JP5259727B2 - Methods and apparatus for cooling and / or liquefying hydrocarbon streams - Google Patents

Methods and apparatus for cooling and / or liquefying hydrocarbon streams Download PDF

Info

Publication number
JP5259727B2
JP5259727B2 JP2010536425A JP2010536425A JP5259727B2 JP 5259727 B2 JP5259727 B2 JP 5259727B2 JP 2010536425 A JP2010536425 A JP 2010536425A JP 2010536425 A JP2010536425 A JP 2010536425A JP 5259727 B2 JP5259727 B2 JP 5259727B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
stream
heat exchange
evaporative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010536425A
Other languages
Japanese (ja)
Other versions
JP2011506893A (en
Inventor
フランソワ・シャンタン
チュン・キット・ポー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JP2011506893A publication Critical patent/JP2011506893A/en
Application granted granted Critical
Publication of JP5259727B2 publication Critical patent/JP5259727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は炭化水素流を冷却するための方法及び装置に関する。別の態様では、本発明は炭化水素流を液化する方法に関する。   The present invention relates to a method and apparatus for cooling a hydrocarbon stream. In another aspect, the invention relates to a method for liquefying a hydrocarbon stream.

冷却及び/又は液化する炭化水素流の一般的な例は天然ガスである。   A common example of a hydrocarbon stream that is cooled and / or liquefied is natural gas.

天然ガス流を液化することで、液化天然ガス(LNG)を得る複数の方法が知られている。いくつかの理由により、天然ガス流を液化するのが望ましい。例として、液体は気体状態より占める体積が小さく、高圧で貯蔵する必要がないので、天然ガスを液体として貯蔵及び長距離輸送することが気体状態より容易にできる。   Several methods are known for obtaining liquefied natural gas (LNG) by liquefying a natural gas stream. It is desirable to liquefy the natural gas stream for several reasons. As an example, the liquid occupies a smaller volume than the gas state and does not need to be stored at high pressure, so that natural gas can be stored and transported over a long distance as a liquid more easily than the gas state.

圧縮冷媒を用いて天然ガスを液化できる。米国特許第6,962,060号には、第1及び第2冷媒コンプレッサー(その各々が第1及び第2段階を有する)と、第1及び第2コンプレッサーの第2段階からの流出物を結合して圧縮ガスを得る配管手段とを備えた、LNGの多段冷却用のコンプレッサーシステムが記載されている。しかしながら、第1及び第2コンプレッサーの2つの第2段階からの最大圧力の流出物を結合する必要性ゆえに、これら2つの流出物を正確に同じ圧力、流量等にして逆圧とサージを防止しなければならない。このことの欠点は、結合の問題を防ぐために2つの流出物間で許容された可変性が制限されることである。当該技術において知られているように、冷媒コンプレッサーは、例えば1つのコンプレッサー内でサージを一時的に防ぐために、一般に異なる吐出圧力にて動作するが、2つの流出物は高圧なので、コンプレッサーの上流及び/又は下流にて更に厄介な問題を生じさせる乱れを引き起こすことなく、異なる吐出圧力を吸収して下流の流量を維持することが非常に困難になる。   Natural gas can be liquefied using a compressed refrigerant. US Pat. No. 6,962,060 combines first and second refrigerant compressors (each having a first and second stage) and effluent from the second stage of the first and second compressors. And a compressor system for multistage cooling of LNG, which is provided with piping means for obtaining compressed gas. However, because of the need to combine the maximum pressure effluents from the two second stages of the first and second compressors, these two effluents are made exactly the same pressure, flow rate, etc. to prevent back pressure and surge. There must be. The disadvantage of this is that the variability allowed between the two effluents is limited to prevent coupling problems. As is known in the art, refrigerant compressors typically operate at different discharge pressures, eg, to temporarily prevent surges within one compressor, but the two effluents are high pressure, so that upstream and It becomes very difficult to absorb the different discharge pressures and maintain the downstream flow rate without causing turbulence that causes further complications downstream.

また、米国特許第6,962,060号は、第1及び第2段階を有する第1及び第2コンプレッサーからなる1つの構成を示すのみである。他の冷却構成のための圧縮システムを提供する柔軟性はもっていない。   Also, US Pat. No. 6,962,060 shows only one configuration consisting of first and second compressors having first and second stages. There is no flexibility to provide a compression system for other cooling configurations.

本発明は、(a)冷媒流を冷却圧力にて供給する工程、
(b)異なる圧力レベルにて動作する3以上の熱交換工程に冷媒流を通す工程、
(c)工程(b)の熱交換工程のうち少なくとも2つに炭化水素流を通すことで、炭化水素流の温度を漸次下げて冷却された炭化水素流を得る工程、
(d)各熱交換工程にて冷媒流の一部分を異なる圧力に膨張、蒸発させ、第1蒸発圧力の第1蒸発冷媒流と第1蒸発圧力より低い蒸発圧力の2以上の他の蒸発冷媒流とを得る工程、
(e)単一圧縮器ケーシングの最大圧力圧縮段階により第1蒸発冷媒流を冷却圧力に圧縮し、工程(a)の冷却圧力にて冷媒流の少なくとも一部分を得る工程、
(f)2以上の並列低圧圧縮段階により前記他の蒸発冷媒流を圧縮し、2以上の部分圧縮冷媒流を得る工程、及び
(g)部分圧縮冷媒流のすべてを工程(e)の前記最大圧力圧縮段階に通す工程
を少なくとも含む天然ガスなどの炭化水素流の冷却方法を提供する。
The present invention includes (a) supplying a refrigerant flow at a cooling pressure;
(B) passing the refrigerant stream through three or more heat exchange processes operating at different pressure levels;
(C) obtaining a cooled hydrocarbon stream by gradually reducing the temperature of the hydrocarbon stream by passing the hydrocarbon stream through at least two of the heat exchange steps of step (b);
(D) In each heat exchange step, a part of the refrigerant flow is expanded and evaporated to different pressures, and the first evaporative refrigerant flow having the first evaporating pressure and two or more other evaporating refrigerant flows having an evaporating pressure lower than the first evaporating pressure are used. And a process of obtaining
(E) compressing the first evaporative refrigerant stream to a cooling pressure by a maximum pressure compression stage of a single compressor casing to obtain at least a portion of the refrigerant stream at the cooling pressure of step (a);
(F) compressing the other evaporative refrigerant stream by two or more parallel low pressure compression stages to obtain two or more partially compressed refrigerant streams; and (g) replacing all of the partially compressed refrigerant streams with the maximum of step (e). A method for cooling a hydrocarbon stream, such as natural gas, comprising at least a step of passing through a pressure compression stage.

本発明は、炭化水素流を液化して液化炭化水素流を得る方法を更に提供し、該方法は上記記載の方法に従い又は下記記載の装置を使用して炭化水素流を冷却する段階を含む。   The present invention further provides a method of liquefying a hydrocarbon stream to obtain a liquefied hydrocarbon stream, the method comprising cooling the hydrocarbon stream in accordance with the method described above or using the apparatus described below.

