JP5261154B2 - Hob cutter - Google Patents

Hob cutter Download PDF

Info

Publication number
JP5261154B2
JP5261154B2 JP2008305060A JP2008305060A JP5261154B2 JP 5261154 B2 JP5261154 B2 JP 5261154B2 JP 2008305060 A JP2008305060 A JP 2008305060A JP 2008305060 A JP2008305060 A JP 2008305060A JP 5261154 B2 JP5261154 B2 JP 5261154B2
Authority
JP
Japan
Prior art keywords
cutting
tooth
gear
hob
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008305060A
Other languages
Japanese (ja)
Other versions
JP2010125571A (en
Inventor
充康 浮田
伸二 菱岡
正行 津野
山治 烏帽子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Toyota Motor Corp
Original Assignee
Nachi Fujikoshi Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Toyota Motor Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2008305060A priority Critical patent/JP5261154B2/en
Publication of JP2010125571A publication Critical patent/JP2010125571A/en
Application granted granted Critical
Publication of JP5261154B2 publication Critical patent/JP5261154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gear Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hob cutter capable of effectively preventing the tooth flank of a gear from being torn near the dedendum by improving cutting-chip processing. <P>SOLUTION: The hob cutter 1 includes a hob body 2 driven into rotation and a plurality of cutting edges 3 arranged on the peripheral surface 2a of the hob body 2 at certain intervals in the circumferential direction, and a workpiece 4 is subjected to tooth cutting by the cutting edges 3 while the hob body 2 is rotated at a high speed, to generate the gear 5. In the hob cutter 1, the cutting edges 3 are designed with dislocation such that the ratio of the dedendum Dd to the overall tooth height h of each tooth 50 of the gear 5 generated (dedendum coefficient &beta;) lies within the prescribed range. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、ホブカッタの技術に関し、より詳細には、ホブ本体が高速回転されることで切刃によりワークを歯切り加工して歯車を創成するホブカッタの技術に関する。   The present invention relates to a hob cutter technique, and more particularly, to a hob cutter technique that creates a gear by cutting a workpiece with a cutting blade by rotating a hob body at a high speed.

従来、歯車(平歯車、はすば歯車、ウォーム歯車など)、スプロケット、スプライン等を加工する際には、切削工具としてのホブカッタが用いられる。ホブカッタは、回転駆動されるホブ本体と、ホブ本体の外周面に円周方向に沿って所定の離間を有して配設された複数の切刃とを具備してなり、切削装置としてのホブ盤に固定された状態でホブ本体が高速回転されることで、切刃によりワークが所定の歯形に歯切り加工(創成歯切り)される。   Conventionally, when processing gears (spur gears, helical gears, worm gears, etc.), sprockets, splines, etc., a hob cutter as a cutting tool is used. The hob cutter includes a hob body that is driven to rotate, and a plurality of cutting blades that are disposed on the outer circumferential surface of the hob body with a predetermined spacing along the circumferential direction. When the hob main body is rotated at a high speed while being fixed to the board, the workpiece is cut into a predetermined tooth profile (generated tooth cutting) by the cutting blade.

特に、近年では、このホブカッタを用いた歯切り加工において、切削油を用いないで歯車等の加工を行うようにした技術(ドライカット)が提案されている。例えば、特許文献1又は特許文献2には、ドライカットにより歯形を創成するホブカッタの構成が開示されている。一方で、このような、ドライカットによる歯切り加工では、上述のとおり切削油が用いられないため、歯切り加工時に生じる切り屑(切削屑)を系外に排出することが困難であり、そのような切り屑がホブカッタの切刃とワークに創成された歯面との間に入り込み、歯面のむしれが発生しまうという弊害が指摘されているところである。   In particular, in recent years, a technique (dry cut) has been proposed in which gears and the like are processed without using cutting oil in the gear cutting using the hob cutter. For example, Patent Literature 1 or Patent Literature 2 discloses a configuration of a hob cutter that creates a tooth profile by dry cutting. On the other hand, in such gear cutting by dry cutting, cutting oil is not used as described above, so it is difficult to discharge chips generated during gear cutting (cutting waste) out of the system. It has been pointed out that such a chip enters between the cutting blade of the hob cutter and the tooth surface created on the workpiece, and the tooth surface is peeled off.

そこで、例えば、上述した特許文献1では、上述した歯面のむしれを防止するために、逆巻コンベンショナルカット又は同巻コンベンショナルカットに歯切り加工を行う歯車加工方法が提案されている。また、特許文献2では、ホブカッタの切刃間の溝に切削屑が詰まって切削不能になるのを防止するために、切刃の背面の面粗度を10μm以下にするように成形したホブカッタが提案されている。
特開2000−107937号公報 特開平11−207523号公報
Therefore, for example, Patent Document 1 described above proposes a gear processing method for performing gear cutting on a reverse wound conventional cut or the same wound conventional cut in order to prevent the above-described tooth surface flaking. Further, in Patent Document 2, there is a hob cutter formed so that the surface roughness of the back surface of the cutting blade is 10 μm or less in order to prevent the chips between the cutting blades of the hob cutter from becoming clogged with cutting waste. Proposed.
JP 2000-107937 A JP 11-207523 A

