JP5262179B2 - Secondary battery charging rate estimation device and charging rate estimation method - Google Patents

Secondary battery charging rate estimation device and charging rate estimation method Download PDF

Info

Publication number
JP5262179B2
JP5262179B2 JP2008043925A JP2008043925A JP5262179B2 JP 5262179 B2 JP5262179 B2 JP 5262179B2 JP 2008043925 A JP2008043925 A JP 2008043925A JP 2008043925 A JP2008043925 A JP 2008043925A JP 5262179 B2 JP5262179 B2 JP 5262179B2
Authority
JP
Japan
Prior art keywords
charging rate
charge
limit value
estimated
change amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008043925A
Other languages
Japanese (ja)
Other versions
JP2009204314A (en
Inventor
幸一 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008043925A priority Critical patent/JP5262179B2/en
Publication of JP2009204314A publication Critical patent/JP2009204314A/en
Application granted granted Critical
Publication of JP5262179B2 publication Critical patent/JP5262179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

本発明は二次電池の充電率を推定する装置および方法に関する。   The present invention relates to an apparatus and a method for estimating a charging rate of a secondary battery.

下記特許文献1には、適応デジタルフィルタ(以下、ADFと略記する)を用いて二次電池の充電率(SOC:充電状態とも云う)を推定し、ADFでの推定精度が悪くなる条件では他の推定方法(例えば電流積算による充電率推定方法)に切替える技術について開示されている。
特開2006−105821号公報
In Patent Document 1 below, an adaptive digital filter (hereinafter abbreviated as ADF) is used to estimate the charging rate (SOC: also referred to as the state of charge) of a secondary battery, and other conditions under which the estimation accuracy in ADF deteriorates. A technique for switching to an estimation method (for example, a charge rate estimation method by current integration) is disclosed.
JP 2006-105821 A

上記の従来技術では、ADFでの推定精度が悪くなる場合に他の推定方法に切り替えるので、ADFでの推定精度が悪くなる条件を何らかの方法を用いて推定しなければならない。その方法としては、例えば入力の周波数解析(FFT)を行い周波数分布に偏りがないことを検出する方法等が考えられる。しかし、そのような演算を容量の小さい車載用のコントローラでリアルタイム、かつ高速で検出するのは非常に困難である、という問題があった。
本発明は上記の問題を解決するものであり、ADFの推定精度が低下するような状態でも充電率推定の精度低下を簡単に抑制することのできる二次電池の充電率推定装置および充電率推定方法を提供することを目的とする。
In the above prior art, when the estimation accuracy in ADF is deteriorated, the estimation method is switched to another estimation method. Therefore, a condition that the estimation accuracy in ADF is deteriorated must be estimated using some method. As such a method, for example, a method of detecting that there is no bias in the frequency distribution by performing input frequency analysis (FFT) is conceivable. However, there is a problem that it is very difficult to detect such a calculation in real time and at high speed with an in-vehicle controller having a small capacity.
The present invention solves the above-described problem, and a charging rate estimation device and a charging rate estimation for a secondary battery that can easily suppress a reduction in the accuracy of the charging rate estimation even in a state where the estimation accuracy of the ADF decreases. It aims to provide a method.

上記の目的を達成するため、本発明においては、適応デジタルフィルタを用いて、二次電池の充放電電流と端子電圧から開路電圧を推定し、予め求めた開路電圧と充電率との関係に基づいて前記開路電圧から二次電池の充電率を推定する充電率推定装置において、前記充放電電流に基づいて所定時間当りの充電率変化量の上限値と下限値を演算し、前記の推定した充電率の所定時間あたりの変化量が前記上限値と下限値の間になるように制限することにより最終充電率推定値を演算するものであって、前記充電率変化量の上限値と下限値を演算する際において、前記充放電電流を検出するための検出手段の検出精度に基づいて前記充電率変化量の上限値と下限値を設定するように構成している。 In order to achieve the above object, in the present invention, an adaptive digital filter is used to estimate the open circuit voltage from the charge / discharge current and terminal voltage of the secondary battery, and based on the relationship between the open circuit voltage and the charging rate obtained in advance. In the charging rate estimation device for estimating the charging rate of the secondary battery from the open circuit voltage, the upper limit value and the lower limit value of the charging rate change amount per predetermined time are calculated based on the charging / discharging current, and the estimated charging A final charge rate estimation value is calculated by limiting the change amount of the rate per predetermined time to be between the upper limit value and the lower limit value, and the upper limit value and lower limit value of the charge rate change amount are calculated. When calculating, the upper limit value and the lower limit value of the charging rate change amount are set based on the detection accuracy of the detection means for detecting the charge / discharge current .