本発明は、冷却圧力の冷媒流、
熱交換工程を異なる圧力レベルにて作動させるための減圧手段を備えた3以上の熱交換器、
冷媒流を3以上の熱交換器に通すための冷媒通過手段、
冷却された炭化水素流を得るために熱交換工程の少なくとも2つに炭化水素流を通すための炭化水素通過手段、
第1蒸発圧力の第1蒸発冷媒流、
第1蒸発圧力より低い蒸発圧力の2以上の他の蒸発流、
第1蒸発冷媒流を圧縮して冷却圧力にて冷媒流の少なくとも一部分を得るための、単一圧縮器ケーシング中の最大圧力圧縮段階、
前記他の蒸発冷媒流を圧縮して1以上の部分圧縮冷媒流を得るための2以上の並列低圧圧縮段階、及び
部分圧縮冷媒流のすべてを前記単一圧縮器ケーシング中の最大圧力圧縮段階に通すための通路
を少なくとも含む天然ガスなどの炭化水素流を冷却する装置を提供する。
The present invention provides a cooling pressure refrigerant flow,
Three or more heat exchangers with decompression means for operating the heat exchange process at different pressure levels;
Refrigerant passage means for passing the refrigerant stream through three or more heat exchangers;
Hydrocarbon passage means for passing the hydrocarbon stream through at least two of the heat exchange steps to obtain a cooled hydrocarbon stream;
A first evaporative refrigerant stream at a first evaporating pressure;
Two or more other evaporation streams having an evaporation pressure lower than the first evaporation pressure;
A maximum pressure compression stage in a single compressor casing to compress the first evaporative refrigerant stream to obtain at least a portion of the refrigerant stream at cooling pressure;
Two or more parallel low pressure compression stages for compressing the other evaporative refrigerant streams to obtain one or more partially compressed refrigerant streams; and all of the partial compressed refrigerant streams to a maximum pressure compression stage in the single compressor casing An apparatus is provided for cooling a hydrocarbon stream, such as natural gas, including at least a passage for passage therethrough.

以下、限定するものではなく単なる例として添付図面に関して本発明の態様を説明する。
本発明の1態様による炭化水素冷却方法の第1の構成である。 本発明の別の態様による炭化水素冷却方法の第2の構成である。
The embodiments of the present invention will now be described with reference to the accompanying drawings by way of example only and not limitation.
It is the 1st composition of the hydrocarbon cooling method by one mode of the present invention. It is a 2nd structure of the hydrocarbon cooling method by another aspect of this invention.

説明のため、1つの管路とその管路で運ばれる流れとに1つの参照番号を割り当てる。同じ参照番号は同種の構成要素を示す。   For purposes of explanation, one reference number is assigned to one conduit and the flow carried in that conduit. The same reference numbers indicate similar components.

本発明の態様では、天然ガスなどの炭化水素流を冷却する改善された方法が提供され、その冷媒圧縮器の構成において優れた柔軟性を有する。   In an aspect of the present invention, an improved method of cooling a hydrocarbon stream such as natural gas is provided and has excellent flexibility in its refrigerant compressor configuration.

冷媒圧縮器のうち最大圧力圧縮段階から冷却圧力の冷媒の1つの圧縮器流出物を用いて炭化水素流を冷却する方法を提案する。換言すれば、最大圧力圧縮段階が1つの圧縮器ケーシング内に(場合によっては同じ圧縮器列の1以上の低圧圧縮段階と共に)配置される。   A method is proposed for cooling a hydrocarbon stream using one compressor effluent of refrigerant at cooling pressure from the maximum pressure compression stage of the refrigerant compressor. In other words, the maximum pressure compression stage is arranged in one compressor casing (possibly with one or more low pressure compression stages of the same compressor row).

この利点の1つは、冷却圧力の異なる圧縮器からの放出圧力流のバランスをとる必要がないことである。このことは、低圧圧縮段階又は工程からの流出物について許容可変性を高めるという更なる利点を有する。したがって、このような流出物の低圧力にてサージを防ぐ必要があるが、圧縮器の広い可変性を得ることができる。   One advantage of this is that it is not necessary to balance the discharge pressure flow from compressors with different cooling pressures. This has the further advantage of increasing the allowable variability for the effluent from the low pressure compression stage or process. Therefore, it is necessary to prevent a surge at such a low pressure of the effluent, but a wide variability of the compressor can be obtained.

本発明の別の利点は、米国特許第6,962,060号に図示されているような従来技術の流れ構成から、本発明(例えば後で説明する添付図1に示された態様)により要求される新たな流れ構成を作り出すのに必要な追加のCAPEX又はOPEXがほとんどないか又はないことである。   Another advantage of the present invention is that it is required by the present invention (eg, the embodiment shown in FIG. 1 to be described later) from a prior art flow arrangement as illustrated in US Pat. No. 6,962,060. There is little or no additional CAPEX or OPEX needed to create a new flow configuration.

蒸発させ部分圧縮した流れと圧縮段階との間の相互連結の簡単な再構成により、圧縮器負荷要求に対して熱交換工程で冷媒流により与えられる冷却負荷カーブ全体を一致させる上で優れた柔軟性が達成できる。   Easy reconfiguration of the interconnection between the vaporized and partially compressed flow and the compression stage provides excellent flexibility in matching the entire cooling load curve provided by the refrigerant flow in the heat exchange process to the compressor load requirements Sex can be achieved.

図1は炭化水素の冷却方法の第1の全体図1であり、一般に天然ガスなどの炭化水素流20の冷却を含む。   FIG. 1 is a first overall view 1 of a hydrocarbon cooling method, which generally includes cooling a hydrocarbon stream 20 such as natural gas.

炭化水素流は冷却される任意の適当なガス流でよいが、通常は天然ガス又は石油の貯蔵所から得られる天然ガス流である。その代わりとして、天然ガス流は、フィッシャー・トロプシュ法などの合成源も含めて別の供給源から得ることもできる。   The hydrocarbon stream may be any suitable gas stream to be cooled, but is usually a natural gas stream obtained from a natural gas or petroleum store. Alternatively, the natural gas stream can be obtained from another source, including a synthetic source such as a Fischer-Tropsch process.

通常、天然ガス流は実質的にメタンから成る。好ましくは、炭化水素供給流は少なくとも50モル%のメタンを含み、さらに好ましくは少なくとも80モル%のメタンを含む。   Usually, the natural gas stream consists essentially of methane. Preferably, the hydrocarbon feed stream contains at least 50 mol% methane, more preferably at least 80 mol% methane.

供給源に依存して、天然ガスは、芳香族炭化水素だけでなくエタン、プロパン、ブタン及びペンタンなどのメタンより重い炭化水素についても種々の量にて含有し得る。天然ガスの種類及び場所に依存してその組成が変わる。一般にメタンより重い炭化水素についても、異なる凍結温度又は液化温度を有することによってそれらがメタン液化プラントの一部を塞ぎ得るなどの幾つかの理由により、天然ガスから除去する必要がある。除去されたC2−4炭化水素は天然ガス液の供給源として使用できる。 Depending on the source, natural gas may contain not only aromatic hydrocarbons but also hydrocarbons heavier than methane such as ethane, propane, butane and pentane. Depending on the type and location of natural gas, its composition varies. Hydrocarbons that are generally heavier than methane also need to be removed from natural gas for several reasons, such as having different freezing or liquefaction temperatures that can block parts of the methane liquefaction plant. The removed C 2-4 hydrocarbon can be used as a source of natural gas liquid.

天然ガス流はまた、HO、N、CO、Hg、HSなどの非炭化水素や他の硫黄化合物などを含有し得る。 The natural gas stream may also contain non-hydrocarbons such as H 2 O, N 2 , CO 2 , Hg, H 2 S, other sulfur compounds, and the like.

必要なら、天然ガスを含有した炭化水素流を、炭化水素冷却プロセスの一部として又は別々に使用前に前処理してもよい。この前処理は、COやHSなどの非炭化水素の削減及び/若しくは除去、又は予冷、予備加圧などの他の工程を含み得る。これらの工程は当業者には周知であるので、その機構についてここでは更なる説明はしない。 If necessary, the hydrocarbon stream containing the natural gas may be pretreated before use either as part of the hydrocarbon cooling process or separately. This pretreatment may include other steps such as reduction and / or removal of non-hydrocarbons such as CO 2 and H 2 S, or pre-cooling, pre-pressurization. Since these steps are well known to those skilled in the art, the mechanism is not further described here.

好ましくは、本発明で用いる炭化水素流には、その後に炭化水素流を液化するのに必要とされる少なくとも最小限の前処理を施す。天然ガスを液化するためのこのような要件は当該技術において公知である。   Preferably, the hydrocarbon stream used in the present invention is subsequently subjected to at least the minimum pretreatment required to liquefy the hydrocarbon stream. Such requirements for liquefying natural gas are well known in the art.

