JP5257640B2 - Method for producing computer-generated hologram and computer-generated hologram produced by the method - Google Patents

Method for producing computer-generated hologram and computer-generated hologram produced by the method Download PDF

Info

Publication number
JP5257640B2
JP5257640B2 JP2012166111A JP2012166111A JP5257640B2 JP 5257640 B2 JP5257640 B2 JP 5257640B2 JP 2012166111 A JP2012166111 A JP 2012166111A JP 2012166111 A JP2012166111 A JP 2012166111A JP 5257640 B2 JP5257640 B2 JP 5257640B2
Authority
JP
Japan
Prior art keywords
computer
light
generated hologram
cgh
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012166111A
Other languages
Japanese (ja)
Other versions
JP2012212183A (en
Inventor
満 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2012166111A priority Critical patent/JP5257640B2/en
Publication of JP2012212183A publication Critical patent/JP2012212183A/en
Application granted granted Critical
Publication of JP5257640B2 publication Critical patent/JP5257640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Holo Graphy (AREA)
  • Credit Cards Or The Like (AREA)

Description

本発明は、計算機合成ホログラムの作製方法及びその方法により作製された計算機合成ホログラムに関するものである。   The present invention relates to a method for producing a computer-generated hologram and a computer-generated hologram produced by the method.

従来、偽造防止のためホログラムを金券やクレジットカード等に設けるものが知られている。このホログラムとして、計算機を用いた演算により所定の記録面上に干渉縞を形成して作製する計算機合成ホログラム(CGH)がある(特許文献1参照)。   2. Description of the Related Art Conventionally, it is known that a hologram is provided on a cash voucher or a credit card to prevent forgery. As this hologram, there is a computer-generated hologram (CGH) that is produced by forming interference fringes on a predetermined recording surface by calculation using a computer (see Patent Document 1).

特開2001−013858号公報JP 2001-013858 A 特許3810917号公報Japanese Patent No. 3810917 特開2000−214750号公報JP 2000-214750 A 特開2002−72837号公報JP 2002-72837 A 特開2005−215570号公報JP 2005-215570 A 特開2004−309709号公報JP 2004-309709 A 特開2004−264839号公報JP 2004-264839 A

A. W. Lohmann and D. P. Paris: "Binary Fraunhofer Holograms, Generated by Computer",Appl. Opt., 6, 10, pp. 1739-1748(Oct. 1967)A. W. Lohmann and D. P. Paris: "Binary Fraunhofer Holograms, Generated by Computer", Appl. Opt., 6, 10, pp. 1739-1748 (Oct. 1967) Wai Hon Lee: "Sampled Fourier Transform Hologram Generated by Computer", Appl. Opt., 9, 3, pp. 639-643(Mar. 1970)Wai Hon Lee: "Sampled Fourier Transform Hologram Generated by Computer", Appl. Opt., 9, 3, pp. 639-643 (Mar. 1970)

しかしながら、上記特許文献1の計算機合成ホログラムは、計算負荷は小さいが、縦方向の視域が狭かった。例えば、図17及び図18は、従来の技術を示す図である。図17は、計算機合成ホログラム101に単色光からなる再生照明光102aを照射した場合の側面図を示す。図17に示すように、最上段の単位領域から発生する回折光103は視点Eの方向に回折されない。このため視点Eの位置では計算機合成ホログラム101の最上段部の再生像は観察できず、縦方向の視域は広がらない。また、図18は、計算機合成ホログラム101に白色光からなる再生照明光102bを照射した場合を示す。図18に示すように、白色光からなる再生照明光102bを照射したにも関わらず、各単位領域は単色にしか見えない。例えば最上段の単位領域から発生する回折光103の内、視点Eの方向に向かう光は、入射した白色光102bの内の青色成分Bである。このため、視点Eの位置では、計算機合成ホログラム101の最上段部の再生像は青色Bに観察される。また、中央部分は、緑色Gに、最下段部分は赤色Rに観察される(図示せず)。   However, the computer-generated hologram of Patent Document 1 described above has a small calculation load but a narrow vertical viewing area. For example, FIGS. 17 and 18 are diagrams showing a conventional technique. FIG. 17 shows a side view when the computer-generated hologram 101 is irradiated with the reproduction illumination light 102a made of monochromatic light. As shown in FIG. 17, the diffracted light 103 generated from the uppermost unit region is not diffracted in the direction of the viewpoint E. For this reason, at the position of the viewpoint E, the reproduced image of the uppermost stage of the computer-generated hologram 101 cannot be observed, and the vertical viewing area does not widen. FIG. 18 shows a case where the computer-generated hologram 101 is irradiated with reproduction illumination light 102b made of white light. As shown in FIG. 18, each unit area looks only a single color even though the reproduction illumination light 102 b made of white light is irradiated. For example, among the diffracted light 103 generated from the uppermost unit region, the light toward the viewpoint E is the blue component B in the incident white light 102b. For this reason, at the position of the viewpoint E, the reproduced image of the uppermost part of the computer-generated hologram 101 is observed in blue B. The central portion is observed in green G, and the lowermost portion is observed in red R (not shown).

なお、原画像からの物体光の光源として点光源を用いることで、上下方向(縦方向)の視域を有する技術が特許文献2に開示されている。特許文献2に開示された技術では、物体光は原画像上の点光源から広がる球面波となり、上下方向の視域は広がる。しかしながら、ホログラム記録面での記録領域を上下方向で制限しているため、物体の奥行き位置によって上下方向の視域が変化してしまう。   Patent Document 2 discloses a technique having a viewing area in the vertical direction (vertical direction) by using a point light source as a light source of object light from an original image. In the technique disclosed in Patent Document 2, the object light is a spherical wave that spreads from the point light source on the original image, and the viewing area in the vertical direction is widened. However, since the recording area on the hologram recording surface is limited in the vertical direction, the vertical viewing area changes depending on the depth position of the object.

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、観察しやすくセキュリティ性に優れた計算機合成ホログラムを作製する方法及びその方法により作製された計算機合成ホログラムを提供することである。   The present invention has been made in view of such problems of the prior art, and its purpose is to produce a computer-generated hologram that is easy to observe and has excellent security, and a computer-generated hologram produced by the method. Is to provide.