上記のように、ADFによって推定した充電率の変化に対して充放電電流に応じた制限を加えることにより、ADFの推定精度が悪くなっても、充電率推定の精度を落とすことがなく精度良く推定することができる。例えば図10に示すように、ADFの推定結果が大きく変動して推定精度が悪くなる場合においても、充電率推定値の変化に制限を加えているので、充電率の真値からのずれを少なく保つことが出来る。   As described above, by adding a restriction corresponding to the charge / discharge current to the change in the charging rate estimated by the ADF, even if the estimation accuracy of the ADF deteriorates, the accuracy of the charging rate estimation is not degraded and the accuracy is high. Can be estimated. For example, as shown in FIG. 10, even when the estimation result of ADF fluctuates greatly and the estimation accuracy deteriorates, the change in the charging rate estimated value is limited, so that the deviation of the charging rate from the true value is reduced. I can keep it.

(実施例1)
図1は、本発明を適用するシステムの全体の概略構成図であり、二次電池で電動機等の補機を駆動する装置を示す。
図1において、二次電池1は補機2(電動機等)に対して電力を供給するとともに補機2で発電した電力を充電して蓄積する。二次電池1の充放電電流Iは電流センサ5で検出される。また、端子電圧Vは電圧センサ4で検出される。これらのセンサ情報は制御装置3に入力される。なお、充放電電流Iは、例えば正値のときは充電電流、負値のときは放電電流を示す。
Example 1
FIG. 1 is a schematic configuration diagram of an entire system to which the present invention is applied, and shows an apparatus for driving an auxiliary machine such as an electric motor with a secondary battery.
In FIG. 1, a secondary battery 1 supplies electric power to an auxiliary machine 2 (such as an electric motor) and charges and accumulates electric power generated by the auxiliary machine 2. The charge / discharge current I of the secondary battery 1 is detected by the current sensor 5. The terminal voltage V is detected by the voltage sensor 4. These pieces of sensor information are input to the control device 3. The charge / discharge current I is, for example, a charge current when the value is positive, and a discharge current when the value is negative.

図2は、本発明の一実施例を機能ブロックで表した図であり、図1の制御装置3内に設けられた二次電池の充電率推定装置の部分を示す。
図2において、開路電圧推定手段2001は、適応デジタルフィルタ(ADF)を用いて、充放電電流Iと端子電圧Vから開路電圧V(通電遮断時の端子電圧であり、起電力、開放電圧とも云う)を推定する。充電率推定手段2002は、予め求めてある開路電圧と充電率の関係により、上記の推定した開路電圧Vから充電率を推定する。充電率制限手段2003は、充放電電流Iに応じて充電率推定手段2002で推定した充電率推定値に制限を加えて最終充電率を演算する(詳細後述)。
FIG. 2 is a functional block diagram showing an embodiment of the present invention, and shows a portion of a secondary battery charging rate estimation device provided in the control device 3 of FIG.
In FIG. 2, the open circuit voltage estimation means 2001 uses an adaptive digital filter (ADF) to calculate the open circuit voltage V 0 (the terminal voltage when the energization is cut off) from the charge / discharge current I and the terminal voltage V. Estimated). The charge rate estimation means 2002 estimates the charge rate from the estimated open circuit voltage V 0 based on the relationship between the open circuit voltage and the charge rate obtained in advance. The charging rate limiting unit 2003 calculates a final charging rate by limiting the charging rate estimated value estimated by the charging rate estimating unit 2002 according to the charging / discharging current I (details will be described later).

図3は、図1の制御装置2内での充電率の演算フローを示す図であり、所定周期(例えば0.01[sec])で処理を開始する。まず、ステップS101で、充放電電流Iと端子電圧Vを読み込み、ステップS102で、開路電圧推定処理(2001における処理)を行い、ステップS103で充電率推定処理(2002における処理)を行い、ステップS104で充電率制限処理(2003における処理)を行う。   FIG. 3 is a diagram illustrating a calculation flow of the charging rate in the control device 2 of FIG. 1, and starts the processing at a predetermined cycle (for example, 0.01 [sec]). First, in step S101, the charge / discharge current I and the terminal voltage V are read. In step S102, an open circuit voltage estimation process (process in 2001) is performed. In step S103, a charge rate estimation process (process in 2002) is performed. The charge rate limiting process (the process in 2003) is performed.