本発明で用いる冷媒流は、プロパンや窒素などの単一成分から構成してよく、又は窒素、メタン、エタン、エチレン、プロパン、プロピレン、ブタン、ペンタンなどからなる群から選択される2以上の成分の混合物から形成された混合冷媒としてもよい。   The refrigerant stream used in the present invention may be composed of a single component such as propane or nitrogen, or two or more components selected from the group consisting of nitrogen, methane, ethane, ethylene, propane, propylene, butane, pentane and the like. It is good also as a mixed refrigerant | coolant formed from the mixture of these.

本発明は2以上の冷却段階(各段階は1以上の工程、部分などを有する)を含む多段階冷却方法を含むか、又はその一部でもよい。例えば、各冷却段階は1〜5の熱交換工程を含んでもよい。第1冷却段階は、炭化水素流の温度を0℃未満に、通常は−20℃〜−160℃の範囲、更に通常は−20℃〜−70℃に下げ得る。このような第1冷却段階をしばしば「予冷」段階ともいう。   The present invention may comprise or be part of a multi-stage cooling method comprising two or more cooling stages, each stage having one or more steps, parts, etc. For example, each cooling stage may include 1 to 5 heat exchange processes. The first cooling stage can reduce the temperature of the hydrocarbon stream to below 0 ° C, usually in the range of -20 ° C to -160 ° C, more usually to -20 ° C to -70 ° C. Such a first cooling stage is often referred to as a “pre-cooling” stage.

一般に第2冷却段階は第1冷却段階とは分離している。すなわち、第2冷媒流の冷媒は、第1冷却段階の1以上の熱交換工程を通過してもよいが、第2冷却段階は、第2冷媒回路を循環する第2冷媒を用いる1以上の別々の熱交換工程を含む。このような第2冷却段階をしばしば「主冷却」段階ともいう。   In general, the second cooling stage is separate from the first cooling stage. That is, the refrigerant in the second refrigerant stream may pass through one or more heat exchange steps of the first cooling stage, but the second cooling stage uses one or more of the second refrigerant circulating in the second refrigerant circuit. Includes separate heat exchange steps. Such a second cooling stage is often referred to as a “main cooling” stage.

図面を参照すると、図1は、第1熱交換工程12、第2熱交換工程14、第3熱交換工程16及び第4熱交換工程18からなる4つの熱交換工程を直列に通過する炭化水素流20を示す。各熱交換工程12、14、16、18は、直列、並列又はその組み合わせにて動作する複数熱交換器と共に、1以上の熱交換器を含んでもよい。   Referring to the drawings, FIG. 1 shows hydrocarbons passing in series through four heat exchange steps consisting of a first heat exchange step 12, a second heat exchange step 14, a third heat exchange step 16 and a fourth heat exchange step 18. Stream 20 is shown. Each heat exchange step 12, 14, 16, 18 may include one or more heat exchangers with multiple heat exchangers operating in series, in parallel or a combination thereof.

一般に、各熱交換工程12、14、16、18は、当該技術において公知のケトル型又はプレートアンドフィン型熱交換器などの単一の熱交換器を含む。一連のケトル型又はプレートアンドフィン型熱交換器の構成は当該技術において公知である。   In general, each heat exchange step 12, 14, 16, 18 includes a single heat exchanger, such as a kettle-type or plate-and-fin heat exchanger known in the art. A series of kettle-type or plate-and-fin heat exchanger configurations are known in the art.

一般に、各熱交換工程12、14、16、18は炭化水素流20の温度を次第に下げていき、それらから冷却された炭化水素流30を得る。例えば、図1に示された熱交換工程12、14、16、18では、当該技術において公知の方法にて天然ガスなどの炭化水素流の温度を0℃未満に、通常は−20℃〜−70℃の範囲に下げることができる。   In general, each heat exchange step 12, 14, 16, 18 gradually reduces the temperature of the hydrocarbon stream 20 to obtain a cooled hydrocarbon stream 30 therefrom. For example, in the heat exchange steps 12, 14, 16, and 18 shown in FIG. 1, the temperature of a hydrocarbon stream such as natural gas is less than 0 ° C., usually −20 ° C. to − The temperature can be lowered to 70 ° C.

上記構成の一例は、炭化水素冷却方法における第1の又は予冷の段階であり、これはLNGプラントなどの炭化水素液化プラントにおける1つの段階とし得る。   An example of the above configuration is the first or precooling stage in the hydrocarbon cooling method, which may be a stage in a hydrocarbon liquefaction plant such as an LNG plant.

図1はまた、冷却圧力にてプロパンなどの冷媒流10を供給する第1冷媒回路3を示し、炭化水素流20と共に通過させることにより熱交換工程12、14、16、18を冷却する。   FIG. 1 also shows a first refrigerant circuit 3 that supplies a refrigerant stream 10 such as propane at a cooling pressure to cool the heat exchange steps 12, 14, 16, 18 by passing it along with a hydrocarbon stream 20.

4つの熱交換工程12、14、16、18は異なる圧力レベルにて動作し、熱交換工程12、14、16、18の各々において、冷媒流10の一部分を膨張、蒸発させる。通常、この膨張は、膨張器、バルブなどの形の減圧手段(図示せず)に冷媒流を通すことにより行われる。通常、冷媒流の残りの部分は、第4熱交換工程18を通過する最後の残り部分が十分に膨張し蒸発するまで、次の熱交換工程に送られる。各熱交換工程12、14、16、18は異なる圧力にて動作しているので、各熱交換工程12、14、16、18からは異なる蒸発圧力にて蒸発冷媒流が得られる。   The four heat exchange steps 12, 14, 16, 18 operate at different pressure levels, and in each of the heat exchange steps 12, 14, 16, 18, a portion of the refrigerant stream 10 is expanded and evaporated. Usually, this expansion is performed by passing a refrigerant flow through decompression means (not shown) in the form of an expander, a valve or the like. Usually, the remaining portion of the refrigerant stream is sent to the next heat exchange step until the last remaining portion that passes through the fourth heat exchange step 18 is fully expanded and evaporated. Since each heat exchange process 12, 14, 16, 18 operates at a different pressure, an evaporative refrigerant flow is obtained from each heat exchange process 12, 14, 16, 18 at a different evaporation pressure.

一般に、第1熱交換工程12では、第1蒸発圧力にて、一般には冷媒流10の冷却圧力に最も近い「最大」圧力にて第1蒸発冷媒流40を得る。この最大蒸発圧力はまた、「高々圧」ともいい、第1蒸発冷媒流40は「高々圧蒸発冷媒流」40ともいう。   In general, in the first heat exchange step 12, the first evaporative refrigerant stream 40 is obtained at a first evaporating pressure, generally at a “maximum” pressure closest to the cooling pressure of the refrigerant stream 10. This maximum evaporation pressure is also referred to as “high pressure”, and the first evaporative refrigerant stream 40 is also referred to as “high pressure evaporative refrigerant stream” 40.

第2熱交換工程14は最初の冷媒流10の第1の残部10aを受け入れ、第1の残部10aの一部分を膨張、蒸発させて、第1蒸発冷媒流40の第1蒸発圧力より低い圧力にて第2の又は他の冷媒流50を得る。第2蒸発流50は「高圧蒸発冷媒流」ともいう。   The second heat exchange step 14 receives the first remaining portion 10a of the first refrigerant stream 10 and expands and evaporates a portion of the first remaining portion 10a to a pressure lower than the first evaporation pressure of the first evaporated refrigerant stream 40. To obtain a second or other refrigerant stream 50. The second evaporative flow 50 is also referred to as a “high pressure evaporative refrigerant flow”.