ところで、近年では、歯切り加工において切削屑の発生プロセスが詳細に検討された結果、歯面の決まった場所、特に、トレーリング側の歯元付近で、ほぼ決まった大きさで歯面のむしれが規則的に生じ、その生じた切削屑によって歯面性状が悪化してしまうことが分かってきている。すなわち、かかる切削屑の発生プロセスでは、まず、ワークの切り始めにトレーリング側から切削屑が発生し始める。そして、大きく成長した切削屑が、切り終わりでリーディング側から生じた切削屑により押され、(切り終わり時には切削屑が発生しない)トレーリング側に押し付けられる結果、トレーリング側の歯元付近の歯面で切削屑が圧着され、歯面のむしれが発生するのである。   By the way, in recent years, as a result of detailed examination of the generation process of cutting scraps in gear cutting, the tooth surface has a substantially constant size at a predetermined tooth surface, particularly in the vicinity of the tooth base on the trailing side. However, it has been found that the tooth surface properties are deteriorated due to the regular occurrence of the scraps. That is, in the cutting waste generation process, first, cutting waste starts to be generated from the trailing side at the start of cutting of the workpiece. Then, as a result of the cutting chips that have grown greatly pushed by the cutting chips generated from the leading side at the end of cutting and pressed against the trailing side (no cutting chips are generated at the end of cutting), the teeth near the tooth base on the trailing side The chip is pressed on the surface, and the tooth surface is peeled off.

かかる観点から、上述した従来のホブカッタの構成や加工方法では、確かに、歯車の歯面のむしれを防止するという点では一定の効果が期待できるものであるが、上述したような発生プロセスの見地から、特に、トレーリング側の歯元付近の歯面のむしれを防止しようとするものではなく、またそのための特別なホブカッタを提案するものではない。   From this point of view, the above-described conventional hob cutter configuration and processing method can certainly be expected to have a certain effect in terms of preventing the tooth surface of the gears from coming off. From the standpoint, it is not intended to prevent flaking of the tooth surface near the tooth base on the trailing side, and does not propose a special hob cutter for that purpose.

そこで、本発明では、ホブカッタに関し、前記従来の課題を解決するもので、切削屑処理を改善して、歯車の歯元付近での歯面のむしれを効果的に防止するホブカッタを提供することを目的とするものである。   Accordingly, the present invention relates to a hob cutter that solves the above-mentioned conventional problems, and provides a hob cutter that improves cutting waste processing and effectively prevents tooth surface flaking near the tooth root of a gear. It is intended.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

すなわち、請求項1においては、回転駆動されるホブ本体と、前記ホブ本体の外周面に円周方向に沿って所定の離間を有して配設された複数の切刃とを具備してなり、前記ホブ本体が高速回転されることで前記切刃によりワークを歯切り加工して歯車を創成するホブカッタにおいて、前記切刃は、創成される歯車の各歯の全歯丈に対するデデンダムの比率が0.50〜0.53の範囲となるように成形されるものである。 In other words, the present invention includes a hob body that is rotationally driven, and a plurality of cutting blades that are disposed on the outer circumferential surface of the hob body with a predetermined spacing along the circumferential direction. In the hob cutter that creates a gear by cutting a workpiece with the cutting blade by rotating the hob main body at a high speed, the cutting blade has a ratio of dendendum to the total tooth height of each tooth of the gear to be created. It is molded so as to be in the range of 0.50 to 0.53 .

請求項2においては、前記切刃は、刃先端部に異なる凸曲面を有する複数のR面部を有するものである。 According to a second aspect of the present invention, the cutting blade has a plurality of R surface portions having different convex curved surfaces at the blade tip portion.

請求項3においては、前記R面部は、切刃の側面に渡ってそれぞれ連続されるものである。 In Claim 3 , the said R surface part is continued over the side surface of a cutting blade, respectively.

本発明のように構成することで、切削屑処理を改善して、歯車の歯元付近での歯面のむしれを効果的に防止することができる。   By configuring as in the present invention, it is possible to improve the cutting waste treatment and effectively prevent tooth surface flank in the vicinity of the tooth root of the gear.

次に、発明を実施するための最良の形態を説明する。
図1は本発明の一実施例に係るホブカッタの全体的な構成を示した正面図、図2は同じく図1の側面図、図3は切刃の刃形を示した正面図、図4は所定の切刃により歯車が創成される様子を示した正面図、図5は切刃の刃先端部に設けられたR面部を示した正面図、図6は従来のホブカッタを用いた場合の歯車創成線図、図7は本実施例のホブカッタを用いた場合の歯車創成線図、図8は歯車の歯元の形状を示した正面図である。
Next, the best mode for carrying out the invention will be described.
1 is a front view showing an overall configuration of a hob cutter according to an embodiment of the present invention, FIG. 2 is a side view of FIG. 1, FIG. 3 is a front view showing a cutting edge shape, and FIG. FIG. 5 is a front view showing a state where a gear is created by a predetermined cutting blade, FIG. 5 is a front view showing an R surface provided at the blade tip of the cutting blade, and FIG. 6 is a gear when a conventional hob cutter is used. FIG. 7 is a gear generation diagram when the hob cutter of this embodiment is used, and FIG. 8 is a front view showing the shape of the tooth base of the gear.

まず、本実施例のホブカッタ1の全体構成について、以下に概説する。
図1乃至図3に示すように、本実施例のホブカッタ1は、回転駆動されるホブ本体2と、ホブ本体2の外周面2aに円周方向に沿って所定の離間を有して配設された複数の切刃3・3・・・とを具備してなり、ホブ本体2が高速回転されることで切刃3・3・・・によりワーク4を歯切り加工して所定の歯形を有する歯車5を創成するように構成されている。
First, the overall configuration of the hob cutter 1 of this embodiment will be outlined below.
As shown in FIGS. 1 to 3, the hob cutter 1 according to the present embodiment is provided with a hob body 2 that is driven to rotate and an outer peripheral surface 2 a of the hob body 2 with a predetermined spacing along the circumferential direction. Are formed, and the workpiece 4 is toothed by the cutting blades 3, 3 ... by rotating the hob body 2 at a high speed to form a predetermined tooth profile. It is comprised so that the gear 5 which has may be created.