図4は、図3のステップS102における開路電圧推定処理の制御フローを示す図である。
適応デジタルフィルタ(ADF)を用いた開路電圧Vの推定演算方法については、例えば、本出願人の先願で既に特許されている特開2004−178848号公報(特願2002−340803号、特許3714321号)等に詳細な説明が記載されているので、ここでは基本的な数式と演算過程を示す。
FIG. 4 is a diagram showing a control flow of the open circuit voltage estimation process in step S102 of FIG.
As for an estimation calculation method of the open circuit voltage V 0 using an adaptive digital filter (ADF), for example, Japanese Patent Application Laid-Open No. 2004-178848 (Japanese Patent Application No. 2002-340803, Patent) already patented in the prior application of the present applicant. No. 3714321) and the like are described in detail, and basic mathematical formulas and calculation processes are shown here.

図4において、まず、ステップS301で、充放電電流Iと端子電圧Vとを読み込み、ステップS302でADFを用いて内部パラメータを推定する。そしてステップS303で内部パラメータより開路電圧を推定する。
ステップS302におけるADFを用いた内部パラメータ推定方法は、図6に示すような二次電池の等価回路モデルを用いて内部パラメータを逐次推定するものであり、図6の電池モデルは(数1)式のように示すことができる。
In FIG. 4, first, in step S301, the charge / discharge current I and the terminal voltage V are read, and in step S302, internal parameters are estimated using ADF. In step S303, the open circuit voltage is estimated from the internal parameters.
The internal parameter estimation method using the ADF in step S302 is to sequentially estimate internal parameters using an equivalent circuit model of a secondary battery as shown in FIG. 6, and the battery model in FIG. It can be shown as follows.

Figure 0005262179
ただし、Cは電気二重層容量、Rは電荷移動抵抗、Rは純抵抗、Vは端子電圧、Iは充放電電流(正が充電、負が放電)、Vが開路電圧、sはラプラス演算子である。
ここで、(数2)式とおくと、(数1)式は(数3)式のように表すことが出来る。
Figure 0005262179
However, C 1 is an electric double layer capacitor, R 1 is the charge transfer resistance, R 2 is pure resistance, V is terminal voltage, I is the charging and discharging current (positive charge, a negative discharge), V 0 is the open circuit voltage, s Is a Laplace operator.
Here, if Equation (2) is set, Equation (1) can be expressed as Equation (3).

Figure 0005262179
Figure 0005262179

Figure 0005262179
ここで端子電圧V、電流値Iのフィルタ出力V、V、V、I、I、Iを(数4)式で示すように定義する。
Figure 0005262179
Here, the filter outputs V 1 , V 2 , V 3 , I 1 , I 2 , and I 3 of the terminal voltage V and the current value I are defined as shown in the equation (4).

Figure 0005262179
ただし、Glp(s)は観測ノイズを低減するために設けたローパスフィルタの特性を示す。
そしてADFの手法を用いて(数1)式の各定数を逐次推定する。この推定方法の詳細は前記特開2004−178848号公報に記載されている。
ステップS303では、上記の推定した内部パラメータを用いて開路電圧Vを推定すると、開路電圧Vは(数5)式に示す関係となる。
Figure 0005262179
Here, G lp (s) indicates the characteristics of a low-pass filter provided for reducing the observation noise.
Then, using the ADF method, each constant in the formula (1) is estimated sequentially. The details of this estimation method are described in Japanese Patent Application Laid-Open No. 2004-178848.
In step S303, when the open circuit voltage V 0 is estimated using the estimated internal parameter, the open circuit voltage V 0 has a relationship represented by the formula (5).

Figure 0005262179
上記のようにしてADFの手法を用いて推定した内部パラメータを用いて開路電圧Vを推定することが出来る。
Figure 0005262179
The open circuit voltage V 0 can be estimated using the internal parameters estimated using the ADF technique as described above.

