JP5258618B2 - Method for producing copper catalyst - Google Patents

Method for producing copper catalyst Download PDF

Info

Publication number
JP5258618B2
JP5258618B2 JP2009040057A JP2009040057A JP5258618B2 JP 5258618 B2 JP5258618 B2 JP 5258618B2 JP 2009040057 A JP2009040057 A JP 2009040057A JP 2009040057 A JP2009040057 A JP 2009040057A JP 5258618 B2 JP5258618 B2 JP 5258618B2
Authority
JP
Japan
Prior art keywords
catalyst
water
precipitate
oxide
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009040057A
Other languages
Japanese (ja)
Other versions
JP2010194421A (en
Inventor
雅美 村上
憲 前田
友哉 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009040057A priority Critical patent/JP5258618B2/en
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to PCT/JP2010/052211 priority patent/WO2010095599A1/en
Priority to KR1020117021793A priority patent/KR20110119804A/en
Priority to CA2753056A priority patent/CA2753056C/en
Priority to EP10743725.3A priority patent/EP2399671B1/en
Priority to US13/202,266 priority patent/US8623782B2/en
Priority to SG2011060423A priority patent/SG173804A1/en
Priority to CN2010800072743A priority patent/CN102316983B/en
Priority to TW099105151A priority patent/TW201034756A/en
Publication of JP2010194421A publication Critical patent/JP2010194421A/en
Application granted granted Critical
Publication of JP5258618B2 publication Critical patent/JP5258618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、メタノール合成反応またはその逆反応、メタノール改質反応、シフト反応またはその逆反応など銅系触媒が用いられる反応において触媒活性が良好で、しかも耐久性が顕著にすぐれた銅系触媒の製造方法に関するものである。   The present invention provides a copper catalyst having good catalytic activity and remarkably excellent durability in a reaction in which a copper catalyst is used such as methanol synthesis reaction or its reverse reaction, methanol reforming reaction, shift reaction or its reverse reaction. It relates to a manufacturing method.

従来、合成ガス(COとH2 との混合ガス)を主原料(少量のCO2 を含む)とするメタノール合成プロセスは、化学工業において非常に重要な基礎的なプロセスであり、その省エネルギー化や経済性などの観点からその高効率化が絶えず求められている。メタノール合成プロセスにおける最も重要な技術の一つは、高性能な触媒を提供することであり、従来の触媒としては、Cu/ZnO/Al23触媒(現在の工業用触媒、たとえば、「触媒講座、第7巻、触媒学会編、株式会社講談社発行、1989年7月20日発行」(非特許文献1)の21〜39頁参照)や、Cu/ZnO/SiO2触媒(特公昭63−39287号公報(特許文献1))などの3成分系触媒が知られている。 Conventionally, a methanol synthesis process using synthesis gas (a mixed gas of CO and H 2 ) as a main raw material (including a small amount of CO 2 ) is a very important basic process in the chemical industry, and its energy saving and There is a constant demand for higher efficiency from the viewpoint of economy and the like. One of the most important technologies in the methanol synthesis process is to provide a high performance catalyst, and conventional catalysts include Cu / ZnO / Al 2 O 3 catalysts (current industrial catalysts such as “catalysts”). "Lecture, Vol. 7, edited by the Catalysis Society of Japan, Kodansha Co., Ltd., published July 20, 1989" (Non-Patent Document 1), pages 21-39), Cu / ZnO / SiO 2 catalyst (Japanese Examined Patent Publication 63- No. 39287 (Patent Document 1) and the like are known.

一方、CO2 とH2 とを主原料とするメタノール合成は、炭素資源の循環再利用および地球環境問題の観点から、最近特に注目されている。CO2含有量の高い原料ガスからのメタノール合成においては、反応の熱力学的平衡およびメタノールと共に生成する水の反応阻害効果(Applied Catalysis A: General, 38 (1996), p.311-318(非特許文献2))のために、上記の合成ガスからのメタノール合成で採用されているよりも高い活性を有する触媒が要求されている。また、CO2含有量の高い原料ガスからのメタノール合成においては、メタノールと共に生成する水によると思われる触媒活性低下が、合成ガスからのメタノール合成に比べて非常に大きい。そのため、合成ガスからのメタノール合成で採用されている触媒よりもはるかに耐久性の高い触媒が要求されている。これは、上記のメタノール合成で採用されている3成分系触媒では、その触媒性能が不充分であるためである。 On the other hand, methanol synthesis using CO 2 and H 2 as main raw materials has recently attracted particular attention from the viewpoint of recycling and recycling of carbon resources and global environmental problems. In methanol synthesis from raw material gas with high CO 2 content, thermodynamic equilibrium of reaction and reaction inhibition effect of water generated with methanol (Applied Catalysis A: General, 38 (1996), p.311-318 For Patent Document 2)), a catalyst having higher activity than that employed in methanol synthesis from the above synthesis gas is required. In addition, in the synthesis of methanol from a raw material gas having a high CO 2 content, the decrease in catalytic activity, which is thought to be caused by water generated together with methanol, is much greater than that in the synthesis of methanol from synthesis gas. Therefore, there is a need for a catalyst that is much more durable than the catalyst employed in methanol synthesis from synthesis gas. This is because the catalyst performance of the three-component catalyst employed in the above methanol synthesis is insufficient.

このような観点から更に成分を加えた、銅/酸化亜鉛/酸化アルミニウム/酸化ジルコニウム、銅/酸化亜鉛/酸化アルミニウム/酸化ジルコニウム/酸化ガリウムなどの銅系多成分触媒も開発されている(たとえば、特開平7−39755号公報(特許文献2)、特開平6−312138号公報(特許文献3)、Applied Catalysis A: General, 38 (1996)p.311-318(非特許文献2) を参照)。さらに、シリカとしてコロイダルシリカ、又は水中溶存シリカを0.3〜0.9wt% 添加し、480〜690℃で焼成する高活性触媒も開発されている(特開平10−309466号公報(特許文献4))。これらの触媒は高活性であるが、同様の処方で製造しても必ずしもその活性が十分再現されないことがある。一般に再現性良く高活性触媒を得るためには、沈殿時の安定したpH、および、沈殿剤の十分な洗浄が必要であることが知られている(例えば、特開昭52-76288号公報(特許文献5)、特開平7−8799号公報(特許文献6)、特開2007-83197号公報(特許文献7))。そのための多くの改良方法も行われているが、必ずしも再現性は良好とはいえず、更なる改良が望まれている。
特公昭63−39287号公報 特開平7−39755号公報 特開平6−312138号公報 特開平10−309466号公報 特開昭52-76288号公報 特開平7−8799号公報 特開2007-83197号公報 触媒講座、第7巻、触媒学会編、株式会社講談社発行、1989年7月20日発行 Applied Catalysis A: General, 38 (1996)p.311-318
From this point of view, copper-based multi-component catalysts such as copper / zinc oxide / aluminum oxide / zirconium oxide and copper / zinc oxide / aluminum oxide / zirconium oxide / gallium oxide have been developed (for example, (See JP-A-7-39755 (Patent Document 2), JP-A-6-312138 (Patent Document 3), Applied Catalysis A: General, 38 (1996) p.311-318 (Non-Patent Document 2)) . Furthermore, a highly active catalyst in which 0.3 to 0.9 wt% of colloidal silica or water-dissolved silica is added as silica and calcined at 480 to 690 ° C. has been developed (Japanese Patent Laid-Open No. 10-309466 (Patent Document 4). )). Although these catalysts are highly active, their activity may not always be sufficiently reproduced even if they are produced with the same formulation. In general, in order to obtain a highly active catalyst with good reproducibility, it is known that stable pH during precipitation and sufficient washing of the precipitating agent are necessary (for example, JP-A-52-76288 ( Patent Document 5), Japanese Patent Laid-Open No. 7-8799 (Patent Document 6), Japanese Patent Laid-Open No. 2007-83197 (Patent Document 7)). Many improvements have been made for this purpose, but the reproducibility is not always good, and further improvements are desired.
Japanese Patent Publication No.63-39287 JP-A-7-39755 Japanese Patent Laid-Open No. 6-312138 JP-A-10-309466 JP-A 52-76288 Japanese Patent Application Laid-Open No. 7-8799 JP 2007-83197 A Catalyst Course, Volume 7, Catalytic Society, published by Kodansha Co., Ltd., issued July 20, 1989 Applied Catalysis A: General, 38 (1996) p.311-318