第2熱交換工程14において膨張又は蒸発していない第1残部10aのうち第2残部10bを第3熱交換工程16に送り、冷媒流10の別の一部分を膨張、蒸発させて、第1蒸発圧力より低い蒸発圧力にて第3の又は他の蒸発冷媒流60を得る。この第3の又は他の蒸発冷媒流60はまた「中圧蒸発冷媒流」ともいう。   Of the first remaining portion 10a that has not expanded or evaporated in the second heat exchange step 14, the second remaining portion 10b is sent to the third heat exchange step 16, and another part of the refrigerant flow 10 is expanded and evaporated to perform the first evaporation. A third or other evaporative refrigerant stream 60 is obtained at an evaporation pressure lower than the pressure. This third or other evaporative refrigerant stream 60 is also referred to as a “medium pressure evaporative refrigerant stream”.

冷媒流10の第3の残部10cを第4熱交換工程18に送り、この工程にて膨張させ蒸発させ、第1蒸発圧力より低い蒸発圧力にて第4の又は他の蒸発冷媒流70を得る。第4蒸発流70はまた「低圧蒸発冷媒流」70ともいう。   The third remaining portion 10c of the refrigerant flow 10 is sent to the fourth heat exchange step 18, where it is expanded and evaporated to obtain a fourth or other evaporative refrigerant flow 70 at an evaporation pressure lower than the first evaporation pressure. . The fourth evaporative stream 70 is also referred to as a “low pressure evaporative refrigerant stream” 70.

熱交換工程12、14、16及び18の方法、設定及び構成や、冷媒流10の多段階膨張及び蒸発については、当該技術において公知であり、その例が米国特許第6,962,060号及び第6,637,238号に示されている。   Methods, settings and configurations of heat exchange steps 12, 14, 16 and 18 and multi-stage expansion and evaporation of refrigerant stream 10 are known in the art, examples of which are described in US Pat. No. 6,962,060 and No. 6,637,238.

第2、第3及び第4熱交換工程14、16、18の各々における冷媒流10の残部10a、10b及び10cの一部又はすべてを膨張及び蒸発させることにより、炭化水素流20が上記工程を通過する際に炭化水素流20を更に又はより低温に冷却することができる。しかしながら、次に蒸発冷媒流40、50、60及び70の各々を、再圧縮して最初の冷媒流10の冷却圧力に戻さなければならない。   By expanding and evaporating some or all of the remainders 10a, 10b and 10c of the refrigerant stream 10 in each of the second, third and fourth heat exchange steps 14, 16, 18 the hydrocarbon stream 20 performs the above steps. The hydrocarbon stream 20 can be cooled further or cooler as it passes. However, each of the evaporative refrigerant streams 40, 50, 60 and 70 must then be recompressed back to the cooling pressure of the original refrigerant stream 10.

図1に示されているように、第1蒸発冷媒流40を最大圧力圧縮段階22により圧縮して、冷却圧力にて冷媒流10の少なくとも一部分を得る。「最大圧力圧縮段階」なる用語は、最大入口圧力を有する圧縮段階を示す。第1蒸発冷媒流が高々圧蒸発冷媒流40である場合、最大圧力圧縮段階を高々圧圧縮段階と称することもできる。   As shown in FIG. 1, the first evaporative refrigerant stream 40 is compressed by a maximum pressure compression stage 22 to obtain at least a portion of the refrigerant stream 10 at the cooling pressure. The term “maximum pressure compression stage” refers to the compression stage having the maximum inlet pressure. When the first evaporative refrigerant stream is the at most pressure evaporative refrigerant stream 40, the maximum pressure compression stage can also be referred to as the at most pressure compression stage.

図1に示されているように、最大圧力圧縮段階22は、それと共に第3圧縮段階26も含んだ圧縮器列Aの一部である。ここで用いられている「圧縮器列」は、1つの圧縮段階、又は2つ以上の結合した圧縮段階を含んでもよい。一般に、圧縮器列において、より低圧の段階からの圧縮冷媒のすべてが、続けて次のより高い圧縮段階に送られるので、圧縮器列における最高レベルの圧縮段階から1つの流出物が存在する。   As shown in FIG. 1, the maximum pressure compression stage 22 is part of a compressor row A that also includes a third compression stage 26. As used herein, a “compressor row” may include one compression stage or two or more combined compression stages. In general, in the compressor row, all of the compressed refrigerant from the lower pressure stage is subsequently sent to the next higher compression stage, so there is one effluent from the highest level compression stage in the compressor row.

圧縮器列を形成する2以上の圧縮器、圧縮段階又はそれらの結合の構成については、当該技術において周知である。一般に、圧縮列は、1つのケーシング中に1つの圧縮段階を含むか、又は1つのケーシング中に2、3又は4つの結合圧縮段階を含む。後者の場合、最低圧縮段階からの圧縮冷媒を、通常は1以上の中間入口からの1以上のより高い圧力の原料と組み合わせて、次のより高い各圧縮段階に通す。   The configuration of two or more compressors, compression stages or combinations thereof that form a compressor row is well known in the art. In general, a compression train includes one compression stage in one casing or two, three or four combined compression stages in one casing. In the latter case, the compressed refrigerant from the lowest compression stage is typically combined with one or more higher pressure feeds from one or more intermediate inlets and passed through each higher compression stage.

図1に示される圧縮器列Aは、第3蒸発冷媒流60を圧縮するための第3圧縮段階26を含む。第3圧縮段階26は、最初の冷媒流10の冷却圧力に戻すほど十分には第3蒸発冷媒流60を圧縮せず、「部分圧縮された冷媒流」60aを得る。   The compressor row A shown in FIG. 1 includes a third compression stage 26 for compressing the third evaporative refrigerant stream 60. The third compression stage 26 does not compress the third evaporative refrigerant stream 60 sufficiently to return to the cooling pressure of the initial refrigerant stream 10, resulting in a “partially compressed refrigerant stream” 60 a.

次に、部分圧縮された冷媒流60aを第3圧縮段階26から最大圧力圧縮段階22に直接送り込む。最大圧力圧縮段階22は、単独で又は例えば圧縮器列Aの他の低圧段階と共に、1つのケーシング内に含まれる。   Next, the partially compressed refrigerant stream 60 a is fed directly from the third compression stage 26 to the maximum pressure compression stage 22. The maximum pressure compression stage 22 is contained in one casing alone or together with other low pressure stages of the compressor row A, for example.

第2の又は高い蒸発冷媒流50を、第2の又は高い圧力圧縮段階24に送る。第4の又は低い蒸発冷媒流70を、第4の又は低圧の圧縮段階28に送り、そこから部分圧縮された冷媒流70aを、第2蒸発冷媒流60と共に第2の又は高圧の圧縮段階24に直接送る。   A second or high evaporative refrigerant stream 50 is sent to the second or high pressure compression stage 24. The fourth or low evaporative refrigerant stream 70 is sent to a fourth or low pressure compression stage 28 from which the partially compressed refrigerant stream 70a is coupled with the second evaporative refrigerant stream 60 in the second or high pressure compression stage 24. Send directly to.

第2及び第4の圧縮段階24、28は、第1の圧縮列Aとは別の第2の圧縮列Bからなる。よって、低圧圧縮段階24、26、28のうち少なくとも2つが、2以上の圧縮器列A及びBにある。   The second and fourth compression stages 24, 28 consist of a second compression string B that is separate from the first compression string A. Thus, at least two of the low pressure compression stages 24, 26, 28 are in two or more compressor rows A and B.

第2及び第4圧縮段階24及び28はまた、第3圧縮段階26と並列であるから、図1の全体構成1には2以上の並列の低圧圧縮段階が存在する。低圧圧縮段階が並列であるというのは、低圧圧縮段階24、26、28が直列ではない又は1つのケーシング内に並べられていない、且つ/又は他の蒸発冷媒流(図1中の第2、第3及び第4蒸発冷媒流50、60、70)が直列に圧縮されない、且つ/又は最低圧力の蒸発流(図1中の第4蒸発冷媒流70)がすべての圧縮段階を通過するわけではないという意味である。   Since the second and fourth compression stages 24 and 28 are also in parallel with the third compression stage 26, there are two or more parallel low-pressure compression stages in the overall configuration 1 of FIG. The low-pressure compression stages are parallel because the low-pressure compression stages 24, 26, 28 are not in series or arranged in one casing and / or other evaporative refrigerant streams (second, The third and fourth evaporative refrigerant streams 50, 60, 70) are not compressed in series and / or the lowest pressure evaporative stream (fourth evaporative refrigerant stream 70 in FIG. 1) passes through all compression stages. It means no.