ホブ本体2は、略円筒形状に形成され、軸方向に沿って貫通孔2bが穿設されている。ホブ本体2は、貫通孔2bにホブ盤の回転軸6が挿通されることで、ワーク4に対して回転自在とされている。ホブ本体2の外周面2a上には、円周方向に沿って複数の切刃3・3・・・が配設されており、各切刃3・3・・・が捩じれる一条のねじ筋30に沿って所定の離間を有して配列されている。   The hob body 2 is formed in a substantially cylindrical shape, and a through hole 2b is formed along the axial direction. The hob main body 2 is rotatable with respect to the workpiece 4 by inserting the rotating shaft 6 of the hobbing machine through the through hole 2b. On the outer peripheral surface 2a of the hob main body 2, a plurality of cutting blades 3, 3,... Are arranged along the circumferential direction, and a single thread that can twist each of the cutting blades 3, 3,. 30 are arranged with a predetermined spacing along 30.

ねじ筋30は、ホブ本体2の正面視においてホブ本体2の軸芯から両端側に向かう一巻を一構成単位として、ホブ本体2の軸方向に沿って数巻配設されている。また、ねじ筋30は、複数個の切刃3・3・・・により構成されており、隣接するねじ筋30の切刃3が所定の離間を有するようにして配設されている。なお、ねじ筋30のピッチは、歯車5のモジュールに合わせて決定される。   The screw 30 is arranged in several turns along the axial direction of the hob body 2 with one turn from the axial center of the hob body 2 toward both ends in the front view of the hob body 2 as one structural unit. Further, the thread 30 is composed of a plurality of cutting blades 3, 3,..., And the cutting blades 3 of the adjacent thread 30 are arranged so as to have a predetermined spacing. Note that the pitch of the thread 30 is determined in accordance with the module of the gear 5.

一の歯車5を歯切り加工する際には、主に一巻のねじ筋30を構成する切刃3・3・・・により各歯50・50・・・が創成される。本実施例のホブカッタ1では、ホブ本体2にねじ筋30が数巻配設されることで、使用された一巻の切刃3・3・・・(の刃先)が摩耗した場合に、別の新たな一巻の切刃3・3・・・を順次使用して、ホブカッタ1の交換周期を伸ばすことができる。   When one gear 5 is geared, the teeth 50, 50,... Are created mainly by the cutting blades 3, 3,. In the hob cutter 1 of the present embodiment, when the hob body 2 is provided with several turns of the screw thread 30, the used cutting blades 3, 3. .. Can be used in sequence to extend the replacement cycle of the hob cutter 1.

切刃3は、正面断面視で略台形形状を有しており、ねじ筋30に対する両側に側面としての傾斜面31・31が形成されている。また、切刃3は、ねじ筋30に沿った方向で一方の面(回転方向前側面)にすくい面32が形成され、ねじ筋30に沿った方向で他方の面(回転方向後側面)に背面33が形成されている。   The cutting blade 3 has a substantially trapezoidal shape in a front sectional view, and inclined surfaces 31 and 31 as side surfaces are formed on both sides with respect to the screw rod 30. Further, the cutting edge 3 has a rake face 32 formed on one surface (front side in the rotational direction) in the direction along the thread 30 and on the other surface (rear side in the rotational direction) in the direction along the thread 30. A back surface 33 is formed.

ホブカッタ1を用いて歯切り加工を行う場合には、まず、ホブカッタ1が切刃3・3・・・をワーク4の歯形成面に直交させるようにして配設される。そして、ホブ本体2が所定方向(図1において矢印方向)に1回転される間にワーク4が各歯50・50・・・の一ピッチ分だけ回転(図1において矢印方向)されながら、ホブ本体2がワーク4の軸方向に移動(図1において矢印方向)されることで、ワーク4に対して所定の歯形を有する歯車5が創成される。その際、主に、一のねじ筋30を構成する切刃3・3・・・により歯車5の各歯50・50・・・が創成され、各切刃3の傾斜面31・31及びすくい面32に形成された刃先によって、各歯50・50・・・の歯元50aと歯元両側のインボリュート曲面(歯面50b)が創成される(図4参照)。   When the hob cutter 1 is used for gear cutting, first, the hob cutter 1 is disposed so that the cutting blades 3, 3... Are orthogonal to the tooth forming surface of the workpiece 4. While the hob body 2 is rotated once in a predetermined direction (arrow direction in FIG. 1), the workpiece 4 is rotated by one pitch of each tooth 50, 50. When the main body 2 is moved in the axial direction of the workpiece 4 (in the direction of the arrow in FIG. 1), a gear 5 having a predetermined tooth shape is created with respect to the workpiece 4. At that time, the teeth 50, 50,... Of the gear 5 are created mainly by the cutting blades 3, 3,. The tooth base 50a of each tooth 50, 50... And the involute curved surface (tooth surface 50b) on both sides of the tooth base are created by the cutting edge formed on the surface 32 (see FIG. 4).