本発明は上記のような状況に鑑みてなされたもので、触媒活性が良好で、しかも耐久性が顕著にすぐれた再現性の良い銅系触媒の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a reproducible copper-based catalyst having good catalytic activity and remarkably excellent durability.

上記の課題を解決するために本発明者らは鋭意検討した結果、触媒製造途中のスラリーと清浄な水とを特定の条件で接触させることによって、上記の課題を解決することが出来ることを見出した。即ち本発明は、酸化銅、酸化亜鉛、酸化アルミニウムを必須成分とし、酸化ジルコニウム、酸化ガリウム、酸化ケイ素を任意成分とする金属酸化物で構成され留触媒の製造方法であって、それぞれの酸性金属塩の水溶液と沈殿剤の水溶液とを水中で混合して触媒前駆体の沈殿を生成させた後、該沈殿物を水中で高分散させた状態で十分に沈殿剤の溶解平衡まで到達させ、かつ、常にスラリー状態を保持して清浄な水と接触させることを特徴とする触媒の製造方法である。   As a result of intensive investigations to solve the above problems, the present inventors have found that the above problems can be solved by bringing the slurry in the middle of catalyst production into contact with clean water under specific conditions. It was. That is, the present invention relates to a method for producing a distillation catalyst comprising copper oxide, zinc oxide, and aluminum oxide as essential components and zirconium oxide, gallium oxide, and silicon oxide as optional components. The aqueous solution of the salt and the aqueous solution of the precipitant are mixed in water to form a precipitate of the catalyst precursor, and then the precipitate is sufficiently dispersed in water to reach the dissolution equilibrium of the precipitant; and The catalyst production method is characterized in that the slurry is always kept in contact with clean water.

前記の製造方法は、(1)それぞれの酸性金属塩の水溶液と沈殿剤の水溶液とを水中で混合して触媒前駆体の沈殿を生成させた後、スラリー溶液中の触媒前駆体濃度を一定にしたまま、スラリー液相部の抜き出しと水の供給とを連続的に行い、沈殿剤を除去する工程と、(2)水を追加すること無しにスラリー液相部を系外に抜き出すことによって、スラリー中の触媒前駆体の含有濃度を上げてケーキ状の沈殿物とする工程と、(3)ケーキ状の沈殿を乾燥、焼成して金属酸化物とする工程とを含むことが好ましい。   In the above production method, (1) the aqueous solution of each acidic metal salt and the aqueous solution of the precipitating agent are mixed in water to form a catalyst precursor precipitate, and then the catalyst precursor concentration in the slurry solution is kept constant. As it is, the slurry liquid phase part is continuously extracted and the water is supplied, and the step of removing the precipitant and (2) by extracting the slurry liquid phase part outside the system without adding water, It is preferable to include a step of increasing the content of the catalyst precursor in the slurry to obtain a cake-like precipitate, and (3) a step of drying and baking the cake-like precipitate to obtain a metal oxide.

前記の製造方法において、沈殿剤はアルカリ金属化合物であり、沈殿剤除去後の触媒中に含有するアルカリ金属が0.1重量%以下となるまで沈殿材を除供することが望ましい。   In the above production method, the precipitating agent is an alkali metal compound, and it is desirable to remove the precipitating material until the alkali metal contained in the catalyst after the precipitating agent is 0.1 wt% or less.

また、スラリー液相部、および水を抜き出した乾燥前のケーキ状沈殿の温度は10〜40℃であることが望ましい。   Moreover, it is desirable that the temperature of the slurry liquid phase part and the cake-like precipitate before drying from which water is extracted are 10 to 40 ° C.

本発明において、沈殿の生成は、pHが5〜9の範囲であり、スラリー溶液中の触媒前駆体の沈殿濃度は、0.5〜12重量%の範囲内であることが望ましい。   In the present invention, the precipitation is preferably in the range of pH 5 to 9, and the precipitation concentration of the catalyst precursor in the slurry solution is preferably in the range of 0.5 to 12% by weight.

本発明による製造方法は、再現性が高く、得られた触媒は、活性が高く、しかもその高い活性が長期にわたって維持され耐久性のすぐれたものとなっている。このときの触媒の活性維持効果は顕著であり、現在使用されまたは提案されているメタノール合成用の銅系多成分触媒では期待しえないようなすぐれた活性と耐久性が得られる。特に、本発明は工業上において、極めて有用である。   The production method according to the present invention has high reproducibility, and the obtained catalyst has high activity, and the high activity is maintained over a long period of time and has excellent durability. The activity maintaining effect of the catalyst at this time is remarkable, and excellent activity and durability that cannot be expected with the copper-based multicomponent catalyst for methanol synthesis currently used or proposed are obtained. In particular, the present invention is extremely useful industrially.

〈触媒〉
本発明の銅系触媒は、酸化銅、酸化亜鉛、酸化アルミニウムを必須成分とし、さらに酸化ジルコニウム、酸化ガリウム、および酸化ケイ素を任意成分とする金属酸化物で構成された触媒である。また、本発明の趣旨を損なわない範囲であれば、他の酸化物を含んでいてもよい。
<catalyst>
The copper-based catalyst of the present invention is a catalyst composed of a metal oxide containing copper oxide, zinc oxide and aluminum oxide as essential components and further containing zirconium oxide, gallium oxide and silicon oxide as optional components. Further, other oxides may be included as long as the gist of the present invention is not impaired.