第2圧縮段階24からの流出物は、まだ部分圧縮冷媒流50aであり、第2圧縮器列Bの出口24aを通過させる。図1に示されているように、部分圧縮された冷媒流50aを、結合器34により、第1蒸発冷媒流40と結合し、第1圧縮器列Aの第1の又は高々圧圧縮段階22の入口32を通過させる。   The effluent from the second compression stage 24 is still a partially compressed refrigerant stream 50a that passes through the outlet 24a of the second compressor row B. As shown in FIG. 1, a partially compressed refrigerant stream 50a is combined with a first evaporative refrigerant stream 40 by a coupler 34 to provide a first or at most pressure compression stage 22 of the first compressor row A. Pass through the inlet 32.

このようにして、一般に部分圧縮された冷媒流50a、60a及び70aのすべてを単一ケーシングの最大圧力圧縮段階22に通す。   In this manner, generally all of the partially compressed refrigerant streams 50a, 60a and 70a are passed through a single casing maximum pressure compression stage 22.

図1はまた、最大圧力圧縮段階(図1の第1圧縮段階22)に並列な当該又は各低圧圧縮段階(図1の第2及び第4圧縮段階24、28)の流出物(図1の線50a)がどのように最大圧力圧縮段階を通過するかの一例を示す。   FIG. 1 also shows the effluent (of FIG. 1) of this or each low pressure compression stage (second and fourth compression stages 24, 28 of FIG. 1) in parallel with the maximum pressure compression stage (first compression stage 22 of FIG. 1). An example of how line 50a) passes through the maximum pressure compression stage.

図2は、炭化水素冷却方法の第2の全体構成2を示し、一般に天然ガスなどの炭化水素流20の冷却を伴う。図1の第1の全体構成1について上記説明した方法と同様に、炭化水素流20を4つの熱交換工程12、14、16、18に通してもよい。   FIG. 2 shows a second overall configuration 2 of the hydrocarbon cooling method, which generally involves cooling a hydrocarbon stream 20 such as natural gas. Similar to the method described above for the first overall configuration 1 of FIG. 1, the hydrocarbon stream 20 may be passed through four heat exchange steps 12, 14, 16, 18.

第1の選択肢として、炭化水素流を冷媒流10と同じ熱交換工程12、14、16、18すべてに通さなくてもよい。図2の流れ20aは、第2、第3及び第4の熱交換工程14、16、18においてのみ冷却される炭化水素流を示す。第1熱交換工程12は、別の冷媒流や別の冷媒回路などの1以上の他の流れを冷却するのに使用できる。   As a first option, the hydrocarbon stream may not be passed through all of the same heat exchange steps 12, 14, 16, 18 as the refrigerant stream 10. Flow 20a in FIG. 2 shows a hydrocarbon stream that is cooled only in the second, third, and fourth heat exchange steps 14, 16, 18. The first heat exchange step 12 can be used to cool one or more other flows, such as another refrigerant stream or another refrigerant circuit.

図2は図1に示された第1冷媒回路3に類似の第2冷媒回路4を示し、冷媒流10を第1熱交換工程12に通し、冷媒流10の後続の部分10a、10b、10cを後続の第2、第3及び第4熱交換工程14、16、18に通し、各熱交換工程12、14、16、18にて冷媒流10の一部分を膨張させ蒸発させ、第1の蒸発冷媒流40を得、同様に上述した第2、第3及び第4の低圧蒸発流50、60及び70を得る。   FIG. 2 shows a second refrigerant circuit 4 similar to the first refrigerant circuit 3 shown in FIG. 1, in which the refrigerant stream 10 is passed through a first heat exchange step 12 and the subsequent portions 10a, 10b, 10c of the refrigerant stream 10 are shown. Is passed through the subsequent second, third and fourth heat exchange steps 14, 16, 18 and in each heat exchange step 12, 14, 16, 18 a part of the refrigerant stream 10 is expanded and evaporated to produce the first evaporation. A refrigerant stream 40 is obtained, and the second, third and fourth low-pressure evaporating streams 50, 60 and 70 described above are similarly obtained.

第1蒸発流40を最大圧力圧縮段階22に通して圧縮し、最初の冷媒流10の一部分を冷却圧力にて得る。   The first evaporative stream 40 is compressed through the maximum pressure compression stage 22 to obtain a portion of the initial refrigerant stream 10 at the cooling pressure.

図2に示された第2の全体構成2において、最大圧力圧縮段階22は第3圧縮器列Cの一部であり、第3圧縮器列Cはそれと共に第2及び第4低圧圧縮段階24、28も含む。第2及び第4圧縮段階24及び28は、第3圧縮段階26と並列である。よって、少なくとも2つの圧縮器列C及びDには低圧圧縮段階24、26、28のうち少なくとも2つが存在する。   In the second overall configuration 2 shown in FIG. 2, the maximum pressure compression stage 22 is part of the third compressor row C, which together with the second and fourth low pressure compression stages 24. , 28 are also included. The second and fourth compression stages 24 and 28 are in parallel with the third compression stage 26. Thus, there are at least two of the low pressure compression stages 24, 26, 28 in at least two compressor rows C and D.

第4の蒸発流70を第4圧縮段階28に送り、そこから部分圧縮冷媒流70aを、第2蒸発流50と共に第2圧縮段階24に直接送る。次に第2圧縮段階24から部分圧縮冷媒流50aを最大圧力段階22に直接送る。   The fourth evaporative stream 70 is sent to the fourth compression stage 28, from which the partially compressed refrigerant stream 70a is sent directly to the second compression stage 24 along with the second evaporative stream 50. The partially compressed refrigerant stream 50 a is then sent directly from the second compression stage 24 to the maximum pressure stage 22.

一方、第4圧縮器列Dを構成する並列の第3圧縮段階26に、第3蒸発冷媒流60を送り込む。よって、第4圧縮器列Dは、第3圧縮器列Cの圧縮段階22、24、28から分離されたただ1つの圧縮段階26を含む。   On the other hand, the third evaporative refrigerant stream 60 is fed into the parallel third compression stage 26 constituting the fourth compressor row D. Thus, the fourth compressor row D includes only one compression stage 26 separated from the compression stages 22, 24, 28 of the third compressor row C.

第3圧縮段階26から部分圧縮冷媒流60aの流出物を、第2圧縮器列Dの出口26aから送り出し、結合器36により第1蒸発流40と結合し、最大圧力段階22に通す。   The effluent of the partially compressed refrigerant stream 60 a from the third compression stage 26 is sent out from the outlet 26 a of the second compressor row D, combined with the first evaporative stream 40 by the coupler 36, and passed through the maximum pressure stage 22.

図1及び2は、異なる蒸発圧力にて少なくとも3つの蒸発冷媒流を受け取るよう構成される本発明の柔軟性についての2例を示し、これらの流れは、少なくとも2つの別個の圧縮器列における3つの低圧圧縮段階24、26及び28により種々の構成又はシステムで再圧縮する。   FIGS. 1 and 2 show two examples of the flexibility of the present invention configured to receive at least three evaporative refrigerant streams at different evaporating pressures, these streams being 3 in at least two separate compressor rows. Recompress in various configurations or systems with two low pressure compression stages 24, 26 and 28.

表1は、本発明による4つの異なる熱交換工程からの蒸発冷媒流を再圧縮するための4つの圧縮段階についてのいくつかの構成例を記載するが、単に参照しやすくするために図1及び2で用いられている圧縮段階の符号を用いている。   Table 1 lists some example configurations for the four compression stages for recompressing the evaporative refrigerant stream from four different heat exchange processes according to the present invention, but for ease of reference, FIG. The code of the compression stage used in 2 is used.