上記目的を達成する本発明の計算機合成ホログラムを作製する方法は、計算機を用いた演算により所定の記録面上に振幅情報と位相情報を記録してなる計算機合成ホログラムの作製方法において、前記計算機合成ホログラムは、第1方向と、前記第1方向に直交する第2方向に対して、前記第1方向のみの視差を有し、前記第2方向に所定の幅を有する各単位領域を有し、前記各単位領域内に、一方から他方へ徐々に変化し、前記第2方向に異なる凹凸パターンの空間周波数の回折パターンが作製され、記録物体上に設定した線光源から前記第1方向に広がり、前記第2方向に一定の幅の物体光を用い、前記参照光として前記第2方向に関して前記単位領域ごとに定めた所定の位置に集束する参照光を用いて記録されることを特徴とする。   A method for producing a computer-generated hologram of the present invention that achieves the above object is the method for producing a computer-generated hologram, wherein amplitude information and phase information are recorded on a predetermined recording surface by an operation using a computer. The hologram has each unit region having a parallax only in the first direction and a predetermined width in the second direction with respect to the first direction and the second direction orthogonal to the first direction, Within each unit region, gradually changing from one to the other, a diffraction pattern having a spatial frequency different in the second direction is produced, and spreads in the first direction from a linear light source set on the recording object, Recording is performed using object light having a constant width in the second direction, and using the reference light focused at a predetermined position determined for each unit region in the second direction as the reference light.

また、前記回折パターンは、干渉縞からなることを特徴とする。   Further, the diffraction pattern is characterized by comprising interference fringes.

また、前記回折パターンは、位相と振幅を変調するパターンからなることを特徴とする。   The diffraction pattern may be a pattern that modulates phase and amplitude.

さらに、計算機合成ホログラムが前記計算機合成ホログラムの作製方法により作製されたことを特徴とする。   Furthermore, the computer-generated hologram is manufactured by the method for manufacturing the computer-generated hologram.

本発明によれば、第1方向のみの視差を有し、単位領域内の第2方向の回折パターンの空間周波数が異なるように計算機合成ホログラムを作製することにより、回折光の第2方向の拡散角度を変更するので、第2方向の視域を拡大した計算機合成ホログラムとすることができる。また、物体光の第2方向の広がりを物体の位置とは無関係に決めることができるので、物体の奥行き位置によって第2方向の視域が変化することがない。さらに、再生照明光として白色光を用いた場合、視域が拡大すると共に、再生像を白色で観察することができる。   According to the present invention, diffusion of diffracted light in the second direction is achieved by producing a computer-generated hologram having a parallax only in the first direction and having different spatial frequencies of diffraction patterns in the second direction in the unit region. Since the angle is changed, a computer-generated hologram with an enlarged viewing area in the second direction can be obtained. Further, since the spread of the object light in the second direction can be determined regardless of the position of the object, the viewing area in the second direction does not change depending on the depth position of the object. Further, when white light is used as the reproduction illumination light, the viewing area is enlarged and the reproduction image can be observed in white.

本発明に係る計算機合成ホログラムの記録方法の概念を示す斜視図である。It is a perspective view which shows the concept of the recording method of the computer composition hologram which concerns on this invention. 図1の演算処理の概念に基づく具体例を示す図である。It is a figure which shows the specific example based on the concept of the arithmetic processing of FIG. 図1の演算処理の概念を説明するための上面図である。It is a top view for demonstrating the concept of the arithmetic processing of FIG. 本実施形態のCGH原版の構成を示す図である。It is a figure which shows the structure of the CGH original plate of this embodiment. 本実施形態のCGH原版の具体的な構造を示す図である。It is a figure which shows the specific structure of the CGH original plate of this embodiment. 本実施形態の実施例1のCGH原版作製時の状態を示す図である。It is a figure which shows the state at the time of CGH original plate preparation of Example 1 of this embodiment. 本実施形態の実施例1のCGH原版作製時の状態を示す斜視図である。It is a perspective view which shows the state at the time of CGH original plate preparation of Example 1 of this embodiment. 実施例1のCGH原版に単色光からなる再生照明光を照射した場合を示す図である。It is a figure which shows the case where the reproduction illumination light which consists of monochromatic light is irradiated to the CGH original plate of Example 1. FIG. 本実施形態の実施例2のCGH原版作製時の状態を示す図である。It is a figure which shows the state at the time of CGH original plate preparation of Example 2 of this embodiment. Y方向の発散位置Fm1の他の例を示す図である。It is a figure which shows the other example of the divergence position Fm1 of a Y direction. Y方向の発散位置Fm1の他の例を示す図である。It is a figure which shows the other example of the divergence position Fm1 of a Y direction. Y方向の発散位置Fm1の他の例を示す図である。It is a figure which shows the other example of the divergence position Fm1 of a Y direction. Y方向の発散位置Fm1の他の例を示す図である。It is a figure which shows the other example of the divergence position Fm1 of a Y direction. 実施例1のCGH原版に白色光からなる再生照明光を照射した場合を示す図である。It is a figure which shows the case where the reproduction illumination light which consists of white light is irradiated to the CGH original plate of Example 1. FIG. CGH原版が白色で観察可能となる条件を示す図である。It is a figure which shows the conditions which the CGH original plate can observe in white. 参照光Lを所定の集束位置Gに集束する光とし、物体光はY方向には広がらない光とした場合を示す図である。It is a figure which shows the case where the reference light L is made into the light which converges to the predetermined condensing position G, and object light is made into the light which does not spread in a Y direction. 従来の技術を示す図である。It is a figure which shows the prior art. 従来の技術を示す図である。It is a figure which shows the prior art.

以下、図面を参照にして本実施形態のホログラムの作製方法を説明する。   Hereinafter, a method for producing a hologram of the present embodiment will be described with reference to the drawings.

本実施形態では、まず、計算機合成ホログラム1を作製する。図1〜図3は、計算機合成ホログラム1を作製する基本的な方法を示す。   In this embodiment, first, the computer-generated hologram 1 is produced. 1 to 3 show a basic method for producing the computer-generated hologram 1.