次に、本実施例の切刃3の刃形設計について、以下に詳述する。
図3及び図4に示すように、本実施例の切刃3は、創成される歯車5の諸元に応じて成形され、具体的には、創成される歯車5の歯形、すなわち、各歯50・50・・・の全歯丈hに対するデデンダムDdの比率(以下、「デデンダム係数β」)が所定の範囲となるように転位設計される。また、後述するように、頂部としての刃先端部34には、異なる凸曲面を有する複数のR面部35・35・・・が形成される。
Next, the blade shape design of the cutting blade 3 of the present embodiment will be described in detail below.
As shown in FIGS. 3 and 4, the cutting blade 3 of this embodiment is formed according to the specifications of the gear 5 to be created. Specifically, the tooth profile of the gear 5 to be created, that is, each tooth. Dislocation design is performed such that the ratio of the denden dam Dd to the total tooth height h of 50, 50. Further, as will be described later, a plurality of R surface portions 35, 35... Having different convex curved surfaces are formed on the blade tip portion 34 as the top portion.

本実施例での「切刃3の転位設計」とは、歯車5の歯切りピッチ円径を変更するように切刃3の諸元を設計することをいい、具体的には、目的とする歯車5の歯形に応じた基準設計とは異なるように、圧力角αや、切刃3間のピッチPや、刃末の丈haや、刃元の丈hfなどの諸元が設定されることをいう。ここでの圧力角αは、傾斜面31・31の傾きのことであり、刃末の丈haは、切刃3の刃先端部34から基準ピッチ線PLまで距離のことをいい、刃元の丈hfは、基準ピッチ線PLから刃元36までの距離のことをいう。   The “dislocation design of the cutting blade 3” in the present embodiment refers to designing the specifications of the cutting blade 3 so as to change the gear cutting pitch circle diameter of the gear 5, and specifically, the purpose. The specifications such as the pressure angle α, the pitch P between the cutting blades 3, the length ha of the blade edge, and the height hf of the blade base are set so as to be different from the reference design corresponding to the tooth profile of the gear 5. Say. The pressure angle α here is the inclination of the inclined surfaces 31, 31, and the blade edge length ha is the distance from the blade tip 34 of the cutting blade 3 to the reference pitch line PL. The length hf refers to the distance from the reference pitch line PL to the blade edge 36.

本実施例の切刃3は、歯50のデデンダム係数βが所定の値となるように歯50の歯切りピッチ円径が変更されるように設計される。本実施例での「デデンダム係数β」とは、歯車5の各歯50・50・・・の全歯丈hに対するデデンダムDdの比率であって、下記の式(1)に示すように、デデンダムDdを全歯丈hで割った値として表される。歯車5のデデンダム係数βの所定の範囲としては、好ましくはβが0.50に近傍するように設定され、より好ましくは、βが0.53〜0.50の範囲となるように設定される。また、「歯切りピッチ円径」とは、歯車5の歯切りピッチ円C3(基準ピッチ円)の径のことをいい、歯切りピッチ円C3は歯車5上で仮想真円として表される。   The cutting blade 3 of this embodiment is designed so that the gear cutting pitch circle diameter of the tooth 50 is changed so that the Dedendam coefficient β of the tooth 50 becomes a predetermined value. The “Dedendam coefficient β” in the present embodiment is a ratio of the Dedendam Dd to the total tooth height h of each tooth 50, 50... Of the gear 5, and is represented by the following formula (1). It is expressed as a value obtained by dividing Dd by the total tooth height h. The predetermined range of the Dedendam coefficient β of the gear 5 is preferably set so that β is close to 0.50, and more preferably, β is set in the range of 0.53 to 0.50. . Further, “the gear cutting pitch circle diameter” means the diameter of the gear cutting pitch circle C3 (reference pitch circle) of the gear 5, and the gear cutting pitch circle C3 is represented on the gear 5 as a virtual true circle.

β=Dd/h・・・式(1)   β = Dd / h (1)

ここでの全歯丈hは、歯車5における歯先円C1と基礎円C2との離間のことをいい、歯先円C1の径(歯先円径)から基礎円C2の径(基礎円径)を引いた値で表される。また、デデンダムDdは、歯切りピッチ円C3と基礎円C2との離間のことをいい、歯切りピッチ円C3の径(歯切りピッチ円径)から基礎円C2の径を引いた値で表される。   The total tooth height h here refers to the separation between the tip circle C1 and the base circle C2 in the gear 5, and the diameter of the base circle C2 from the diameter of the tip circle C1 (tip circle diameter) (basic circle diameter). ) Minus the value. The denden dam Dd refers to the separation between the gear cutting pitch circle C3 and the base circle C2, and is represented by a value obtained by subtracting the diameter of the base circle C2 from the diameter of the gear cutting pitch circle C3 (tooth cutting pitch circle diameter). The

なお、歯車5の歯形のその他の諸元として、アデンダムAdは、歯先円C1と歯切りピッチ円C3との離間のことであって、歯先円C1の径から歯切りピッチ円C3の径を引いた値で表される。つまり、本実施例における歯車5の各歯50・50・・・の全歯丈hは、デデンダムDdとアデンダムAdの和に等しい。   As another specification of the tooth profile of the gear 5, the addendum Ad is a separation between the tooth tip circle C1 and the gear cutting pitch circle C3, and the diameter of the gear cutting pitch circle C3 from the diameter of the tooth tip circle C1. Expressed by subtracting. That is, the total tooth height h of each tooth 50, 50... Of the gear 5 in the present embodiment is equal to the sum of the denden dam Dd and the addendum Ad.

このように、本実施例の切刃3は、歯車5の歯切りピッチ円径が所定の値となるように、歯車5のデデンダムDdを変更して、歯車5のデデンダム係数βが所定の範囲となるように転位設計されて、所定の諸元を有する刃形として成形される。切刃3の転位設計によって、歯車5の歯切りピッチ円径が変更されるが、歯車5の歯形(例えば、歯50の歯先円径や基礎円径の大きさなど)は転位設計前後で変わらない。   Thus, in the cutting blade 3 of the present embodiment, the dedendam coefficient D of the gear 5 is changed so that the gear cutting pitch circle diameter of the gear 5 becomes a predetermined value, and the dedendam coefficient β of the gear 5 is in a predetermined range. The dislocation is designed so that the blade shape has a predetermined specification. The gear cutting pitch circle diameter of the gear 5 is changed by the shift design of the cutting blade 3, but the tooth profile of the gear 5 (for example, the diameter of the tip circle diameter and the basic circle diameter of the tooth 50) is changed before and after the shift design. does not change.

また、図3及び図5に示すように、本実施例の切刃3は、頂部としての刃先端部34に異なる凸曲面を有する複数のR面部35・35・・・が形成されており、具体的には、刃先端部34の刃先面が凸状に形成された一の第一R面部35aと、第一R面部35aの両端から傾斜面31・31に渡って連続された一対の第二R面部35b・35bとが形成されている。各R面部35(第一R面部35a及び第二R面部35b)は、それぞれ異なる曲率の凸曲面を有しており、各凸曲面の曲率はそれぞれ目的とする歯車5の歯形(特に、歯元50aの形状)に応じて適宜設定される(図4及び図8参照)。   Moreover, as shown in FIG.3 and FIG.5, the cutting blade 3 of a present Example has several R surface part 35 * 35 ... which has a different convex curved surface in the blade front-end | tip part 34 as a top part, Specifically, one first R surface portion 35a having a blade tip surface of the blade tip portion 34 formed in a convex shape, and a pair of first R surfaces 35a extending from both ends of the first R surface portion 35a to the inclined surfaces 31 and 31. Two R surface portions 35b and 35b are formed. Each R surface portion 35 (the first R surface portion 35a and the second R surface portion 35b) has a convex curved surface having a different curvature, and the curvature of each convex curved surface is the tooth profile (in particular, the tooth root) of the target gear 5. 50a) (see FIG. 4 and FIG. 8).

刃先端部34の諸元設計の一例を説明すると、まず、刃先端部34においてR面部35が形成される接点高さHが決定される。この接点高さHは、切刃3が転位設計されない場合のフィレット発生径と同等かそれ以下となるフィレット発生径に基づいて設定される。なお、フィレット発生径とは、歯車5において歯元50aに隅肉が創成されるが、この隅肉とインボリュート歯面との接点までの径のことをいう。   An example of the design of the blade tip 34 will be described. First, the contact height H at which the R surface 35 is formed at the blade tip 34 is determined. The contact height H is set based on a fillet generation diameter that is equal to or less than the fillet generation diameter when the cutting edge 3 is not designed to be dislocated. The fillet generation diameter refers to the diameter of the gear 5 to the contact point between the fillet and the involute tooth surface, where a fillet is created at the tooth root 50a.

次いで、第一R面部35aが、所定強度の曲率Rとなるように計算された上で、切刃3の中心線CL上に円中心P1を有する円弧R1の円弧面として設定される。また、第二R面部35b・35bが、同じく所定強度の曲率Rとなるように計算された上で、切刃3の中心線CLに重ならない方向(図5において左右方向)にオフセットされた位置に円中心P2を有する円弧R2の円弧面としてそれぞれ設定される。そして、円弧R1の端部と傾斜面31の端部とが円弧R2によって滑らかに連続されることで、切刃3の傾斜面31・31に渡って連続されるR面部35が諸元設計される。   Next, the first R surface portion 35a is calculated as a curvature R having a predetermined strength, and is set as an arc surface of an arc R1 having a circle center P1 on the center line CL of the cutting edge 3. Further, the second R surface portions 35b and 35b are calculated so as to have a curvature R having a predetermined strength, and are offset in a direction not overlapping the center line CL of the cutting blade 3 (left-right direction in FIG. 5). Are set as arc surfaces of the arc R2 having the circle center P2. Then, the end portion of the arc R1 and the end portion of the inclined surface 31 are smoothly continued by the arc R2, so that the R surface portion 35 continuous over the inclined surfaces 31 and 31 of the cutting blade 3 is designed. The

以上のように構成される本実施例のホブカッタ1を用いて歯車5を創成する際には、転位設計された切刃3の基準ピッチ線PLが、歯車5の歯切りピッチ円C3と接するようにして各歯50・50・・・が創成される(図4参照)。そして、このように構成することで、歯切り加工プロセスにおける切削屑処理を改善して、歯車5の歯元付近での歯面50bのむしれを効果的に防止することができるのである。   When the gear 5 is created by using the hob cutter 1 of the present embodiment configured as described above, the reference pitch line PL of the cutting blade 3 that is designed to be displaced comes into contact with the gear cutting pitch circle C3 of the gear 5. In this way, the teeth 50, 50... Are created (see FIG. 4). And by comprising in this way, the cutting waste process in a gear-cutting process can be improved, and the tooth surface 50b near the tooth root of the gearwheel 5 can be prevented effectively.

ここで、本実施例のホブカッタ1による歯車5の歯切り加工プロセスについて、以下に詳述する。
図6及び図7を参照して、本実施例のホブカッタ1による歯車5の歯切り加工プロセスを、切刃3が転位設計されない従来のホブカッタを用いた場合及び本実施例のホブカッタ1を用いた場合の歯車創成線図により比較する。図6に示すように、切刃3が転位設計されない場合(切刃3が基準設計された場合)には、トレーリング側の歯50の歯元付近で切刃3と歯50の歯面50bとの間に隙間Sが発現する。一方で、図7に示すように、本実施例のホブカッタ1を用いた場合(切刃3が転位設計された場合)では切刃3と歯50の歯面50bとの間の隙間Sが大幅に低減される。
Here, the gear cutting process of the gear 5 by the hob cutter 1 of the present embodiment will be described in detail below.
With reference to FIGS. 6 and 7, the gear cutting process of the gear 5 by the hob cutter 1 of the present embodiment is performed using a conventional hob cutter in which the cutting edge 3 is not designed to be shifted and the hob cutter 1 of the present embodiment. Compare with the gear generation diagram of the case. As shown in FIG. 6, when the cutting edge 3 is not designed to be shifted (when the cutting edge 3 is designed as a reference), the cutting edge 3 and the tooth surface 50b of the tooth 50 near the tooth base of the tooth 50 on the trailing side. A gap S appears between the two. On the other hand, as shown in FIG. 7, when the hob cutter 1 of this embodiment is used (when the cutting blade 3 is designed to be displaced), the gap S between the cutting blade 3 and the tooth surface 50 b of the tooth 50 is greatly increased. Reduced to

なお、歯車5におけるトレーリング側とは、歯車5においてホブカッタ1の切刃3(の仮想切削ラック)の遠のき側のフランクのことをいい、一方、歯車5におけるリーディング側とは、歯車5においてホブカッタ1の切刃3(の仮想切削ラック)の近寄り側のフランクのことをいう。   The trailing side of the gear 5 refers to a flank on the far side of the cutting edge 3 (virtual cutting rack) of the hob cutter 1 in the gear 5, while the leading side of the gear 5 refers to the hob cutter in the gear 5. This means a flank on the near side of one cutting blade 3 (virtual cutting rack).

歯車5の歯切り加工プロセスにおいて、切削屑が発生するプロセスは、通常、ワーク4の切り始めにトレーリング側から切削屑が発生し始め、やがて大きく成長した切削屑が、切り終わりでリーディング側から生じた切削屑により押されてトレーリング側の歯面50bに押し付けられる。そのため、切刃3によりトレーリング側の歯元50a付近の歯面50bに切削屑が圧着されて、切刃3と歯面50bとの間で切削屑の噛み込みが発生し、その結果歯面50bのむしれが発生する。   In the gear cutting process of the gear 5, the process of generating cutting waste is usually started from the trailing side at the start of cutting the workpiece 4, and the cutting scrap that has grown greatly from the leading side at the end of cutting. It is pressed by the generated cutting waste and pressed against the tooth surface 50b on the trailing side. Therefore, cutting scraps are pressed against the tooth surface 50b in the vicinity of the tooth base 50a on the trailing side by the cutting blade 3, and the biting of the cutting waste occurs between the cutting blade 3 and the tooth surface 50b. As a result, the tooth surface 50b whip occurs.

このようにトレーリング側の歯元50a付近の歯面50bに切削屑が噛み込む要因の一つとして、上述したように、トレーディング側の歯50の歯元付近で切刃3と歯50の歯面50bと間に隙間Sが発現することが起因している(図6参照)。つまり、従来の切刃3の刃形のように転位設計されない場合(切刃3が基準設計された場合)には、切刃3と歯50の歯面50bとの間に隙間Sが発現し、かかる隙間Sに切削屑が入り込んで、切刃3と歯面50bとの間で切削屑の噛み込みが発生してしまうのである。   As described above, as described above, the cutting blade 3 and the tooth 50 have teeth near the tooth base of the tooth 50 on the trading side, as described above. This is because the gap S appears between the surface 50b (see FIG. 6). That is, when the dislocation design is not performed as in the case of the conventional cutting blade 3 (when the cutting blade 3 is designed as a reference), a gap S is generated between the cutting blade 3 and the tooth surface 50b of the tooth 50. Then, the cutting waste enters the gap S, and the cutting waste bites between the cutting edge 3 and the tooth surface 50b.

本実施例のホブカッタ1では、創成される歯車5の各歯50・50・・・の全歯丈hに対するデデンダムDdの比率が所定の範囲となるように切刃3が転位設計されるため、切刃3に対するトレーディング側の歯50の歯元付近の歯面50bに発現する隙間Sを低減することができる。そのため、切削屑が切刃3と歯面50bとの間(隙間S)に入り込む余地をなくすことができ、ひいては、トレーリング側の歯元付近の歯面50bで切削屑が圧着されて、切刃3と歯面50bとの間で噛み込みが発生するのを防止し、歯面50bのむしれを効果的に防止することができるのである。   In the hob cutter 1 of the present embodiment, the cutting edge 3 is designed to be displaced so that the ratio of the denden dam Dd to the total tooth height h of each tooth 50, 50. It is possible to reduce the gap S appearing on the tooth surface 50b near the base of the tooth 50 on the trading side with respect to the cutting blade 3. Therefore, there is no room for cutting waste to enter between the cutting edge 3 and the tooth surface 50b (gap S). As a result, the cutting waste is pressure-bonded by the tooth surface 50b in the vicinity of the tooth base on the trailing side. Occurrence of biting between the blade 3 and the tooth surface 50b can be prevented, and flaking of the tooth surface 50b can be effectively prevented.

特に、本実施例の切刃3が転位設計されたホブカッタ1と、従来の切刃が基準設計されたホブカッタをそれぞれ用いて確認試験を行った結果、創成される歯車5の各歯50・50・・・の全歯丈hに対するデデンダムの比率(デデンダム係数β)が0.53〜0.50の範囲となるように設定することで、歯面50bのむしれを効果的に防止できる。従来の切刃3の刃形のように転位設計されない場合(切刃3が基準設計された場合)には、通常、デデンダム係数βが0.60付近であるところ、切刃3を転位設計することでデデンダム係数βを徐々に低減させることで、切刃3と歯50の歯面50bとの間の隙間Sを小さくすることができるのである。ただし、デデンダム係数βが0.53より大きいと、切削屑が入り込む余地がまだあり、一方、デデンダム係数βが0.50より小さくなると、逆に切刃3により歯50の歯元50aが切り下げられて切刃3と歯50の歯面50bとの間に隙間Sが発現してしまう。   In particular, as a result of a confirmation test using the hob cutter 1 in which the cutting blade 3 of the present embodiment is designed to shift and the hob cutter in which the conventional cutting blade is designed as a reference, each tooth 50 and 50 of the gear 5 to be created is obtained. By setting the ratio of the denden dam to the total tooth height h (deden dam coefficient β) in the range of 0.53 to 0.50, it is possible to effectively prevent the tooth surface 50b from peeling. When the dislocation design is not performed as in the case of the conventional cutting blade 3 (when the cutting blade 3 is designed as a reference), the cutting blade 3 is usually designed to be displaced when the Dedendam coefficient β is around 0.60. Thus, the gap S between the cutting edge 3 and the tooth surface 50b of the tooth 50 can be reduced by gradually reducing the Denden dam coefficient β. However, if the Dedendam coefficient β is larger than 0.53, there is still room for cutting chips to enter. On the other hand, if the Dedendam coefficient β is smaller than 0.50, the tooth base 50a of the tooth 50 is cut down by the cutting blade 3. As a result, a gap S appears between the cutting edge 3 and the tooth surface 50b of the tooth 50.

また、図8に示すように、本実施例のホブカッタ1において切刃3が転位設計されることで、従来の刃先端部34の刃先形状(刃先R)では、歯元50aが切り下げされて歯50の強度が悪化してしまうため、刃先端部34の刃先形状を変更して、歯車5の歯元50aの形状を微調整する必要が生じる。そこで、本実施例の切刃3のように、刃先端部34に異なる凸曲面を有する複数のR面部35を設けることで、かかる歯車5の歯元50aの形状を微調整にして、歯元強度を改善できる。すなわち、切刃3の刃先端部34にR面部35が設けられた場合(図8において実線)には、従来の刃先端部34の刃先形状の場合(図8において点線)と比べて、歯元50aが太くなり、歯元強度が改善されたことが分かる。   Further, as shown in FIG. 8, the cutting edge 3 is designed to be displaced in the hob cutter 1 of this embodiment, so that the tooth root 50a is cut down and the tooth edge 50a is cut down in the conventional cutting edge shape (cutting edge R). Therefore, it is necessary to finely adjust the shape of the tooth root 50a of the gear 5 by changing the shape of the blade tip 34. Then, like the cutting blade 3 of the present embodiment, by providing a plurality of R surface portions 35 having different convex curved surfaces at the blade tip portion 34, the shape of the tooth root 50a of the gear 5 is finely adjusted, and the tooth root Strength can be improved. That is, when the R surface portion 35 is provided on the blade tip 34 of the cutting blade 3 (solid line in FIG. 8), the teeth are compared with the case of the blade tip shape of the conventional blade tip 34 (dotted line in FIG. 8). It can be seen that the root 50a is thickened and the tooth root strength is improved.

特に、本実施例では、R面部35は、切刃3の傾斜面31に渡って第一R面部35a及び第二R面部35bがそれぞれ連続されるように成形されるため、刃先端部34によって歯元50aの形状を滑らかにして切削屑の圧着や切刃3と歯面50bとの間で噛み込みが生じるのを効果的に防止することができる。   In particular, in the present embodiment, the R surface portion 35 is formed so that the first R surface portion 35a and the second R surface portion 35b are respectively continuous over the inclined surface 31 of the cutting blade 3, so that the blade tip portion 34 By smoothing the shape of the tooth base 50a, it is possible to effectively prevent cutting chips from being pressed and the biting between the cutting edge 3 and the tooth surface 50b.

なお、本実施例のホブカッタ1は、上述した実施例に限定されず、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。   The hob cutter 1 of the present embodiment is not limited to the above-described embodiment, and various modifications can be made without departing from the object of the present invention.

本発明の一実施例に係るホブカッタの全体的な構成を示した正面図。The front view which showed the whole structure of the hob cutter which concerns on one Example of this invention. 同じく図1の側面図。The side view of FIG. 1 similarly. 切刃の刃形を示した正面図。The front view which showed the blade shape of the cutting blade. 所定の切刃により歯車が創成される様子を示した正面図。The front view which showed a mode that the gearwheel was created with the predetermined cutting blade. 切刃の刃先端部に設けられたR面部を示した正面図。The front view which showed the R surface part provided in the blade front-end | tip part of a cutting blade. 従来のホブカッタを用いた場合の歯車創成線図。The gear creation diagram at the time of using the conventional hob cutter. 本実施例のホブカッタを用いた場合の歯車創成線図。The gear creation diagram at the time of using the hob cutter of a present Example. 歯車の歯元の形状を示した正面図。The front view which showed the shape of the tooth base of a gearwheel.

1 ホブカッタ
2 ホブ本体
2a 外周面
3 切刃
4 ワーク
5 歯車
30 ねじ筋
31 傾斜面(側面)
34 刃先端部
35 R面部
35a 第一R面部
35b 第二R面部
50 歯

DESCRIPTION OF SYMBOLS 1 Hob cutter 2 Hob main body 2a Outer peripheral surface 3 Cutting blade 4 Workpiece 5 Gear 30 Screw thread 31 Inclined surface (side surface)
34 Blade tip portion 35 R surface portion 35a First R surface portion 35b Second R surface portion 50 teeth

Claims (3)

回転駆動されるホブ本体と、前記ホブ本体の外周面に円周方向に沿って所定の離間を有して配設された複数の切刃とを具備してなり、前記ホブ本体が高速回転されることで前記切刃によりワークを歯切り加工して歯車を創成するホブカッタにおいて、
前記切刃は、創成される歯車の各歯の全歯丈に対するデデンダムの比率が0.50〜0.53の範囲となるように成形される、
ことを特徴とするホブカッタ。
A hob body that is driven to rotate, and a plurality of cutting blades that are disposed on the outer peripheral surface of the hob body with a predetermined spacing along the circumferential direction, and the hob body is rotated at high speed. In the hob cutter that creates a gear by cutting the workpiece with the cutting blade,
The cutting blade is shaped such that the ratio of the denden dam to the total tooth height of each tooth of the gear to be created is in the range of 0.50 to 0.53 .
Hob cutter characterized by that.
前記切刃は、刃先端部に異なる凸曲面を有する複数のR面部を有することを特徴とする請求項1に記載のホブカッタ。 The hob cutter according to claim 1, wherein the cutting blade has a plurality of R-surface portions having different convex curved surfaces at a blade tip portion . 前記R面部は、切刃の側面に渡ってそれぞれ連続されることを特徴とする請求項2に記載のホブカッタ。 Wherein R surface portion, the hob according to Motomeko 2 you, characterized in that each continuously over the sides of the cutting edge.
JP2008305060A 2008-11-28 2008-11-28 Hob cutter Active JP5261154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305060A JP5261154B2 (en) 2008-11-28 2008-11-28 Hob cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305060A JP5261154B2 (en) 2008-11-28 2008-11-28 Hob cutter

Publications (2)

Publication Number Publication Date
JP2010125571A JP2010125571A (en) 2010-06-10
JP5261154B2 true JP5261154B2 (en) 2013-08-14

Family

ID=42326305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305060A Active JP5261154B2 (en) 2008-11-28 2008-11-28 Hob cutter

Country Status (1)

Country Link
JP (1) JP5261154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478167B2 (en) 2019-05-17 2024-05-02 アプター フランス エスアーエス Fluid Discharger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744469B (en) * 2012-07-30 2014-02-26 浙江工商职业技术学院 Hob design method
JP5536250B1 (en) 2013-03-22 2014-07-02 三菱重工業株式会社 Gear processing equipment
JP6284453B2 (en) * 2014-07-31 2018-02-28 タイガースポリマー株式会社 Manufacturing method of spur gear or helical gear
CN106392203B (en) * 2016-11-08 2018-03-13 天津深之蓝海洋设备科技有限公司 A kind of cutter for being used to process ROV propeller repairing type gears

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157529U (en) * 1982-04-19 1983-10-20 トヨタ自動車株式会社 Hobukatsuta
JPH0866828A (en) * 1994-08-24 1996-03-12 Kyoiku Haguruma Kogyo Kk Hob cutter for generating logics gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478167B2 (en) 2019-05-17 2024-05-02 アプター フランス エスアーエス Fluid Discharger

Also Published As

Publication number Publication date
JP2010125571A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5261154B2 (en) Hob cutter
US8821216B2 (en) Method and device for removing a secondary burr on an end-cut work piece wheel
US20120148360A1 (en) Device and method for hob peeling internally geared wheels and related peeling wheel
JP2011127730A (en) Worm wheel, electric power steering device, and method of manufacturing worm wheel
JP2007216289A (en) Form rolling tool, and simultaneous form rolling method of screw or worm with spline having small number of gears
JP4553251B2 (en) Threading cutter
KR20100016320A (en) Tool for improved chip flow
US9962783B2 (en) Gear hobbing cutter with non-constant whole depths
US20110200404A1 (en) Spiral tap
WO2015080122A1 (en) Broaching cutter
JP6527037B2 (en) Bevel gear with modified shape
JP2018051753A (en) Method for machine processing of inter-tooth of face coupling work-piece in half-finishing method
RU2343048C1 (en) Method for processing of toothed wheel teeth with removal of bevels on their ends
US11141803B2 (en) Broach
JPH0631533A (en) Method and gear-shaped tool for manufacture of gear shaping and finishing tool
JP5302638B2 (en) Gear processing apparatus and phrasing cutter
JP2004249401A (en) Gear processing method
JP2011161579A (en) Cutting tap
JP2012206198A (en) Hob cutter
JP2009107080A (en) Helical broach for machining internal gear
JP2011056628A (en) Broach
JP2010184306A (en) Phrasing cutter
JP2015077640A (en) Helical broach
JP2013116513A (en) Cutting tap
JP5404535B2 (en) Gear processing machine, worm wheel manufacturing method, and worm wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5261154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250