表1から、最大圧縮器まで冷媒流を含まない各列の流出物を、どのようにして最大圧力段階22に直接転送するか、又はどのようにして最大圧力段階22と同じ列における先行の圧縮段階に送り、これらすべての冷媒を最大圧力段階22に通すかについて、確認できる。   From Table 1, how the effluent of each row that does not contain refrigerant flow up to the maximum compressor is transferred directly to the maximum pressure stage 22 or how the previous compression in the same column as the maximum pressure stage 22 It is possible to check whether all these refrigerants are passed through the maximum pressure stage 22 by sending to the stage.

表1中の例1及び2は、添付の図1及び2に示される。   Examples 1 and 2 in Table 1 are shown in the accompanying FIGS.

表1の例4及び5は、圧縮器列Hとしての圧縮段階26から、又は圧縮器列Jとしての圧縮段階28から放出される部分圧縮冷媒流を、最大圧力圧縮段階22に直接送るのではなく、まず第2圧縮段階24に送ることができることを示す。第2圧縮段階24は最大圧力圧縮段階22と同じ圧縮器列G、Iの一部であるから、一般に部分圧縮冷媒流をさらに最大圧力圧縮段階22に通す。   Examples 4 and 5 in Table 1 show that the partially compressed refrigerant stream discharged from the compression stage 26 as the compressor row H or from the compression stage 28 as the compressor row J is sent directly to the maximum pressure compression stage 22. First, it can be sent to the second compression stage 24. Since the second compression stage 24 is part of the same compressor row G, I as the maximum pressure compression stage 22, generally the partially compressed refrigerant stream is further passed through the maximum pressure compression stage 22.

また、表1に示される例8は、3つの圧縮器列O、P及びQを含み、そのうち圧縮器列P及びQは夫々ただ1つの圧縮段階24及び26を含む。しかしながら、低圧圧縮段階24及び26の各々からの部分圧縮流出物は、一般に最大圧縮段階22に通すことができる。   Also, Example 8 shown in Table 1 includes three compressor rows O, P, and Q, of which compressor rows P and Q include only one compression stage 24 and 26, respectively. However, the partially compressed effluent from each of the low pressure compression stages 24 and 26 can generally pass through the maximum compression stage 22.

表1は4つの圧縮段階を含む例に関するものである。本発明はこれに限定されるものではなく、3又は5個の圧縮段階を含む構成も本発明の範囲に入る。当業者は異なる圧縮器列の圧縮段階の様々な組合せを見つけることができ、すべての部分圧縮された流れが共通して最大圧力圧縮段階を通過する限り、1以上の低圧圧縮段階からの流出物を、1以上の高圧圧縮段階の入口に送り込むことができる。   Table 1 relates to an example including four compression stages. The present invention is not limited to this, and configurations including three or five compression stages are also within the scope of the present invention. One skilled in the art can find various combinations of compression stages for different compressor rows, and the effluent from one or more low pressure compression stages as long as all partially compressed streams commonly pass through the maximum pressure compression stage. Can be fed into the inlet of one or more high pressure compression stages.

要約すれば、3個以上の冷媒圧縮段階により3以上の蒸発冷媒流を圧縮する方法及び圧縮器の構成が開示されており、
(i)第1蒸発冷媒流(40)を共通の最大圧力圧縮段階(22)で圧縮し、十分に圧縮された冷媒流(10)の少なくとも一部分を冷媒冷却圧力にて得;
(ii)他の蒸発冷媒流(50、60、70)を少なくとも2つの並列低圧圧縮段階(24、26、28)で圧縮し、1以上の部分圧縮冷媒流(50a、60a、70a)を得;
(iii)一般に部分圧縮冷媒流(50a、60a、70a)のすべてを共通の最大圧力圧縮段階(22)に通す。
In summary, a method and compressor configuration for compressing three or more evaporative refrigerant streams by three or more refrigerant compression stages is disclosed.
(I) compressing the first evaporative refrigerant stream (40) in a common maximum pressure compression stage (22) to obtain at least a portion of the fully compressed refrigerant stream (10) at the refrigerant cooling pressure;
(Ii) compressing the other evaporative refrigerant streams (50, 60, 70) in at least two parallel low pressure compression stages (24, 26, 28) to obtain one or more partially compressed refrigerant streams (50a, 60a, 70a); ;
(Iii) Generally, all of the partially compressed refrigerant streams (50a, 60a, 70a) are passed through a common maximum pressure compression stage (22).

圧縮段階の異なる配置又は構成により、冷媒流の再圧縮について異なる特徴が得られる。このようにして、本発明は、付随の圧縮器パワー要件、又は冷却負荷要件、又はそれらの組合わせに対し、蒸発冷媒流に必要な圧縮をより良く一致させて配置又は構成を更に効率的にすることについて、柔軟性が得られる。   Different arrangements or configurations of the compression stages provide different characteristics for recompression of the refrigerant stream. In this way, the present invention makes the arrangement or configuration more efficient by better matching the compression required for the evaporative refrigerant flow with respect to the accompanying compressor power requirements, or cooling load requirements, or combinations thereof. It gives you the flexibility to do it.

当業者は特許請求の範囲から逸脱することなく多くの方法で本発明を変更できることを容易に理解するであろう。   Those skilled in the art will readily appreciate that the present invention can be modified in many ways without departing from the scope of the claims.

米国特許第6,962,060号US Pat. No. 6,962,060 米国特許第6,637,238号US Pat. No. 6,637,238

1…全体構成
3…第1冷媒回路
10…冷媒流
12…第1熱交換工程
14…第2熱交換工程
16…第3熱交換工程
18…第4熱交換工程
20…炭化水素流
22…最大圧力圧縮段階
24…第2(高圧)圧縮段階
26…第3圧縮段階
28…第4(低圧)圧縮段階
30…冷却された炭化水素流
A…第1圧縮器列
B…第2圧縮器列
DESCRIPTION OF SYMBOLS 1 ... Whole structure 3 ... 1st refrigerant circuit 10 ... Refrigerant flow 12 ... 1st heat exchange process 14 ... 2nd heat exchange process 16 ... 3rd heat exchange process 18 ... 4th heat exchange process 20 ... Hydrocarbon flow 22 ... Maximum Pressure compression stage 24 ... second (high pressure) compression stage 26 ... third compression stage 28 ... fourth (low pressure) compression stage 30 ... cooled hydrocarbon stream A ... first compressor row B ... second compressor row

Claims (12)