まず、本実施形態では、計算機合成ホログラムとして原画像上に設定した点光源から所定の一次元方向にのみ広がる物体光を用いて記録されたものを用いる。この作製方法は、特許文献1の記載に基づく方法である。すなわち、図1に示すように、原画像O上の任意の点光源Piから発せられた物体光Oiが、図示の通り本実施形態では水平方向(XZ平面に平行な平面内)にのみ広がると仮定する。すると、物体光Oiは、記録媒体1上の線状領域Bだけに到達することになり、記録媒体1の他の領域には、物体光Oiは一切届かないことになる。光学的な方法でホログラムを作製する場合、このように物体光の広がりを制限することは極めて困難であるが、計算機を用いてホログラムを作製する場合であれば、演算式を修正するだけで物体光を容易に制御することができる。そこで、原画像Oを構成する全ての点光源から発せられる物体光について、同様の限定(物体光はXZ平面に平行な平面内にのみ広がるという限定)を付すようにする。本実施形態で作製した計算機ホログラムは、水平方向の視差のみを有する計算機合成ホログラムとなる。   First, in the present embodiment, a computer-generated hologram that is recorded using object light that spreads only in a predetermined one-dimensional direction from a point light source set on an original image is used. This manufacturing method is a method based on the description in Patent Document 1. That is, as shown in FIG. 1, when object light Oi emitted from an arbitrary point light source Pi on the original image O spreads only in the horizontal direction (in a plane parallel to the XZ plane) in the present embodiment as shown. Assume. Then, the object light Oi reaches only the linear region B on the recording medium 1, and the object light Oi does not reach any other region of the recording medium 1. In the case of producing a hologram by an optical method, it is extremely difficult to limit the spread of object light in this way. However, if a hologram is produced using a computer, the object can be simply modified by correcting the arithmetic expression. Light can be easily controlled. Therefore, the same limitation is imposed on the object light emitted from all point light sources constituting the original image O (the limitation that the object light spreads only in a plane parallel to the XZ plane). The computer generated hologram produced in this embodiment is a computer synthesized hologram having only horizontal parallax.

図2は、上述した基本概念に基づく記録方法の具体例を示す斜視図である。この例では、原画像O及び記録媒体1(記録面)を、それぞれ多数の平行な平面によって水平方向に分割し、多数の線状の単位領域を定義している。すなわち、図示の通り、原画像Oは、合計M個の単位領域A1,A2,A3,…,Am,…AMに分割されており、記録媒体1は、同じく合計M個の単位領域B1,B2,B3,…,Bm,…BMに分割されている。原画像Oが立体画像の場合、各単位領域A1,A2,A3,…,Am,…AMは、この立体の表面部分を分割することによって得られる領域になる。ここで、原画像O上のM個の単位領域と記録媒体1上のM個の単位領域とは、それぞれが1対1の対応関係にある。例えば、原画像O上の第m番目の単位領域Amは、記録媒体1上の第m番目の単位領域Bmに対応している。   FIG. 2 is a perspective view showing a specific example of a recording method based on the basic concept described above. In this example, the original image O and the recording medium 1 (recording surface) are each divided in the horizontal direction by a large number of parallel planes to define a large number of linear unit areas. That is, as shown in the figure, the original image O is divided into a total of M unit areas A1, A2, A3,..., Am,... AM, and the recording medium 1 similarly has a total of M unit areas B1, B2. , B3,..., Bm,. When the original image O is a stereoscopic image, each of the unit areas A1, A2, A3,..., Am, ... AM is an area obtained by dividing this stereoscopic surface portion. Here, the M unit areas on the original image O and the M unit areas on the recording medium 1 have a one-to-one correspondence. For example, the mth unit area Am on the original image O corresponds to the mth unit area Bm on the recording medium 1.

なお、この図2に示す例では、各単位領域A1,A2,A3,…,Am,…AMの幅は、原画像O上に定義された点光源のY方向(本実施形態では鉛直方向)のピッチに等しく設定されており、個々の単位領域は、点光源が一列に並んだ線状の領域になっている。例えば、図示の例では、第m番目の単位領域Amには、N個の点光源Pm1〜PmNが一列に並んでいる。   In the example shown in FIG. 2, the width of each unit area A1, A2, A3,..., Am,... AM is the Y direction of the point light source defined on the original image O (vertical direction in this embodiment). Each unit region is a linear region in which point light sources are arranged in a line. For example, in the illustrated example, N point light sources Pm1 to PmN are arranged in a line in the m-th unit region Am.

また、各単位領域B1,B2,B3,…,Bm,…BMの幅は、原画像O上に定義された点光源のY方向のピッチに等しく設定されており、個々の単位領域には、演算点が二次元に並んだ線状の領域になっている。図示の演算点Q(x,ym)は、第m番目の単位領域Bm内に位置する演算点を示しており、XY座標系において座標値(x,ym)で示される位置にある。   Further, the width of each unit area B1, B2, B3,..., Bm,... BM is set equal to the pitch in the Y direction of the point light source defined on the original image O. The calculation point is a linear region arranged two-dimensionally. The illustrated calculation point Q (x, ym) indicates a calculation point located in the m-th unit region Bm, and is at a position indicated by a coordinate value (x, ym) in the XY coordinate system.

この例の場合、演算点Q(x,ym)についての干渉波強度は、次のようにして求められる。まず、この演算点Q(x,ym)が所属する単位領域Bmに対応する原画像O上の単位領域Amを演算対象単位領域として定める。そして、この演算対象単位領域Am内の点光源Pm1〜PmNから発せられた物体光Om1〜OmNと、参照光Lθmとによって形成される干渉波についての演算点Q(x,ym)の位置における振幅強度を求めれば、この振幅強度が、目的とする演算点Q(x,ym)についての干渉波強度である。ここで、参照光Lθmは、例えばYZ平面に平行な単色平行光線であり、何れの位置でも同じ角度で記録媒体1上に入射する。あるいは、参照光Lθmの入射角度θmは、観察環境を仮定した仮想照明及び仮想視点の設定に基づいて定められ、例えば、観察時に上方からの点光源を想定する場合には、上端の単位領域B1についての参照光Lθ1の記録媒体の法線方向からの入射角度θ1は小さな角度δとなり、下端の単位領域BMについての参照光LθMの入射角度θMは大きな角度βとなるように設定してもよい。   In the case of this example, the interference wave intensity at the calculation point Q (x, ym) is obtained as follows. First, a unit area Am on the original image O corresponding to the unit area Bm to which the calculation point Q (x, ym) belongs is determined as a calculation target unit area. Then, the amplitude at the position of the calculation point Q (x, ym) for the interference wave formed by the object light Om1 to OmN emitted from the point light sources Pm1 to PmN and the reference light Lθm in the calculation target unit area Am. If the intensity is obtained, this amplitude intensity is the interference wave intensity at the target calculation point Q (x, ym). Here, the reference light Lθm is, for example, a monochromatic parallel light beam parallel to the YZ plane, and is incident on the recording medium 1 at the same angle at any position. Alternatively, the incident angle θm of the reference light Lθm is determined based on the setting of the virtual illumination and the virtual viewpoint assuming the observation environment. For example, when assuming a point light source from above at the time of observation, the unit region B1 at the upper end The incident angle θ1 of the reference light Lθ1 from the normal direction of the recording medium may be set to a small angle δ, and the incident angle θM of the reference light LθM to the lower unit region BM may be set to a large angle β. .

図3は、このような演算処理の概念を説明するための上面図であり、図2に示す原画像O及びCGH原版用記録媒体1を、図の上方から見た状態を示している。図示の通り、演算点Q(x,ym)における干渉波強度を求めるのに必要な物体光は、演算対象単位領域Am内のN個の点光源Pm1,…,Pmi,…,PmNから発せられた物体光Om1,…,Omi,…,OmNのみに限定され、原画像Oを構成する全点光源からの物体光を考慮する必要はない。こうして、CGH原版用記録媒体1上に定義した全ての演算点Q(x,ym)について、それぞれ所定の干渉波強度を求めれば、CGH原版用記録媒体1上に記録すべき干渉波の強度分布が得られ、得られた干渉波の強度分布を何らかの方法で物理的に記録すればCGH原版1となる。具体的には、特許文献3に記載のように、演算点に対応した位置に干渉波の強度に応じた占有率の矩形を記録することでCGH原版1を作製することができる。   FIG. 3 is a top view for explaining the concept of such arithmetic processing, and shows a state in which the original image O and the CGH original recording medium 1 shown in FIG. 2 are viewed from above. As shown in the figure, the object light necessary for obtaining the interference wave intensity at the calculation point Q (x, ym) is emitted from N point light sources Pm1,..., Pmi,. , Omi,..., OmN, and it is not necessary to consider object light from all point light sources constituting the original image O. In this way, if the predetermined interference wave intensity is obtained for each of the calculation points Q (x, ym) defined on the CGH original recording medium 1, the intensity distribution of the interference wave to be recorded on the CGH original recording medium 1 is obtained. If the intensity distribution of the obtained interference wave is physically recorded by some method, the CGH original plate 1 is obtained. Specifically, as described in Patent Document 3, the CGH original plate 1 can be produced by recording a rectangle having an occupation rate corresponding to the intensity of the interference wave at a position corresponding to the calculation point.

以上、図1〜図3を参照しながら、原画像O上に定義された第m番目の単位領域Am上の光源の情報を、CGH原版用記録媒体1上に定義された第m番目の単位領域Bm上に記録する手法を述べた。この手法で述べたモデルでは、単位領域Am及びBmは、何れも細長い短冊状の領域であり、点光源は一次元的に、演算点は二次元的に並んでいる。   As described above, with reference to FIGS. 1 to 3, the light source information on the m-th unit area Am defined on the original image O is the m-th unit defined on the CGH original recording medium 1. A method of recording on the area Bm has been described. In the model described in this method, each of the unit areas Am and Bm is an elongated strip-shaped area, and the point light sources are arranged one-dimensionally and the calculation points are arranged two-dimensionally.

なお、以上の方法において、分割領域上の演算点Qでの物体光の振幅と位相の記録には、上記で説明したような参照光との干渉による干渉縞で記録する方法以外に、特許文献4、5に記載されているように1面に溝を持った3次元セルの溝の深さで位相を、溝の幅で振幅を記録する方法でもよい。   In the above method, the amplitude and phase of the object light at the calculation point Q on the divided area may be recorded in addition to the method of recording with interference fringes due to interference with the reference light as described above. As described in 4, 5, the phase may be recorded by the depth of the groove of the three-dimensional cell having a groove on one surface, and the amplitude may be recorded by the width of the groove.

あるいは、非特許文献1に記載されたA.W.Lohmannの方法、非特許文献2に記載されたLeeの方法等で振幅と位相を記録するようにしてもよい。   Alternatively, as described in A.N. W. The amplitude and phase may be recorded by the Lohmann method, the Lee method described in Non-Patent Document 2, or the like.

図4は、本実施形態のCGH原版1の構成を示す図である。図4(a)は、図2に示した系をX方向から観察した図、図4(b)は、X方向から観察したCGH原版1の拡大図である。   FIG. 4 is a diagram showing a configuration of the CGH original plate 1 of the present embodiment. 4A is a view of the system shown in FIG. 2 observed from the X direction, and FIG. 4B is an enlarged view of the CGH original plate 1 observed from the X direction.