各成分の割合は、触媒全体を100重量%とするとき、酸化銅が20〜60重量%(好ましくは30〜50重量%)、酸化亜鉛が10〜50重量%(好ましくは20〜40重量%)、酸化アルミニウムが2〜10重量%(好ましくは4〜8重量%)、酸化ジルコニウムが0〜40重量%(好ましくは10〜20重量%)、酸化ガリウムが0〜10重量%(好ましくは0.1〜5重量%)、酸化ケイ素が 0〜2重量%(好ましくは0.3〜 0.9重量%)である。このような量的範囲において、適切な触媒製造処方と、目的反応に応じた適切な組成を定めることにより、その反応に適した触媒性能を得ることができる。   The ratio of each component is 20 to 60% by weight (preferably 30 to 50% by weight) of copper oxide and 10 to 50% by weight (preferably 20 to 40% by weight) of zinc oxide, when the total catalyst is 100% by weight. ), Aluminum oxide 2-10 wt% (preferably 4-8 wt%), zirconium oxide 0-40 wt% (preferably 10-20 wt%), gallium oxide 0-10 wt% (preferably 0.1 ˜5 wt%) and silicon oxide is 0˜2 wt% (preferably 0.3˜0.9 wt%). In such a quantitative range, the catalyst performance suitable for the reaction can be obtained by determining an appropriate catalyst production formulation and an appropriate composition according to the target reaction.

本発明の銅系触媒において、酸化ケイ素はコロイダルシリカまたは水中溶存シリカに由来するものであっても良い。また、コロイダルシリカと水中溶存シリカとを併用してもよい。   In the copper-based catalyst of the present invention, the silicon oxide may be derived from colloidal silica or silica dissolved in water. Colloidal silica and water-dissolved silica may be used in combination.

水中溶存シリカを用いる場合は、天然淡水、水道水、井戸水、工業用水などを用いることができる。これらの水は、20ppm 前後ないし100ppm 程度の溶存シリカを含んでいる。溶存シリカは、検水について、モリブデン黄法またはモリブデン青法による吸光光度法により測定されるシリカ(比色シリカと通称される)である。   When using silica dissolved in water, natural fresh water, tap water, well water, industrial water, or the like can be used. These waters contain about 20 ppm to about 100 ppm of dissolved silica. The dissolved silica is silica (commonly referred to as colorimetric silica) measured by a spectrophotometric method using a molybdenum yellow method or a molybdenum blue method.

〈触媒の製造〉
触媒の製造方法は、適切な組成の触媒において、その性能を最大限に引き出すために重要である。上記の触媒は、一般的には、金属成分の水溶性塩を含む水溶液からなるA液と塩基性物質を含む沈殿剤の水溶液からなるB液とを混合して触媒前駆体となる沈澱物を形成し、適宜、熟成し、ついで沈殿剤を除去するために洗浄を行い、そして洗浄後の沈澱物を乾燥した後、280〜690℃で焼成処理して焼成物となすことにより製造される。
<Manufacture of catalyst>
The method for producing the catalyst is important for maximizing the performance of the catalyst having an appropriate composition. In general, the catalyst is prepared by mixing a liquid A composed of an aqueous solution containing a water-soluble salt of a metal component and a liquid B composed of an aqueous solution of a precipitating agent containing a basic substance to form a precipitate that becomes a catalyst precursor. It is formed by aging, appropriately aging, and then washing to remove the precipitant, and drying the washed precipitate, followed by baking at 280-690 ° C. to obtain a baked product.

ここで、A液とB液とを混合して沈澱物を形成させるに際しては、A液とB液とを一括混合してA液中の成分を沈澱させる方法のほか、A液を2以上に分割し、まず金属化合物のうちの1成分または2以上の成分を含む水溶液からなるA液と塩基性物質を含む水溶液からなるB液とを混合してA液中の成分を沈澱させ、ついでその沈澱物を含む液中に金属化合物のうちの残りの成分を含む水溶液からなるA液を加えて同様に沈澱させる沈澱法も採用される。混合の仕方には、そのほか種々のバリエーションが可能である。   Here, when the liquid A and the liquid B are mixed to form a precipitate, the liquid A and the liquid B are mixed together to precipitate components in the liquid A, and the liquid A is increased to 2 or more. First, the liquid A comprising an aqueous solution containing one or more of the metal compounds and the liquid B comprising an aqueous solution containing a basic substance are mixed to precipitate the components in the liquid A, and then A precipitation method is also employed in which the solution A comprising an aqueous solution containing the remaining components of the metal compound is added to the solution containing the precipitate, and the solution is precipitated in the same manner. Various other variations are possible for the mixing method.

上記金属成分の水溶性塩としては、水溶性の良好な硝酸塩や亜硝酸塩が好適に用いられる。塩基性物質としては、たとえば、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属塩が好適に用いられる。また、水酸化ナトリウム、水酸化カリウムを用いる場合には、COガスを吹き込むことも併用される。 As the water-soluble salt of the metal component, nitrates and nitrites having good water solubility are preferably used. As the basic substance, for example, alkali metal salts such as sodium carbonate, potassium carbonate, sodium hydroxide and potassium hydroxide are preferably used. Further, sodium hydroxide, in the case of using potassium hydroxide is also used in combination blowing CO 2 gas.

沈澱物の形成後は、高活性な触媒前駆体とするため、適宜、熟成を行い、ついで洗浄を行う。ここでの洗浄は、沈殿剤であるアルカリ金属塩を除去するために行われるが、この洗浄が不十分で、アルカリ金属が多く残留すると後のメタノール製造時の触媒において活性が著しく低下することが知られている。そのため、通常、この洗浄はアルカリ金属が、メタノール合成反応に影響しないレベルに除去されるまで行われる。一般的な洗浄の方法としては、溶液中の沈殿物を、圧搾するなどしてフィルター濾過により溶存する沈殿剤とともに水分を除去した後、沈殿物に清浄な水を添加して、沈殿物を添加した水に再分散させる。この沈殿物を水に分散させたスラリーを再び、濾過する。この一連の操作を沈殿物中の沈殿剤が、目標とする濃度以下になるまで繰り返すという方法が取られる。あるいは、スラリーを濾板の中で濾過してケーキ状の沈殿物にした後、濾板の上から洗浄水を流してケーキ状沈殿物中に存在する濾液を置換して追い出す置換洗浄が行われる。ここで、沈殿剤は通常、水溶解性の高い化合物を用いるため、そのほとんどが水中に存在する。したがって、沈殿剤は以上の操作により、効率的に洗浄水によって除去される。   After the formation of the precipitate, in order to obtain a highly active catalyst precursor, aging is appropriately performed, followed by washing. Although the washing here is performed to remove the alkali metal salt that is a precipitant, if this washing is insufficient and a large amount of alkali metal remains, the activity of the catalyst during the subsequent methanol production may be significantly reduced. Are known. Therefore, this washing is usually performed until the alkali metal is removed to a level that does not affect the methanol synthesis reaction. As a general washing method, the precipitate in the solution is squeezed to remove the water together with the precipitating agent dissolved by filter filtration, and then the clean water is added to the precipitate and the precipitate is added. Re-disperse in water. The slurry in which the precipitate is dispersed in water is filtered again. A method is adopted in which this series of operations is repeated until the precipitant in the precipitate becomes a target concentration or less. Alternatively, after the slurry is filtered through a filter plate to form a cake-like precipitate, a washing process is performed in which washing water is poured from above the filter plate to replace the filtrate present in the cake-like precipitate and drive it out. . Here, since the precipitating agent usually uses a compound having high water solubility, most of it is present in water. Therefore, the precipitant is efficiently removed by the washing water by the above operation.