図5は、上記の推定した開路電圧Vから充電率を推定する演算フローを示す図である。
図5において、ステップS401で開路電圧Vを読み込み、ステップS402で、予め求めておいた開路電圧と充電率の関係から、読み込んだ開路電圧に対応した充電率を求める。開路電圧と充電率の関係は、例えば図7に示すような特性となっており、この特性を予め求めておくことにより、推定した開路電圧から充電率を簡単に求めることが出来る。
Figure 5 is a diagram showing an operation flow for estimating the charging rate from the open-circuit voltage V 0 estimated above.
5, read the open-circuit voltage V 0 at step S401, at step S402, the charging rate of the relationship between the open circuit voltage obtained in advance, obtains the charging rate corresponding to the open circuit voltage read. The relationship between the open circuit voltage and the charging rate has a characteristic as shown in FIG. 7, for example. By obtaining this characteristic in advance, the charging rate can be easily obtained from the estimated open circuit voltage.

次に、図8は、本発明の特徴とする充電率制限手段2003における演算内容の一実施例を示すフロー図である。
図8において、まず、ステップS501では、充放電電流とADFで推定した充電率を読み込む。
ステップS502では、充放電電流より充電率変化量の上限値と下限値を演算する。この変化量の上限値と下限値は、例えば充放電電流が大きいほど上限と下限の差(幅)が大きくなる特性である。この特性は、例えば後記(実施例2)で説明するように、使用する電流センサの精度に応じて、精度の悪い電流センサの場合は上下限値の幅を大きく、精度の良い場合は上下限の幅を小さくするように設定してもよい。
Next, FIG. 8 is a flowchart showing an embodiment of calculation contents in the charging rate limiting means 2003, which is a feature of the present invention.
In FIG. 8, first, in step S501, the charging rate estimated by the charging / discharging current and ADF is read.
In step S502, an upper limit value and a lower limit value of the charging rate change amount are calculated from the charge / discharge current. The upper limit value and the lower limit value of the amount of change are characteristics in which, for example, the difference (width) between the upper limit and the lower limit increases as the charge / discharge current increases. For example, as will be described later (Embodiment 2), this characteristic has a large range of upper and lower limit values in the case of a current sensor with low accuracy, and upper and lower limits in the case of high accuracy, depending on the accuracy of the current sensor used. You may set so that the width | variety may be made small.

ステップS503では、前回の最終充電率推定値(制限を加えた後の値)にステップS502で演算された変化量の上限値を加えた値と今回のADFで推定した充電率推定値とを比較して、今回のADFで推定した充電率推定値の方が大きい場合、つまり変化量が上限値よりも大きかった場合はステップS504へ進み、そうでない場合にはステップS505へ進む。   In step S503, the value obtained by adding the upper limit value of the amount of change calculated in step S502 to the previous final charge rate estimated value (value after the restriction is added) is compared with the charge rate estimated value estimated by the current ADF. If the charging rate estimated value estimated by the current ADF is larger, that is, if the change amount is larger than the upper limit value, the process proceeds to step S504, and if not, the process proceeds to step S505.

ステップS505では、前回の最終充電率推定値にステップS502で演算された変化量の下限値を加えた値と今回のADFで推定した充電率推定値とを比較して、今回のADFで推定した充電率推定値の方が小さい場合、つまり変化量が下限値よりも小さかった場合はステップS506へ進み、そうでない場合にはステップS507へ進む。   In step S505, the value obtained by adding the lower limit of the amount of change calculated in step S502 to the previous estimated final charge rate value is compared with the estimated charge rate value estimated by the current ADF, and estimated by the current ADF. If the estimated charge rate is smaller, that is, if the amount of change is smaller than the lower limit value, the process proceeds to step S506, and if not, the process proceeds to step S507.

ステップS504では、今回の最終充電率推定値として、前回の最終充電率推定値にステップS502で演算された変化量の上限値を加えた値を代入する。
ステップS506では、今回の最終充電率推定値として、前回の最終充電率推定値にステップS502で演算された変化量の下限値を加えた値を代入する。
ステップS507では、今回のADFで推定した充電率推定値が上限と下限の間に入っているので、今回ADFで推定した充電率を最終充電率推定値とする。
上記のようにして、充電率推定値の変化量を、充放電電流に応じて求めた上限値と下限値の間の範囲に制限することが出来る。
In step S504, a value obtained by adding the upper limit value of the amount of change calculated in step S502 to the previous final charge rate estimated value is substituted as the current final charge rate estimated value.
In step S506, a value obtained by adding the lower limit value of the amount of change calculated in step S502 to the previous final charge rate estimated value is substituted as the current final charge rate estimated value.
In step S507, since the charge rate estimated value estimated by the current ADF is between the upper limit and the lower limit, the charge rate estimated by the current ADF is set as the final charge rate estimated value.
As described above, the amount of change in the estimated charge rate can be limited to a range between the upper limit value and the lower limit value obtained according to the charge / discharge current.

図9は、上記の制限方法を図示した説明図である。
図9において、(a)の矢印が前回の充電率を示し、その上下両側の破線が今回の上限値と下限値を示す。つまり、一演算周期Tの最終時点において、前回の最終充電率推定値(a)の値に対してAが上限値、Aが下限値であり、このA、Aの値を充放電電流に応じて設定する。例えば「A−(a)」の値と「(a)−A」の値を、充放電電流が大きいほど大きくなるように設定する。そして今回ADFで推定した充電率が破線で示した変化量の上限値と下限値の間に収まっている場合は、今回ADFで推定した充電率を選択し、(b)のように今回ADFで推定した充電率が変化量の上限値を上回る変化をした場合には、充電率の変化を充電率変化量上限値に制限し、(c)のように今回ADFで推定した充電率が変化量の下限値を下回る変化をした場合には、充電率の変化を変化量下限値に制限するように制御する。
なお、図8の演算は、所定周期で繰り返されるので、所定周期つまり所定時間毎の変化量を上限値と下限値の間の範囲に制限することになる。
FIG. 9 is an explanatory diagram illustrating the restriction method.
In FIG. 9, the arrow (a) indicates the previous charging rate, and the upper and lower broken lines indicate the current upper limit value and the lower limit value. That is, in the final time one operation period T, the previous final charging rate estimated value A H is the upper limit for the value of (a), A L is the lower limit value, the A H, the value of A L charging Set according to the discharge current. For example, the value of “A H − (a)” and the value of “(a) −A L ” are set so as to increase as the charge / discharge current increases. If the current charging rate estimated by the ADF falls between the upper limit value and the lower limit value of the amount of change indicated by the broken line, the charging rate estimated by the current ADF is selected and When the estimated charging rate changes above the upper limit value of the change amount, the change in the charging rate is limited to the upper limit value of the charging rate change amount, and the charging rate estimated by the ADF this time as shown in FIG. When the change is less than the lower limit value, the control is performed so as to limit the change in the charging rate to the lower limit value of the change amount.
8 is repeated in a predetermined cycle, the amount of change at a predetermined cycle, that is, every predetermined time is limited to a range between the upper limit value and the lower limit value.

図10は、本発明の効果を示す特性図である。
図10において、太実線はADFで推定した充電率、細実線は本発明の最終充電率推定値、破線は真の充電率(充電率の真値)を示す。
FIG. 10 is a characteristic diagram showing the effect of the present invention.
In FIG. 10, a thick solid line indicates a charging rate estimated by ADF, a thin solid line indicates a final charging rate estimated value of the present invention, and a broken line indicates a true charging rate (true value of charging rate).

図10に示すように、時間20〜30[sec]付近において、ADFによる推定開始直後は内部パラメータの値が大きくずれており、ADFで推定した充電率(太実線)が真の充電率(破線)から大きく外れてしまう。しかし、細実線で示した本発明の特性では、充放電電流に応じて充電率の変化量に制限を加えているので、ADFで推定した充電率が大きく外れるような場合でも、真の充電率から大きく外れることなく推定できている。
そして時間80[sec]付近からADFの内部パラメータが真値に収束し、充電率推定値が真の充電率に近づいてくると、充放電電流で変化量に制限を加えた充電率推定値もADFで推定した充電率に近づいていくようになる。
As shown in FIG. 10, in the vicinity of time 20 to 30 [sec], the value of the internal parameter is greatly shifted immediately after the start of estimation by ADF, and the charging rate (thick solid line) estimated by ADF is the true charging rate (dashed line). ). However, in the characteristics of the present invention indicated by the thin solid line, since the amount of change in the charging rate is limited according to the charging / discharging current, even if the charging rate estimated by the ADF greatly deviates, the true charging rate It can be estimated without greatly deviating from.
When the internal parameter of the ADF converges to a true value from around time 80 [sec] and the charge rate estimated value approaches the true charge rate, the charge rate estimated value in which the change amount is limited by the charge / discharge current is also obtained. The charging rate estimated by the ADF approaches.

上記のように本実施例のおいては、充電率の変化量に充放電電流に応じた上下限を設け、ADFによる充電率推定値の所定時間当りの変化量に制限を加える構成なので、ADFによる推定精度が悪くなっても、充電率推定の精度を落とすことが無く精度良く推定することができる、という効果がある。   As described above, in this embodiment, the upper and lower limits according to the charge / discharge current are provided for the amount of change in the charging rate, and the amount of change per predetermined time of the estimated charging rate by the ADF is limited. Even if the estimation accuracy due to is deteriorated, there is an effect that the estimation can be performed with high accuracy without degrading the accuracy of the charging rate estimation.

(実施例2)
本実施例においては、充電率変化量の上限値と下限値を設定する際に、充放電電流検出手段(電流センサ)の検出精度を加味して決定するようにしたものである。つまり、精度の悪い電流センサを使用する場合には、電流センサの精度よりも上下限値の幅を大きくするように設定すれば、電流センサの精度の悪さによって充電率推定値精度が悪化してしまうことを防止することが出来る、という効果が得られる。
(Example 2)
In this embodiment, when setting the upper limit value and the lower limit value of the change rate of the charging rate, the determination is made taking into account the detection accuracy of the charge / discharge current detection means (current sensor). In other words, when using an inaccurate current sensor, if the upper and lower limits are set to be larger than the accuracy of the current sensor, the accuracy of the charge rate estimation value deteriorates due to the inaccuracy of the current sensor. The effect that it can prevent that will be acquired is acquired.

(実施例3)
ADFによる推定精度が悪化すると、電流量に応じて制限を加えた最終充電率とADFで推定した充電率とが大きく乖離してしまう。したがってADFで推定した充電率と制限を加えたあとの最終充電率との偏差が大きくなるに従って、充電率変化量の上限値と下限値の差を小さくする、つまり所定時間毎の変化量を小さくするように構成すれば、大きく離れたADFに最終充電率を近づける場合に、ゆっくりと近づけることになるので、充電率推定の精度を落とすことが無く精度良く推定することができる、という効果が得られる。
(Example 3)
When the estimation accuracy by ADF deteriorates, the final charging rate with a restriction according to the amount of current and the charging rate estimated by ADF are greatly different. Therefore, as the deviation between the charging rate estimated by the ADF and the final charging rate after the limit is increased, the difference between the upper limit value and the lower limit value of the charging rate change amount is reduced, that is, the change amount per predetermined time is reduced. If configured to do so, when the final charging rate is brought close to an ADF that is far away, the approaching rate is approached slowly, so that an effect can be obtained that accuracy can be estimated without degrading the accuracy of charging rate estimation. It is done.

本発明を適用するシステムの全体の概略構成図。1 is a schematic configuration diagram of an entire system to which the present invention is applied. 本発明の一実施例の機能ブロック図。The functional block diagram of one Example of this invention. 図1の制御装置2内での充電率の演算フローを示す図。The figure which shows the calculation flow of the charging rate in the control apparatus 2 of FIG. 図3のステップS102における開路電圧推定の制御フローを示す図。The figure which shows the control flow of the open circuit voltage estimation in step S102 of FIG. 推定した開路電圧Vから充電率を推定する演算フローを示す図。It shows an operation flow for estimating the charging rate from the open-circuit voltage V 0 estimated. 二次電池の等価回路モデルを示す回路図。The circuit diagram which shows the equivalent circuit model of a secondary battery. 開路電圧と充電率の関係を示す特性図。The characteristic view which shows the relationship between an open circuit voltage and a charging rate. 充電率制限手段2003における演算内容の一実施例を示すフロー図。The flowchart which shows one Example of the calculation content in the charging rate restriction | limiting means 2003. FIG. 変化量の制限方法を図示した説明図。Explanatory drawing which illustrated the limiting method of variation | change_quantity. 本発明の効果を示す特性図。The characteristic view which shows the effect of this invention.

符号の説明Explanation of symbols

1…二次電池 2…補機
3…制御装置 4…電圧センサ
5…電流センサ
2001…開路電圧推定手段 2002…充電率推定手段
2003…充電率制限手段
DESCRIPTION OF SYMBOLS 1 ... Secondary battery 2 ... Auxiliary machine 3 ... Control apparatus 4 ... Voltage sensor 5 ... Current sensor 2001 ... Open circuit voltage estimation means 2002 ... Charge rate estimation means 2003 ... Charge rate restriction means

Claims (3)

二次電池と、
前記二次電池の充放電電流を検出する充放電電流検出手段と、
前記二次電池の端子電圧を検出する端子電圧検出手段と、
適応デジタルフィルタを用いて、前記充放電電流と前記端子電圧から開路電圧を推定する開路電圧推定手段と、
予め求めた開路電圧と充電率との関係に基づいて前記開路電圧から前記二次電池の充電率を推定する充電率推定手段と、
前記充放電電流に基づいて所定時間当りの充電率変化量の上限値と下限値を演算し、前記充電率推定手段で推定した充電率の所定時間あたりの変化量が前記上限値と下限値の間になるように制限することにより最終充電率推定値を演算する充電率変化量制限手段と、
を備え
前記充電率変化量制限手段は、前記充放電電流検出手段の検出精度に基づいて前記充電率変化量の上限値と下限値を設定することを特徴とする二次電池の充電率推定装置。
A secondary battery,
Charge / discharge current detecting means for detecting charge / discharge current of the secondary battery;
Terminal voltage detecting means for detecting a terminal voltage of the secondary battery;
An open circuit voltage estimating means for estimating an open circuit voltage from the charge / discharge current and the terminal voltage using an adaptive digital filter;
Charge rate estimating means for estimating the charge rate of the secondary battery from the open circuit voltage based on the relationship between the open circuit voltage and the charge rate obtained in advance;
An upper limit value and a lower limit value of the charging rate change amount per predetermined time are calculated based on the charging / discharging current, and a change amount per predetermined time of the charging rate estimated by the charging rate estimation unit is the upper limit value and the lower limit value. Charging rate change amount limiting means for calculating a final charging rate estimated value by limiting to be between,
Equipped with a,
The charge rate change amount limiting means sets an upper limit value and a lower limit value of the charge rate change amount based on detection accuracy of the charge / discharge current detection means .
前記充電率変化量制限手段は、
前記充電率推定手段で推定した充電率と前記充電率変化量制限手段で制限を加えた後の最終充電率との偏差が大きくなるに従って、前記充電率変化量の上限値と下限値の差を小さくすることを特徴とする請求項1に記載の二次電池の充電率推定装置。
The charging rate change amount limiting means is
As the deviation between the charging rate estimated by the charging rate estimating means and the final charging rate after being restricted by the charging rate change amount limiting means increases, the difference between the upper limit value and the lower limit value of the charging rate change amount is increased. The secondary battery charging rate estimation device according to claim 1 , wherein the secondary battery charging rate estimation device is smaller.
二次電池の充放電電流と端子電圧を検出し、適応デジタルフィルタを用いて、前記充放電電流と前記端子電圧から開路電圧を推定し、予め求めた開路電圧と充電率との関係に基づいて前記開路電圧から前記二次電池の充電率を推定する充電率推定方法において、
前記充放電電流に基づいて所定時間当りの充電率変化量の上限値と下限値を演算し、前記の推定した充電率の所定時間あたりの変化量が前記上限値と下限値の間になるように制限することにより最終充電率推定値を演算するものであって、
前記充電率変化量の上限値と下限値を演算する際において、前記充放電電流を検出するための検出手段の検出精度に基づいて前記充電率変化量の上限値と下限値を設定することを特徴とする二次電池の充電率推定方法。
The charge / discharge current and terminal voltage of the secondary battery are detected, an open circuit voltage is estimated from the charge / discharge current and the terminal voltage using an adaptive digital filter, and based on the relationship between the open circuit voltage and the charge rate obtained in advance. In the charging rate estimation method for estimating the charging rate of the secondary battery from the open circuit voltage,
An upper limit value and a lower limit value of the charging rate change amount per predetermined time are calculated based on the charge / discharge current, and the change amount of the estimated charging rate per predetermined time is between the upper limit value and the lower limit value. By calculating the final charge rate estimated value by limiting to
When calculating the upper limit value and the lower limit value of the charge rate change amount, setting the upper limit value and the lower limit value of the charge rate change amount based on the detection accuracy of the detection means for detecting the charge / discharge current. A charging rate estimation method for a secondary battery, which is characterized.
JP2008043925A 2008-02-26 2008-02-26 Secondary battery charging rate estimation device and charging rate estimation method Active JP5262179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043925A JP5262179B2 (en) 2008-02-26 2008-02-26 Secondary battery charging rate estimation device and charging rate estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043925A JP5262179B2 (en) 2008-02-26 2008-02-26 Secondary battery charging rate estimation device and charging rate estimation method

Publications (2)

Publication Number Publication Date
JP2009204314A JP2009204314A (en) 2009-09-10
JP5262179B2 true JP5262179B2 (en) 2013-08-14

Family

ID=41146765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043925A Active JP5262179B2 (en) 2008-02-26 2008-02-26 Secondary battery charging rate estimation device and charging rate estimation method

Country Status (1)

Country Link
JP (1) JP5262179B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6820206B1 (en) * 2001-11-20 2004-11-16 Palmone, Inc. Power sharing between portable computer system and peripheral device
JP5842421B2 (en) * 2010-07-20 2016-01-13 日産自動車株式会社 Battery state estimation device
JP5292375B2 (en) * 2010-09-16 2013-09-18 カルソニックカンセイ株式会社 Battery charge rate estimation device
JP5389136B2 (en) * 2011-10-07 2014-01-15 カルソニックカンセイ株式会社 Charging rate estimation apparatus and method
JP6066163B2 (en) 2012-05-17 2017-01-25 株式会社Gsユアサ Open circuit voltage estimation device, state estimation device, and open circuit voltage estimation method
JP5563048B2 (en) * 2012-11-21 2014-07-30 三菱重工業株式会社 Full charge capacity estimation device, full charge capacity estimation method and program
JP6855947B2 (en) * 2016-06-15 2021-04-07 株式会社豊田自動織機 Charge rate estimation device and charge rate estimation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714321B2 (en) * 2002-11-25 2005-11-09 日産自動車株式会社 Secondary battery charge rate estimation device
JP4519523B2 (en) * 2004-06-02 2010-08-04 富士重工業株式会社 Remaining capacity calculation device for power storage device

Also Published As

Publication number Publication date
JP2009204314A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5262179B2 (en) Secondary battery charging rate estimation device and charging rate estimation method
US8918300B2 (en) Apparatus and method for battery state of charge estimation
JP5842421B2 (en) Battery state estimation device
JP2010135075A (en) Method and device for estimating temperature of battery pack
JP5393176B2 (en) Battery system and input / output power estimation method
JP5595361B2 (en) Secondary battery charge state estimation device
JP2012057998A (en) Charge rate calculation apparatus for secondary battery and charge rate calculation method
JP5029416B2 (en) Secondary battery charging rate estimation device and charging rate estimation method
JP4910300B2 (en) Secondary battery full charge capacity estimation device
WO2014136547A1 (en) Secondary battery state detection method and state detection device
JP6791002B2 (en) Deterioration estimation device for secondary batteries
JP2010127729A (en) Deterioration estimation method and device of battery
CN105527492B (en) For determining the method and apparatus and automobile of the resistance variations of energy storage device
JP2015224975A (en) Battery charge/discharge current detection device
JP2007057379A (en) Internal resistance detection method of secondary battery
JP2010203854A (en) Device of estimating internal state of secondary battery
EP3575140A1 (en) Estimation method of the residual range of an electric vehicle
JP5393616B2 (en) Secondary battery capacity maintenance rate calculation device and capacity maintenance rate calculation method
JP5549449B2 (en) Battery state estimation device
EP2626715B1 (en) Battery condition estimating method and power system
JP2009042091A (en) Electric vehicle system
JP5278957B2 (en) Battery state estimation device
JP4477582B2 (en) Deterioration degree or discharge capacity estimation method of battery, deterioration degree or discharge capacity estimation device, and power supply system
JP6631172B2 (en) Internal resistance calculation device, computer program, and internal resistance calculation method
JP6907595B2 (en) How to detect disconnection of the assembled battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150