本実施形態のCGH原版1は、図4(a)に示す単位領域B1,B2,B3,…,Bm,…BM内に、Y方向のピッチ間隔(空間周波数)をそれぞれ異ならせるように回折パターンとしての干渉縞を作製することで、Y方向の視域を変更するものである。例えば、CGH原版1の単位領域BmのY方向の干渉縞間隔Cm1,Cm2,Cm3,…,Cmt,…CmTは、図4(b)に示すように、様々なパターンで作製することができる。図4(b)には概念図としてY方向の干渉縞間隔Cm1,Cm2,Cm3,…,Cmt,…CmTを図示したが、多くの場合、物理的な干渉縞パターンはCGH原版1の表面の凹凸として形成する。この場合、図5に示すように、凹凸の断面が矩形(図5(a))、曲線(図5(b))など種々の方法がある。また、断面の変化ではなく2次元パターンがY方向に周期的に変化することで干渉縞間隔を定めることもできる。なお、図5では、第Y方向に異なる干渉縞間隔は、単位領域内で一方から他方へ徐々に変化しているが、これに限らず、様々なパターンで作製することができる。   The CGH original plate 1 of the present embodiment has a diffraction pattern so that the pitch intervals (spatial frequencies) in the Y direction are different in the unit regions B1, B2, B3,..., Bm, BM shown in FIG. As a result, the viewing area in the Y direction is changed. For example, the interference fringe spacings Cm1, Cm2, Cm3,..., CmT in the Y direction of the unit region Bm of the CGH original plate 1 can be produced in various patterns as shown in FIG. In FIG. 4 (b), the interference fringe spacings Cm1, Cm2, Cm3,..., CmT in the Y direction are illustrated as conceptual diagrams. It is formed as unevenness. In this case, as shown in FIG. 5, there are various methods such as a rectangular cross section (FIG. 5A) and a curved line (FIG. 5B). In addition, the interference fringe interval can be determined not by changing the cross section but by periodically changing the two-dimensional pattern in the Y direction. In FIG. 5, the interference fringe intervals that differ in the Y-th direction gradually change from one to the other in the unit region. However, the present invention is not limited to this, and various patterns can be produced.

図6は、本実施形態の実施例1のCGH原版1作製時の状態を示す図である。本実施例1では、物体光Omの光源のY方向の発散位置を、CGH原版1の観察者と反対側の発散位置Fm1に設定する。したがって、図7に示すように、物体光Omは、X方向に関しては、点光源P1…Pm…PMから広がり、Y方向には広がることなく発せられ、Y方向に関しては、発散位置F11…Fm1…FM1から発せられ広がるように設定される。このため、多少の非点収差が発生するが、原画像OとCGH原版1との間の距離が極めて短いので、ほとんど影響はない。   FIG. 6 is a diagram illustrating a state when the CGH original plate 1 of Example 1 of the present embodiment is manufactured. In the first embodiment, the divergence position in the Y direction of the light source of the object light Om is set to the divergence position Fm1 on the opposite side to the observer of the CGH original plate 1. Therefore, as shown in FIG. 7, the object light Om is emitted from the point light sources P1... Pm... PM in the X direction and is emitted without spreading in the Y direction, and the divergence positions F11. It is set to spread from FM1. For this reason, although some astigmatism occurs, since the distance between the original image O and the CGH original 1 is very short, there is almost no influence.

このように光源を設定し、所定の入射角で参照光Lを照射し、物体光Omと参照光Lが干渉するように設定すると、図6に示すCGH原版1の単位領域Bm内に干渉縞間隔Cm1,Cm2,Cm3,…,Cmt,…CmTの干渉縞が現れる。本実施例1では、干渉縞間隔は紙面に対して上から下に広がっていくように現れる。すなわち、CGH原版1は、干渉縞間隔Cm1側の空間周波数が高く、干渉縞間隔CmT側の空間周波数が低くなるように、作製される。   When the light source is set in this manner, the reference light L is irradiated at a predetermined incident angle, and the object light Om and the reference light L are set to interfere with each other, interference fringes are formed in the unit area Bm of the CGH original plate 1 shown in FIG. Interference fringes with intervals Cm1, Cm2, Cm3,..., Cmt,. In the first embodiment, the interference fringe interval appears so as to spread from top to bottom with respect to the paper surface. That is, the CGH original plate 1 is manufactured so that the spatial frequency on the side of the interference fringe interval Cm1 is high and the spatial frequency on the side of the interference fringe interval CmT is low.

図8は、図6及び図7に示した実施例1のように作製されたCGH原版1に単色光からなる再生照明光2を照射した場合を示す図である。図6及び図7に示したCGH原版1に対して、単色光の再生照明光2を照射した場合、図8に示すように、CGH原版1で回折した回折光3は、側面から見ると円弧状に広がり、Y方向に視域を拡大しながら進行する。   FIG. 8 is a diagram showing a case where the reproduction illumination light 2 made of monochromatic light is irradiated to the CGH original plate 1 produced as in the first embodiment shown in FIGS. 6 and 7. When the reproduction illumination light 2 of monochromatic light is irradiated on the CGH original plate 1 shown in FIGS. 6 and 7, the diffracted light 3 diffracted by the CGH original plate 1 is circular when viewed from the side as shown in FIG. It spreads in an arc and proceeds while expanding the viewing zone in the Y direction.

図9は、本実施形態の実施例2のCGH原版1作製時の状態を示す図である。本実施例2では、物体光OmのY方向の集束位置をCGH原版に対して観察者側の集束位置Fm2に設定する。したがって、物体光Omは、紙面に垂直なX方向に関しては、点光源P1…Pm…PMからY方向に広がることなく発せられ、Y方向に関しては、集束位置F12…Fm2…FM2から発せられるように設定される。このため、多少の非点収差が発生するが、原画像OとCGH原版1との間の距離が極めて短いので、ほとんど影響はない。   FIG. 9 is a diagram illustrating a state when the CGH original plate 1 of Example 2 of the present embodiment is manufactured. In the second embodiment, the focusing position in the Y direction of the object light Om is set to the focusing position Fm2 on the observer side with respect to the CGH original. Therefore, the object light Om is emitted from the point light sources P1... Pm... PM without spreading in the Y direction in the X direction perpendicular to the paper surface, and is emitted from the converging positions F12... Fm2. Is set. For this reason, although some astigmatism occurs, since the distance between the original image O and the CGH original 1 is very short, there is almost no influence.

このように光源を設定し、所定の入射角で参照光Lを照射し、物体光Omと参照光Lが干渉するように設定すると、図9に示すCGH原版1の単位領域Bm内に干渉縞間隔Cm1,Cm2,Cm3,…,Cmt,…CmTの干渉縞が現れる。本実施例2では、干渉縞間隔は紙面に対して上から下に狭まっていくように現れる。すなわち、CGH原版1は、干渉縞間隔Cm1側の空間周波数が低く、干渉縞間隔CmT側の空間周波数が高くなるように、作製される。   When the light source is set in this manner, the reference light L is irradiated at a predetermined incident angle, and the object light Om and the reference light L are set to interfere with each other, interference fringes are formed in the unit area Bm of the CGH original plate 1 shown in FIG. Interference fringes with intervals Cm1, Cm2, Cm3,..., Cmt,. In the second embodiment, the interference fringe interval appears so as to narrow from the top to the bottom with respect to the paper surface. That is, the CGH original plate 1 is manufactured so that the spatial frequency on the side of the interference fringe interval Cm1 is low and the spatial frequency on the side of the interference fringe interval CmT is high.

図10乃至図13は、Y方向に関する物体光の発散位置Fm1又は集束位置Fm2の他の例を示す図である。図10は、発散位置Fm1をCGH原版1の近くに配置した場合を示す図である。この場合、Y方向の視域の広がりが大きくなる。図11は、発散位置Fm1をCGH原版1から遠く離れて配置した場合を示す図である。この場合、Y方向の視域の広がりが小さくなる。図12は、すべての単位領域B1,B2,B3,…,Bm,…BMに対してCGH原版1と発散位置Fm1との位置関係が一定の場合を示す図である。この場合、設計が容易となり、計算負荷が小さくて済む。図13は、単位領域B1,B2,B3,…,Bm,…BM毎にCGH原版1と発散位置Fm1との位置関係が異なる場合を示す図である。この場合、単位領域B1,B2,B3,…,Bm,…BM毎にY方向の視域を変更することができる。図13に示す例では、上端や下端の単位領域から観察者に向かう再生光が同時に見える範囲が広くなっている。   10 to 13 are diagrams showing other examples of the diverging position Fm1 or the focusing position Fm2 of the object light in the Y direction. FIG. 10 is a diagram showing a case where the divergence position Fm1 is arranged near the CGH original plate 1. FIG. In this case, the spread of the viewing area in the Y direction is increased. FIG. 11 is a diagram showing a case where the divergence position Fm1 is arranged far away from the CGH original plate 1. FIG. In this case, the spread of the viewing area in the Y direction is reduced. FIG. 12 is a diagram showing a case where the positional relationship between the CGH original plate 1 and the diverging position Fm1 is constant with respect to all the unit areas B1, B2, B3,..., Bm,. In this case, the design becomes easy and the calculation load is small. FIG. 13 is a diagram showing a case where the positional relationship between the CGH original plate 1 and the diverging position Fm1 is different for each of the unit areas B1, B2, B3,..., Bm,. In this case, the viewing area in the Y direction can be changed for each of the unit areas B1, B2, B3,..., Bm,. In the example shown in FIG. 13, the range in which the reproduction light toward the observer from the upper and lower unit areas can be seen simultaneously is wide.

図14は、図6に示した実施例1のように作製されたCGH原版1に白色光からなる再生照明光2を照射した場合を示す図である。図6に示したCGH原版1に対して、白色光の再生照明光2を照射した場合、図14に示すように、CGH原版1から光の波長毎に異なる回折光3が発生する。本実施形態では、RGBに対応するそれぞれの回折光3は、図14に示すように、異なる方向に進行するが、回折光3のRGBすべてを含む領域Sで白色に見えるようになる。   FIG. 14 is a diagram showing a case where the reproduction illumination light 2 made of white light is irradiated to the CGH original plate 1 manufactured as in the first embodiment shown in FIG. When the CGH master 1 shown in FIG. 6 is irradiated with the white reproduction illumination light 2, different diffracted light 3 is generated from the CGH master 1 for each wavelength of light, as shown in FIG. 14. In the present embodiment, each diffracted light 3 corresponding to RGB travels in different directions as shown in FIG. 14, but appears white in a region S including all RGB of the diffracted light 3.

ここで、CGH原版1が白色で観察可能となる条件について、詳細に説明する。図15は、CGH原版が白色で観察可能となる条件を示す図である。   Here, the conditions under which the CGH original plate 1 can be observed in white will be described in detail. FIG. 15 is a diagram showing conditions under which the CGH original plate can be observed in white.

CGH原版1の各単位領域Bm内において、Y方向の最高空間周波数(fmax)の場所に入射する再生照明光2のうち、使用したい最短波長λB(例えば380nm)の光が回折する方向をθBmax(ZY平面内で、Z方向を0度として、反時計回りに正の角度とする)、また、Y方向の最低空間周波数(fmin)の場所に入射する再生照明光2のうち、使用したい最長波長λR(例えば780nm)の光が回折する方向をθRminとした時、以下の条件式(1)の関係を満足すれば、CGH原版1の各単位領域Bmを白色で観察可能な位置が存在することになる。
θRmin<θBmax ・・・(1)
ここで、回折角などの角度θは、ZY平面内でZ方向を0度として、反時計回りに正の角度とし、その取りうる範囲は−π/2<θ<π/2とする。
In each unit region Bm of the CGH original 1, the direction in which the light having the shortest wavelength λB (for example, 380 nm) to be used is diffracted among the reproduction illumination light 2 incident on the highest spatial frequency (fmax) in the Y direction is defined as θBmax ( Within the ZY plane, the Z direction is 0 degree and a positive angle is set in a counterclockwise direction), and the longest wavelength to be used among the reproduction illumination light 2 that is incident on the lowest spatial frequency (fmin) in the Y direction When the direction in which the light of λR (for example, 780 nm) is diffracted is θRmin, there is a position where each unit region Bm of the CGH original plate 1 can be observed in white if the relationship of the following conditional expression (1) is satisfied. become.
θRmin <θBmax (1)
Here, the angle θ such as a diffraction angle is a positive angle counterclockwise with the Z direction in the ZY plane being 0 degree, and the possible range is −π / 2 <θ <π / 2.

また、回折の式
1/f=λ/(sinθout−sinθin)
f:CGHのY方向の空間周波数
λ:波長
θin:入射光の入射角度
θout:回折光の出射角度
を用いると、入射光の入射角度をθLとして、
θRmin=sin-1(fmin・λR+sinθL)
θBmax=sin-1(fmax・λB+sinθL)
となるため、CGH原版1の各単位領域Bmを白色で観察可能な位置が存在するには、θRminとθBmaxを条件式(1)に代入し、以下の条件式(2)を満足させ、さらに、観察位置でCGH原版1の各単位領域Bmを白色で観察するためには、θBmaxを与える矢印とθRminを与える矢印を延長した交点をWとし、交点Wから目Eに向かう角度をθEとしたとき、以下の条件式(3)を満足すればよい。
fmin・λR<fmax・λB ・・・(2)
θRmin<θE<θBmax ・・・(3)
Also, the diffraction formula 1 / f = λ / (sinθout−sinθin)
f: Spatial frequency in the Y direction of CGH λ: Wavelength θin: Incident angle of incident light θout: Using the exit angle of diffracted light, the incident angle of incident light is θL,
θRmin = sin -1 (fmin · λR + sinθL)
θBmax = sin −1 (fmax · λB + sinθL)
Therefore, in order to have a position where each unit region Bm of the CGH original plate 1 can be observed in white, θRmin and θBmax are substituted into the conditional expression (1), and the following conditional expression (2) is satisfied. In order to observe each unit region Bm of the CGH original plate 1 in white at the observation position, the intersection extending the arrow giving θBmax and the arrow giving θRmin is set to W, and the angle from the intersection W to the eye E is set to θE. The following conditional expression (3) may be satisfied.
fmin · λR <fmax · λB (2)
θRmin <θE <θBmax (3)

したがって、CGH原版1のすべての単位領域Bm毎に、条件式(2)及び条件式(3)を満足すれば、観察位置においてCGH全体を白色で観察することができる。   Therefore, if the conditional expressions (2) and (3) are satisfied for every unit region Bm of the CGH original plate 1, the entire CGH can be observed in white at the observation position.

図16は、参照光Lは単位領域毎に所定の集束位置Gに集束し、物体光はY方向には広がらない場合を示す図である。図16に示すように、参照光Lは単位領域BmごとにY方向の所定の集束位置Gに集束し、物体光OmはY方向には広がらない線光源として設定した場合、CGH原版1の単位領域Bm内の干渉縞は、Y方向の干渉縞間隔Cm1,Cm2,Cm3,…,Cmt,…CmTが紙面に対して上から下に広がっていくように現れる。すなわち、CGH原版1は、干渉縞間隔Cm1側の空間周波数が高く、干渉縞間隔CmT側の空間周波数が低くなるように、作製される。また、Y方向の集束位置Gは、ホログラムの観察者と反対側でもよく、この場合、Y方向の間隔はCm1側の空間周波数が高く、CmT側の空間周波数が低くなるように、作製される。   FIG. 16 is a diagram illustrating a case where the reference light L is focused at a predetermined focusing position G for each unit region, and the object light does not spread in the Y direction. As shown in FIG. 16, when the reference light L is focused at a predetermined focusing position G in the Y direction for each unit region Bm, and the object light Om is set as a linear light source that does not spread in the Y direction, the unit of the CGH original 1 The interference fringes in the region Bm appear such that the interference fringe spacings Cm1, Cm2, Cm3,..., Cmt,. That is, the CGH original plate 1 is manufactured so that the spatial frequency on the side of the interference fringe interval Cm1 is high and the spatial frequency on the side of the interference fringe interval CmT is low. Further, the focusing position G in the Y direction may be on the side opposite to the observer of the hologram, and in this case, the interval in the Y direction is produced so that the spatial frequency on the Cm1 side is high and the spatial frequency on the CmT side is low. .

このように、単位領域内のY方向の干渉縞間隔Cm1,Cm2,Cm3,…,Cmt,…CmTが異なるようにCGH原版1を作製することにより、回折光3のY方向の拡散角度を変更するので、Y方向の視域を拡大したCGH原版1とすることができる。さらに、再生照明光2として白色光を用いた場合、Y方向の視域が拡大すると共に、白色で観察することができる。   In this way, the diffusion angle in the Y direction of the diffracted light 3 is changed by preparing the CGH master plate 1 so that the interference fringe intervals Cm1, Cm2, Cm3,..., CmT in the unit region are different. Therefore, the CGH original plate 1 with an enlarged viewing area in the Y direction can be obtained. Furthermore, when white light is used as the reproduction illumination light 2, the viewing area in the Y direction is enlarged, and it is possible to observe in white.

以上、本発明の計算機合成ホログラムの作製方法及びその方法により作製された計算機合成ホログラムを実施形態に基づいて説明してきたが、本発明はこれら実施形態に限定されず種々の変形が可能である。例えば、本発明に係る計算機合成ホログラムは、特許文献6及び特許文献7に提示されたような計算機合成ホログラフィックステレオグラムの技術を適用してもよい。   As mentioned above, although the production method of the computer-generated hologram of the present invention and the computer-generated hologram produced by the method have been described based on the embodiments, the present invention is not limited to these embodiments, and various modifications are possible. For example, the computer-generated holographic stereogram technique as presented in Patent Document 6 and Patent Document 7 may be applied to the computer-generated hologram according to the present invention.

1…CGH原版(CGH原版用記録媒体)
2…再生照明光
3…回折光
1 ... CGH master (recording medium for CGH master)
2 ... Reproduction illumination light 3 ... Diffracted light

Claims (4)

計算機を用いた演算により所定の記録面上に振幅情報と位相情報を記録してなる計算機合成ホログラムの作製方法において、
前記計算機合成ホログラムは、
第1方向と、前記第1方向に直交する第2方向に対して、
前記第1方向のみの視差を有し、
前記第2方向に所定の幅を有する各単位領域を有し、
前記各単位領域内に、一方から他方へ徐々に変化し、前記第2方向に異なる凹凸パターンの空間周波数の回折パターンが作製され、
記録物体上に設定した線光源から前記第1方向に広がり、
前記第2方向に一定の幅の物体光を用い、
前記参照光として前記第2方向に関して前記単位領域ごとに定めた所定の位置に集束する参照光を用いて記録される
ことを特徴とする計算機合成ホログラムの作製方法。
In a method for producing a computer-generated hologram that records amplitude information and phase information on a predetermined recording surface by calculation using a computer,
The computer-generated hologram is
For the first direction and the second direction orthogonal to the first direction,
Having parallax only in the first direction;
Each unit region having a predetermined width in the second direction,
In each unit region, a diffraction pattern having a spatial frequency of a concavo-convex pattern that is gradually changed from one to the other in the second direction is produced,
Extends from the linear light source set on the recording object in the first direction,
Using object light of a certain width in the second direction,
A method for producing a computer-generated hologram, wherein the reference light is recorded by using a reference light that converges at a predetermined position determined for each of the unit regions in the second direction.
前記回折パターンは、干渉縞からなることを特徴とする請求項1に記載の計算機合成ホログラムの作製方法。   The method for producing a computer-generated hologram according to claim 1, wherein the diffraction pattern is made of interference fringes. 前記回折パターンは、位相と振幅を変調するパターンからなることを特徴とする請求項1に記載の計算機合成ホログラムの作製方法。   The method for producing a computer-generated hologram according to claim 1, wherein the diffraction pattern is a pattern that modulates a phase and an amplitude. 請求項1乃至請求項3のいずれかに記載の計算機合成ホログラムの作製方法によって作製された計算機合成ホログラム。   A computer-generated hologram produced by the method for producing a computer-generated hologram according to any one of claims 1 to 3.
JP2012166111A 2008-01-22 2012-07-26 Method for producing computer-generated hologram and computer-generated hologram produced by the method Active JP5257640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166111A JP5257640B2 (en) 2008-01-22 2012-07-26 Method for producing computer-generated hologram and computer-generated hologram produced by the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008011279 2008-01-22
JP2008011279 2008-01-22
JP2012166111A JP5257640B2 (en) 2008-01-22 2012-07-26 Method for producing computer-generated hologram and computer-generated hologram produced by the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008287309A Division JP5170436B2 (en) 2008-01-22 2008-11-10 Method for producing computer-generated hologram and computer-generated hologram produced by the method

Publications (2)

Publication Number Publication Date
JP2012212183A JP2012212183A (en) 2012-11-01
JP5257640B2 true JP5257640B2 (en) 2013-08-07

Family

ID=41081274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166111A Active JP5257640B2 (en) 2008-01-22 2012-07-26 Method for producing computer-generated hologram and computer-generated hologram produced by the method

Country Status (2)

Country Link
JP (1) JP5257640B2 (en)
CN (1) CN101520637B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986874A1 (en) * 2012-02-15 2013-08-16 France Telecom HOLOGRAPHIC PATTERN ENCODING METHOD, CORRESPONDING ENCODING DEVICE AND COMPUTER PROGRAM
CN105223796B (en) * 2015-09-08 2018-09-11 北京邮电大学 Hologram computational methods based on near-eye display device and device
CN107526279B (en) * 2017-08-16 2019-06-28 四川大学 A method of expanding holographic reconstructed image and watches vision area

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH659433A5 (en) * 1982-10-04 1987-01-30 Landis & Gyr Ag DOCUMENT WITH A REFLECTIVE OPTICAL SECURITY ELEMENT.
JPH075797A (en) * 1993-06-18 1995-01-10 Sony Corp Computer hologram recording device and reproducing device
JP3810917B2 (en) * 1998-01-20 2006-08-16 大日本印刷株式会社 Computer generated hologram and method for producing the same
JP3892619B2 (en) * 1999-06-29 2007-03-14 大日本印刷株式会社 Computer generated hologram and method for producing the same
GB0016354D0 (en) * 2000-07-03 2000-08-23 Optaglio Ltd Optical security device
JP4545297B2 (en) * 2000-09-01 2010-09-15 大日本印刷株式会社 Optical element and manufacturing method thereof
WO2003054797A2 (en) * 2001-12-19 2003-07-03 Actuality Systems, Inc. A radiation conditioning system
JP4316916B2 (en) * 2003-04-04 2009-08-19 大日本印刷株式会社 Computer-generated hologram
US6975765B2 (en) * 2003-05-06 2005-12-13 New Light Industries, Ltd. Optically variable form birefringent structure and method and system and method for reading same
JP4905672B2 (en) * 2005-12-13 2012-03-28 大日本印刷株式会社 Screen switching hologram manufacturing method and screen switching hologram manufactured by the method
JP4844250B2 (en) * 2006-06-14 2011-12-28 大日本印刷株式会社 Method and apparatus for manufacturing hologram recording medium
JP4844249B2 (en) * 2006-06-14 2011-12-28 大日本印刷株式会社 Method and apparatus for manufacturing hologram recording medium

Also Published As

Publication number Publication date
CN101520637A (en) 2009-09-02
CN101520637B (en) 2013-12-18
JP2012212183A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US11106179B2 (en) Holographic display panel, holographic display device and display method therefor
JP4316916B2 (en) Computer-generated hologram
US8564866B2 (en) Computer-generated hologram including splice planes for reconstructing a full-color image with high resolution and its fabrication method
JP5170436B2 (en) Method for producing computer-generated hologram and computer-generated hologram produced by the method
JP3964665B2 (en) How to create a computer generated hologram
KR20180072356A (en) Backlight unit and three-dimensional image display apparatus including the same
JP5257640B2 (en) Method for producing computer-generated hologram and computer-generated hologram produced by the method
JP5029808B2 (en) Hologram production method and hologram produced by the method
JP5488781B2 (en) Computer-generated hologram reproduction simulation method, computer-generated hologram manufacturing method, and computer-generated hologram
JP4317176B2 (en) Computer-generated hologram recording medium
JP2005215569A (en) Computer-generated hologram and generation method thereof
JP5589563B2 (en) Stereoscopic image display
JP4256372B2 (en) Computer generated hologram and method for producing the same
JP3810961B2 (en) Method for manufacturing hologram recording medium
JP3892619B2 (en) Computer generated hologram and method for producing the same
JP5062423B2 (en) Method for producing volume hologram and volume hologram produced by the method
CN115113414A (en) Composite optical modulator, holographic display device and method for generating holographic pattern
JP4977886B2 (en) Computer-generated hologram reproduction simulation method, computer-generated hologram production method using the reproduction simulation method, and computer-generated hologram produced using the computer-generated hologram production method
JP5029816B2 (en) Hologram production method
JP3713812B2 (en) Diffraction grating pattern manufacturing device
JP6361864B2 (en) Computer-generated hologram, diffusion plate, projector screen, and projection system
JP2009175218A (en) Method for preparing computer-generated synthetic hologram, computer-generated synthetic hologram prepared by the method, method for preparing volume hologram using it and volume hologram prepared by the method
JP5534136B2 (en) hologram
JP2009086146A (en) Computer-synthesized hologram

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5257640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150