しかしながら、本発明者らの検討によると上記の方法では濾液中の沈殿剤が十分に低濃度になっているにもかかわらず、沈殿物中の沈殿剤は、しばしば、濾液中の濃度よりはるかに高い濃度で、残留していることが確認された。すなわち、沈殿剤、特にアルカリ金属は、濾液中に容易に溶出してこない。したがって、単に濾液中の沈殿剤濃度が低下しても、沈殿物中の沈殿剤は、必ずしも除去されているとはいえない。本発明者らの更なる検討によれば、上記のケーキを形成した後に清浄な水で洗浄する方法においては、濾液中の沈殿剤濃度と沈殿物中の沈殿剤濃度が同じになるためには、清浄な水を添加後、少なくとも2時間以上、攪拌しながらスラリー溶液のままで放置しておくことが必要であることが分かった。これは、沈殿剤が沈殿物とイオン的に結合しており、平衡的に徐々に水に溶解していくか、あるいは、濾過して沈殿物をケーキ状にするため、その後、水を添加して沈殿物を分散させようとしても、なかなか拡散せず、沈殿物中に残留する沈殿剤が抜けにくくなっているのが原因ではないかと推察される。そのため、濾過と水分散の繰り返しを行う場合には、少なくとも多数回の繰り返しが必要である。沈殿物中のアルカリ金属の含有率は沈殿物に対して、0.1重量%以下まで除去することが望ましいが、このような濾過と水中への拡散の繰り返しによる洗浄は非常に長時間を要する。   However, according to the study by the present inventors, although the precipitant in the filtrate is sufficiently low in the above method, the precipitant in the precipitate is often much higher than the concentration in the filtrate. It was confirmed that it remained at a high concentration. That is, the precipitant, particularly alkali metal, does not easily elute into the filtrate. Therefore, even if the concentration of the precipitant in the filtrate is simply decreased, the precipitant in the precipitate is not necessarily removed. According to a further study by the present inventors, in the method of washing with clean water after forming the above cake, in order for the precipitant concentration in the filtrate to be the same as the precipitant concentration in the precipitate, It was found that it was necessary to leave the slurry solution as it was with stirring for at least 2 hours after addition of clean water. This is because the precipitant is ionically bound to the precipitate and gradually dissolves in water in equilibrium, or is filtered to make the precipitate cake, and then water is added. Even if it is attempted to disperse the precipitate, it is presumed that it is difficult to diffuse and the precipitant remaining in the precipitate is difficult to escape. Therefore, when repeating filtration and water dispersion, it is necessary to repeat at least many times. It is desirable to remove the alkali metal content in the precipitate to 0.1% by weight or less with respect to the precipitate. However, such washing by repeated filtration and diffusion into water requires a very long time. .

従来の技術においては、特に、洗浄方法については、記述はないため、その触媒活性の再現は、特に、スケールアップの場合において、必ずしも満足する結果が得られなかった。(例えば、特開平7−8799号公報、特開平7−39755号公報、特開平10−272361号公報、など)
以上の状況を鑑み検討を重ねた結果、本発明者らは、沈殿物を水中で高分散させた状態で十分に沈殿剤の溶解平衡まで到達させ、かつ、常にスラリー状態を保持して清浄な水と接触させることが、効率的に沈殿剤を除去するために必要であるということが本発明の要点である。
In the prior art, since there is no description of the cleaning method, in particular, the reproduction of the catalytic activity has not always obtained satisfactory results, particularly in the case of scale-up. (For example, JP-A-7-8799, JP-A-7-39755, JP-A-10-272361, etc.)
As a result of repeated examination in view of the above situation, the present inventors have sufficiently reached the dissolution equilibrium of the precipitant in a state where the precipitate is highly dispersed in water, and always keeps the slurry state and is clean. It is a gist of the present invention that contact with water is necessary to efficiently remove the precipitant.

ここで、常に清浄な水と接触させるとは、沈殿剤を含まない水を供給して、沈殿剤が溶け込んだ水と入れ替えることを目的とし、また、十分に沈殿剤の溶解平衡に到達させた状態とは、沈殿物を水中に2重量%の濃度で分散させた後、スラリー溶液中の電導度変化が1時間で元の電導度の5%以内の誤差になったときの状態を言う。   Here, the purpose of always contacting with clean water is to supply water that does not contain a precipitating agent and replace it with water in which the precipitating agent has dissolved, and to achieve sufficient dissolution equilibrium of the precipitating agent. The state refers to a state when the conductivity change in the slurry solution becomes an error within 5% of the original conductivity in one hour after the precipitate is dispersed in water at a concentration of 2% by weight.

沈殿剤の含有量は低いほど好ましいが、含有量を限りなくゼロに近づけることは、その処理に非常に多くの時間を要するため、本発明においては、沈殿物中のアルカリ金属の含有量は0.1重量%以下まで除去すれば十分である。   The lower the content of the precipitant, the better. However, since it takes a very long time for the treatment to bring the content as close to zero as possible, in the present invention, the content of the alkali metal in the precipitate is 0. It is sufficient to remove to less than 1% by weight.

すなわち、本発明の沈殿物においては、生成した沈殿を濾過してケーキ状とすることなく、スラリー状態のままで、好ましくは連続的にスラリー液相部を抜き出しつつ清浄な水とを加え、抜き出す液相部ともに沈殿剤を除去することを特徴とする。スラリー濃度としては特に制限はなく、沈殿物が高分散の状態を維持できればよく、特に制限されない。操作性を考慮すれば、スラリー濃度は10重量%以下が実用的な範囲であるが、1重量%より下がると装置が大きくなるため経済性は低下する。この方法であれば、常に沈殿物と水が接触した状態で処理するため、接触時間も長く取ることができ、濾過、水による再分散の操作に比べて、大きく洗浄時間を短縮できる。一般的には、沈殿をできるだけ圧搾し、水分を絞った後、新たに洗浄水を添加し、また、水を絞るという操作を繰り返すほうが効率的に沈殿剤を除去できるが、酸化銅、酸化亜鉛、酸化アルミニウムを必須成分とし、さらに酸化ジルコニウム、酸化ガリウム、および酸化ケイ素を任意成分とする金属酸化物で構成された触媒からの沈殿剤除去においては先に述べた理由により、スラリー状態のまま、洗浄水を入れ替えるほうが効率的である。上記のスラリー濃度は、洗浄中同一濃度に保持することが好ましい。   That is, in the precipitate of the present invention, the produced precipitate is not filtered to form a cake, but is kept in a slurry state, preferably with continuous addition of clean water while extracting the slurry liquid phase portion, and then extracted. It is characterized by removing the precipitant in both the liquid phase part. There is no restriction | limiting in particular as a slurry density | concentration, What is necessary is just to be able to maintain a highly dispersed state of a precipitate, and there is no restriction | limiting in particular. In consideration of operability, the slurry concentration is practically 10% by weight or less, but if it falls below 1% by weight, the apparatus becomes large and the economy is lowered. With this method, since the treatment is always performed in a state where the precipitate and the water are in contact with each other, the contact time can be increased, and the washing time can be greatly reduced as compared with the operations of filtration and redispersion with water. In general, it is more efficient to repeat the operations of pressing the precipitate as much as possible, squeezing the water, adding new washing water, and squeezing the water. In the removal of the precipitant from the catalyst composed of a metal oxide containing aluminum oxide as an essential component and further containing zirconium oxide, gallium oxide, and silicon oxide as an optional component, for the reason described above, it remains in a slurry state. It is more efficient to replace the washing water. The slurry concentration is preferably maintained at the same concentration during washing.

このような沈殿物を水中で高分散させた状態で十分に沈殿剤の溶解平衡まで到達させ、かつ、常に清浄な水と接触させる操作を行うための装置としては、スラリーから水を抜き出す部分と、新たに清浄な水を添加する部分と、新たに添加した水と、水を抜き出した後のスラリーを混合する部分とで構成された、各部分がスラリーを循環できるように連結された装置であれば良い。   As an apparatus for performing such an operation to sufficiently reach the dissolution equilibrium of the precipitating agent in a highly dispersed state in water and always contact with clean water, a part for extracting water from the slurry and A device composed of a part for newly adding clean water, a part for newly added water, and a part for mixing the slurry after extracting the water, each part being connected so that the slurry can be circulated. I just need it.

例えば、水を除去する際、濾過ケーキの濾過層の厚層化をできる限り阻止する掃流機構を備えたいわゆるケーキレス濾過(ダイナミック濾過器)が採用できる。回転円筒型ケーキレス濾過器、Shriver型フィルターシックナー、多室円筒型真空濾過器(オリバー型濾過器)機や、遠心分離型スラリー濾過機などが使用できる。   For example, when removing water, a so-called cakeless filtration (dynamic filter) having a scavenging mechanism that prevents the filter cake from becoming thicker as much as possible can be employed. A rotary cylindrical cakeless filter, a Shriver filter thickener, a multi-chamber cylindrical vacuum filter (Oliver filter) machine, a centrifugal slurry filter, or the like can be used.

このようにして洗浄されたスラリーは、一般にそのまま濃縮し、スプレードライすることも可能であるが、一般的には、スラリーを加圧濾過してケーキ状の沈殿とする。この場合、減圧濾過器やフィルタープレス濾過器、遠心脱水濾過器などが使用できる。   The slurry washed in this manner can be generally concentrated as it is and spray-dried, but generally, the slurry is filtered under pressure to form a cake-like precipitate. In this case, a vacuum filter, a filter press filter, a centrifugal dehydration filter, or the like can be used.

得られたケーキ状の沈殿は乾燥、焼成して金属酸化物となる。このときの乾燥、焼成を行う装置は特に限定されず、一般的な、乾燥器が用いられる。   The obtained cake-like precipitate is dried and fired to become a metal oxide. An apparatus for performing drying and baking at this time is not particularly limited, and a general dryer is used.

乾燥後の触媒前駆体は280〜690℃(好ましくは350〜680℃、特に好ましくは480〜670℃)で焼成処理して焼成物となす。焼成は酸素雰囲気下(通常は空気中)で行い、これにより上述の金属成分は酸化物の形態となる。   The dried catalyst precursor is calcined at 280 to 690 ° C. (preferably 350 to 680 ° C., particularly preferably 480 to 670 ° C.) to obtain a calcined product. Firing is performed in an oxygen atmosphere (usually in air), whereby the metal component described above is in the form of an oxide.

このようにして得た触媒は、そのままで、あるいは適宜の方法により造粒または打錠成型して用いる。触媒の粒子径や形状は、反応方式、反応器の形状によって任意に選択しうる。   The catalyst thus obtained is used as it is or after being granulated or tableted by an appropriate method. The particle diameter and shape of the catalyst can be arbitrarily selected depending on the reaction system and the shape of the reactor.

〈反応〉
上記の触媒は、水素と炭素酸化物からメタノールを合成する反応またはその逆反応のための触媒として有用である。
<reaction>
The above catalyst is useful as a catalyst for the reaction of synthesizing methanol from hydrogen and carbon oxide or the reverse reaction thereof.

なお上記の触媒を反応に供するにあたっては、この触媒をそのまま使用することもできるが、使用に先立ちH2 ガスまたはH2 −N2 混合ガスなどの還元性ガスで還元するのが通常である。 When the above catalyst is used for the reaction, this catalyst can be used as it is, but it is usually reduced with a reducing gas such as H 2 gas or H 2 —N 2 mixed gas before use.

メタノ−ル合成の場合には、水素と炭素酸化物(CO2 単独あるいはCO2 とCOとの混合ガス)からなる原料ガスを触媒上で反応させてメタノ−ルを合成する。このときの反応は、典型的には、反応温度150〜300℃、反応圧力1〜10MPaにて行われる。その逆反応の場合には、メタノールを水素と炭素酸化物とに分解することができる。このときの反応は、典型的には、反応温度200〜400℃、反応圧力大気圧〜1MPaにて行われる。これらの反応は、気相、液相のいずれでも行うことができる。液相で反応を行うときの溶媒としては、炭化水素系溶媒をはじめ、水不溶性ないし水難溶性の溶媒が用いられる。 In the case of methanol synthesis, methanol is synthesized by reacting a raw material gas consisting of hydrogen and carbon oxide (CO 2 alone or a mixed gas of CO 2 and CO) on a catalyst. The reaction at this time is typically performed at a reaction temperature of 150 to 300 ° C. and a reaction pressure of 1 to 10 MPa. In the reverse reaction, methanol can be decomposed into hydrogen and carbon oxides. The reaction at this time is typically performed at a reaction temperature of 200 to 400 ° C. and a reaction pressure of atmospheric pressure to 1 MPa. These reactions can be carried out either in the gas phase or in the liquid phase. As a solvent for the reaction in the liquid phase, a water-insoluble or hardly water-soluble solvent is used, including a hydrocarbon solvent.

〈作用〉
本発明の銅系触媒にあっては、必須成分である酸化銅、酸化亜鉛および酸化アルミニウム(および任意成分である酸化ジルコニウム、酸化ガリウム、酸化パラジウム、酸化ケイ素)が骨格であって、かつ、活性を阻害するアルカリ金属塩が十分に除去されているため、480〜690℃という温度領域で焼成処理を受けることにより、触媒は高活性となり、しかもその活性が長期にわたって維持され耐久性のすぐれたものとなる。
<Action>
In the copper-based catalyst of the present invention, the essential components copper oxide, zinc oxide and aluminum oxide (and optional components zirconium oxide, gallium oxide, palladium oxide and silicon oxide) are the skeleton and active. Since the alkali metal salt that inhibits the catalyst is sufficiently removed, the catalyst becomes highly active by being subjected to a calcination treatment in the temperature range of 480 to 690 ° C., and its activity is maintained for a long period of time and has excellent durability. It becomes.

本発明者らの研究によれば、アルカリ金属が触媒中に存在すると、触媒中の金属酸化物成分の結晶化を促進し、活性成分の比表面積を低下させる。たとえば、酸化銅、酸化亜鉛、酸化アルミニウムを主成分とする触媒中にアルカリ金属が0.4重量%存在するだけでも、触媒のX線回折測定を行うと、Cu(還元された状態)、酸化亜鉛、酸化ジルコニウムの結晶がかなり成長していることが明らかになった。一方、アルカリ金属が、0.1重量%以下まで除去された酸化銅、酸化亜鉛、酸化アルミニウムを主成分とする触媒について、同様の焼成を行った後、触媒のX線回折測定を行うと、Cu(還元された状態)、酸化亜鉛、酸化ジルコニウムの結晶がほとんど成長していないことが明らかになった。すなわち、アルカリ金属の十分な除去により、触媒中の各成分の結晶成長は抑制され、高い分散性を長時間に渡って保持することができるようになるものである。   According to the study by the present inventors, when an alkali metal is present in the catalyst, crystallization of the metal oxide component in the catalyst is promoted, and the specific surface area of the active component is reduced. For example, even if only 0.4% by weight of an alkali metal is present in a catalyst mainly composed of copper oxide, zinc oxide, and aluminum oxide, Cu (reduced state), oxidation can be obtained by performing X-ray diffraction measurement of the catalyst. It became clear that crystals of zinc and zirconium oxide were growing considerably. On the other hand, for the catalyst mainly composed of copper oxide, zinc oxide, and aluminum oxide from which alkali metal has been removed to 0.1% by weight or less, after performing similar firing, X-ray diffraction measurement of the catalyst is performed. It was revealed that crystals of Cu (reduced state), zinc oxide, and zirconium oxide were hardly grown. That is, by sufficiently removing the alkali metal, crystal growth of each component in the catalyst is suppressed, and high dispersibility can be maintained for a long time.

以上、本発明によって製造される触媒は、その性能を安定に再現でき、また、特に工業的製法においても対応できるようにしたものである。

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
As described above, the catalyst produced according to the present invention can stably reproduce its performance, and can cope with an industrial production method.

EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

〈触媒の製造〉
(実施例1)
硝酸銅三水和物5.6kg、硝酸亜鉛六水和物4.1kg、硝酸アルミニウム九水和物1.4kg、亜硝酸ジルコニウム二水和物2.0kgおよびコロイダルシリカ(日産化学工業株式会社製「スノーテックスST−O」無水ケイ酸(SiO2 )含有量が20〜21重量%)0.1kgを蒸留水に溶解して、38Lの水溶液を調製し、A液とした。これとは別に、炭酸ナトリウム十水和物 15.7kgを蒸留水に溶解して38Lの水溶液を調製し、B液とした。激しく撹拌した125Lの蒸留水中に、A液とB液を同時に滴下した(この方法を共沈法と称する)。これを一昼夜放置した後、得られた沈澱物を濾過面積1mの回転円筒型ケーキレス濾過器で2.4mの蒸留水を連続的に供給し、同じ速度でスラリー液相部を抜き出すことにより洗浄した後、加圧濾過器により、ケーキを回収した。このときの沈殿物の全処理時間は9hrであり、濾液電導度は60mS/mであった。なお、このケーキを一部採取し、2重量%のスラリーとなるように水で再分散し、濾液電導度を測定したところ、はじめ30mS/mであったが、1時間放置したところ、濾液電導度は31mS/mとなった。
<Manufacture of catalyst>
Example 1
Copper nitrate trihydrate (5.6 kg), zinc nitrate hexahydrate (4.1 kg), aluminum nitrate nonahydrate (1.4 kg), zirconium nitrite dihydrate (2.0 kg) and colloidal silica -O "0.1 kg of silicic acid anhydride (SiO2 content: 20 to 21% by weight) was dissolved in distilled water to prepare a 38 L aqueous solution. Separately, 15.7 kg of sodium carbonate decahydrate was dissolved in distilled water to prepare a 38 L aqueous solution, which was designated as solution B. Liquid A and liquid B were simultaneously dropped into 125 L of distilled water vigorously stirred (this method is referred to as a coprecipitation method). After allowing this to stand for a whole day and night, the obtained precipitate is continuously supplied with 2.4 m 3 of distilled water through a rotating cylindrical cakeless filter having a filtration area of 1 m 2 , and the slurry liquid phase part is extracted at the same speed. Then, the cake was recovered with a pressure filter. The total treatment time of the precipitate at this time was 9 hr, and the filtrate conductivity was 60 mS / m. A portion of this cake was sampled and redispersed with water to give a 2% by weight slurry, and the filtrate conductivity was measured to be 30 mS / m at first. The degree was 31 mS / m.

このケーキを110℃で乾燥し、ついで600℃にて空気中で2時間焼成した。得られた触媒中のナトリウムは0.03重量%であり、焼成後の触媒の比表面積は85m/gであった。 The cake was dried at 110 ° C. and then calcined at 600 ° C. in air for 2 hours. Sodium in the obtained catalyst was 0.03 wt%, and the specific surface area of the catalyst after calcination was 85 m 2 / g.

(比較例1)
実施例1と同様にして得られた沈殿物を、濾過面積1.2mのフィルタープレスでろ過し、そのまま、2.5mの蒸留水を濾室内に通液して洗浄した後、ケーキを回収した。このときの沈殿物の全処理時間は7hrであり、濾液電導度は14mS/mであった。なお、このケーキを一部採取し、2重量%のスラリーとなるように水で再分散し、濾液電導度を測定したところ、はじめ20mS/mであったが、1時間後には、濾液電導度は280mS/mとなり、平衡に達していなかった。
(Comparative Example 1)
The precipitate obtained in the same manner as in Example 1 was filtered with a filter press having a filtration area of 1.2 m 2 , and 2.5 m 3 of distilled water was directly passed through the filter chamber for washing. It was collected. The total treatment time of the precipitate at this time was 7 hr, and the filtrate conductivity was 14 mS / m. A portion of this cake was sampled, redispersed with water to give a 2% by weight slurry, and the filtrate conductivity was measured to be 20 mS / m at first, but after 1 hour, the filtrate conductivity was Was 280 mS / m and did not reach equilibrium.

このケーキを110℃で乾燥し、ついで600℃にて空気中で2時間焼成した。得られた触媒中のナトリウムは1.4重量%であり、焼成後の触媒の比表面積は32m2/gであった。   The cake was dried at 110 ° C. and then calcined at 600 ° C. in air for 2 hours. Sodium in the obtained catalyst was 1.4% by weight, and the specific surface area of the catalyst after calcination was 32 m 2 / g.

(比較例2)
実施例1と同様にして得られた沈殿物を、濾過面積1.2m2のフィルタープレスでろ過し、得られたケーキを200Lの蒸留水に30分で再分散させ、そのまますぐに再びフィルタープレスで濾過した。この操作を3回繰り返した。このときの沈殿物の全処理時間は10hrであり、濾液電導度は30mS/mであった。なお、このケーキを一部採取し、2重量%のスラリーとなるように水で再分散し、濾液電導度を測定したところ、はじめ25mS/mであったが、1時間後には240mS/mとなり、平衡に達していなかった。
(Comparative Example 2)
The precipitate obtained in the same manner as in Example 1 was filtered with a filter press having a filtration area of 1.2 m 2, and the obtained cake was redispersed in 200 L of distilled water in 30 minutes and immediately filtered again with a filter press. did. This operation was repeated three times. The total treatment time of the precipitate at this time was 10 hr, and the filtrate conductivity was 30 mS / m. A portion of this cake was sampled, redispersed with water to give a 2% by weight slurry, and the filtrate conductivity was measured. The initial value was 25 mS / m, but after 1 hour it became 240 mS / m. , Did not reach equilibrium.

このケーキを110℃で乾燥し、ついで600℃にて空気中で2時間焼成した。得られた触媒中のナトリウムは1.3重量%であり、焼成後の触媒の比表面積は40m2/gであった。   The cake was dried at 110 ° C. and then calcined at 600 ° C. in air for 2 hours. Sodium in the obtained catalyst was 1.3% by weight, and the specific surface area of the catalyst after calcination was 40 m 2 / g.

(比較例3)
実施例1と同様にして得られた沈殿物を、濾過面積1.2m2のフィルタープレスでろ過し、得られたケーキを200Lの蒸留水に30分で再分散させ、2時間攪拌を継続した後、再びフィルタープレスで濾過した。この操作を3回繰り返した。このときの沈殿物の全処理時間は15hrであり、濾液電導度は11mS/mであった。なお、このケーキを一部採取し、2重量%のスラリーとなるように水で再分散し、濾液電導度を測定したところ、はじめ9mS/mであったが、1時間後には95mS/mとなり、平衡に達していなかった。
(Comparative Example 3)
The precipitate obtained in the same manner as in Example 1 was filtered with a filter press having a filtration area of 1.2 m2, the obtained cake was redispersed in 200 L of distilled water in 30 minutes, and stirring was continued for 2 hours. It filtered again with the filter press. This operation was repeated three times. The total treatment time of the precipitate at this time was 15 hr, and the filtrate conductivity was 11 mS / m. A portion of this cake was sampled, redispersed with water to give a 2% by weight slurry, and the filtrate conductivity was measured to be 9 mS / m at first, but 95 mS / m after 1 hour. , Did not reach equilibrium.

このケーキを110℃で乾燥し、ついで600℃にて空気中で2時間焼成した。得られた触媒中のナトリウムは0.54重量%であり、焼成後の触媒の比表面積は51m2/gであった。   The cake was dried at 110 ° C. and then calcined at 600 ° C. in air for 2 hours. Sodium in the obtained catalyst was 0.54% by weight, and the specific surface area of the catalyst after calcination was 51 m 2 / g.


(活性評価)
反応管に上記で得た触媒2mlを充填し、300℃にて、H2 10vol%とN2 90vol%とからなる温度300℃の還元性ガスを2時間通して還元した後、CO25vol%、H 75vol%の混合ガスを20リットル/hrの速度で触媒層に通し、圧力5MPa、温度250℃の条件にて反応を行った。反応生成ガスをガスクロマトグラフで分析し、反応時間とメタノール生成量との関係を求めた。反応開始後、5時間でのメタノール生成量(g-MeOH/L-Cat/hr)を、表1に示す。

(Activity evaluation)
The reaction tube was filled with 2 ml of the catalyst obtained above, and reduced at 300 ° C. by passing a reducing gas consisting of 10 vol% H 2 and 90 vol% N 2 at a temperature of 300 ° C. for 2 hours, followed by 25 vol% CO 2 , H 2 A 75 vol% mixed gas was passed through the catalyst layer at a rate of 20 liters / hr, and the reaction was carried out under conditions of pressure 5 MPa and temperature 250 ° C. The reaction product gas was analyzed with a gas chromatograph, and the relationship between the reaction time and the amount of methanol produced was determined. Table 1 shows the amount of methanol produced (g-MeOH / L-Cat / hr) in 5 hours after the start of the reaction.

Figure 0005258618
Figure 0005258618

Claims (5)

