin in a stretching direction using a heat stretching process. it can. By adhering such a translucent polyimide resin on the substrate 5 serving as a light emitting surface of the organic EL element 10, columnar metal nanoparticles 4a that are aligned in a specific direction and can prevent aggregation, fusion, and the like are obtained. It can also be formed.
さらに、別の方法として、配光制御部4は、予め透光性被覆層4cとなる樹脂中にAg微粒子を含有させた透光性被覆層4cとなる樹脂シートを準備する。次に、前記樹脂シートを前記Ag微粒子がイオン化可能な溶液(例えば、水溶液)中において特定方向から電界を印加し、Ag微粒子にイオンマイグレーションを生起させる。これにより、前記樹脂シート中で特定方向に延伸した柱状形状の金属ナノ粒子4aを備えた配光制御部4を形成する。発光素子20は、このような配光制御部4を有機EL素子10の光出射面側に接着などさせることにより形成することもできる。 Furthermore, as another method, the light distribution control unit 4 prepares a resin sheet to be the light-transmitting coating layer 4c in which Ag fine particles are previously contained in the resin to be the light-transmitting coating layer 4c. Next, an electric field is applied to the resin sheet from a specific direction in a solution (for example, an aqueous solution) in which the Ag fine particles can be ionized to cause ion migration in the Ag fine particles. Thereby, the light distribution control part 4 provided with the column-shaped metal nanoparticle 4a extended | stretched in the specific direction in the said resin sheet is formed. The light emitting element 20 can also be formed by bonding such a light distribution control unit 4 to the light emitting surface side of the organic EL element 10.
1 陽極層
2 陰極層
3 有機発光層
3a 赤色発光層
3b 緑色発光層
3c 青色発光層
4 配光制御部
4a 柱状形状の金属ナノ粒子
4c 粒子を積設した鎖状形状の金属ナノ粒子
5 基板
10 有機EL素子
20 発光素子
DESCRIPTION OF SYMBOLS 1 Anode layer 2 Cathode layer 3 Organic light emitting layer 3a Red light emitting layer 3b Green light emitting layer 3c Blue light emitting layer 4 Light distribution control part 4a Columnar-shaped metal nanoparticle 4c Chain-shaped metal nanoparticle with stacked particles 5 Substrate 10 Organic EL element 20 Light emitting element
Claims (5)
4. The light emitting device according to claim 2, wherein the metal nanoparticles constituting the chain shape have a particle size of 1 nm or more and 200 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009040654A JP5266092B2 (en) | 2009-02-24 | 2009-02-24 | Light emitting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009040654A JP5266092B2 (en) | 2009-02-24 | 2009-02-24 | Light emitting element |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013093274A Division JP5462968B2 (en) | 2013-04-26 | 2013-04-26 | Light emitting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010198830A JP2010198830A (en) | 2010-09-09 |
JP5266092B2 true JP5266092B2 (en) | 2013-08-21 |
Family
ID=42823378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009040654A Expired - Fee Related JP5266092B2 (en) | 2009-02-24 | 2009-02-24 | Light emitting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5266092B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6125758B2 (en) | 2011-03-31 | 2017-05-10 | 住友化学株式会社 | Optical element |
JP6018774B2 (en) * | 2011-03-31 | 2016-11-02 | 住友化学株式会社 | Metal-based particle aggregate |
JP6085095B2 (en) | 2011-03-31 | 2017-02-22 | 住友化学株式会社 | Optical element |
CN103765987B (en) * | 2011-07-01 | 2016-05-04 | 王子控股株式会社 | Manufacture method, Organic Light Emitting Diode, image display device, lighting device and the substrate of Organic Light Emitting Diode |
FR3064114A1 (en) * | 2017-03-15 | 2018-09-21 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | ORGANIC ELECTROLUMINESCENT DIODE WITH OPTIMIZED YIELD BY CONTAINING PLASMONS AND DISPLAY DEVICE COMPRISING A PLURALITY OF SUCH DIODES |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004087225A (en) * | 2002-08-26 | 2004-03-18 | Fuji Photo Film Co Ltd | Optical function element |
JP3916076B2 (en) * | 2002-10-25 | 2007-05-16 | 日東電工株式会社 | Polarizer for image display device, manufacturing method thereof, optical film, and image display device |
JP2007035430A (en) * | 2005-07-27 | 2007-02-08 | Seiko Instruments Inc | Organic light emitting device |
JP2007165284A (en) * | 2005-11-18 | 2007-06-28 | Seiko Instruments Inc | Electroluminescent device and display using same |
JP2007265987A (en) * | 2006-03-03 | 2007-10-11 | Semiconductor Energy Lab Co Ltd | Light emitting element, light emitting device, manufacturing method of light emitting device, and sheet-like sealing material |
WO2009141903A1 (en) * | 2008-05-21 | 2009-11-26 | パイオニア株式会社 | Organic electroluminescent element |
-
2009
- 2009-02-24 JP JP2009040654A patent/JP5266092B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010198830A (en) | 2010-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5266092B2 (en) | Light emitting element | |
US9018620B2 (en) | Organic electroluminescent light emitting device and method for manufacturing the same | |
JP5703251B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT | |
Eom et al. | Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices | |
KR101289844B1 (en) | Organic electroluminescent device | |
US8373341B2 (en) | Top-emission organic light-emitting devices with microlens arrays | |
JP6286809B2 (en) | Organic electroluminescence element, lighting device and display device | |
US11322706B2 (en) | Quantum dot film, quantum dot light-emitting assembly and display device | |
TWI518891B (en) | Organic electroluminescent device and lighting apparatus | |
WO2013187119A1 (en) | Electroluminescence element and illumination device using said electroluminescence element | |
US20150132876A1 (en) | Method for fabricating organic electroluminescent devices | |
JP2008108439A (en) | Electroluminescent element and electroluminescent panel | |
JP2010529598A5 (en) | ||
JP2012186107A (en) | Organic electroluminescent element and lighting system | |
JP2015158981A (en) | Organic electroluminescent element and illumination device | |
JP5351551B2 (en) | Light emitting device | |
Singh et al. | Enhancement of light extraction efficiency of vertical LED with patterned graphene as current spreading layer | |
JP2010258197A5 (en) | ||
Lee et al. | Top‐Emitting Quantum Dot Light‐Emitting Diodes: Theory, Optimization, and Application | |
JP5462968B2 (en) | Light emitting element | |
JP6387828B2 (en) | Electroluminescent device and lighting device using the electroluminescent device | |
JP2014175262A (en) | Organic el device | |
JP6079133B2 (en) | ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE HAVING THE SAME | |
Peng et al. | Improving Light Extraction of Organic Light‐Emitting Devices by Attaching Nanostructures with Self‐Assembled Photonic Crystal Patterns | |
JP2013246932A (en) | Surface light emitting element and lighting device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100715 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110915 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20120113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130502 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |