JP5264363B2 - Surface treatment metal material and metal surface treatment agent - Google Patents

Surface treatment metal material and metal surface treatment agent Download PDF

Info

Publication number
JP5264363B2
JP5264363B2 JP2008207303A JP2008207303A JP5264363B2 JP 5264363 B2 JP5264363 B2 JP 5264363B2 JP 2008207303 A JP2008207303 A JP 2008207303A JP 2008207303 A JP2008207303 A JP 2008207303A JP 5264363 B2 JP5264363 B2 JP 5264363B2
Authority
JP
Japan
Prior art keywords
mass
group
polyurethane resin
surface treatment
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008207303A
Other languages
Japanese (ja)
Other versions
JP2010043168A (en
Inventor
宗士 藤田
敦司 森下
雅裕 布田
泰平 金藤
宏 小菅
努 田和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Nippon Steel Corp
Original Assignee
Mitsui Chemicals Inc
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Nippon Steel Corp filed Critical Mitsui Chemicals Inc
Priority to JP2008207303A priority Critical patent/JP5264363B2/en
Publication of JP2010043168A publication Critical patent/JP2010043168A/en
Application granted granted Critical
Publication of JP5264363B2 publication Critical patent/JP5264363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal surface treatment agent that solves problems of corrosion resistance, corrosion resistance after processing, adhesion of a finish coat painting, alkali resistance and solvent resistance by finding a polyurethane resin structure and an additive that can derive polyurethane resin characteristics to the utmost as the surface treatment agent substitutable for chromate treatment, and to provide a surface-treated metal material. <P>SOLUTION: This surface treatment agent includes polyurethane resin that contains a functional group (a) represented by general formula [1] (wherein R1, R2 and R3 are each independently alkoxy or hydroxy), and silicon oxide. The polyurethane resin further can contain a specific functional group (b) and a urea bond. The total amount of the functional groups (a) and (b), and the silicon oxide is within a specific range. The surface treatment agent can contain a specific crosslinking agent. The surface treated metal material is manufactured by coating the surface treatment agent on the surface of the metal material, baking and drying it. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、環境負荷性の高い6価クロムを含まず、かつ極めて高い耐食性と加工後耐食性、及び良好な上塗り塗料密着性、耐溶剤性、耐アルカリ性を有する表面処理金属材及び金属表面処理剤に関するものである。   The present invention relates to a surface-treated metal material and metal surface-treating agent that do not contain hexavalent chromium, which has high environmental impact, and have extremely high corrosion resistance and post-processing corrosion resistance, as well as good topcoat paint adhesion, solvent resistance, and alkali resistance. It is about.

家庭電化製品、自動車、建築材料等の各分野において、防錆性あるいは上層との塗料密着性の付与を目的として、鋼板や表面処理鋼板にクロメート処理を施すのが一般的である。しかし、通常、クロムメート処理皮膜は環境負荷性の高い6価クロムを含有することから、近年、この6価クロムフリー(以後、クロメートフリーと呼ぶ)化に対する要望が高まっており、一部では既に全廃に向けて動き出している業界もある。   In various fields such as home appliances, automobiles, and building materials, it is common to perform chromate treatment on steel sheets and surface-treated steel sheets for the purpose of imparting rust prevention or paint adhesion to the upper layer. However, since the chromate-treated film usually contains hexavalent chromium having a high environmental load, in recent years, there has been an increasing demand for this hexavalent chromium-free (hereinafter referred to as chromate-free). Some industries are moving toward complete abolition.

これらの流れに対し、クロムを含まない表面処理方法が各種考案されている。
無機化合物を主体とした皮膜に関して、例えば、特許文献1には、正燐酸、アルミ系ゾル、金属系ヒドロゾルを含む処理液で処理する方法が、特許文献2には、水ガラスや珪酸ソーダとピラゾールで処理する方法が、特許文献3には、シリケートコーティングを行う方法がそれぞれ開示されている。
しかし、このような無機系の皮膜は、加工成型時に疵が発生し易く、かつ上塗り塗料との密着性に劣り、その用途が限定されるという問題がある。また、例えば、塩化ナトリウムに対する耐食性についても、未だクロメート処理に対し十分満足する性能は得られていない。
For these flows, various surface treatment methods not containing chromium have been devised.
Regarding a film mainly composed of an inorganic compound, for example, Patent Document 1 discloses a method of treating with a treatment liquid containing orthophosphoric acid, aluminum-based sol, and metal-based hydrosol, and Patent Document 2 discloses water glass, sodium silicate, and pyrazole. Patent Document 3 discloses a method of performing silicate coating.
However, such an inorganic film has a problem that wrinkles are easily generated during processing and molding, and the adhesiveness with the top coating is inferior, so that its application is limited. Further, for example, the corrosion resistance against sodium chloride has not yet been sufficiently satisfactory for chromate treatment.

これに対し、有機皮膜を主体としたクロメート皮膜に代替可能な皮膜も幾つか検討されている。有機化合物を主体とする皮膜は、皮膜による腐食環境の遮断効果に加え、成形性に優れる特徴を有し、クロメートフリー皮膜として有望である。中でも、皮膜としての強靭な性質を有し、また密着性も良好なポリウレタン樹脂を主体とした皮膜は、クロメートフリー皮膜として特に有望である。   On the other hand, several coatings that can replace chromate coatings mainly composed of organic coatings have been studied. A film mainly composed of an organic compound has a feature of excellent formability in addition to the effect of blocking the corrosive environment by the film, and is promising as a chromate-free film. Among these, a film mainly composed of a polyurethane resin having tough properties as a film and good adhesion is particularly promising as a chromate-free film.

これまで、ポリウレタン樹脂をベースにした技術がいくつか開示されている。例えば、特許文献4には、加工後の皮膜密着性に優れる例として、ポリウレタン樹脂及び二酸化珪素の複合物質又は混合物質を主成分とする皮膜層を設ける技術が開示されている。また、特許文献5には、電着性及び溶接性に優れた皮膜の例として、ポリウレタン樹脂にコロイダルシリカ又はシランカップリング剤、及び特定の金属燐酸塩を含有する樹脂皮膜を設ける技術が、特許文献6には、金属燐酸塩に水性ポリウレタン樹脂及びオキシカルボン酸化合物を混合した処理液の技術がそれぞれ開示されている。   So far, several techniques based on polyurethane resins have been disclosed. For example, Patent Document 4 discloses a technique of providing a film layer mainly composed of a composite material or mixed material of polyurethane resin and silicon dioxide as an example of excellent film adhesion after processing. Patent Document 5 discloses a technique for providing a resin film containing colloidal silica or a silane coupling agent and a specific metal phosphate on a polyurethane resin as an example of a film excellent in electrodeposition and weldability. Document 6 discloses a technique of a treatment liquid in which an aqueous polyurethane resin and an oxycarboxylic acid compound are mixed with a metal phosphate.

しかし、このようなポリウレタン樹脂をベースにした皮膜の使用が、さまざまな用途へ広がるにつれ、要求特性も厳格化しつつあり、特許文献4〜6に記載された技術の場合、記載してあるポリウレタン樹脂の内容では、樹脂構造に対する検討が十分になされておらず、特に加工後耐食性、耐溶剤性、耐アルカリ性等、厳格化した性能を確保することは困難となる懸念があり、かつ皮膜形成能が十分に得られず耐溶剤性が低下する懸念がある。   However, as the use of such a polyurethane resin-based coating spreads to various applications, the required characteristics are becoming stricter. In the case of the techniques described in Patent Documents 4 to 6, the polyurethane resin described However, the resin structure has not been fully studied, and there is a concern that it will be difficult to ensure strict performance such as corrosion resistance after processing, solvent resistance, alkali resistance, etc. There is a concern that the solvent resistance cannot be sufficiently obtained and the solvent resistance is lowered.

また、防錆性付与を目的とした例として、特許文献7では、親水性成分を導入したポリウレタン樹脂にシランカップリング剤を添加した皮膜の技術、特許文献8では、水性ポリウレタン樹脂と水性ポリオレフィン樹脂の混合物に水性シリカ、シランカップリング剤、チオカルボニル基含有化合物、燐酸イオンを混合した防錆コーティング剤の技術、特許文献9に、1種類以上のシランカップリング又はその部分加水分解縮合物と、加水分解性シリル基又はシラノール基を含有したポリウレタン樹脂を含む有機無機複合樹脂水分散液を主成分とする水性塗料組成物の技術、特許文献10に、水性ポリウレタン樹脂とシランカップリング剤との反応により形成された架橋樹脂マトリックス及び無機防錆剤を含む皮膜の技術が開示されている。   Moreover, as an example for the purpose of imparting rust prevention, Patent Document 7 discloses a film technology in which a silane coupling agent is added to a polyurethane resin into which a hydrophilic component is introduced, and Patent Document 8 discloses an aqueous polyurethane resin and an aqueous polyolefin resin. The technology of a rust preventive coating agent in which aqueous silica, a silane coupling agent, a thiocarbonyl group-containing compound, and a phosphate ion are mixed in a mixture of the above, Patent Document 9, and one or more types of silane coupling or a partially hydrolyzed condensate thereof, The technology of an aqueous coating composition mainly composed of an organic-inorganic composite resin aqueous dispersion containing a polyurethane resin containing a hydrolyzable silyl group or silanol group, Patent Document 10 discloses a reaction between an aqueous polyurethane resin and a silane coupling agent. The technique of the film | membrane containing the crosslinked resin matrix and inorganic rust preventive agent which were formed by this is disclosed.

しかしながら、特許文献7〜10に記載された技術も、特許文献4と同様に、樹脂の構造に関する検討が十分でないため、厳格化した性能を確保することが困難となる懸念がある。また、特許文献7〜10の技術ではシランカップリング剤を前記処理剤中に混合しているため、処理剤の反応性が不安定で、製造条件や製造後の経時、環境の影響によっては性能がばらつく懸念があった。また、いずれも安定して十分な架橋反応が望めないため、汚れを溶剤で拭き取る場合に必要な耐溶剤性が劣る懸念がある、といった問題点を有していた。   However, the techniques described in Patent Documents 7 to 10 also have a concern that it is difficult to ensure strict performance because the structure of the resin is not sufficiently studied as in Patent Document 4. Further, in the techniques of Patent Documents 7 to 10, since the silane coupling agent is mixed in the treatment agent, the reactivity of the treatment agent is unstable, and the performance depends on the production conditions, the time after production, and the influence of the environment. There was concern that it would vary. In addition, there is a problem that there is a concern that the solvent resistance necessary for wiping off dirt with a solvent may be inferior because neither of them can stably provide a sufficient crosslinking reaction.

特許文献11〜13に、分子内にシラノール基及び/又はシロキサン結合を含有したポリウレタン樹脂に架橋剤を添加した皮膜の技術が開示されている。しかしながら、その技術は、処理剤の反応性は安定であるが、耐食性、耐溶剤性、耐アルカリ性やその他特性に配慮した前記シラノール基及び/又はシロキサン結合の構造設計、ポリウレタン樹脂構造の設計、架橋剤や防錆剤を始めとする添加剤の設計がなされていないため、防錆皮膜として性能を十分に発揮しない懸念がある。   Patent Documents 11 to 13 disclose a coating technique in which a crosslinking agent is added to a polyurethane resin containing a silanol group and / or a siloxane bond in the molecule. However, the technology is that the reactivity of the treating agent is stable, but the structure design of the silanol group and / or siloxane bond, the design of the polyurethane resin structure, the cross-linking considering the corrosion resistance, solvent resistance, alkali resistance and other characteristics. Since additives such as additives and rust preventives are not designed, there is a concern that the performance as a rust preventive film will not be sufficiently exhibited.

特公昭53−47774号公報Japanese Examined Patent Publication No. 53-47774 特公昭58−31390号公報Japanese Patent Publication No.58-31390 特開平4−293789号公報JP-A-4-293789 特公平6−7950号公報Japanese Patent Publication No. 6-7950 特公平6−71579号公報Japanese Patent Publication No. 6-71579 特開2001−181855号公報JP 2001-181855 A 特開2001−59184号公報JP 2001-59184 A 特開2001−164182号公報JP 2001-164182 A 特開2003−147266号公報JP 2003-147266 A 特開2005−281863号公報JP 2005-281863 A 特開2007−075777号公報Japanese Patent Laid-Open No. 2007-075777 特開2007−038652号公報JP 2007-038652 A 特開2008−025023号公報JP 2008-025023 A

そこで、本発明は、クロメート処理に代替可能な表面処理剤の成分としてポリウレタン樹脂に着目し、その特性を最大限に発揮するポリウレタン樹脂構造と添加剤を見出すことで、環境負荷の高い6価クロムを含まず、前記耐食性と加工後耐食性、上塗り塗料密着性、耐溶剤性、耐アルカリ性等の諸課題を解決し、実環境での使用に十分耐えうる金属表面処理剤を提供し、さらにその処理剤を塗布し、乾燥することによって得られる表面処理金属材を提供することを目的とする。   Therefore, the present invention focuses on polyurethane resin as a component of a surface treatment agent that can be substituted for chromate treatment, and finds a polyurethane resin structure and additives that exhibit their characteristics to the maximum, thereby providing a highly environmentally friendly hexavalent chromium. In addition, the present invention provides a metal surface treating agent that can sufficiently withstand use in an actual environment by solving various problems such as corrosion resistance and post-processing corrosion resistance, top coating adhesion, solvent resistance, and alkali resistance. It aims at providing the surface treatment metal material obtained by apply | coating an agent and drying.

このような問題に鑑み、本発明者らは、ポリウレタン樹脂構造と添加剤が金属表面処理剤の上記耐食性と加工後耐食性、上塗り塗料密着性、耐溶剤性、耐アルカリ性に及ぼす影響を詳細に検討した。
その結果、分子内に下記一般式[1]で表される官能基(a)を含有したポリウレタン樹脂と、酸化珪素とを混合して金属表面処理剤を構成することで、実用的な環境においてゲル化のない安定な金属表面処理剤となり、その処理剤を焼付け乾燥することで良好な架橋反応が得られ、強靭な皮膜を形成することができ、優れた耐食性と加工後耐食性、上塗り塗料密着性、耐溶剤性、耐アルカリ性を発揮する表面処理金属材が得られることを見出した。

Figure 0005264363
(式中、R1、R2及びR3は互いに独立に、アルコキシ基又は水酸基を表す。) In view of such problems, the present inventors have studied in detail the effects of the polyurethane resin structure and additives on the above-mentioned corrosion resistance and post-processing corrosion resistance, topcoat adhesion, solvent resistance, and alkali resistance of metal surface treatment agents. did.
As a result, in a practical environment, a polyurethane resin containing a functional group (a) represented by the following general formula [1] in the molecule and silicon oxide are mixed to form a metal surface treatment agent. It becomes a stable metal surface treatment agent without gelation, and when the treatment agent is baked and dried, a good crosslinking reaction can be obtained and a tough film can be formed. Excellent corrosion resistance and post-processing corrosion resistance, adhesion to top coating The present inventors have found that a surface-treated metal material that exhibits high resistance, solvent resistance, and alkali resistance can be obtained.
Figure 0005264363
(In the formula, R1, R2 and R3 each independently represents an alkoxy group or a hydroxyl group.)

官能基(a)に含まれるアルコキシ基又は水酸基に起因して、複数の官能基(a)同士は焼付け乾燥過程で縮合し(シロキサン結合を形成し)、皮膜中に架橋構造を付与することが可能である。それにより、樹脂の架橋密度を高めるのみならず、皮膜の造膜性をも向上させることが可能であり、皮膜の防錆性(酸素、水等の腐食因子の遮断効果)、耐アルカリ性及び耐溶剤性等の諸性能を向上させることができる。   Due to the alkoxy group or hydroxyl group contained in the functional group (a), the plurality of functional groups (a) may condense in the baking and drying process (form a siloxane bond) to give a crosslinked structure in the film. Is possible. As a result, it is possible not only to increase the crosslink density of the resin, but also to improve the film-forming property of the film, and to prevent rusting of the film (blocking effect of corrosive factors such as oxygen and water), alkali resistance and resistance. Various performances such as solvent resistance can be improved.

同様に酸化珪素の表面水酸基と、官能基(a)に含まれるアルコキシ基又は水酸基とがシロキサン結合を形成し、皮膜の架橋構造をさらに効率よく付与させることが可能で、耐食性や密着性を高めることができる。
加えて、酸化珪素を添加することで、皮膜自身の強靭性を高めることも可能であり、皮膜の耐溶剤性や耐アルカリ性を向上させることができる。
さらに、下地金属の表面水酸基と、官能基(a)に含まれるアルコキシ基又は水酸基とが結合を形成し、皮膜と下地金属材との密着性向上効果も得られる。
Similarly, the surface hydroxyl group of silicon oxide and the alkoxy group or hydroxyl group contained in the functional group (a) can form a siloxane bond, and the cross-linked structure of the film can be imparted more efficiently, and the corrosion resistance and adhesion are improved. be able to.
In addition, by adding silicon oxide, the toughness of the film itself can be increased, and the solvent resistance and alkali resistance of the film can be improved.
Furthermore, the surface hydroxyl group of the base metal and the alkoxy group or hydroxyl group contained in the functional group (a) form a bond, and the effect of improving the adhesion between the film and the base metal material can be obtained.

また、ポリウレタン樹脂の分子内に官能基(a)を含有させることで、水中におけるエマルジョンの水分散性を向上し、実用的な環境においてゲル化のない安定な金属表面処理剤にさせることが可能である。アルコキシ基又は水酸基を3つ含有する官能基(a)は、前記複数の官能基(a)同士のシロキサン結合、酸化珪素の表面水酸基とのシロキサン結合、下地金属の表面水酸基との結合から選ばれるいずれかの結合を最大で3つ形成でき、前記結合の反応速度にも優れ、水分散性にも最良な構造である。   In addition, by incorporating the functional group (a) in the molecule of the polyurethane resin, it is possible to improve the water dispersibility of the emulsion in water and make it a stable metal surface treatment agent that does not gel in a practical environment. It is. The functional group (a) containing three alkoxy groups or hydroxyl groups is selected from the siloxane bond between the plurality of functional groups (a), the siloxane bond with the surface hydroxyl group of silicon oxide, and the bond with the surface hydroxyl group of the base metal. Any one of the bonds can be formed at the maximum, the reaction rate of the bonds is excellent, and the water dispersibility is the best.

また、上記ポリウレタン樹脂の分子内に下記一般式[2]で表される官能基(b)をさらに含有させることで、諸性能がさらに向上し、特に、高い処理剤の安定性と金属材の加工後耐食性が得られることを見出した。

Figure 0005264363
(式中、R4は水素原子、アルキル基、アリール基及びアラルキル基からなる群より選ばれる一価の有機残基、R5及びR6は互いに独立に、アルコキシ基又は水酸基を表す。) In addition, by further containing the functional group (b) represented by the following general formula [2] in the molecule of the polyurethane resin, various performances are further improved. It has been found that corrosion resistance can be obtained after processing.
Figure 0005264363
(Wherein R4 represents a monovalent organic residue selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an aralkyl group, and R5 and R6 each independently represents an alkoxy group or a hydroxyl group.)

官能基(b)も官能基(a)同様、前記複数の官能基(a)同士のシロキサン結合、酸化珪素の表面水酸基とのシロキサン結合、下地金属の表面水酸基との結合から選ばれるいずれかの結合を形成し、水分散性も向上することで、金属材の耐食性と加工後耐食性、上塗り塗料密着性、耐溶剤性、耐アルカリ性をさらに向上する。特に官能基(b)は、含有する一価の有機残基に起因した立体障害を生じて、官能基(a)に比べて前記結合を形成する反応がゆっくりと進行するため、処理剤を経時させても優れた安定性を確保でき、また、架橋反応後も比較的柔軟性に富み、皮膜の加工後耐食性を向上させることができる。   Similarly to the functional group (a), the functional group (b) is any one selected from a siloxane bond between the plurality of functional groups (a), a siloxane bond with the surface hydroxyl group of silicon oxide, and a bond with the surface hydroxyl group of the base metal. By forming a bond and improving water dispersibility, the corrosion resistance and post-processing corrosion resistance, adhesion of top coating, solvent resistance, and alkali resistance of the metal material are further improved. In particular, the functional group (b) causes steric hindrance due to the monovalent organic residue contained therein, and the reaction for forming the bond proceeds more slowly than the functional group (a). Even if it makes it, the outstanding stability can be ensured, and also after a crosslinking reaction, it is comparatively rich in flexibility, and can improve the corrosion resistance after processing of a film.

さらに、ポリウレタン樹脂が分子内に含有する官能基(a)の量、官能基(b)の量、酸化珪素の量の総量と、ウレア結合の量、ウレタン結合の量の総量とをそれぞれ適切な量に設計することで、耐食性、耐アルカリ性、耐溶剤性に優れる強靭さと、金属材や上塗り塗料に対する密着力と、加工後でもそれらを備えたバランスの良好な皮膜を得ることが可能である。   Furthermore, the amount of the functional group (a), the amount of the functional group (b), the total amount of silicon oxide, the amount of urea bond, and the total amount of urethane bond contained in the molecule of the polyurethane resin are respectively appropriate. By designing the amount, it is possible to obtain a tough film excellent in corrosion resistance, alkali resistance, and solvent resistance, adhesion to a metal material and a top coating, and a well-balanced film including them even after processing.

また、金属表面処理剤の添加剤として有機チタネートを導入することで、前期官能基(a)、(b)又は酸化珪素に由来した前記架橋反応に加え、さらに架橋反応を生じさせることや、前記架橋反応の速度を速めるができ、より低い焼付け温度で皮膜形成を行うことができ、耐食性と加工後耐食性、上塗り塗料密着性、耐溶剤性、耐アルカリ性のすべてにおいて良好な皮膜を得ることが可能である。   Further, by introducing an organic titanate as an additive for the metal surface treatment agent, in addition to the crosslinking reaction derived from the functional group (a), (b) or silicon oxide, a crosslinking reaction may be caused, The speed of the cross-linking reaction can be increased, and the film can be formed at a lower baking temperature, and a good film can be obtained in all of the corrosion resistance and post-processing corrosion resistance, top coating adhesion, solvent resistance, and alkali resistance. It is.

また、ポリウレタン樹脂を水中に分散させるために、分子内にさらにカルボキシル基を適当量含有させ、水分散時にある特定の中和剤を用いて自己乳化させると共に、添加剤として、さらに特定の架橋剤やある比率でポリオレフィン樹脂を含有させることで得られる金属表面処理剤を特定の鋼板に塗布し、乾燥することで形成される皮膜を有する表面処理金属材が、極めて高い耐食性と加工後耐食性、上塗り塗料密着性、耐アルカリ性、耐溶剤性を有することを見出し、本発明を完成するに至った。   In addition, in order to disperse the polyurethane resin in water, an appropriate amount of a carboxyl group is further contained in the molecule, and self-emulsification is performed using a specific neutralizing agent at the time of water dispersion, and a specific cross-linking agent is added as an additive. A surface-treated metal material having a film formed by applying a metal surface treatment agent obtained by containing a polyolefin resin in a certain ratio to a specific steel plate and drying it has extremely high corrosion resistance, post-processing corrosion resistance, and top coating. It has been found that it has paint adhesion, alkali resistance, and solvent resistance, and has completed the present invention.

すなわち、本発明の主旨するところは、以下の通りである。
(1) 分子内に下記一般式[1]で表される官能基(a)及び下記一般式[2]で表される官能基(b)を含有するポリウレタン樹脂と、酸化珪素を含むことを特徴とする金属表面処理剤。

Figure 0005264363
(式中、R1、R2及びR3は互いに独立に、アルコキシ基又は水酸基を表す。)
Figure 0005264363
(式中、R4は水素原子、アルキル基、アリール基及びアラルキル基からなる群より選ばれる一価の有機残基、R5及びR6は互いに独立に、アルコキシ基又は水酸基を表す。) That is, the gist of the present invention is as follows.
(1) It contains a polyurethane resin containing a functional group (a) represented by the following general formula [1] and a functional group (b) represented by the following general formula [2] in the molecule, and silicon oxide. Characteristic metal surface treatment agent.
Figure 0005264363
(In the formula, R1, R2 and R3 each independently represents an alkoxy group or a hydroxyl group.)
Figure 0005264363
(Wherein R4 represents a monovalent organic residue selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an aralkyl group, and R5 and R6 each independently represents an alkoxy group or a hydroxyl group.)

) 前記官能基(a)に由来する珪素、前記官能基(b)に由来する珪素及び前記酸化珪素に由来する珪素の総量が、不揮発固形分の全質量に対し下記数式で表される範囲にあることを特徴とする、(1)に記載の金属表面処理剤。
1.6質量%≦((Sa+Sb+Sc)/S)×100≦25質量%
ここで、S :不揮発固形分の全質量
Sa:官能基(a)に由来する珪素の質量
Sb:官能基(b)に由来する珪素の質量
Sc:酸化珪素に由来する珪素の質量
( 2 ) The total amount of silicon derived from the functional group (a), silicon derived from the functional group (b), and silicon derived from the silicon oxide is expressed by the following formula with respect to the total mass of the nonvolatile solid content. The metal surface treatment agent according to (1 ), which is in a range.
1.6% by mass ≦ ((Sa + Sb + Sc) / S) × 100 ≦ 25% by mass
Where S: total mass of non-volatile solids
Sa: Mass of silicon derived from the functional group (a)
Sb: Mass of silicon derived from the functional group (b)
Sc: Mass of silicon derived from silicon oxide

) 前記ポリウレタン樹脂が、分子内にウレア結合を含有し、かつ、前記ウレア結合に由来する窒素及びウレタン結合に由来する窒素の総量が、前記ポリウレタン樹脂の不揮発固形分の質量に対し、下記数式で表される範囲にあることを特徴とする(1)または(2)に記載の金属表面処理剤。
0.1質量%≦(Ta+Tb)/T)×100≦10質量%
ここで、T:ポリウレタン樹脂の不揮発固形分の質量
Ta:ウレア結合(―NH―CO―NH―)を形成する窒素の質量
Tb:ウレタン結合(―NH−CO−O−)を形成する窒素の質量
( 3 ) The polyurethane resin contains a urea bond in the molecule, and the total amount of nitrogen derived from the urea bond and nitrogen derived from the urethane bond is the following with respect to the mass of the nonvolatile solid content of the polyurethane resin: The metal surface treating agent according to (1) or (2) , wherein the metal surface treating agent is in a range represented by a mathematical formula.
0.1% by mass ≦ (Ta + Tb) / T) × 100 ≦ 10% by mass
Where T: mass of nonvolatile solid content of polyurethane resin Ta: mass of nitrogen forming urea bond (—NH—CO—NH—) Tb: mass of nitrogen forming urethane bond (—NH—CO—O—) mass

) 前記ポリウレタン樹脂の架橋剤として、有機チタネート化合物を含有することを特徴とする、(1)から()のいずれかに記載の金属表面処理剤。
) 前記ポリウレタン樹脂が水分散性又は水溶解性であり、分子内にカルボキシル基を含有することを特徴とする、(1)から()のいずれかに記載の金属表面処理剤。
) 前記ポリウレタン樹脂の酸当量が1000〜3000であることを特徴とする、()に記載の金属表面処理剤。
) 前記ポリウレタン樹脂の水分散時の中和剤の沸点が150℃以下であることを特徴とする、()または()に記載の金属表面処理剤。
) 前記ポリウレタン樹脂の水分散時の中和剤は、アルキルアミン、アルカノールアミンから選ばれる少なくとも1種であることを特徴とする、()から()のいずれかに記載の金属表面処理剤。
) 前記ポリウレタン樹脂の架橋剤として、さらにカルボジイミド化合物又はオキサゾリン基含有化合物を含むことを特徴とする、()から()のいずれかに記載の金属表面処理剤。
10) さらに、ポリオレフィン樹脂を、不揮発固形分の総量に対し5質量%以上50質量%以下含有することを特徴とする、(1)から()のいずれかに記載の金属表面処理剤。
( 4 ) The metal surface treating agent as set forth in any one of (1) to ( 3 ), which contains an organic titanate compound as a crosslinking agent for the polyurethane resin.
( 5 ) The metal surface treating agent according to any one of (1) to ( 4 ), wherein the polyurethane resin is water-dispersible or water-soluble and contains a carboxyl group in the molecule.
( 6 ) The metal surface treating agent according to ( 5 ), wherein the polyurethane resin has an acid equivalent of 1000 to 3000.
( 7 ) The metal surface treatment agent according to ( 5 ) or ( 6 ), wherein the boiling point of the neutralizing agent when the polyurethane resin is dispersed in water is 150 ° C. or less.
( 8 ) The metal surface according to any one of ( 5 ) to ( 7 ), wherein the neutralizing agent at the time of water dispersion of the polyurethane resin is at least one selected from alkylamines and alkanolamines. Processing agent.
( 9 ) The metal surface treating agent according to any one of ( 5 ) to ( 8 ), further comprising a carbodiimide compound or an oxazoline group-containing compound as a crosslinking agent for the polyurethane resin.
( 10 ) The metal surface treatment agent according to any one of (1) to ( 9 ), further comprising a polyolefin resin in an amount of 5% by mass to 50% by mass with respect to the total amount of nonvolatile solids.

11) 金属材の表面に、(1)から(10)のいずれかに記載の金属表面処理剤を塗布し、乾燥することによって皮膜を形成することを特徴とする金属材の表面処理方法。 ( 11 ) A surface treatment method for a metal material, wherein the metal surface treatment agent according to any one of (1) to ( 10 ) is applied to the surface of the metal material and dried to form a film.

12) 請求項(11)に記載の表面処理方法を用いて形成された皮膜を有することを特徴とする表面処理金属材。
13) 金属材が亜鉛系めっき鋼板もしくはアルミニウム系めっき鋼板であることを特徴とする、(12)に記載の表面処理金属材。
( 12 ) A surface-treated metal material comprising a film formed by using the surface treatment method according to claim ( 11 ).
( 13 ) The surface-treated metal material according to ( 12 ), wherein the metal material is a zinc-based plated steel plate or an aluminum-based plated steel plate.

本発明によれば、環境負荷の高い6価クロムを全く使用せず、かつ性能的にも従来クロメート代替可能な性能を兼備した皮膜を得るための金属表面処理剤を提供することができる。従って、本発明は今後の環境対応の処理剤として、非常に有望であり、各産業分野への寄与も大きい。   ADVANTAGE OF THE INVENTION According to this invention, the metal surface treating agent for obtaining the membrane | film | coat which combines the performance which does not use the hexavalent chromium with a high environmental load at all, and can replace conventional chromate also in performance can be provided. Therefore, the present invention is very promising as a future environmentally-friendly treatment agent and greatly contributes to each industrial field.

以下に、本発明を実施するための形態について詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail.

本発明の金属表面処理剤は、ポリウレタン樹脂と酸化珪素とを含み、ポリウレタン樹脂は、分子内に下記一般式[1]で表される官能基(a)を含有することを特徴とする。

Figure 0005264363
(式中、R1、R2及びR3は互いに独立に、アルコキシ基又は水酸基を表す。) The metal surface treatment agent of the present invention contains a polyurethane resin and silicon oxide, and the polyurethane resin contains a functional group (a) represented by the following general formula [1] in the molecule.
Figure 0005264363
(In the formula, R1, R2 and R3 each independently represents an alkoxy group or a hydroxyl group.)

上記ポリウレタン樹脂は、分子内に少なくとも1個以上の官能基(a)を有する活性水素基含有化合物(A)とポリウレタンプレポリマーとを反応させ、その後、水に分散もしくは溶解し、加水分解することにより形成することができる。ポリウレタンプレポリマーは、1分子当たり少なくとも2個の活性水素基を有する化合物(C)と、1分子当たり少なくとも2個のイソシアネート基を有する化合物(D)とを反応させることにより得ることができる。
あるいは、分子内に少なくとも1個以上の官能基(a)を有する活性水素基含有化合物(A)と、1分子当たり少なくとも2個の活性水素基を有する化合物(C)と、1分子当たり少なくとも2個のイソシアネート基を有する化合物(D)とを同時に反応させても良い。
The polyurethane resin is obtained by reacting an active hydrogen group-containing compound (A) having at least one functional group (a) in the molecule with a polyurethane prepolymer, and then dispersing or dissolving in water and hydrolyzing. Can be formed. The polyurethane prepolymer can be obtained by reacting a compound (C) having at least two active hydrogen groups per molecule with a compound (D) having at least two isocyanate groups per molecule.
Alternatively, the active hydrogen group-containing compound (A) having at least one functional group (a) in the molecule, the compound (C) having at least two active hydrogen groups per molecule, and at least 2 per molecule. You may react with the compound (D) which has an isocyanate group simultaneously.

上記分子内に少なくとも1個以上の官能基(a)を有する活性水素基含有化合物(A)としては、例えば、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン等が挙げられるが、皮膜形成に効果的に寄与するという点で、ポリウレタン樹脂を構成する分子の間にシラノール基を導入するのが望ましく、2個以上の活性水素基を含有する化合物が好ましい。   Examples of the active hydrogen group-containing compound (A) having at least one functional group (a) in the molecule include γ- (2-aminoethyl) aminopropyltrimethoxysilane and γ- (2-aminoethyl). ) Aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, etc., are effective for film formation. In terms of contribution, it is desirable to introduce a silanol group between molecules constituting the polyurethane resin, and a compound containing two or more active hydrogen groups is preferable.

また、上記ポリウレタン樹脂は、分子内に下記一般式[2]で表される官能基(b)をさらに含有させることで、処理剤の安定性をより高め、焼付け乾燥時に架橋反応をさらに形成することで架橋密度を高くして、耐食性や加工後耐食性、耐溶剤性、耐アルカリ性を向上させることができる。

Figure 0005264363
(式中、R4は水素原子、アルキル基、アリール基及びアラルキル基からなる群より選ばれる一価の有機残基、R5及びR6は互いに独立に、アルコキシ基又は水酸基を表す。) In addition, the polyurethane resin further contains a functional group (b) represented by the following general formula [2] in the molecule, thereby further improving the stability of the treating agent and further forming a crosslinking reaction during baking and drying. Thus, the crosslinking density can be increased, and the corrosion resistance, post-processing corrosion resistance, solvent resistance, and alkali resistance can be improved.
Figure 0005264363
(Wherein R4 represents a monovalent organic residue selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an aralkyl group, and R5 and R6 each independently represents an alkoxy group or a hydroxyl group.)

官能基(b)を含有させるには、分子内に1個以上の官能基(b)を有する活性水素基含有化合物(B)を、上記分子内に少なくとも1個以上の官能基(a)を有する活性水素基含有化合物(A)と上記ポリウレタンプレポリマーとの反応時に共重合させることにより得ることができる。あるいは、上記分子内に少なくとも1個以上の官能基(b)を有する活性水素基含有化合物(B)と、上記分子内に少なくとも1個以上の官能基(a)を有する活性水素基含有化合物(A)と、1分子当たり少なくとも2個の活性水素基を有する化合物(C)と、1分子当たり少なくとも2個のイソシアネート基を有する化合物(D)とを同時に反応させても良い。   In order to contain the functional group (b), the active hydrogen group-containing compound (B) having one or more functional groups (b) in the molecule is used, and at least one functional group (a) is contained in the molecule. It can obtain by making it copolymerize at the time of reaction of the active hydrogen group containing compound (A) which has, and the said polyurethane prepolymer. Alternatively, an active hydrogen group-containing compound (B) having at least one functional group (b) in the molecule and an active hydrogen group-containing compound having at least one functional group (a) in the molecule ( A), the compound (C) having at least two active hydrogen groups per molecule, and the compound (D) having at least two isocyanate groups per molecule may be reacted at the same time.

上記分子内に少なくとも1個以上の官能基(b)を有する活性水素基含有化合物(B)としては、例えば、γ−(2−アミノエチル)アミノプロピルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルジエトキシシラン、γ−アミノプロピルジメトキシシラン、γ−アミノプロピルジエトキシシラン、γ−メルカプトプロピルジメトキシシラン、γ−メルカプトプロピルジエトキシシラン等が挙げられるが、皮膜形成に効果的に寄与するという点で、ポリウレタン樹脂を構成する分子の間にシラノール基を導入するのが望ましく、2個以上の活性水素基を含有する化合物が好ましい。   Examples of the active hydrogen group-containing compound (B) having at least one functional group (b) in the molecule include γ- (2-aminoethyl) aminopropyldimethoxysilane and γ- (2-aminoethyl). Examples include aminopropyldiethoxysilane, γ-aminopropyldimethoxysilane, γ-aminopropyldiethoxysilane, γ-mercaptopropyldimethoxysilane, γ-mercaptopropyldiethoxysilane, etc. In this respect, it is desirable to introduce a silanol group between molecules constituting the polyurethane resin, and a compound containing two or more active hydrogen groups is preferable.

上記ポリウレタン樹脂の分子内に含有させる官能基(a)および(b)の1種または2種の総量は、ポリウレタン樹脂に優れた架橋反応性と性能を与えるため、ポリウレタン樹脂の全不揮発固形分に対し、珪素換算で0.1質量%以上5質量%以下が好ましい。
すなわち、官能基(a)に由来する珪素の質量Sa、前記官能基(b)に由来する珪素の質量Sbの総量が、不揮発固形分の全質量Sに対し下記数式で表される範囲にあるようにするのが好ましい。
0.1質量%≦((Sa+Sb)/S)×100≦5質量%
この式の値が、0.1質量%未満だと適切に架橋反応に寄与しないため効果が低く、5質量%超では効果が飽和すると共に表面処理剤の安定性が低下することがある。さらに好ましい範囲は0.5質量%以上3質量%以下である。
The total amount of one or two functional groups (a) and (b) contained in the molecule of the polyurethane resin gives excellent cross-linking reactivity and performance to the polyurethane resin. On the other hand, 0.1 mass% or more and 5 mass% or less are preferable in conversion of silicon.
That is, the total amount of silicon mass Sa derived from the functional group (a) and the mass Sb of silicon derived from the functional group (b) is in the range represented by the following mathematical formula with respect to the total mass S of the nonvolatile solid content. It is preferable to do so.
0.1% by mass ≦ ((Sa + Sb) / S) × 100 ≦ 5% by mass
If the value of this formula is less than 0.1% by mass, it will not contribute properly to the crosslinking reaction, and the effect will be low. A more preferable range is 0.5 mass% or more and 3 mass% or less.

上記1分子当たり少なくとも2個の活性水素基を有する化合物(C)としては、例えば、活性水素基を有する化合物として、アミノ基、水酸基、メルカプト基を有する化合物が挙げられるが、イソシアネート基との反応速度、及び塗布後の機械的物性を考慮すると、水酸基を有する化合物が、反応速度が速く好ましい。
また、上記活性水素基を有する化合物の官能基の数は、塗膜の機械的物性を良好に保つと言う点から2〜6が好ましく、2〜4が特に好ましい。
また、上記活性水素基を有する化合物の分子量は、最終的な塗膜性能に与えるウレタン結合の含有量、及び製造上の作業性の点から200〜10000が好ましく、300〜5000が特に好ましい。
Examples of the compound (C) having at least two active hydrogen groups per molecule include compounds having an amino group, a hydroxyl group, and a mercapto group as compounds having an active hydrogen group. Considering the speed and mechanical properties after coating, a compound having a hydroxyl group is preferable because of its high reaction speed.
Further, the number of functional groups of the compound having an active hydrogen group is preferably 2 to 6 and particularly preferably 2 to 4 in terms of maintaining good mechanical properties of the coating film.
The molecular weight of the compound having an active hydrogen group is preferably from 200 to 10,000, and particularly preferably from 300 to 5,000, from the viewpoint of the content of urethane bonds given to the final coating film performance and the workability in production.

上記活性水素基を有する化合物(C)としては、ポリカーボネートポリオール、ポリエステルポリオール、ポリエーテルポリオール、ポリエステルアミドポリオール、アクリルポリオール、ポリウレタンポリオール、又はそれらの混合物が挙げられる。   Examples of the compound (C) having an active hydrogen group include polycarbonate polyol, polyester polyol, polyether polyol, polyester amide polyol, acrylic polyol, polyurethane polyol, and mixtures thereof.

また、上記1分子当たり少なくとも2個のイソシアネート基を有する化合物(D)としては、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2−プロピレンジイソシアネート、1,2−ブチレンジイソシアネート、2,3−ブチレンジイソシアネート、1,3−ブチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,6−ジイソシアネートメチルカプロエート等の脂肪族イソシアネートや、例えば、1,3−シクロペンタンジイソシアネート、1,4−シクロヘキサンジイソシアネート、1,3−シクロヘキサンジイソシアネート、3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)、メチル−2,4−シクロヘキサンジイソシアネート、メチル−2,6−シクロヘキサンジイソシアネート、1,2−ビス(イソシアナートメチル)シクロヘキサン、1,4−ビス(イソシアナートメチル)シクロヘキサン、1,3−ビス(イソシアナートメチル)シクロヘキサン等の脂環族ジイソシアネートや、例えば、m−キシレンジイソシアネート、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、4,4’−ジフェニルジイソシアネート、1,5−ナフタレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−トルイジンジイソシアネート、ジアニシジンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート等の芳香族ジイソシアネートや、例えば、ω,ω’−ジイソシアネート−1,3−ジメチルベンゼン、ω,ω’−ジイソシアネート−1、4−ジメチルベンゼン、ω,ω’−ジイソシアネート−1,4−ジエチルベンゼン等の芳香脂肪族ジイソシアネートや、例えば、トリフェニルメタン−4,4’−4’’−トリイソシアネート、1,3,5−トリイソシアネートベンゼン、2,4,6−トリイソシアネートトルエン等のトリイソシアネートや、例えば、4,4’−ジフェニルジメチルメタン−2,2’,5,5’−テトライソシアネート等のテトライソシアネートを含むポリイソシアネート単量体や、上記ポリイソシアネート単量体から誘導されたダイマー、トリマー、ビュウレット、アロファネート、カルボジイミドと、上記ポリイソシアネート単量体とから得られるポリイソシアネート誘導体や、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール等、分子量200未満の低分子量ポリオールの上記ポリイソシアネート単量体への付加体や、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルアミドポリオール、アクリルポリオール、ポリウレタンポリオール等の上記ポリイソシアネート単量体への付加体等が挙げられる。   Examples of the compound (D) having at least two isocyanate groups per molecule include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2- Butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate methyl caproate, etc. Aliphatic isocyanates such as 1,3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 3- Methyl-3,5,5-trimethylcyclohexyl isocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 1,2-bis (isocyanate) Naphthomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, 1,3-bis (isocyanatomethyl) cyclohexane and the like, for example, m-xylene diisocyanate, m-phenylene diisocyanate, p- Phenylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2, Aromatic diisocyanates such as 6-tolylene diisocyanate, 4,4′-toluidine diisocyanate, dianisidine diisocyanate, 4,4′-diphenyl ether diisocyanate, for example, ω, ω′-diisocyanate-1,3-dimethylbenzene, ω, aromatic aliphatic diisocyanates such as ω′-diisocyanate-1,4-dimethylbenzene, ω, ω′-diisocyanate-1,4-diethylbenzene, for example, triphenylmethane-4,4′-4 ″ -triisocyanate, Triisocyanates such as 1,3,5-triisocyanatebenzene and 2,4,6-triisocyanatetoluene, for example, 4,4′-diphenyldimethylmethane-2,2 ′, 5,5′-tetraisocyanate, etc. Polyisocyanate containing tetraisocyanate Nate monomer, polyisocyanate derivatives derived from dimer, trimer, burette, allophanate, carbodiimide derived from the above polyisocyanate monomer and the above polyisocyanate monomer, for example, ethylene glycol, propylene glycol, Adducts of low molecular weight polyols having a molecular weight of less than 200 such as butylene glycol to the above polyisocyanate monomers, and the above polyisocyanate single amounts such as polyester polyols, polyether polyols, polycarbonate polyols, polyester amide polyols, acrylic polyols, polyurethane polyols, etc. Examples include adducts to the body.

また、本発明では、上記ポリウレタン樹脂に鎖延長剤を所定量反応させることで高分子化を図り、耐食性と加工後耐食性、上塗り塗料密着性、耐溶剤性、耐アルカリ性をさらに高めることができる。   In the present invention, the polyurethane resin can be polymerized by reacting a predetermined amount of the chain extender with the polyurethane resin, and the corrosion resistance, post-processing corrosion resistance, top coating adhesion, solvent resistance, and alkali resistance can be further enhanced.

上記鎖延長剤としては、例えば、公知のポリアミン化合物等が使用される。このようなポリアミン化合物としては、例えば、エチレンジアミン、1,2−プロパンジアミン、1,6−ヘキサメチレンジアミン、ピペラジン、2,5−ジメチルピペラジン、イソホロンジアミン、4,4’−ジシクロヘキシルジアミン、3,3’−ジメチル−4,4’−ジシクロヘキシルメタンジアミン、1,4−シクロヘキサンシクロヘキサンジアミン等のジアミン類、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアミン類、ヒドロキシエチルヒドラジン、ヒドロキシエチルジエチレントリアミン、2−[(2−アミノエチル)アミノ]エタノール、3−アミノプロパンジオール等のアミノ基と水酸基を持つ化合物、ヒドラジン類、酸ヒドラジド類等が挙げられる。これらのポリアミン化合物は、単独で、又は2種類以上の混合物で使用される。   As said chain extension agent, a well-known polyamine compound etc. are used, for example. Examples of such polyamine compounds include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4′-dicyclohexyldiamine, 3,3. Diamines such as' -dimethyl-4,4'-dicyclohexylmethanediamine, 1,4-cyclohexanecyclohexanediamine, polyamines such as diethylenetriamine, dipropylenetriamine, triethylenetetramine, tetraethylenepentamine, hydroxyethylhydrazine, hydroxyethyl Examples thereof include compounds having an amino group and a hydroxyl group such as diethylenetriamine, 2-[(2-aminoethyl) amino] ethanol, and 3-aminopropanediol, hydrazines, and acid hydrazides. These polyamine compounds are used alone or in a mixture of two or more.

これら鎖延長剤を、分子内に少なくとも1個の官能基(a)を有する活性水素基含有化合物(A)と、分子内に1個以上の官能基(b)を有する活性水素基含有化合物(B)と共に、ポリウレタンプレポリマーに所定量混合する。
その際、ウレタン樹脂のウレア基量とウレタン基量の合計量の樹脂成分総量に占める組成比を、窒素換算で0.1質量%以上10質量%以下に制御するのが望ましい。
すなわち、ウレア結合(―NH―CO―NH―)を形成する窒素の質量Taとウレタン結合(―NH−CO−O−)を形成する窒素の質量Tbの総量を、前記ポリウレタン樹脂の不揮発固形分の質量Tに対して下記数式で表される範囲にする。
0.1質量%≦(Ta+Tb)/T)×100≦10質量%
An active hydrogen group-containing compound (A) having at least one functional group (a) in the molecule and an active hydrogen group-containing compound having one or more functional groups (b) in the molecule (these chain extenders) A predetermined amount is mixed with the polyurethane prepolymer together with B).
At that time, it is desirable to control the composition ratio of the total amount of urea groups and urethane groups in the urethane resin in the total amount of the resin components to 0.1 mass% or more and 10 mass% or less in terms of nitrogen.
That is, the total amount of the mass Ta of nitrogen forming a urea bond (—NH—CO—NH—) and the mass Tb of nitrogen forming a urethane bond (—NH—CO—O—) is determined as the non-volatile solid content of the polyurethane resin. The mass T is in a range represented by the following mathematical formula.
0.1% by mass ≦ (Ta + Tb) / T) × 100 ≦ 10% by mass

また、鎖延長剤は、ポリウレタンプレポリマーの総量に対し、窒素原子換算で、0.1質量%以上10質量%以下の比率で混合させるのが望ましい。0.1質量%未満の混合量では、目的とするウレア量が得られず、耐溶剤性、下地金属材や上塗り塗料との密着性、耐食性、耐傷付き性が低下することがあり、10質量%超の混合量では、皮膜が硬くなり過ぎて加工性が低下する。   The chain extender is desirably mixed in a ratio of 0.1% by mass or more and 10% by mass or less in terms of nitrogen atom with respect to the total amount of the polyurethane prepolymer. If the mixing amount is less than 0.1% by mass, the target urea amount cannot be obtained, and solvent resistance, adhesion to the base metal material or top coating, corrosion resistance, and scratch resistance may decrease. If the mixing amount exceeds%, the film becomes too hard and the workability is lowered.

また、上記ポリウレタン樹脂中に、環状化合物、すなわち脂肪族環もしくは芳香族環を有する化合物を含有することで、皮膜の強度や耐溶剤性を高めることができる。このような環状化合物は、ウレタン樹脂の主鎖に置換基として結合している場合と、側鎖として結合している場合の両方がある。
脂肪族環を有する化合物としては、例えば、シクロヘキサノール基含有化合物、シクロペンタノール基含有化合物、イソホロン基含有化合物、ジシクロヘキシル基含有化合物等が挙げられる。芳香族環を有する化合物としては、ビスフェノール基含有化合物、クレゾール基含有化合物、ジフェニル基含有化合物等が挙げられる。
このような脂肪族環もしくは芳香族環を有する化合物の含有量は、ポリウレタン樹脂の全固形分に対する化合物総量の質量%が、0.1質量%以上30質量%以下であることが好ましい。0.1質量%未満では効果が乏しく、30質量%超では皮膜の造膜性が低下し、加工性及び皮膜自身の密着性が低下することがある。
Further, by containing a cyclic compound, that is, a compound having an aliphatic ring or an aromatic ring in the polyurethane resin, the strength and solvent resistance of the film can be increased. Such a cyclic compound has both the case where it is couple | bonded as a substituent with the principal chain of a urethane resin, and the case where it couple | bonds as a side chain.
Examples of the compound having an aliphatic ring include a cyclohexanol group-containing compound, a cyclopentanol group-containing compound, an isophorone group-containing compound, a dicyclohexyl group-containing compound, and the like. Examples of the compound having an aromatic ring include a bisphenol group-containing compound, a cresol group-containing compound, and a diphenyl group-containing compound.
As for the content of the compound having an aliphatic ring or aromatic ring, the mass% of the total amount of the compound relative to the total solid content of the polyurethane resin is preferably 0.1% by mass or more and 30% by mass or less. If it is less than 0.1% by mass, the effect is poor, and if it exceeds 30% by mass, the film-forming property of the film is lowered, and the workability and the adhesion of the film itself may be lowered.

また、上記ポリウレタン樹脂を構成するポリオール分子中に、分岐構造を有するモノマーを含有することで、皮膜形成時の架橋反応性をより高め、架橋密度を高くして耐食性、耐溶剤性、耐アルカリ性を向上させることができる。
分岐構造を有するモノマーとしては、例えば、トリメチロールプロパン、ペンタエリスリトール、ヒマシ油等が挙げられる。配合する量としては、ポリウレタン樹脂の全固形分に対する上記モノマーの質量%が、0.1質量%以上30質量%以下が好ましい。0.1質量%未満では効果が乏しく、30質量%超では皮膜の硬度が高くなり過ぎ、加工性及び皮膜自身の密着性が低下することがある。
In addition, by containing a monomer having a branched structure in the polyol molecule constituting the polyurethane resin, the crosslinking reactivity at the time of film formation is further increased, the crosslinking density is increased, and the corrosion resistance, solvent resistance, and alkali resistance are increased. Can be improved.
Examples of the monomer having a branched structure include trimethylolpropane, pentaerythritol, castor oil, and the like. The amount to be blended is preferably 0.1% by mass to 30% by mass with respect to the total solid content of the polyurethane resin. If it is less than 0.1% by mass, the effect is poor, and if it exceeds 30% by mass, the hardness of the film becomes too high, and the workability and the adhesion of the film itself may deteriorate.

また、ポリウレタン樹脂を水中に分散させるために、ポリウレタンプレポリマー中に親水性基を導入することができる。親水性基を導入するには、例えば、分子内に少なくとも1個以上の活性水素基を有し、かつ、カルボキシル基、スルホン酸基、スルホネート基、エポキシ基、ポリオキシエチレン基等の親水性基含有化合物(E)を、少なくとも1種以上、上記ポリウレタンプレポリマー製造時に共重合させればよい。
親水性基としては、カルボキシル基を選定することで特に優れた水分散性、処理剤中におけるエマルジョンの安定性を示す。さらに、カルボキシル基の含有量は酸当量で1000〜3000であることが好ましい。1000未満ではエマルジョンの安定性が十分ではなく、処理剤の安定性が低下することがあり、3000超では耐アルカリ性や耐溶剤性が低下することがある。
Further, in order to disperse the polyurethane resin in water, a hydrophilic group can be introduced into the polyurethane prepolymer. In order to introduce a hydrophilic group, for example, at least one active hydrogen group in the molecule and a hydrophilic group such as a carboxyl group, a sulfonic acid group, a sulfonate group, an epoxy group, or a polyoxyethylene group. What is necessary is just to copolymerize a containing compound (E) at the time of the said polyurethane prepolymer manufacture at least 1 or more types.
By selecting a carboxyl group as the hydrophilic group, it exhibits particularly excellent water dispersibility and stability of the emulsion in the treatment agent. Furthermore, it is preferable that content of a carboxyl group is 1000-3000 in an acid equivalent. If it is less than 1000, the stability of the emulsion is not sufficient, and the stability of the treating agent may be lowered. If it exceeds 3000, the alkali resistance and the solvent resistance may be lowered.

上記親水性基含有化合物(E)としては、例えば、2,2−ジメチロールプロピオン酸、2,2−ジメチロール酪酸、2,2−ジメチロール吉草酸、ジオキシマレイン酸、2,6−ジオキシ安息香酸、3,4−ジアミノ安息香酸等のカルボキシル基含有化合物もしくはこれらの誘導体、又はこれらを共重合して得られるポリエステルポリオール、無水マレイン酸、無水フタル酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸等無水基を有する化合物と活性水素基を有する化合物とを反応させてなるカルボキシル基含有化合物もしくはこれらの誘導体、又はこれらを共重合して得られるポリエステルポリオール、エチレンオキサイドの繰り返し単位を少なくとも3質量%以上含有し、ポリマー中に少なくとも1個以上の活性水素基を含有する分子量300〜10000のポリエチレン−ポリアルキレン共重合体等のノニオン基含有化合物、又はこれらを共重合して得られるポリエーテルエステルポリオール等が挙げられる。共重合の際にはこれら親水性基含有化合物を単独で、又は2種以上組み合わせて使用する。   Examples of the hydrophilic group-containing compound (E) include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolvaleric acid, dioxymaleic acid, and 2,6-dioxybenzoic acid. Carboxyl group-containing compounds such as 3,4-diaminobenzoic acid or derivatives thereof, or polyester polyols obtained by copolymerizing these, maleic anhydride, phthalic anhydride, succinic anhydride, trimellitic anhydride, pyrone anhydride A carboxyl group-containing compound obtained by reacting a compound having an anhydrous group such as merit acid and a compound having an active hydrogen group, or a derivative thereof, or a polyester polyol obtained by copolymerizing these, or at least 3 repeating units of ethylene oxide Containing at least 1% by mass, and at least one active hydrogen group in the polymer Polyethylene having a molecular weight of 300 to 10,000 which contain - nonionic group-containing compounds such as polyalkylene copolymer, or copolymerized with a polyether ester polyols obtained are mentioned these. In the copolymerization, these hydrophilic group-containing compounds are used alone or in combination of two or more.

上記ポリウレタン樹脂において、水中に良好に溶解又は分散させるために、中和剤が使用される。
使用できる中和剤としては、例えば、アンモニア、トリメチルアミン、トリエチルアミン、トリエタノールアミン、トリイソプロパノールアミン、ジメチルエタノールアミン等の第3級アミン、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属、アルカリ土類金属の水酸化物等の塩基性物質が挙げられるが、造膜性、表面処理剤の安定性の観点から、トリメチルアミン、トリエチルアミン等のアルキルアミン、又はトリエタノールアミン、ジメチルエタノールアミン等のアルカノールアミンから選ばれる少なくとも1種を使用することが好ましい。
In the polyurethane resin, a neutralizing agent is used in order to dissolve or disperse well in water.
Examples of neutralizing agents that can be used include tertiary amines such as ammonia, trimethylamine, triethylamine, triethanolamine, triisopropanolamine, and dimethylethanolamine, alkali metals such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, Examples include basic substances such as hydroxides of alkaline earth metals. From the viewpoint of film-forming properties and surface treatment agent stability, alkylamines such as trimethylamine and triethylamine, or triethanolamine and dimethylethanolamine It is preferable to use at least one selected from alkanolamines.

更に、中和剤は沸点150℃以下であることが好ましい。沸点150℃超では、焼付け乾燥後に中和剤が皮膜に多く残存し、皮膜の造膜性を低下させ、耐食性、耐アルカリ性、耐溶剤性を低下させることがある。これらの中和剤は、単独で、又は2種以上の混合物で使用してもよい。中和剤の添加方法としては、上記ポリウレタンプレポリマーに直接添加してもよいし、水中に溶解、又は分散させる時に水中に添加しても良い。中和剤の添加量は、カルボキシル基等の親水性基に対して0.1〜2.0当量、より好ましくは0.3〜1.3当量である。   Further, the neutralizing agent preferably has a boiling point of 150 ° C. or lower. If the boiling point exceeds 150 ° C., a large amount of the neutralizing agent remains in the film after baking and drying, which may reduce the film-forming property of the film, and may decrease the corrosion resistance, alkali resistance, and solvent resistance. These neutralizing agents may be used alone or in a mixture of two or more. As a method for adding the neutralizing agent, it may be added directly to the polyurethane prepolymer, or may be added to water when it is dissolved or dispersed in water. The addition amount of the neutralizing agent is 0.1 to 2.0 equivalents, more preferably 0.3 to 1.3 equivalents with respect to a hydrophilic group such as a carboxyl group.

また、上記カルボキシル基等の親水性基を含有するポリウレタンプレポリマーの水溶解又は分散性を更に良くするため、界面活性剤を使用してもよい。このような界面活性剤としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレン−オキシプロピレンブロック共重合体のようなノニオン系界面活性剤、又は、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムのようなアニオン系界面活性剤が用いられる。しかし、耐食性、耐アルカリ性、耐溶剤性等の性能から、界面活性剤を含まないソープフリー型が好ましい。   In order to further improve the water solubility or dispersibility of the polyurethane prepolymer containing a hydrophilic group such as a carboxyl group, a surfactant may be used. Examples of such surfactants include nonionic surfactants such as polyoxyethylene nonylphenyl ether and polyoxyethylene-oxypropylene block copolymers, or anions such as sodium lauryl sulfate and sodium dodecylbenzenesulfonate. A surfactant is used. However, in view of performance such as corrosion resistance, alkali resistance, solvent resistance, etc., a soap-free type containing no surfactant is preferred.

前記ポリウレタン樹脂にカルボキシル基を含有し、酸当量が1000〜3000であり、水分散時の中和剤として沸点150℃以下のアルカノールアミンを選定することで、界面活性剤を使用することなく自己乳化での水分散が可能となり、焼付け乾燥後の皮膜の造膜性が最も向上する。すなわち、特に耐食性、耐アルカリ性、耐溶剤性等の諸性能を最も向上させることが可能である。   Self-emulsification without using a surfactant by selecting an alkanolamine having a carboxyl group in the polyurethane resin, an acid equivalent of 1000 to 3000, and a boiling point of 150 ° C. or less as a neutralizing agent at the time of water dispersion Water dispersion is possible, and the film-forming property of the film after baking and drying is most improved. That is, various performances such as corrosion resistance, alkali resistance, and solvent resistance can be most improved.

また、上記ポリウレタンプレポリマーを合成する際には、有機溶剤を使用することも可能である。有機溶剤を使用する場合、比較的水への溶解度の高いものが好ましく、このような有機溶剤の具体例としては、例えば、アセトン、エチルメチルケトン、アセトニトリル、N−メチルピロリドン等が挙げられる。   Moreover, when synthesizing the polyurethane prepolymer, an organic solvent can be used. When an organic solvent is used, those having a relatively high solubility in water are preferable, and specific examples of such an organic solvent include acetone, ethyl methyl ketone, acetonitrile, N-methylpyrrolidone, and the like.

また、本発明のポリウレタン樹脂が有する官能基(a)又は(b)に由来する反応を促進させるために、硬化触媒を添加しても良い。本発明に係るポリウレタン樹脂においては、強塩基性第3級アミンが、このポリウレタン樹脂を塗膜化した際に、耐水性、耐溶剤性を悪化させることなく特異的にシロキサン結合の形成触媒として働くことにより、効率よく架橋構造を導入することが可能となる。
この強塩基性第3級アミンは、pKaが11以上であることを特徴とし、特に、1、8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)又は1、6−ジアザビシクロ[3.4.0]ノネン−5が好適に用いられる。この硬化触媒である強塩基性第3級アミンは、ポリウレタンプレポリマー合成時、ポリウレタンプレポリマー合成後、あるいはポリウレタンプレポリマーを水に分散、又は溶解した後、添加してもよい。
Further, a curing catalyst may be added in order to promote the reaction derived from the functional group (a) or (b) of the polyurethane resin of the present invention. In the polyurethane resin according to the present invention, a strongly basic tertiary amine specifically acts as a catalyst for forming a siloxane bond without deteriorating water resistance and solvent resistance when the polyurethane resin is coated. This makes it possible to efficiently introduce a crosslinked structure.
This strongly basic tertiary amine is characterized by a pKa of 11 or greater, in particular 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) or 1,6-diazabicyclo [3. 4.0] Nonene-5 is preferably used. The strongly basic tertiary amine as the curing catalyst may be added during the synthesis of the polyurethane prepolymer, after the synthesis of the polyurethane prepolymer, or after the polyurethane prepolymer is dispersed or dissolved in water.

また、本発明に係るポリウレタンエマルションには、塗膜形成性を改善することを目的として、必要に応じて造膜助剤を添加してもよい。このような造膜助剤の具体例としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、ヘキサノール、オクタノール、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート等のアルコール類、セロソルブ、エチルセロソルブ、ブチルセロソルブ、ジエチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノイソブチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノイソブチルエーテル等のエーテル類、ブチルセロソルブアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールモノイソブチルエーテルアセテート等のグリコールエーテルエステル類等が挙げられる。これら造膜助剤も、必要に応じて単独又は2種以上の混合物で用いられる。   In addition, a film-forming aid may be added to the polyurethane emulsion according to the present invention as necessary for the purpose of improving the film-forming property. Specific examples of such film-forming aids include, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, hexanol, octanol, 2,2,4-trimethyl-1,3-pentanediol. Alcohols such as monoisobutyrate, cellosolve, ethyl cellosolve, butyl cellosolve, diethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol monobutyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monoisobutyl ether, tripropylene glycol Ethers such as monoethyl ether and tripropylene glycol monoisobutyl ether, butyl cellosolve acetate DOO, diethylene glycol monobutyl ether acetate, dipropylene glycol monobutyl ether acetate, glycol ether esters, such as tripropylene glycol mono isobutyl ether acetate, and the like. These film-forming aids are also used alone or in a mixture of two or more as required.

また、本発明における表面処理剤においては、ポリウレタン樹脂の他に、他の樹脂を混合することも可能である。その場合、官能基(a)に由来する珪素の質量Sa、官能基(b)に由来する珪素の質量Sb及び酸化珪素に由来する珪素Scの質量の総量が、不揮発固形分の全質量Sに対し下記数式で表される範囲であり、
1.6質量%≦((Sa+Sb+Sc)/S)×100≦25質量%
かつ、前記のように、ウレア結合を形成する窒素及びウレタン結合を形成する窒素の総量が、皮膜固形分中の樹脂成分の総量に対し0.1質量%以上10質量%以下の条件を満たす量であれば適当量配合することができる。
Moreover, in the surface treating agent in this invention, it is also possible to mix other resin other than a polyurethane resin. In this case, the total mass S of silicon derived from the functional group (a), the mass Sb of silicon derived from the functional group (b), and the mass of silicon Sc derived from silicon oxide is the total mass S of nonvolatile solids. On the other hand, it is a range represented by the following formula,
1.6% by mass ≦ ((Sa + Sb + Sc) / S) × 100 ≦ 25% by mass
In addition, as described above, the total amount of nitrogen that forms urea bonds and nitrogen that forms urethane bonds satisfies the condition of 0.1% by mass or more and 10% by mass or less with respect to the total amount of resin components in the solid content of the film. If so, an appropriate amount can be blended.

ここで、上記「樹脂成分の総量」とは、皮膜中にポリウレタン樹脂のみを含む場合はポリウレタン樹脂の総量、ポリウレタン樹脂以外の他の樹脂を含む場合はポリウレタン樹脂および他の樹脂の合計量を意味する。また、上記他の樹脂としては、エポキシ樹脂、アクリル樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ポリエーテル樹脂等が例示される。複合させる樹脂としてはポリオレフィン樹脂が好ましい。このように、皮膜中にポリウレタン樹脂とポリオレフィン樹脂を含む場合には、皮膜として強靭な性質を有し、かつ密着性にも優れるポリウレタン樹脂に、腐食因子のバリア性及び柔軟性に優れるポリオレフィン樹脂を含めることにより、皮膜の強度や密着性に加えて、皮膜の耐食性や加工性をさらに向上させることができるという複合効果を有する。ポリオレフィン樹脂の含有量は5質量%以上50質量%以下であることが好ましい。5質量%未満では上記複合効果が乏しく、50質量%超ではポリウレタン樹脂の特性が十分に発揮できなくなることがある。   Here, the above-mentioned “total amount of resin component” means the total amount of the polyurethane resin when the film contains only the polyurethane resin, and the total amount of the polyurethane resin and the other resin when other resins other than the polyurethane resin are included. To do. Moreover, as said other resin, an epoxy resin, an acrylic resin, polyolefin resin, polyester resin, polyether resin, etc. are illustrated. A polyolefin resin is preferable as the composite resin. Thus, when a polyurethane resin and a polyolefin resin are included in the film, a polyolefin resin having excellent corrosion resistance barrier properties and flexibility is added to the polyurethane resin having strong properties as a film and excellent adhesion. By including, in addition to the strength and adhesion of the film, it has the combined effect of further improving the corrosion resistance and workability of the film. The content of the polyolefin resin is preferably 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, the above composite effect is poor, and if it exceeds 50% by mass, the characteristics of the polyurethane resin may not be sufficiently exhibited.

次に、酸化珪素について説明する。酸化珪素は、例えば、二酸化珪素等が挙げられる。酸化珪素は、水中に安定に分散し沈降が生じない化合物であれば良く、中でも、コロイダルシリカを使用した場合に、耐溶剤性、耐食性向上効果が顕著に現れるため好ましい。例えば、「スノーテックスO」「スノーテックスOS」「スノーテックスOXS」「スノーテックスN」「スノーテックスNS」「スノーテックスNXS」(いずれも日産化学工業社製)等の市販のコロイダルシリカ粒子、「スノーテックスUP」「スノーテックスPS」(日産化学工業社製)のような繊維状コロイダルシリカ等を、表面処理剤のpHに応じて用いることができる。   Next, silicon oxide will be described. Examples of silicon oxide include silicon dioxide. Silicon oxide is not particularly limited as long as it is a compound that stably disperses in water and does not cause sedimentation. Among them, when colloidal silica is used, the effect of improving solvent resistance and corrosion resistance is remarkably exhibited. For example, commercially available colloidal silica particles such as “Snowtex O”, “Snowtex OS”, “Snowtex OXS”, “Snowtex N”, “Snowtex NS”, “Snowtex NXS” (all manufactured by Nissan Chemical Industries, Ltd.), Fibrous colloidal silica such as “Snowtex UP” and “Snowtex PS” (manufactured by Nissan Chemical Industries, Ltd.) can be used depending on the pH of the surface treatment agent.

酸化珪素の含有量は、皮膜の固形分に対し、珪素換算で1.5質量%以上20質量%以下とすることが好ましい。1.5質量%未満では効果が乏しく、20質量%超では効果が飽和して不経済であると共に、加工性、耐食性が低下することがある。表面処理金属材の場合には、皮膜の全固形分に対し、酸化珪素、官能基(a)と官能基(b)に由来する珪素の総量で、1.6質量%以上25質量%以下が好ましい皮膜中のケイ素含有量となる。   The silicon oxide content is preferably 1.5% by mass or more and 20% by mass or less in terms of silicon based on the solid content of the film. If it is less than 1.5% by mass, the effect is poor, and if it exceeds 20% by mass, the effect is saturated and uneconomical, and the workability and corrosion resistance may decrease. In the case of the surface-treated metal material, the total amount of silicon oxide, silicon derived from the functional group (a) and the functional group (b) is 1.6% by mass to 25% by mass with respect to the total solid content of the film. A preferable silicon content in the film is obtained.

また、本発明における表面処理剤においては、ポリウレタン樹脂の他に、架橋剤や防錆剤等の添加剤を混合することができる。
架橋剤は、水溶性あるいは水分散性であればいずれも使用可能であるが、その中でも主にカルボキシル基、水酸基等の活性水素基と架橋構造を形成する有機チタネート化合物を混合することにより、上記官能基(a)、官能基(b)、酸化珪素に由来する架橋反応を、より低い焼付け温度で効率よく行うことが可能となる。さらに、ポリウレタン樹脂の分子内に含有している親水性基と、他の親水性基とを架橋することも可能となり、皮膜の耐食性、加工後耐食性、耐アルカリ性、耐溶剤性が飛躍的に向上する。
Moreover, in the surface treating agent in this invention, additives, such as a crosslinking agent and a rust preventive agent other than a polyurethane resin, can be mixed.
Any crosslinking agent can be used as long as it is water-soluble or water-dispersible. Among them, the organic titanate compound that forms a crosslinked structure with an active hydrogen group such as a carboxyl group or a hydroxyl group is mainly mixed. The cross-linking reaction derived from the functional group (a), the functional group (b), and silicon oxide can be efficiently performed at a lower baking temperature. In addition, it is possible to crosslink hydrophilic groups contained in polyurethane resin molecules with other hydrophilic groups, dramatically improving the corrosion resistance, post-processing corrosion resistance, alkali resistance, and solvent resistance of the coating. To do.

有機チタネート化合物としては、例えば、オルガチックスTC−300(ジヒドロキスビス(アンモニウムラクテート)チタニウム;松本製薬工業社製)、TC−400(ジイソプロポキシチタンビス(トリエタノールアミネート);松本製薬工業社製)等が例示される。   Examples of the organic titanate compound include olgatyx TC-300 (dihydrokisbis (ammonium lactate) titanium; manufactured by Matsumoto Pharmaceutical Co., Ltd.), TC-400 (diisopropoxytitanium bis (triethanolaminate); manufactured by Matsumoto Pharmaceutical Co., Ltd. And the like.

また、上記架橋剤として、さらにカルボジイミド基含有化合物又はオキサゾリン基含有化合物を表面処理剤に混合することで、上記官能基(a)、官能基(b)、酸化珪素に由来する架橋反応をさらに低い焼付け温度で効率よく行え、またポリウレタン樹脂が分子内に含有する親水性基と、他の親水性基とを架橋することもさらに可能となる。   Further, as the crosslinking agent, a carbodiimide group-containing compound or an oxazoline group-containing compound is further mixed with the surface treatment agent, thereby further reducing the crosslinking reaction derived from the functional group (a), the functional group (b), and silicon oxide. It can be carried out efficiently at the baking temperature, and it is further possible to crosslink the hydrophilic group contained in the molecule of the polyurethane resin with other hydrophilic groups.

カルボジイミド基含有化合物としては、芳香族カルボジイミド化合物、脂肪族カルボジイミド化合物等が挙げられ、主にカルボキシル基、水酸基等の活性水素基と架橋構造を形成する。例えば、カルボジライトV−02、同V−02−L2、同E−01、同E−02、同E−03A、同E−04(以上日清紡社製)が例示される。   Examples of the carbodiimide group-containing compound include aromatic carbodiimide compounds and aliphatic carbodiimide compounds, and mainly form a crosslinked structure with active hydrogen groups such as carboxyl groups and hydroxyl groups. Examples thereof include Carbodilite V-02, V-02-L2, E-01, E-02, E-03A, and E-04 (manufactured by Nisshinbo Co., Ltd.).

オキサゾリン基含有化合物としては、例えば、エポクロスK−2010E、同K−2020E、同K−2030E、同WS−500、同WS−700(以上、日本触媒社製)が例示される。オキサゾリン基含有化合物は、主にカルボキシル基と反応して架橋構造を形成する。   Examples of the oxazoline group-containing compound include Epocros K-2010E, K-2020E, K-2030E, WS-500, and WS-700 (manufactured by Nippon Shokubai Co., Ltd.). The oxazoline group-containing compound mainly reacts with a carboxyl group to form a crosslinked structure.

これらの架橋剤の好ましい添加量は、樹脂の酸当量の値にもよるが、皮膜の硬化性と伸び、硬さ等物性上のバランスから、主樹脂(本発明の場合は、ポリウレタン樹脂)に対する架橋剤全量の固形分比で5質量%以上50質量%以下が好ましい。   The preferred addition amount of these crosslinking agents depends on the acid equivalent value of the resin, but from the balance of physical properties such as film curability, elongation, and hardness, it is based on the main resin (in the case of the present invention, polyurethane resin). 5 mass% or more and 50 mass% or less are preferable at solid content ratio of the crosslinking agent whole quantity.

以上説明した本発明の表面処理剤を金属材の表面に塗布し、乾燥することによって皮膜を形成する。用いられる金属材としては、特に限定されないが、例えば、Alキルド鋼板、Ti、Nb等を添加した極低炭素鋼板、及びこれらにP、Si、Mn等の強化元素を添加した高強度鋼板、及びそれらに各種めっきを施した材料、ステンレス鋼に代表されるCr含有鋼等種々のものが適用できる。
また、その他の金属Al及びAl系合金材料、金属Ti及びTi系合金材料、Mg系合金材料等、Fe系以外の金属材料に適用することが可能である。
これらの中には、防錆コーティングとしての必要性が少ないものもあるが、傷つき防止や意匠性コーティングとして適用することも可能である。それらの中で、Zn系めっき鋼板に適用する場合が特に好ましい。
The surface treatment agent of the present invention described above is applied to the surface of a metal material and dried to form a film. The metal material to be used is not particularly limited. For example, Al killed steel plate, ultra-low carbon steel plate to which Ti, Nb and the like are added, and high strength steel plate to which reinforcing elements such as P, Si and Mn are added, and Various materials such as materials obtained by plating them and Cr-containing steel typified by stainless steel can be applied.
Further, the present invention can be applied to metal materials other than Fe, such as other metal Al and Al alloy materials, metal Ti and Ti alloy materials, and Mg alloy materials.
Some of these are less necessary as a rust-proof coating, but can also be applied as a scratch-proof or design coating. Among them, the case of applying to a Zn-based plated steel sheet is particularly preferable.

鋼材の被覆層として、特に限定されないが、特に、Znめっき又はZn−Ni、Zn−Fe、Zn−Mg、Zn−Al、Zn−Cr、Zn−Ti、Zn−Mn、Zn−Al−Mg、Zn−Al−Si、Zn−Al−Mg−Si等のZn系合金めっきを施したものが最も優れた特性を示し、クロメート皮膜に代替可能である。また、Al又はAlとSi、Zn、Mgの少なくとも1種からなる合金、例えばAl−Si系合金、Al−Zn系合金、Al−Si−Mg合金等のAl系めっき、もしくはSnとZnの合金めっき等にも適用可能である。   The coating layer of the steel material is not particularly limited, but in particular, Zn plating or Zn—Ni, Zn—Fe, Zn—Mg, Zn—Al, Zn—Cr, Zn—Ti, Zn—Mn, Zn—Al—Mg, Those plated with Zn-based alloys such as Zn—Al—Si and Zn—Al—Mg—Si exhibit the most excellent characteristics and can be replaced with chromate films. In addition, Al or an alloy composed of at least one of Al and Si, Zn, and Mg, for example, Al-based plating such as Al-Si alloy, Al-Zn alloy, Al-Si-Mg alloy, or Sn and Zn alloy It can also be applied to plating.

金属材は、板状以外にも鋼管等の管状のもの、鋼矢板やH型鋼のような矢板状のもの、棒鋼や線材等の線状のもの等、さまざまな形状の金属材に適用することが可能である。   In addition to the plate shape, the metal material should be applied to metal materials of various shapes such as tubular materials such as steel pipes, sheet pile materials such as steel sheet piles and H-shaped steel, and wire materials such as steel bars and wire rods. Is possible.

本発明の表面処理剤を用いて形成される皮膜の厚みは、通常の用途では0.1μm以上5μm以下が好ましい。0.1μm未満では耐食性に対する寄与が少ない。5μm以上では効果が飽和し不経済である。   The thickness of the film formed using the surface treating agent of the present invention is preferably 0.1 μm or more and 5 μm or less for normal use. If it is less than 0.1 μm, the contribution to the corrosion resistance is small. If it is 5 μm or more, the effect is saturated and uneconomical.

形成した皮膜には、例えば、官能基(a)に由来する珪素、官能基(b)に由来する珪素及び酸化珪素に由来する珪素の総量が、不揮発固形分の全質量に対し1.6質量%以上25質量%以下含有されているが、以上説明したような皮膜を構成する各種成分は、質量分析、蛍光X線分析、核磁気共鳴分光分析、赤外分光分析、X線光電子分光分析、X線マイクロアナライザー等、既知の方法を使用し、あるいは組み合わせることにより、定量分析が可能である。ここで、本発明において、上記「他の官能基」とは、例えば、水酸基、アミノ基、イソシアネート基、イミド基、オキサゾリン基、エポキシ基、アルコキシル基等の、シラノール基と反応して脱水縮合結合や架橋結合を形成する官能基の総称を意味している。   In the formed film, for example, the total amount of silicon derived from the functional group (a), silicon derived from the functional group (b), and silicon derived from silicon oxide is 1.6 mass relative to the total mass of the nonvolatile solid content. % To 25% by mass, but the various components constituting the film as described above are mass spectrometry, X-ray fluorescence analysis, nuclear magnetic resonance spectroscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, Quantitative analysis is possible by using or combining known methods such as an X-ray microanalyzer. Here, in the present invention, the “other functional group” means, for example, a dehydration condensation bond by reacting with a silanol group such as a hydroxyl group, an amino group, an isocyanate group, an imide group, an oxazoline group, an epoxy group, or an alkoxyl group. And a general term for functional groups that form crosslinks.

金属材への表面処理剤の塗布は、スプレー塗布、ロールコート、バーコート、浸漬、静電塗布等の公知の方法で可能である。
焼付け乾燥は、熱風乾燥炉、誘導加熱炉、近赤外線炉、直火炉等を用いる公知の方法による焼付け乾燥、又は、これらを組み合わせた方法で行えばよい。また、使用する樹脂の種類によっては、紫外線や電子線等のエネルギー線により硬化させることができる。加熱温度としては、到達板温度で100℃〜250℃が好ましい。100℃未満では、十分に架橋させるためには長時間の乾燥が必要となり、実際的ではない。また、250℃超では、有機樹脂の熱分解が生じ、耐食性に悪影響を及ぼす。工業的には、130〜200℃がより好ましい。
また、加熱乾燥後の冷却は、水冷、空冷等の公知の方法又はその組み合わせで可能である。
The surface treatment agent can be applied to the metal material by a known method such as spray coating, roll coating, bar coating, dipping or electrostatic coating.
Baking and drying may be performed by a known method using a hot air drying furnace, an induction heating furnace, a near-infrared furnace, a direct-fired furnace, or the like, or a combination thereof. Depending on the type of resin used, it can be cured by energy rays such as ultraviolet rays and electron beams. The heating temperature is preferably 100 ° C to 250 ° C in terms of the ultimate plate temperature. Below 100 ° C., drying for a long time is necessary for sufficient crosslinking, which is not practical. If it exceeds 250 ° C., thermal decomposition of the organic resin occurs, which adversely affects the corrosion resistance. Industrially, 130 to 200 ° C is more preferable.
Moreover, the cooling after heat drying is possible by well-known methods, such as water cooling and air cooling, or those combinations.

本発明においては、皮膜を形成する前に、金属材にリン酸塩処理皮膜等の化成処理皮膜を加えることにより、あるいは同様の皮膜の2段処理により、さらには、それ以上の複層化処理により、必要に応じて、さらに耐食性向上や機能付与を図ることが可能である。また、めっき後の処理として、化成処理以前に、溶融めっき後の外観均一処理であるゼロスパングル処理、めっき層の改質処理である焼鈍処理、表面状態や材質の調整のための調質圧延等があり得るが、本発明においては、特にこれらを限定せず、適用することも可能である。   In the present invention, before forming the film, by adding a chemical conversion treatment film such as a phosphate treatment film to the metal material, or by a two-stage treatment of the same film, further multi-layer treatment As a result, it is possible to further improve the corrosion resistance and impart functions as needed. In addition, as post-plating treatment, before chemical conversion treatment, zero spangle treatment that is uniform appearance after hot dipping, annealing treatment that is modification treatment of plating layer, temper rolling for adjustment of surface condition and material, etc. However, in the present invention, these are not particularly limited and can be applied.

以下、本発明に係る製造例及び実施例を示し、本発明をさらに詳細に説明するが、本発明は下記実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although the manufacture example and Example which concern on this invention are shown and this invention is demonstrated further in detail, this invention is not limited only to the following Example.

<製造例1:ポリウレタン樹脂A>
攪拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、温度計を備えた4つ口フラスコに、1,3−ビス(イソシアネートメチル)シクロヘキサン145.37g、ジメチロールプロピオン酸20.08g、ネオペンチルグリコール15.62g、分子量1000のポリカーボネートジオール74.93g、溶剤としてアセトニトリル64.00gを加え、窒素雰囲気下、75℃に昇温、3時間攪拌した。この場合、ウレア基とウレタン基の含有量は合わせて窒素原子換算で3.3質量%になる。
所定のアミン当量に達したことを確認し、この反応液を40℃まで降温させた後、トリエチルアミン(沸点89℃)15.16gを加え、さらに硬化触媒として1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)0.25gを添加し、ポリウレタンプレポリマーのアセトニトリル溶液を得た。
このポリウレタンプレポリマー327.82gを、KBM−603(信越化学工業(株)製)25.38g、ヒドラジン一水和物11.43gを水700.00gに溶解させた水溶液中にホモディスパーを用いて分散させることにより鎖延長反応、エマルション化し、さらに50℃、150mmHgの減圧下でポリウレタンプレポリマー合成時に使用したアセトニトリルを留去することにより、溶剤を実質的に含まない、固形分濃度30質量%、粘度30mPa・s(25℃)、酸当量2000のポリウレタン樹脂エマルションAを得た。
<Production Example 1: Polyurethane resin A>
In a four-necked flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, thermometer, 145.37 g of 1,3-bis (isocyanatomethyl) cyclohexane, 20.08 g of dimethylolpropionic acid, neopentyl glycol 15.62 g, polycarbonate diol 74.93 g having a molecular weight of 1000, and 64.00 g of acetonitrile as a solvent were added, and the mixture was heated to 75 ° C. and stirred for 3 hours under a nitrogen atmosphere. In this case, the content of urea group and urethane group is 3.3% by mass in terms of nitrogen atom.
After confirming that the predetermined amine equivalent had been reached, the temperature of the reaction solution was lowered to 40 ° C., and then 15.16 g of triethylamine (boiling point 89 ° C.) was added, and 1,8-diazabicyclo [5.4. 0] 0.25 g of undecene-7 (DBU) was added to obtain an acetonitrile solution of a polyurethane prepolymer.
Using a homodisper in an aqueous solution in which 32.82 g of this polyurethane prepolymer was dissolved in 25.38 g of KBM-603 (manufactured by Shin-Etsu Chemical Co., Ltd.) and 11.43 g of hydrazine monohydrate was dissolved in 700.00 g of water. By dispersing, chain extension reaction, emulsification, and further by distilling off the acetonitrile used in the synthesis of the polyurethane prepolymer under reduced pressure of 50 ° C. and 150 mmHg, the solvent substantially does not contain a solid content concentration of 30% by mass, A polyurethane resin emulsion A having a viscosity of 30 mPa · s (25 ° C.) and an acid equivalent of 2000 was obtained.

<製造例2:ポリウレタン樹脂B>
製造例1と同様にして作製したポリウレタンプレポリマー327.82gを、KBM−602(信越化学工業(株)製)11.78g、KBM−603(信越化学工業(株)製)12.69g、ヒドラジン一水和物11.43gを水700.00gに溶解させた水溶液中にホモディスパーを用いて分散させることにより鎖延長反応、エマルション化し、さらに50℃、150mmHgの減圧下でポリウレタンプレポリマー合成時に使用したアセトニトリルを留去することにより、溶剤を実質的に含まない、固形分濃度30質量%、粘度30mPa・s(25℃)、酸当量2000のポリウレタン樹脂エマルションBを得た。
<Production Example 2: Polyurethane resin B>
327.82 g of the polyurethane prepolymer produced in the same manner as in Production Example 1, 11.78 g of KBM-602 (manufactured by Shin-Etsu Chemical Co., Ltd.), 12.69 g of KBM-603 (manufactured by Shin-Etsu Chemical Co., Ltd.), hydrazine Chain extension reaction, emulsified by dispersing with homodisper in an aqueous solution in which 11.43 g of monohydrate is dissolved in 700.00 g of water, and further used at the time of synthesizing polyurethane prepolymer under reduced pressure of 50 ° C. and 150 mmHg By distilling off the acetonitrile, a polyurethane resin emulsion B having a solid content concentration of 30% by mass, a viscosity of 30 mPa · s (25 ° C.), and an acid equivalent of 2000 was obtained.

<製造例3:ポリウレタン樹脂C>
製造例1と同様の4つ口フラスコに、1,3−ビス(イソシアネートメチル)シクロヘキサン143.57g、ジメチロールプロピオン酸21.56g、ネオペンチルグリコール3.35g、ビスフェノールAのPOモル付加物55.34g、分子量1000のポリカーボネートジオール32.18g、溶剤としてアセトニトリル64.00gを加え、窒素雰囲気下、75℃に昇温、3時間攪拌した。この場合、ウレア基とウレタン基濃度は合わせて窒素原子換算で4.5質量%になる。
所定のアミン当量に達したことを確認し、この反応液を40℃まで降温させた後、トリエチルアミン(沸点89℃)16.25gを加え、さらに硬化触媒として1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)0.25gを添加し、ポリウレタンプレポリマーのアセトニトリル溶液を得た。
このポリウレタンプレポリマー331.77gを、KBM−602(信越化学工業(株)製)10.67g、KBM−603(信越化学工業(株)製)11.50g、ヒドラジン一水和物10.34gを水700.00gに溶解させた水溶液中にホモディスパーを用いて分散させることにより鎖延長反応、エマルション化し、さらに50℃、150mmHgの減圧下でポリウレタンプレポリマー合成時に使用したアセトニトリルを留去することにより、溶剤を実質的に含まない、固形分濃度30質量%、粘度30mPa・s(25℃)、酸当量1900のポリウレタン樹脂エマルションCを得た。
<Production Example 3: Polyurethane resin C>
In a four-necked flask similar to Production Example 1, 1,3-bis (isocyanatomethyl) cyclohexane 143.57 g, dimethylolpropionic acid 21.56 g, neopentyl glycol 3.35 g, bisphenol A PO 2 mol adduct 55 34.18 g of polycarbonate diol having a molecular weight of 1000 and 64.00 g of acetonitrile as a solvent were added, and the mixture was heated to 75 ° C. and stirred for 3 hours under a nitrogen atmosphere. In this case, the concentration of urea group and urethane group is 4.5% by mass in terms of nitrogen atom.
After confirming that a predetermined amine equivalent had been reached, the temperature of the reaction solution was lowered to 40 ° C., 16.25 g of triethylamine (boiling point 89 ° C.) was added, and 1,8-diazabicyclo [5.4. 0] 0.25 g of undecene-7 (DBU) was added to obtain an acetonitrile solution of a polyurethane prepolymer.
33.77 g of this polyurethane prepolymer, 10.67 g of KBM-602 (manufactured by Shin-Etsu Chemical Co., Ltd.), 11.50 g of KBM-603 (manufactured by Shin-Etsu Chemical Co., Ltd.), 10.34 g of hydrazine monohydrate By dispersing with a homodisper in an aqueous solution dissolved in 700.00 g of water to form a chain extension reaction and emulsification, and then distilling off the acetonitrile used during the synthesis of the polyurethane prepolymer under reduced pressure of 50 ° C. and 150 mmHg. A polyurethane resin emulsion C having a solid content concentration of 30% by mass, a viscosity of 30 mPa · s (25 ° C.), and an acid equivalent of 1900 was obtained.

<製造例4:ポリウレタン樹脂D>
製造例1と同様の4つ口フラスコに、1,3−ビス(イソシアネートメチル)シクロヘキサン139.35g、ジメチロールプロピオン酸21.39g、ネオペンチルグリコール8.32g、トリメチロールプロパン7.14g、分子量1000のポリカーボネートジオール79.81g、溶剤としてアセトニトリル64.00gを加え、窒素雰囲気下、75℃に昇温、3時間攪拌した。この場合、ウレア基とウレタン基濃度は合わせて窒素原子換算で2.3質量%になる。
所定のアミン当量に達したことを確認し、この反応液を40℃まで降温させた後、トリエチルアミン(沸点89℃)16.12gを加え、さらに硬化触媒として1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)0.25gを添加し、ポリウレタンプレポリマーのアセトニトリル溶液を得た。
このポリウレタンプレポリマー314.58gを、KBM−602(信越化学工業(株)製)10.39g、KBM−603(信越化学工業(株)製)11.20g、ヒドラジン一水和物10.08gを水700.00gに溶解させた水溶液中にホモディスパーを用いて分散させることにより鎖延長反応、エマルション化し、さらに50℃、150mmHgの減圧下でポリウレタンプレポリマー合成時に使用したアセトニトリルを留去することにより、溶剤を実質的に含まない、固形分濃度30質量%、粘度30mPa・s(25℃)、酸当量1900のポリウレタン樹脂エマルションDを得た。
<Production Example 4: Polyurethane resin D>
In the same four-necked flask as in Production Example 1, 139.35 g of 1,3-bis (isocyanatomethyl) cyclohexane, 21.39 g of dimethylolpropionic acid, 8.32 g of neopentyl glycol, 7.14 g of trimethylolpropane, and a molecular weight of 1000 79.81 g of the polycarbonate diol and 64.00 g of acetonitrile as a solvent were added, heated to 75 ° C. under a nitrogen atmosphere, and stirred for 3 hours. In this case, the concentration of urea group and urethane group is 2.3% by mass in terms of nitrogen atom.
After confirming that the predetermined amine equivalent was reached, the temperature of this reaction solution was lowered to 40 ° C., then 16.12 g of triethylamine (boiling point 89 ° C.) was added, and 1,8-diazabicyclo [5.4. 0] 0.25 g of undecene-7 (DBU) was added to obtain an acetonitrile solution of a polyurethane prepolymer.
314.58 g of this polyurethane prepolymer, KBN-602 (Shin-Etsu Chemical Co., Ltd.) 10.39 g, KBM-603 (Shin-Etsu Chemical Co., Ltd.) 11.20 g, hydrazine monohydrate 10.08 g By dispersing with a homodisper in an aqueous solution dissolved in 700.00 g of water to form a chain extension reaction and emulsification, and then distilling off the acetonitrile used during the synthesis of the polyurethane prepolymer under reduced pressure of 50 ° C. and 150 mmHg. A polyurethane resin emulsion D having a solid content concentration of 30% by mass, a viscosity of 30 mPa · s (25 ° C.), and an acid equivalent of 1900 was obtained.

<製造例5:ポリウレタン樹脂E>
製造例1と同様の4つ口フラスコに、1,3−ビス(イソシアネートメチル)シクロヘキサン145.37g、ジメチロールプロピオン酸20.08g、ネオペンチルグリコール15.62g、分子量1000のポリカーボネートジオール74.93g、溶剤としてアセトニトリル64.00gを加え、窒素雰囲気下、75℃に昇温、3時間攪拌した。この場合、ウレア基とウレタン基濃度は合わせて窒素原子換算で6.8質量%になる。所定のアミン当量に達したことを確認し、この反応液を40℃まで降温させた後、ジメチルエタノールアミン(沸点135℃)13.37gを加え、さらに硬化触媒として1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)0.25gを添加し、ポリウレタンプレポリマーのアセトニトリル溶液を得た。このポリウレタンプレポリマー327.98gを、KBM−602(信越化学工業(株)製)11.85g、KBM−603(信越化学工業(株)製)12.77g、ヒドラジン一水和物11.49gを水700.00gに溶解させた水溶液中にホモディスパーを用いて分散させることにより鎖延長反応、エマルション化し、さらに50℃、150mmHgの減圧下でポリウレタンプレポリマー合成時に使用したアセトニトリルを留去することにより、溶剤を実質的に含まない、固形分濃度30質量%、粘度30mPa・s(25℃)、酸当量2000のポリウレタン樹脂エマルションEを得た。
<Production Example 5: Polyurethane resin E>
In a four-necked flask similar to Production Example 1, 145.37 g of 1,3-bis (isocyanatomethyl) cyclohexane, 20.08 g of dimethylolpropionic acid, 15.62 g of neopentyl glycol, 74.93 g of polycarbonate diol having a molecular weight of 1000, As a solvent, 64.00 g of acetonitrile was added, and the mixture was heated to 75 ° C. and stirred for 3 hours under a nitrogen atmosphere. In this case, the concentration of urea group and urethane group is 6.8% by mass in terms of nitrogen atom. After confirming that the predetermined amine equivalent was reached, the reaction solution was cooled to 40 ° C., 13.37 g of dimethylethanolamine (boiling point 135 ° C.) was added, and 1,8-diazabicyclo [5. 4.0] undecene-7 (DBU) 0.25 g was added to obtain an acetonitrile solution of a polyurethane prepolymer. 327.98 g of this polyurethane prepolymer, KBM-602 (Shin-Etsu Chemical Co., Ltd.) 11.85 g, KBM-603 (Shin-Etsu Chemical Co., Ltd.) 12.77 g, hydrazine monohydrate 11.49 g By dispersing with a homodisper in an aqueous solution dissolved in 700.00 g of water to form a chain extension reaction and emulsification, and then distilling off the acetonitrile used during the synthesis of the polyurethane prepolymer under reduced pressure of 50 ° C. and 150 mmHg. A polyurethane resin emulsion E having a solid content concentration of 30% by mass, a viscosity of 30 mPa · s (25 ° C.), and an acid equivalent of 2000 was obtained.

<製造例6:ポリウレタン樹脂F>
攪拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、温度計を備えた4つ口フラスコに、4,4’−メチレンビス(シクロヘキシルイソシアネート)155.87g、ジメチロールプロピオン酸27.36g、ネオペンチルグリコール1.93g、1,6−ヘキサンジオール4.39g、アジピン酸、ネオペンチルグリコール、及び1,6−ヘキサンジオールからなる分子量1000のポリエステルポリオール111.38g、溶剤としてN−メチルピロリドン130gを添加し、窒素雰囲気下、80℃において4時間攪拌した。この場合、ウレア基とウレタン基濃度は合わせて窒素原子換算で15質量%になる。
所定のアミン当量に達したことを確認し、この反応液を40℃まで降温させた後、トリエチルアミン(沸点89℃)20.00gを加えて中和反応を行わせ、ポリウレタンプレポリマーのN−メチルピロリドン溶液を得た。
このポリウレタンプレポリマー436.41gを、ヒドラジン一水和物7.77gを水543.81g中に溶解させた水溶液中にホモディスパーを用いて分散させることにより鎖延長反応、エマルション化し、固形分濃度33質量%、粘度100mPa・s(25℃)、酸当量1500のポリウレタン樹脂エマルションFを得た。
<Production Example 6: Polyurethane resin F>
In a four-necked flask equipped with a stirrer, a Dimroth cooler, a nitrogen inlet tube, a silica gel drying tube, and a thermometer, 155.87 g of 4,4′-methylenebis (cyclohexyl isocyanate), 27.36 g of dimethylolpropionic acid, neopentyl glycol 1.93 g, 4.39 g of 1,6-hexanediol, 111.38 g of a polyester polyol having a molecular weight of 1000 consisting of adipic acid, neopentyl glycol, and 1,6-hexanediol, and 130 g of N-methylpyrrolidone as a solvent, The mixture was stirred at 80 ° C. for 4 hours under a nitrogen atmosphere. In this case, the concentration of urea group and urethane group is 15% by mass in terms of nitrogen atom.
After confirming that the predetermined amine equivalent was reached, the reaction solution was cooled to 40 ° C., and 20.00 g of triethylamine (boiling point 89 ° C.) was added to carry out a neutralization reaction. A pyrrolidone solution was obtained.
The polyurethane prepolymer (436.41 g) was dispersed in an aqueous solution in which 7.77 g of hydrazine monohydrate was dissolved in 543.81 g of water by using a homodisper to form a chain extension reaction, which was emulsified. A polyurethane resin emulsion F having a mass%, a viscosity of 100 mPa · s (25 ° C.), and an acid equivalent of 1500 was obtained.

<製造例7:ポリウレタン樹脂G>
攪拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、温度計を備えた4つ口フラスコに、1,3−ビス(イソシアネートメチル)シクロヘキサン145.37g、ジメチロールプロピオン酸20.08g、ネオペンチルグリコール15.62g、分子量1000のポリカーボネートジオール74.93g、溶剤としてアセトニトリル64.00gを加え、窒素雰囲気下、75℃に昇温、3時間攪拌した。この場合、ウレア基とウレタン基の含有量は合わせて窒素原子換算で3.3質量%になる。
所定のアミン当量に達したことを確認し、この反応液を40℃まで降温させた後、トリエチルアミン(沸点89℃)15.16gを加え、さらに硬化触媒として1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)0.25gを添加し、ポリウレタンプレポリマーのアセトニトリル溶液を得た。
このポリウレタンプレポリマー327.82gを、KBM−602(信越化学工業(株)製)23.55g、11.78g、ヒドラジン一水和物11.43gを水700.00gに溶解させた水溶液中にホモディスパーを用いて分散させることにより鎖延長反応、エマルション化し、さらに50℃、150mmHgの減圧下でポリウレタンプレポリマー合成時に使用したアセトニトリルを留去することにより、溶剤を実質的に含まない、固形分濃度30質量%、粘度30mPa・s(25℃)、酸当量2000のポリウレタン樹脂エマルションGを得た。
<Production Example 7: Polyurethane resin G>
In a four-necked flask equipped with a stirrer, Dimroth cooler, nitrogen inlet tube, silica gel drying tube, thermometer, 145.37 g of 1,3-bis (isocyanatomethyl) cyclohexane, 20.08 g of dimethylolpropionic acid, neopentyl glycol 15.62 g, polycarbonate diol 74.93 g having a molecular weight of 1000, and 64.00 g of acetonitrile as a solvent were added, and the mixture was heated to 75 ° C. and stirred for 3 hours under a nitrogen atmosphere. In this case, the content of urea group and urethane group is 3.3% by mass in terms of nitrogen atom.
After confirming that the predetermined amine equivalent had been reached, the temperature of the reaction solution was lowered to 40 ° C., and then 15.16 g of triethylamine (boiling point 89 ° C.) was added, and 1,8-diazabicyclo [5.4. 0] 0.25 g of undecene-7 (DBU) was added to obtain an acetonitrile solution of a polyurethane prepolymer.
This polyurethane prepolymer (327.82 g) was homogenized in an aqueous solution in which KBM-602 (Shin-Etsu Chemical Co., Ltd.) 23.55 g, 11.78 g, and hydrazine monohydrate 11.43 g were dissolved in 700.00 g of water. Dispersing with a disper, chain extension reaction, emulsified, and further distilled off acetonitrile used in the synthesis of polyurethane prepolymer under reduced pressure at 50 ° C. and 150 mmHg, so that the solid content concentration is substantially free of solvent. A polyurethane resin emulsion G having 30% by mass, a viscosity of 30 mPa · s (25 ° C.), and an acid equivalent of 2000 was obtained.

製造例1のポリウレタン樹脂Aと全く同じ原料、製造方法で、酸当量を800に調整したものをポリウレタン樹脂Aa、酸当量を3500に調整したものをポリウレタン樹脂Ab、中和剤をトリエチルアミン(沸点89℃)から2−アミノ−2-メチル−1−プロパノール(沸点165℃)に変更したものをポリウレタン樹脂Ac、アンモニアに変更したものをポリウレタン樹脂Adとして製造した。   A polyurethane resin Aa having an acid equivalent adjusted to 800, a polyurethane resin Ab having an acid equivalent adjusted to 3500, and a neutralizing agent triethylamine (boiling point 89) with exactly the same raw materials and manufacturing method as polyurethane resin A of Production Example 1 ° C.) to 2-amino-2-methyl-1-propanol (boiling point 165 ° C.) was changed to polyurethane resin Ac, and ammonia was changed to polyurethane resin Ad.

<金属表面処理材の作製・評価>
上記の各種ウレタン樹脂を使用し、各種添加剤を混合し、表1に示す金属表面処理剤を得た。

Figure 0005264363
<Production and evaluation of metal surface treatment materials>
Using the various urethane resins described above, various additives were mixed to obtain a metal surface treating agent shown in Table 1.
Figure 0005264363

表1の中に示した処理剤中のポリオレフィン樹脂、コロイダルシリカ及び架橋剤の内容は以下である。
ポリオレフィン樹脂:HYTEC S−3121(東邦化学工業社製)
コロイダルシリカF:スノーテックスN(日産化学工業社製)
コロイダルシリカG:スノーテックスNS(日産化学工業社製)
架橋剤H:カルボジイミド化合物;カルボジライトE−03A(日清紡社製)
架橋剤J:オキサゾリン化合物;エポクロスWS−700(日本触媒社製)
架橋剤K:有機チタネート化合物;オルガチックスTC−400(松本製薬工業社製)
The contents of the polyolefin resin, colloidal silica, and crosslinking agent in the treating agent shown in Table 1 are as follows.
Polyolefin resin: HYTEC S-3121 (manufactured by Toho Chemical Industry Co., Ltd.)
Colloidal silica F: Snowtex N (manufactured by Nissan Chemical Industries)
Colloidal silica G: Snowtex NS (manufactured by Nissan Chemical Industries)
Crosslinking agent H: Carbodiimide compound; Carbodilite E-03A (Nisshinbo Co., Ltd.)
Cross-linking agent J: oxazoline compound; Epocross WS-700 (manufactured by Nippon Shokubai Co., Ltd.)
Cross-linking agent K: organic titanate compound; Olgatics TC-400 (manufactured by Matsumoto Pharmaceutical Co., Ltd.)

金属板として、以下の金属材料を使用した。
L:電気亜鉛めっき鋼板;板厚1.0mm、めっき付着量20g/m
M:電気亜鉛−Ni合金めっき鋼板;板厚0.8mm、めっき付着量20g/m
N:溶融亜鉛めっき鋼板;板厚0.9mm、めっき付着量50g/m
P:溶融亜鉛−鉄合金めっき鋼板;板厚0.8mm、めっき付着量45g/m
Q:溶融亜鉛−11%Al−3%Mg−0.2%Si;板厚0.8mm、めっき付着量60g/m
R:溶融亜鉛−55%Al;板厚0.8mm、めっき付着量75g/m
S:ステンレス鋼板;板厚0.5mm、フェライト系ステンレス鋼板、
鋼成分:C;0.008質量%、Si;0.07質量%、Mn;0.15質量%、P;0.011質量%、S;0.009質量%、Al;0.067質量%、Cr;17.3質量%、Mo;1.51質量%、N;0.0051質量%、Ti;0.22質量%、残部Fe及び不可避的不純物
The following metal materials were used as the metal plate.
L: electrogalvanized steel sheet; plate thickness 1.0 mm, plating adhesion 20 g / m 2
M: electrogalvanized-Ni alloy plated steel sheet; plate thickness 0.8 mm, plating adhesion 20 g / m 2
N: hot-dip galvanized steel sheet; plate thickness 0.9 mm, plating adhesion 50 g / m 2
P: hot dip zinc-iron alloy plated steel sheet; plate thickness 0.8 mm, plating adhesion 45 g / m 2
Q: Molten zinc-11% Al-3% Mg-0.2% Si; plate thickness 0.8 mm, plating adhesion 60 g / m 2
R: hot-dip zinc-55% Al; plate thickness 0.8 mm, plating adhesion 75 g / m 2
S: stainless steel plate; plate thickness 0.5 mm, ferritic stainless steel plate,
Steel component: C; 0.008 mass%, Si; 0.07 mass%, Mn; 0.15 mass%, P; 0.011 mass%, S; 0.009 mass%, Al; 0.067 mass% Cr: 17.3% by mass, Mo: 1.51% by mass, N: 0.0051% by mass, Ti: 0.22% by mass, balance Fe and inevitable impurities

金属板は、使用直前にアルカリ脱脂を行った後水洗、乾燥し使用した。その上に、表1に示す表面処理剤をバーコーターにより塗布し、熱風乾燥炉で焼付け乾燥後、水洗、乾燥し供試材とした。焼付け乾燥時の炉温は300℃、到達温度は到達板温度で150℃とした。このようにして得られた供試材の詳細を表2に示す。   The metal plate was alkali degreased immediately before use, then washed with water and dried. Further, the surface treatment agent shown in Table 1 was applied with a bar coater, baked and dried in a hot air drying furnace, washed with water, and dried to obtain a test material. The oven temperature during baking and drying was 300 ° C., and the ultimate temperature was 150 ° C. as the ultimate plate temperature. Details of the specimens thus obtained are shown in Table 2.

Figure 0005264363
Figure 0005264363

作製した供試材に対して、以下の評価を行った。結果を表3に示す。
(1) 皮膜密着性
供試材の皮膜面に1mmの碁盤目をカッターナイフで入れ、さらに、塗膜面が凸となるようにエリクセン試験機で7mm押し出した後、テープ剥離試験を行った。碁盤目の入れ方、エリクセンの押し出し方法、テープ剥離の方法については、JIS−K5400.8.2及びJIS−K5400.8.5記載の方法に準じて実施した。テープ剥離後の評価は、JIS−K5400.8.5記載の評価の例図によって、10点満点評価で行った。
The following evaluation was performed on the prepared specimens. The results are shown in Table 3.
(1) Film adhesion A 1 mm grid was placed on the film surface of the test material with a cutter knife, and further extruded 7 mm with an Erichsen tester so that the film surface was convex, and then a tape peeling test was performed. About the method of putting a grid, the extrusion method of Erichsen, and the method of tape peeling, it implemented according to the method of JIS-K5400.88.2 and JIS-K5400.88.5. Evaluation after tape peeling was performed by 10-point full scale evaluation by the example figure of evaluation of JIS-K5400.88.5.

(2) 上塗り塗料密着性
供試材の表面にメラミンアルキッド塗料(スーパーラック100、日本ペイント社製)をバーコーターで乾燥膜厚20μmとなるように塗布し、120℃で25分間焼き付けて塗板を作製した。一昼夜放置後沸騰水中に30分間浸漬し、取り出して1日放置してから、1mm間隔の碁盤目カット疵を100個入れ、その部分にセロハン(登録商標)テープ(ニチバン社製)を貼り、剥離した後の皮膜状態を観察し下記基準で評価した。碁盤目の入れ方、テープ剥離の方法については、JIS−K5400.8.2及びJIS−K5400.8.5記載の方法に準じて実施した。
5 : 剥離個数0
4 : 剥離個数5以下
3 : 剥離個数10以下
2 : 剥離個数50以下
1 : 剥離個数51以上
(2) Adhesion of topcoat paint Melamine alkyd paint (Super Rack 100, manufactured by Nippon Paint Co., Ltd.) was applied to the surface of the test material with a bar coater to a dry film thickness of 20 μm, and baked at 120 ° C. for 25 minutes. Produced. Leave it for a whole day and night, then immerse it in boiling water for 30 minutes, take it out for a day, put 100 grid cuts with 1 mm spacing, and apply cellophane (registered trademark) tape (manufactured by Nichiban Co.) to the part. The film state after the observation was observed and evaluated according to the following criteria. About the method of putting a grid and peeling the tape, it implemented according to the method of JIS-K5400.88.2 and JIS-K5400.88.5.
5: Number of peels 0
4: Number of peels 5 or less
3: Number of peeled 10 or less
2: Number of peels 50 or less
1: Number of peels 51 or more

(3) 耐溶剤性
供試材の皮膜面について、エチルメチルケトンによるラビング試験を実施した。15mmφのシリコンゴム製円柱先端部にガーゼを固定し、エチルメチルケトンを5mL含ませた後、荷重4.9Nの条件で10回摺動した。その試験片のエッジと裏面をテープシールし、塩水噴霧試験(JIS−Z−2371)を行った。72時間後の白錆発生状況を観察し下記基準で評価した。
5 : 白錆発生無し
4 : 白錆発生1%未満
3 : 白錆発生1%以上5%未満
2 : 白錆発生5%以上20%未満
1 : 白錆発生20%以上
(3) Solvent resistance A rubbing test with ethyl methyl ketone was performed on the coating surface of the test material. The gauze was fixed to the tip of a 15 mmφ silicon rubber cylinder, 5 mL of ethyl methyl ketone was contained, and then slid 10 times under the condition of a load of 4.9N. The edge and the back surface of the test piece were tape-sealed, and a salt spray test (JIS-Z-2371) was performed. The occurrence of white rust after 72 hours was observed and evaluated according to the following criteria.
5: No white rust
4: White rust generation less than 1%
3: White rust generated 1% or more and less than 5%
2: White rust generation 5% or more and less than 20%
1: White rust generation 20% or more

(4) 耐アルカリ性
供試材を55℃のアルカリ脱脂剤(サーフクリーナー53、日本ペイント社製)2質量%水溶液(pH12.5)に攪拌しながら5分間浸漬した後、試験板のエッジと裏面をテープシールし、塩水噴霧試験(JIS−Z−2371)を行った。72時間後の白錆発生状況を観察し下記基準で評価した。
5 : 白錆発生無し
4 : 白錆発生1%未満
3 : 白錆発生1%以上5%未満
2 : 白錆発生5%以上20%未満
1 : 白錆発生20%以上
(4) Alkali resistance After immersing the test material in a 2% by weight aqueous solution (pH 12.5) of an alkaline degreasing agent (Surf Cleaner 53, Nippon Paint Co., Ltd.) at 55 ° C. for 5 minutes, the edge and back surface of the test plate Was subjected to a salt spray test (JIS-Z-2371). The occurrence of white rust after 72 hours was observed and evaluated according to the following criteria.
5: No white rust
4: White rust generation less than 1%
3: White rust generated 1% or more and less than 5%
2: White rust generation 5% or more and less than 20%
1: White rust generation 20% or more

(5) 耐食性
(i) 平板部:
端面及び裏面をシールした平板試験片について、JIS−Z2371に規定されている塩水噴霧試験(SST)を実施し、240時間後の白錆の発生率で評価した。耐食性評価基準を以下に示す。
5 : 白錆発生無し
4 : 白錆発生1%未満
3 : 白錆発生1%以上5%未満
2 : 白錆発生5%以上20%未満
1 : 白錆発生20%以上
(ii) 加工後:
端面及び裏面をシールした平板試験片について、中央部に7mmエリクセン加工を施した後、JIS−Z2371に規定されている塩水噴霧試験(SST)を実施し、120時間後のエリクセン部の白錆発生率で評価した。耐食性評価基準を以下に示す。
5 : 白錆発生無し
4 : 白錆発生1%未満
3 : 白錆発生1%以上5%未満
2 : 白錆発生5%以上20%未満
1 : 白錆発生20%以上
(5) Corrosion resistance (i) Flat part:
About the flat plate test piece which sealed the end surface and the back surface, the salt spray test (SST) prescribed | regulated to JIS-Z2371 was implemented, and it evaluated by the incidence rate of the white rust 240 hours afterward. Corrosion resistance evaluation criteria are shown below.
5: No white rust
4: White rust generation less than 1%
3: White rust generated 1% or more and less than 5%
2: White rust generation 5% or more and less than 20%
1: White rust generation 20% or more (ii) After processing:
For flat plate test pieces with end and back surfaces sealed, 7 mm Erichsen processing was applied to the center, and then the salt spray test (SST) specified in JIS-Z2371 was performed. The rate was evaluated. Corrosion resistance evaluation criteria are shown below.
5: No white rust
4: White rust generation less than 1%
3: White rust generated 1% or more and less than 5%
2: White rust generation 5% or more and less than 20%
1: White rust generation 20% or more

Figure 0005264363
Figure 0005264363

本発明の比較例であるNo.44は、官能基(a)及び(b)が含まれていないため、耐食性、耐アルカリ性、耐溶剤性が劣ることがわかった。また、No.44は、さらにポリウレタン樹脂のウレア基、ウレタン基量が多過ぎるため、加工後耐食性にも劣ることがわかった。No.45は官能基(b)だけ含まれているが、耐アルカリ性、耐溶剤性に劣ることが判った。No.46は、酸化ケイ素が含まれていないため耐食性に劣ることがわかった。また、No.41は室温7日で処理剤がゲル化した。それ以外のNo.は室温14日経時後も外観上の異常は認められなかった。   No. 1 which is a comparative example of the present invention. 44 was found to be inferior in corrosion resistance, alkali resistance and solvent resistance because it does not contain functional groups (a) and (b). No. 44 was found to be inferior in corrosion resistance after processing because the amount of urea groups and urethane groups in the polyurethane resin was too large. No. 45 contained only the functional group (b), but was found to be inferior in alkali resistance and solvent resistance. No. No. 46 was found to be inferior in corrosion resistance because it contains no silicon oxide. No. In No. 41, the treatment agent gelled at room temperature for 7 days. Other No. No abnormal appearance was observed after 14 days at room temperature.

No.3〜13、15〜17、19〜21、23〜25、27〜29、31〜33、35〜37の本発明の実施例の皮膜構成を用いることにより、極めて高い耐食性と加工後耐食性及び、良好な上塗り塗料密着性、耐アルカリ性、耐溶剤性を得ることができることがわかった。 No. 3 to 13 , 15 to 17 , 19 to 21 , 23 to 25 , 27 to 29 , 31 to 33 , 35 to 37 , by using the film configuration of the examples of the present invention, extremely high corrosion resistance and post-processing corrosion resistance, and It was found that good topcoat paint adhesion, alkali resistance, and solvent resistance can be obtained.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、環境負荷性の高い6価クロムを含まず、かつ極めて高い耐食性と加工後耐食性能を有し、良好な上塗り塗料密着性、耐アルカリ性、耐溶剤性を有する表面処理金属材及び金属表面処理剤に適用可能である。   The present invention is a surface-treated metal material and metal that do not contain hexavalent chromium having high environmental impact, have extremely high corrosion resistance and post-processing corrosion resistance, and have good topcoat paint adhesion, alkali resistance, and solvent resistance. Applicable to surface treatment agents.

Claims (13)

分子内に下記一般式[1]で表される官能基(a)及び下記一般式[2]で表される官能基(b)を含有するポリウレタン樹脂と、酸化珪素を含むことを特徴とする金属表面処理剤。
Figure 0005264363
(式中、R1、R2及びR3は互いに独立に、アルコキシ基又は水酸基を表す。)
Figure 0005264363
(式中、R4は水素原子、アルキル基、アリール基及びアラルキル基からなる群より選ばれる一価の有機残基、R5及びR6は互いに独立に、アルコキシ基又は水酸基を表す。)
It contains a polyurethane resin containing a functional group (a) represented by the following general formula [1] and a functional group (b) represented by the following general formula [2] in the molecule, and silicon oxide. Metal surface treatment agent.
Figure 0005264363
(In the formula, R1, R2 and R3 each independently represents an alkoxy group or a hydroxyl group.)
Figure 0005264363
(Wherein R4 represents a monovalent organic residue selected from the group consisting of a hydrogen atom, an alkyl group, an aryl group and an aralkyl group, and R5 and R6 each independently represents an alkoxy group or a hydroxyl group.)
前記官能基(a)に由来する珪素、前記官能基(b)に由来する珪素及び前記酸化珪素に由来する珪素の総量が、不揮発固形分の全質量に対し下記数式で表される範囲にあることを特徴とする、請求項1に記載の金属表面処理剤。
1.6質量%≦((Sa+Sb+Sc)/S)×100≦25質量%
ここで、S :不揮発固形分の全質量
Sa:官能基(a)に由来する珪素の質量
Sb:官能基(b)に由来する珪素の質量
Sc:酸化珪素に由来する珪素の質量
The total amount of silicon derived from the functional group (a), silicon derived from the functional group (b), and silicon derived from the silicon oxide is in the range represented by the following formula with respect to the total mass of the nonvolatile solid content. The metal surface treatment agent according to claim 1, wherein
1.6% by mass ≦ ((Sa + Sb + Sc) / S) × 100 ≦ 25% by mass
Where S: total mass of non-volatile solids
Sa: Mass of silicon derived from the functional group (a)
Sb: Mass of silicon derived from the functional group (b)
Sc: Mass of silicon derived from silicon oxide
前記ポリウレタン樹脂が、分子内にウレア結合を含有し、かつ、前記ウレア結合に由来する窒素及びウレタン結合に由来する窒素の総量が、前記ポリウレタン樹脂の不揮発固形分の質量に対し、下記数式で表される範囲にあることを特徴とする請求項1又は2に記載の金属表面処理剤。
0.1質量%≦(Ta+Tb)/T)×100≦10質量%
ここで、T :ポリウレタン樹脂の不揮発固形分の質量
Ta:ウレア結合(―NH―CO―NH―)を形成する窒素の質量
Tb:ウレタン結合(―NH−CO−O−)を形成する窒素の質量
The polyurethane resin contains a urea bond in the molecule, and the total amount of nitrogen derived from the urea bond and nitrogen derived from the urethane bond is represented by the following formula with respect to the mass of the nonvolatile solid content of the polyurethane resin. The metal surface treatment agent according to claim 1 or 2 , wherein the metal surface treatment agent is within a range.
0.1% by mass ≦ (Ta + Tb) / T) × 100 ≦ 10% by mass
Here, T: mass of non-volatile solid content of polyurethane resin
Ta: Mass of nitrogen forming a urea bond (—NH—CO—NH—)
Tb: mass of nitrogen forming a urethane bond (—NH—CO—O—)
前記ポリウレタン樹脂の架橋剤として、有機チタネート化合物を含有することを特徴とする、請求項1からのいずれかに記載の金属表面処理剤。 The metal surface treating agent according to any one of claims 1 to 3 , comprising an organic titanate compound as a crosslinking agent for the polyurethane resin. 前記ポリウレタン樹脂が水分散性又は水溶解性であり、分子内にカルボキシル基を含有することを特徴とする、請求項1からのいずれかに記載の金属表面処理剤。 The metal surface treating agent according to any one of claims 1 to 4 , wherein the polyurethane resin is water-dispersible or water-soluble and contains a carboxyl group in the molecule. 前記ポリウレタン樹脂の酸当量が1000〜3000であることを特徴とする、請求項に記載の金属表面処理剤。 The metal surface treatment agent according to claim 5 , wherein an acid equivalent of the polyurethane resin is 1000 to 3000. 前記ポリウレタン樹脂の水分散時の中和剤の沸点が150℃以下であることを特徴とする、請求項またはに記載の金属表面処理剤。 The metal surface treatment agent according to claim 5 or 6 , wherein the boiling point of the neutralizing agent when the polyurethane resin is dispersed in water is 150 ° C or lower. 前記ポリウレタン樹脂の水分散時の中和剤は、アルキルアミン、アルカノールアミンから選ばれる少なくとも1種であることを特徴とする、請求項からのいずれかに記載の金属表面処理剤。 The metal surface treatment agent according to any one of claims 5 to 7 , wherein the neutralizing agent at the time of water dispersion of the polyurethane resin is at least one selected from alkylamine and alkanolamine. 前記ポリウレタン樹脂の架橋剤として、さらにカルボジイミド化合物又はオキサゾリン基含有化合物を含むことを特徴とする、請求項からのいずれかに記載の金属表面処理剤。 The metal surface treatment agent according to any one of claims 5 to 8 , further comprising a carbodiimide compound or an oxazoline group-containing compound as a crosslinking agent for the polyurethane resin. さらに、ポリオレフィン樹脂を、不揮発固形分の総量に対し5質量%以上50質量%以下含有することを特徴とする、請求項1からのいずれかに記載の金属表面処理剤。 Furthermore, 5 to 50 mass% of polyolefin resin is contained with respect to the total amount of non-volatile solid content, The metal surface treating agent in any one of Claim 1 to 9 characterized by the above-mentioned. 金属材の表面に、請求項1から10のいずれかに記載の金属表面処理剤を塗布し、乾燥することによって皮膜を形成することを特徴とする金属材の表面処理方法。 On the surface of the metal material is coated with a metal surface treatment agent according to any one of claims 1 to 10, a surface treatment method for a metal material and forming a film by drying. 請求項11に記載の表面処理方法を用いて形成された皮膜を有することを特徴とする表面処理金属材。 A surface-treated metal material comprising a film formed by using the surface treatment method according to claim 11 . 金属材が亜鉛系めっき鋼板もしくはアルミニウム系めっき鋼板であることを特徴とする請求項12記載の表面処理金属材。 The surface-treated metal material according to claim 12, wherein the metal material is a zinc-based plated steel plate or an aluminum-based plated steel plate.
JP2008207303A 2008-08-11 2008-08-11 Surface treatment metal material and metal surface treatment agent Active JP5264363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207303A JP5264363B2 (en) 2008-08-11 2008-08-11 Surface treatment metal material and metal surface treatment agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207303A JP5264363B2 (en) 2008-08-11 2008-08-11 Surface treatment metal material and metal surface treatment agent

Publications (2)

Publication Number Publication Date
JP2010043168A JP2010043168A (en) 2010-02-25
JP5264363B2 true JP5264363B2 (en) 2013-08-14

Family

ID=42014801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207303A Active JP5264363B2 (en) 2008-08-11 2008-08-11 Surface treatment metal material and metal surface treatment agent

Country Status (1)

Country Link
JP (1) JP5264363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016091059A1 (en) * 2014-12-11 2016-06-16 宝山钢铁股份有限公司 Surface treating agent for hot-dip aluminum-zinc steel plate, and hot-dip aluminum-zinc steel plate and manufacturing method therefor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6386913B2 (en) * 2011-12-29 2018-09-05 スリーエム イノベイティブ プロパティズ カンパニー Cleanable article and method for making and using the same
JP2016017136A (en) * 2014-07-08 2016-02-01 Dic株式会社 Urethane resin composition and laminate using the same
CN105001650B (en) * 2015-06-25 2017-05-17 南京东爵新材料有限公司 Silicon rubber internal release agent and preparation method thereof
JP7357470B2 (en) * 2019-06-13 2023-10-06 三井化学株式会社 Polyurethane dispersion and its manufacturing method
KR102307916B1 (en) * 2019-12-05 2021-09-30 주식회사 포스코 Coating composition for hot dip galvanized steel sheet having excellent corrosion resistant and surface color, hot dip galvanized steel sheet prepared by using the coating composition and method for preparing the surface treated hot dip galvanized steel sheet
CN112391621B (en) * 2020-10-29 2023-04-28 立邦(上海)化工有限公司 Surface treating agent for medium-aluminum zinc aluminum magnesium plated steel plate and manufacturing method thereof
WO2023026613A1 (en) * 2021-08-26 2023-03-02 三井化学株式会社 Aqueous polyurethane composition, heat-resistant coating material, first laminate, bag, second laminate, method for producing first laminate, and method for producing second laminate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137247B2 (en) * 1998-09-28 2008-08-20 三井化学ポリウレタン株式会社 Lubricating surface treatment coating composition
BRPI0621828B1 (en) * 2006-06-15 2018-01-02 Nippon Steel & Sumitomo Metal Corporation COATED STEEL SHEET
JP5546097B2 (en) * 2006-06-23 2014-07-09 新日鐵住金株式会社 Surface treatment metal material and metal surface treatment agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016091059A1 (en) * 2014-12-11 2016-06-16 宝山钢铁股份有限公司 Surface treating agent for hot-dip aluminum-zinc steel plate, and hot-dip aluminum-zinc steel plate and manufacturing method therefor

Also Published As

Publication number Publication date
JP2010043168A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP5546097B2 (en) Surface treatment metal material and metal surface treatment agent
JP5264363B2 (en) Surface treatment metal material and metal surface treatment agent
JP5135669B2 (en) Manufacturing method of painted metal
JP4607969B2 (en) Surface treatment agent for metal material, surface treatment method and surface treatment metal material
JP3872493B1 (en) Water-based surface treatment agent for metal material and surface-coated metal material
KR101268720B1 (en) Aqueous surface-treating agent for pre-coated metallic materials, surface-treated metallic material and pre-coated metallic material
AU2012330587B2 (en) Chromate-free coated metal sheet having metallic appearance and water-based coating composition used in the same
JP4246061B2 (en) Active energy ray-curable aqueous coating composition, painted metal material, and method for producing the same
WO2000050526A1 (en) Coating composition capable of forming alkali-soluble lubricating film suitable for forming and use thereof
JP2000265111A (en) Aqueous surface treating agent for metal material and surface treated metal plate
JP5418479B2 (en) Painted galvanized steel sheet
JP4598724B2 (en) Surface-treated metal material
JP7230356B2 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
JP4650397B2 (en) Metal coating agent
KR101736557B1 (en) Composition for Cr-free coating material and surface treated steel sheet with superior blackening-resistance and corrosion-resistance
JP5659685B2 (en) Painted metal material
JP2020142373A (en) Coated metal plate and manufacturing method thereof
JP2001019902A (en) Coating material composition capable of forming lubricating membrane excellent in press workability and weldability, and lubricating surface treated steel sheet using the same composition
JP5030340B2 (en) A water-dispersed polyurethane composition for a non-chromium-treated metal coating material and a method for producing the same.
JP2012116088A (en) Coated galvanized steel sheet
JP2005133172A (en) Surface-treated metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100730

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250