酸化銅、酸化亜鉛、酸化アルミニウムを必須成分とし、酸化ジルコニウム、酸化ガリウム、酸化ケイ素を任意成分とする金属酸化物で構成された触媒の製造方法であって、それぞれの酸性金属塩の水溶液と沈殿剤の水溶液とを水中で混合して触媒前駆体の沈殿を生成させた後、該沈殿物を水中で高分散させた状態で十分に沈殿剤の溶解平衡まで到達させ、かつ、常にスラリー状態を保持して清浄な水と接触させることを特徴とする水素と炭素酸化物からメタノールを合成するための触媒の製造方法。 A method for producing a catalyst comprising a metal oxide comprising copper oxide, zinc oxide, and aluminum oxide as essential components, and zirconium oxide, gallium oxide, and silicon oxide as optional components, each comprising an aqueous solution and a precipitate of each acidic metal salt The aqueous solution of the agent is mixed in water to form a catalyst precursor precipitate, and then the precipitate is sufficiently dispersed in water to reach the precipitant dissolution equilibrium, and the slurry state is always maintained. A method for producing a catalyst for synthesizing methanol from hydrogen and carbon oxides, characterized by being held and brought into contact with clean water. (1)それぞれの酸性金属塩の水溶液と沈殿剤の水溶液とを水中で混合して触媒前駆体の沈殿を生成させた後、スラリー溶液中の触媒前駆体濃度を一定にしたまま、スラリー液相部の抜き出しと、水の供給とを連続的に行い沈殿剤を除去する工程と、(2)水を追加すること無しにスラリー液相部を系外に抜き出すことによって、スラリー中の触媒前駆体の含有濃度を上げてケーキ状の沈殿物とする工程と、(3)ケーキ状の沈殿を乾燥、焼成して金属酸化物とする工程を含むことを特徴とする請求項1記載の水素と炭素酸化物からメタノールを合成するための触媒の製造方法。 (1) The aqueous solution of each acidic metal salt and the aqueous solution of the precipitant are mixed in water to form a precipitate of the catalyst precursor, and then the slurry liquid phase is maintained while keeping the concentration of the catalyst precursor in the slurry solution constant. A step of removing the precipitant by continuously extracting the water and supplying water, and (2) extracting the slurry liquid phase outside the system without adding water, thereby providing a catalyst precursor in the slurry. 2. The hydrogen and carbon according to claim 1, comprising: a step of increasing the content concentration of a cake to form a cake-like precipitate; and (3) a step of drying and baking the cake-like precipitate to form a metal oxide. A method for producing a catalyst for synthesizing methanol from an oxide. 沈殿剤がアルカリ金属化合物の溶液であり、触媒中に含有するアルカリ金属が0.1重量%以下となるまで沈殿剤を除去することを特徴とする、請求項2に記載の水素と炭素酸化物からメタノールを合成するための触媒の製造方法。 The hydrogen and carbon oxide according to claim 2, wherein the precipitant is a solution of an alkali metal compound, and the precipitant is removed until the alkali metal contained in the catalyst is 0.1 wt% or less. Of a catalyst for synthesizing methanol from methanol. スラリー液相部、および水を抜き出した乾燥前のケーキ状沈殿の温度が10〜40℃であることを特徴とする、請求項2に記載の水素と炭素酸化物からメタノールを合成する触媒の製造方法。 The production of a catalyst for synthesizing methanol from hydrogen and carbon oxide according to claim 2, characterized in that the temperature of the slurry liquid phase part and the cake-like precipitate before drying from which water is extracted is 10 to 40 ° C. Method. 沈殿を生成するpHが5〜9の範囲であり、スラリー溶液中の触媒前駆体の沈殿濃度が、0.5〜12重量%の範囲内であることを特徴とする請求項1に記載の水素と炭素酸化物からメタノールを合成するための触媒の製造方法。 2. The hydrogen according to claim 1, wherein the pH for forming the precipitate is in the range of 5 to 9, and the concentration of the catalyst precursor in the slurry solution is in the range of 0.5 to 12 wt%. Of a catalyst for synthesizing methanol from carbon oxides.
JP2009040057A 2009-02-23 2009-02-23 Method for producing copper catalyst Active JP5258618B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2009040057A JP5258618B2 (en) 2009-02-23 2009-02-23 Method for producing copper catalyst
KR1020117021793A KR20110119804A (en) 2009-02-23 2010-02-15 Copper-based catalyst manufacturing method, copper-based catalyst, and pretreatment method for same
CA2753056A CA2753056C (en) 2009-02-23 2010-02-15 Process for preparing copper-based catalyst, copper-based catalyst, and pretreatment method of the same
EP10743725.3A EP2399671B1 (en) 2009-02-23 2010-02-15 Copper-based catalyst manufacturing method and pretreatment method for same
PCT/JP2010/052211 WO2010095599A1 (en) 2009-02-23 2010-02-15 Copper-based catalyst manufacturing method, copper-based catalyst, and pretreatment method for same
US13/202,266 US8623782B2 (en) 2009-02-23 2010-02-15 Process for preparing copper-based catalyst, copper-based catalyst, and pretreatment method of the same
SG2011060423A SG173804A1 (en) 2009-02-23 2010-02-15 Copper-based catalyst manufacturing method, copper-based catalyst, and pretreatment method for same
CN2010800072743A CN102316983B (en) 2009-02-23 2010-02-15 Copper-based catalyst manufacturing method, copper-based catalyst, and pretreatment method for same
TW099105151A TW201034756A (en) 2009-02-23 2010-02-23 Process for preparing copper-based catalyst, copper-based catalyst, and pretreatment method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009040057A JP5258618B2 (en) 2009-02-23 2009-02-23 Method for producing copper catalyst

Publications (2)

Publication Number Publication Date
JP2010194421A JP2010194421A (en) 2010-09-09
JP5258618B2 true JP5258618B2 (en) 2013-08-07

Family

ID=42819722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040057A Active JP5258618B2 (en) 2009-02-23 2009-02-23 Method for producing copper catalyst

Country Status (1)

Country Link
JP (1) JP5258618B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183577A1 (en) 2012-06-04 2013-12-12 三井化学株式会社 Catalyst for methanol production, method for producing same, and method for producing methanol
JP6008802B2 (en) * 2013-07-11 2016-10-19 三井化学株式会社 Method for purifying phenol
JP2015054312A (en) * 2013-09-13 2015-03-23 堺化学工業株式会社 Method for producing catalyst particles for hydrogenation, and catalyst particles for hydrogenation
CN105268439B (en) * 2014-07-25 2018-02-06 中国科学院大连化学物理研究所 Catalyst for hydrogenation reaction and its production and use
TW202220947A (en) 2020-08-31 2022-06-01 日商住友化學股份有限公司 Method for manufacturing methanol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558738B1 (en) * 1984-01-27 1987-11-13 Inst Francais Du Petrole PROCESS FOR THE MANUFACTURE OF CATALYSTS CONTAINING COPPER, ZINC AND ALUMINUM FOR USE IN THE PRODUCTION OF METHANOL FROM SYNTHESIS GAS

Also Published As

Publication number Publication date
JP2010194421A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
WO2010095599A1 (en) Copper-based catalyst manufacturing method, copper-based catalyst, and pretreatment method for same
CA2178834C (en) Composition precursor and cerium and zirconium mixed oxide based composition, method for its preparation and use thereof
CA1253842A (en) Preparation of catalysts made up of copper, zinc, aluminum and at least one metal from rare earth and zirconium grouping, and use of said catalysts for reaction by means of a synthesis gas
JP5258618B2 (en) Method for producing copper catalyst
RU2491119C2 (en) Low-temperature blue gas conversion catalyst
FR2608583A1 (en) CERIC OXIDE WITH NEW MORPHOLOGICAL CHARACTERISTICS AND METHOD OF OBTAINING THE SAME
JP5863964B2 (en) Methanol production catalyst, method for producing the same, and method for producing methanol
CN107824190A (en) A kind of efficient Methanol Decomposition hydrogen manufacturing copper-based catalysts
JP2007083197A (en) Method for producing copper-zinc-aluminum based catalyst
JP4467675B2 (en) Dimethyl ether synthesis catalyst and synthesis method
JPWO2006006277A1 (en) Catalyst and process for producing cycloolefin
CN111215092B (en) MOFs-derived yolk-shell type copper-manganese composite bimetallic oxide and preparation method thereof
JPH05245376A (en) Copper oxide-aluminum oxide-magnesium oxide catalyst for conversion of carbon monoxide
JP4122426B2 (en) Hydrogen production method
JPH10216522A (en) Catalyst for methanol synthesis
RU2710375C2 (en) Method of catalyst preparation
CN105080549B (en) A kind of ethyl hexanol catalyst of octenal gas phase hydrogenation system 2 and preparation method thereof
JP5258617B2 (en) Method for producing copper catalyst
JP2002079101A (en) Catalyst precursor for methanol steam reforming, catalyst for methanol steam reforming and its manufacturing method
JP5628016B2 (en) Method for producing copper catalyst and method for aging copper catalyst precursor
WO2009071862A2 (en) Purified powder of nanometric particles
CA1150715A (en) Process for preparing molybdenum and/or tungsten oxides catalysts and other metals oxides catalysts
Ilyas et al. Oxidation of benzyl alcohol in liquid phase catalyzed by oxides of nickel
JPH09141099A (en) Methanol synthesis catalyst
RU2804195C1 (en) Catalyst for selective hydrogenation of carbon dioxide to produce methanol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250