(a)冷媒流を冷却圧力にて供給する工程、
(b)異なる圧力レベルにて動作する3以上の熱交換工程に冷媒流を通す工程、
(c)工程(b)の熱交換工程のうち少なくとも2つに炭化水素流を通すことで、炭化水素流の温度を漸次下げて冷却された炭化水素流を得る工程、
(d)各熱交換工程にて冷媒流の一部分を異なる圧力に膨張、蒸発させる工程、ここで前記3以上の熱交換工程の第1熱交換工程が、第1蒸発圧力の第1蒸発冷媒流を供給し、第1蒸発圧力より低い蒸発圧力で少なくとも2つの他の蒸発冷媒流が供給され、ここで前記少なくとも3つの熱交換工程の第2熱交換工程が第2の蒸発冷媒流を供給し、前記3以上の熱交換工程の第3の熱交換工程が少なくとも第3蒸発冷媒流を供給し
(e)単一圧縮器ケーシングの最大圧力圧縮段階により第1蒸発冷媒流を冷却圧力に圧縮し、工程(a)の冷却圧力にて冷媒流の少なくとも一部分を得る工程、
(f)2以上の並列低圧圧縮段階により前記他の蒸発冷媒流を圧縮し、2以上の部分圧縮冷媒流を得る工程、及び
(g)部分圧縮冷媒流のすべてを工程(e)の前記最大圧力圧縮段階に通す工程
を少なくとも含む炭化水素流の冷却方法。
(A) supplying a refrigerant flow at a cooling pressure;
(B) passing the refrigerant stream through three or more heat exchange processes operating at different pressure levels;
(C) obtaining a cooled hydrocarbon stream by gradually reducing the temperature of the hydrocarbon stream by passing the hydrocarbon stream through at least two of the heat exchange steps of step (b);
(D) expanding a portion of the refrigerant stream at different pressures in each heat exchange step, the step of Ru evaporation, wherein the first heat exchange step of the three or more heat exchange steps, first evaporator refrigerant in the first evaporator pressure flow supplied to at least two other evaporated refrigerant streams at a lower evaporation pressure than the first evaporation pressure is supplied, wherein the second heat exchange step of said at least three heat exchange step the second evaporator refrigerant stream A third heat exchange step of the three or more heat exchange steps supplies at least a third evaporative refrigerant stream ;
(E) compressing the first evaporative refrigerant stream to a cooling pressure by a maximum pressure compression stage of a single compressor casing to obtain at least a portion of the refrigerant stream at the cooling pressure of step (a);
(F) compressing the other evaporative refrigerant stream by two or more parallel low pressure compression stages to obtain two or more partially compressed refrigerant streams; and (g) replacing all of the partially compressed refrigerant streams with the maximum of step (e). A method for cooling a hydrocarbon stream comprising at least a step of passing through a pressure compression stage.
工程(b)の熱交換工程のうち少なくとも2つに炭化水素流を通す前記工程が、工程(b)の熱交換工程の少なくとも3つに炭化水素流を通すことからなる請求項1に記載の方法。   The process of claim 1, wherein the step of passing the hydrocarbon stream through at least two of the heat exchange steps of step (b) comprises passing the hydrocarbon stream through at least three of the heat exchange steps of step (b). Method. 前記工程(b)の3以上の熱交換工程が、4又は5の熱交換工程を含み、冷媒流を膨張、蒸発させることにより、4又は5の異なる圧力にてそれぞれ4又は5の蒸発冷媒流を得る請求項1又は2に記載の方法。 The three or more heat exchanging steps of the step (b) include 4 or 5 heat exchanging steps, and by expanding and evaporating the refrigerant flow, 4 or 5 evaporative refrigerant flows at 4 or 5 different pressures, respectively. The method according to claim 1 or 2, wherein: 冷媒流と炭化水素流を同じ熱交換工程に通す請求項3に記載の方法であって、各熱交換工程が前記炭化水素流の温度を漸次低下させる前記方法 4. The method of claim 3, wherein the refrigerant stream and the hydrocarbon stream are passed through the same heat exchange step, wherein each heat exchange step gradually reduces the temperature of the hydrocarbon stream . 工程(d)の熱交換工程の少なくとも2つにおいて冷媒流の一部分を蒸発させる工程が、前記熱交換工程を通る炭化水素流により熱交換することからなる請求項1〜4のいずれか一項に記載の方法。   5. The process according to any one of claims 1 to 4, wherein the step of evaporating a portion of the refrigerant stream in at least two of the heat exchange steps of step (d) comprises heat exchange with a hydrocarbon stream passing through the heat exchange step. The method described. 冷媒流がプロパンである請求項1〜5のいずれか一項に記載の方法。   6. A method according to any one of the preceding claims, wherein the refrigerant stream is propane. 前記工程(d)の冷媒流の一部分が膨張し蒸発する請求項1〜6のいずれか一項に記載の方法であって、
前記第1の熱交換工程にて冷媒流の第1の部分を膨張、蒸発させて、第1蒸発圧力である高々圧の蒸発冷媒流を得、高々圧蒸発冷媒流が第1蒸発冷媒流であり、
前記第2の熱交換工程にて冷媒流の第2の部分を膨張、蒸発させて、前記第2蒸発冷媒流である高圧蒸発冷媒流を得、かつ前記高々圧より低い高圧を有する高圧蒸発冷媒流を得、
前記第3の熱交換工程にて冷媒流の第3の部分を膨張、蒸発させて、前記第3蒸発冷媒流である中圧蒸発冷媒流を得、かつ前記高圧より低い中圧を有する中圧蒸発冷媒流を得、
第4の熱交換工程にて冷媒流の第4の部分を膨張、蒸発させて、前記第4蒸発冷媒流である低圧蒸発冷媒流を得、かつ前記中圧より低い低圧を有する低圧蒸発冷媒流を得、
ここで工程(e)の第1蒸発冷媒流の前記圧縮が、
工程(e)の前記最大圧力圧縮段階である高々圧圧縮段階により高々圧蒸発冷媒流を圧縮し、工程(a)の冷却圧力にて前記冷媒流を得ることを含み
工程(f)の他の蒸発冷媒流の前記圧縮が、
前記並列低圧圧縮段階の1つである低圧圧縮段階により低圧蒸発冷媒流を圧縮し、
前記並列低圧圧縮段階の1つである中圧圧縮段階により中圧蒸発冷媒流を圧縮し、
高圧圧縮段階により高圧蒸発冷媒流を圧縮することを含み
中圧圧縮段階と高々圧圧縮段階が第1圧縮器列に含まれ、
ここで、低圧圧縮段階と高圧圧縮段階が、第1圧縮器列とは少なくとも部分的に分離した第2圧縮器列に含まれ、かつ前記低圧圧縮段階と前記高圧圧縮段階が前記中圧圧縮段階と並列である、
前記方法。
A method according to any one of claims 1 to 6, wherein a portion of the refrigerant stream of step (d) expands and evaporates.
In the first heat exchange step, the first portion of the refrigerant flow is expanded and evaporated to obtain a high pressure evaporative refrigerant flow that is a first evaporating pressure, and the high pressure evaporative refrigerant flow is the first evaporative refrigerant flow. Yes,
In the second heat exchange step, the second portion of the refrigerant flow is expanded and evaporated to obtain a high-pressure evaporative refrigerant flow that is the second evaporative refrigerant flow, and a high-pressure evaporative refrigerant having a high pressure lower than the high pressure Get the flow
Expanding the third portion of the refrigerant flow in said third heat exchange step, evaporated, the third to give the intermediate pressure onset refrigerant stream in a vaporized refrigerant stream, and medium pressure with pressure inside is lower than the high-pressure Evaporative refrigerant flow,
Fourth expansion the fourth portion of the refrigerant stream in a heat exchange step, evaporated, the fourth to give the low-pressure evaporated refrigerant stream is evaporated refrigerant stream, and the low-pressure evaporated refrigerant stream having a lower pressure in the lower pressure the And
Wherein said compression of the first evaporative refrigerant stream in step (e) is
Compressing the most intermediate pressure onset refrigerant stream by most pressure compression stage wherein a maximum pressure compression stage of step (e), comprises Rukoto give the refrigerant flow in a cooling pressure of step (a), the
Said compression of the other evaporative refrigerant stream of step (f),
Compressing the low pressure evaporative refrigerant stream by a low pressure compression stage, one of the parallel low pressure compression stages ;
Compressing an intermediate pressure evaporative refrigerant stream by an intermediate pressure compression stage, one of the parallel low pressure compression stages ;
Comprises compressing the high-pressure evaporated refrigerant stream by high pressure compression stage,
An intermediate pressure compression stage and an at most pressure compression stage are included in the first compressor row;
Here, the low pressure compression stage and the high pressure compression stage are included in a second compressor row that is at least partially separated from the first compressor row , and the low pressure compression step and the high pressure compression step are the intermediate pressure compression step. In parallel with,
Said method.
第2圧縮器列が部分圧縮された冷媒流を供給するための出口を有し、前記部分圧縮された冷媒流を、第1圧縮器列における高々圧圧縮段階の入口に送る請求項7に記載の方法。   8. The second compressor row has an outlet for supplying a partially compressed refrigerant stream, and sends the partially compressed refrigerant stream to an inlet of a high pressure compression stage in the first compressor row. the method of. 前記並列低圧圧縮段階の少なくとも2つが、2以上の圧縮器列中にある請求項1〜のいずれか一項に記載の方法。 Wherein at parallel at least two of the low-pressure compression stage, the method according to any one of claims 1 to 6, in 2 or more compressors column. 炭化水素流が天然ガスを含む請求項1〜9のいずれか一項に記載の方法。 The process according to any one of claims 1 to 9, wherein the hydrocarbon stream comprises natural gas . 炭化水素流が天然ガスからなる請求項1〜10のいずれか一項に記載の方法。11. A process according to any one of the preceding claims, wherein the hydrocarbon stream consists of natural gas. 炭化水素流を液化して液化炭化水素流を得る方法であって、請求項1〜11のいずれか一項に記載の方法による炭化水素流の冷却を含む前記方法。 A method of obtaining a liquefied hydrocarbon stream and liquefying a hydrocarbon stream, said method comprising cooling a hydrocarbon stream according to the method of any one of claims 1 to 11.
JP2010536425A 2007-12-04 2008-12-02 Methods and apparatus for cooling and / or liquefying hydrocarbon streams Expired - Fee Related JP5259727B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07122288 2007-12-04
EP07122288.9 2007-12-04
PCT/EP2008/066623 WO2009071538A2 (en) 2007-12-04 2008-12-02 Method and apparatus for cooling and/or liquefying a hydrocarbon stream

Publications (2)

Publication Number Publication Date
JP2011506893A JP2011506893A (en) 2011-03-03
JP5259727B2 true JP5259727B2 (en) 2013-08-07

Family

ID=39529459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010536425A Expired - Fee Related JP5259727B2 (en) 2007-12-04 2008-12-02 Methods and apparatus for cooling and / or liquefying hydrocarbon streams

Country Status (6)

Country Link
US (1) US20100293997A1 (en)
EP (1) EP2215414A2 (en)
JP (1) JP5259727B2 (en)
AU (1) AU2008333301B2 (en)
RU (1) RU2499962C2 (en)
WO (1) WO2009071538A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009228000B2 (en) * 2008-09-19 2013-03-07 Woodside Energy Limited Mixed refrigerant compression circuit
EP2426451A1 (en) 2010-09-06 2012-03-07 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a gaseous hydrocarbon stream
EP2426452A1 (en) 2010-09-06 2012-03-07 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a gaseous hydrocarbon stream
US20160131422A1 (en) * 2013-07-26 2016-05-12 Chiyoda Corporation Refrigeration compression system using two compressors
JP6689277B2 (en) 2014-12-12 2020-04-28 ドレッサー ランド カンパニーDresser−Rand Company System and method for liquefying natural gas
US10180282B2 (en) 2015-09-30 2019-01-15 Air Products And Chemicals, Inc. Parallel compression in LNG plants using a positive displacement compressor
EP3435771A1 (en) 2016-03-31 2019-02-06 DSM IP Assets B.V. Enzyme composition and preparation of a dairy product with improved properties
WO2017167847A1 (en) 2016-03-31 2017-10-05 Dsm Ip Assets B.V. Production of milk with low lactose content
EP3435772A1 (en) 2016-03-31 2019-02-06 DSM IP Assets B.V. Enzyme composition and preparation of a dairy product with improved properties
IT201600080745A1 (en) * 2016-08-01 2018-02-01 Nuovo Pignone Tecnologie Srl REFRIGERANT COMPRESSOR DIVIDED FOR NATURAL GAS LIQUEFATION
US10753676B2 (en) 2017-09-28 2020-08-25 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process
US10852059B2 (en) * 2017-09-28 2020-12-01 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1176290B (en) * 1984-06-12 1987-08-18 Snam Progetti LOW-BOILING GAS COOLING AND LIQUEFATION PROCESS
US4698080A (en) * 1984-06-15 1987-10-06 Phillips Petroleum Company Feed control for cryogenic gas plant
MY118329A (en) * 1995-04-18 2004-10-30 Shell Int Research Cooling a fluid stream
DE59510130D1 (en) * 1995-07-31 2002-05-02 Man Turbomasch Ag Ghh Borsig compression device
US5611216A (en) * 1995-12-20 1997-03-18 Low; William R. Method of load distribution in a cascaded refrigeration process
US5737940A (en) * 1996-06-07 1998-04-14 Yao; Jame Aromatics and/or heavies removal from a methane-based feed by condensation and stripping
US5669234A (en) * 1996-07-16 1997-09-23 Phillips Petroleum Company Efficiency improvement of open-cycle cascaded refrigeration process
US5651270A (en) * 1996-07-17 1997-07-29 Phillips Petroleum Company Core-in-shell heat exchangers for multistage compressors
FR2760074B1 (en) * 1997-02-24 1999-04-23 Air Liquide LOW TEMPERATURE LOW PRESSURE GAS COMPRESSION METHOD, CORRESPONDING COMPRESSION LINE AND REFRIGERATION PLANT
US5851270A (en) * 1997-05-20 1998-12-22 Advanced Technology Materials, Inc. Low pressure gas source and dispensing apparatus with enhanced diffusive/extractive means
MY125082A (en) * 1999-12-15 2006-07-31 Shell Int Research Compression apparatus for gaseous refrigerant
US6722157B1 (en) * 2003-03-20 2004-04-20 Conocophillips Company Non-volatile natural gas liquefaction system
US6962060B2 (en) * 2003-12-10 2005-11-08 Air Products And Chemicals, Inc. Refrigeration compression system with multiple inlet streams
CA2570835C (en) * 2004-06-18 2013-10-22 Exxonmobil Upstream Research Company Scalable capacity liquefied natural gas plant
WO2007068730A1 (en) * 2005-12-16 2007-06-21 Shell Internationale Research Maatschappij B.V. Refrigerant circuit
WO2007111595A1 (en) * 2006-03-27 2007-10-04 Carrier Corporation Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
WO2008015224A2 (en) * 2006-08-02 2008-02-07 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
WO2008136121A1 (en) * 2007-04-26 2008-11-13 Hitachi, Ltd. Natural gas liquefaction equipment
CN101449115B (en) * 2007-04-27 2011-09-14 株式会社日立制作所 Cooling circulating system, natural gas liquefaction device, operation method and improvement method of cooling circulating system

Also Published As

Publication number Publication date
WO2009071538A3 (en) 2010-03-11
JP2011506893A (en) 2011-03-03
US20100293997A1 (en) 2010-11-25
RU2499962C2 (en) 2013-11-27
AU2008333301B2 (en) 2011-09-15
WO2009071538A2 (en) 2009-06-11
AU2008333301A1 (en) 2009-06-11
RU2010127331A (en) 2012-01-10
EP2215414A2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP5259727B2 (en) Methods and apparatus for cooling and / or liquefying hydrocarbon streams
JP5725856B2 (en) Natural gas liquefaction process
CN100410609C (en) Hybrid gas liquefaction cycle with multiple expanders
JP4980051B2 (en) Integrated multi-loop cooling method for gas liquefaction
RU2447382C2 (en) Method and device for liquefaction of hydrocarbon-containing raw materials flow
RU2443952C2 (en) Method and device for liquefaction of hydrocarbons flow
CN107917577B (en) Multi-pressure mixed refrigerant cooling method and system
US20100223951A1 (en) Method and apparatus for cooling a hydrocarbon stream
US20090282862A1 (en) Method and apparatus for producing a cooled hydrocarbon stream
JP6702919B2 (en) Mixed refrigerant cooling process and system
JP2009544923A (en) Method and apparatus for liquefying hydrocarbon streams
US11892233B2 (en) Natural gas liquefaction by a high pressure expansion process
RU2463535C2 (en) Method for liquefaction of hydrocarbon flows and device for its realisation
JP6725571B2 (en) Parallel compression in LNG plant using double flow compressor
RU2455595C2 (en) Hydrocarbon flow cooling method and device
CN101443616B (en) Method and device for distributing liquefied hydrocarbon gas
CA3076605C (en) Natural gas liquefaction by a high pressure expansion process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees