JP5256141B2 - Method and apparatus for non-contact measurement of dielectric shape - Google Patents

Method and apparatus for non-contact measurement of dielectric shape Download PDF

Info

Publication number
JP5256141B2
JP5256141B2 JP2009175794A JP2009175794A JP5256141B2 JP 5256141 B2 JP5256141 B2 JP 5256141B2 JP 2009175794 A JP2009175794 A JP 2009175794A JP 2009175794 A JP2009175794 A JP 2009175794A JP 5256141 B2 JP5256141 B2 JP 5256141B2
Authority
JP
Japan
Prior art keywords
light
core
optical fiber
attenuation
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009175794A
Other languages
Japanese (ja)
Other versions
JP2011027639A (en
Inventor
豊 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2009175794A priority Critical patent/JP5256141B2/en
Publication of JP2011027639A publication Critical patent/JP2011027639A/en
Application granted granted Critical
Publication of JP5256141B2 publication Critical patent/JP5256141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、誘電体形状の非接触測定方法び装置に係り、特に、ガラス等の透明体(誘電体)に開いた直径数十μm程度の微小穴の内径等の微細形状測定に用いるのに好適な、誘電体形状の非接触測定方法び装置に関する。 The present invention relates to a noncontact measurement methodBiSo location dielectric shape, in particular, used in fine shape measurement of the inner diameter or the like of the micro holes of a diameter of several tens μm approximately open the transparent body such as glass (dielectric) suitable for, for non-contact measuring methodBiSo location dielectric shape.

微小穴の内径等の微細形状測定に関して、出願人は特許文献1で、先端球直径が数十μmの3次元測定用スタイラスの製造方法と、このスタイラスを備えた接触式センサを提案し、特許文献2で、このスタイラスを圧電素子により軸方向に微小振動させながら、接触による振動状態の変化を検出して表面形状を測定する技術を提案している。特許文献1で提案したように極細スタイラスの製作を可能としたことで、それまで困難とされてきた、非常に小さな穴の内径等の測定が可能となっている。   Regarding the measurement of a fine shape such as the inner diameter of a minute hole, the applicant proposed in Patent Document 1 a method for manufacturing a three-dimensional measurement stylus having a tip sphere diameter of several tens of μm, and a contact sensor equipped with this stylus. Document 2 proposes a technique for measuring the surface shape by detecting a change in the vibration state due to contact while minutely vibrating the stylus in the axial direction by a piezoelectric element. By making it possible to manufacture an ultrafine stylus as proposed in Patent Document 1, it is possible to measure the inner diameter of a very small hole, which has been considered difficult until now.

しかしながら特許文献1や2に記載した技術では、加工の難しい、スタイラス先端の微小球の形状誤差が測定誤差を生ずる。又、接触式であるため、測定力によるワークの変形やスタイラス軸の変形が測定誤差を生ずる。更に、スタイラスを圧電素子で微小振動させて、接触による振動状態の変化を検出する必要があるため、測定システムが複雑、高価になる等の問題点を有していた。   However, in the techniques described in Patent Documents 1 and 2, the measurement error is caused by the shape error of the microsphere at the tip of the stylus which is difficult to process. Further, because of the contact type, deformation of the workpiece due to the measuring force or deformation of the stylus shaft causes a measurement error. Furthermore, since it is necessary to detect a change in the vibration state due to contact by minutely vibrating the stylus with a piezoelectric element, the measurement system is complicated and expensive.

一方、屈折率が大きい媒質から小さい媒質に光が入るとき、入射角がある一定の角度以上の場合、入射光が境界面を透過せず、全て反射する。この現象を全反射という。しかし、厳密には、図2(A)に示す如く、屈折率の小さい媒質(図では空気)中に光の波長の数倍程度だけ境界面から浸透した後、屈折率の大きい物質(図ではコア12)へと戻っている。この浸透する光をエバネッセント光(近接場光)という。   On the other hand, when light enters from a medium having a large refractive index into a medium having a small refractive index, if the incident angle is equal to or larger than a certain angle, the incident light does not pass through the boundary surface and is totally reflected. This phenomenon is called total reflection. However, strictly speaking, as shown in FIG. 2 (A), after penetrating from the interface by a few times the wavelength of light into a medium having a low refractive index (air in the figure), a substance having a high refractive index (in the figure, Returning to the core 12). This penetrating light is called evanescent light (near-field light).

このエバネッセント光に、図2(B)に示す如く、屈折率の大きい媒質(図では誘電体ワーク16)を近づけていくと、光の一部は、近づけた媒質側へ透過する(全反射が崩れる)。   When a medium having a large refractive index (dielectric workpiece 16 in the figure) is brought closer to the evanescent light as shown in FIG. 2B, a part of the light is transmitted to the closer medium side (total reflection is reduced). Collapses).

このようなエバネッセント光を利用した技術として、特許文献3や4がある。   Patent Documents 3 and 4 are techniques using such evanescent light.

特許文献3に記載の光ファイバカプラは、2本の光ファイバのクラッド部を薄くしてコア同士を近づけることで、光の全反射の崩れを利用して、エバネッセント光が互いのコア間で行き来できるようにして、光を分岐、結合するものである(クラッド研磨型の光カプラ)。光ファイバ型のビームスプリッタとも言えるもので、コア間距離により分岐を調整することができる。   The optical fiber coupler described in Patent Document 3 uses the collapse of total reflection of light by thinning the clad portions of two optical fibers and bringing the cores close to each other, and evanescent light travels between the cores. In this way, light is branched and coupled (clad polishing type optical coupler). It can also be said to be an optical fiber type beam splitter, and branching can be adjusted by the distance between cores.

一方、特許文献4に記載の走査型近接場顕微鏡(SNOM)では、光の全反射の崩れではなく、光のトンネル効果を利用して、延伸や加工により先端を細く尖らせた微細な光ファイバの先端を除く周囲を金属コーティングしたプローブを試料表面に近接させた時に、光ファイバ先端の小開口に生じるエバネッセントフィールドが、試料の近接により変化することを利用して、エバネッセント光により光ファイバの軸方向先端への試料近接を検出するようにしている。   On the other hand, in the scanning near-field microscope (SNOM) described in Patent Document 4, a fine optical fiber whose tip is sharply sharpened by stretching or processing using the tunneling effect of light, not the collapse of total reflection of light. By utilizing the fact that the evanescent field generated in the small aperture at the tip of the optical fiber changes due to the proximity of the sample when a probe with a metal coating around the sample surface is brought close to the sample surface, the axis of the optical fiber is The proximity of the sample to the direction tip is detected.

又、特許文献5には、光ファイバのコア内部に特定の波長の光を反射する反射面を設けることが記載されている。   Patent Document 5 describes that a reflection surface for reflecting light of a specific wavelength is provided inside the core of the optical fiber.

特開2003−114118号公報JP 2003-114118 A 特許第4009152号公報Japanese Patent No. 4009152 特公平7−7136号公報Japanese Patent Publication No. 7-7136 特開2003−207437号公報Japanese Patent Laid-Open No. 2003-207437 特開平10−213719号公報Japanese Patent Laid-Open No. 10-213719

しかしながら従来、光ファイバのコア側面におけるエバネッセント光の全反射の崩れを利用したプローブは提案されていなかった。   However, conventionally, no probe has been proposed that uses the collapse of total reflection of evanescent light on the side surface of the core of the optical fiber.

本発明は、前記従来の問題点を解決するべくなされたもので、光ファイバのコア側面におけるエバネッセント光の全反射の崩れを利用して、微小穴の内径等の微細形状の測定の非接触化による高精度化を可能にすると共に、光量変化の検出という単純な検出原理によるシステムの簡素化、低価格化を可能とすることを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and makes contactless measurement of fine shapes such as inner diameters of minute holes by utilizing the collapse of total reflection of evanescent light on the core side surface of the optical fiber. It is an object of the present invention to make it possible to improve the accuracy of the system and to simplify the system and to reduce the price based on the simple detection principle of detecting a change in the amount of light.

光ファイバでは、屈折率の大きい内側のコアと屈折率の小さい外側のクラッドとの境界で光を全反射させながら、光をコア内に閉じ込めて伝送している。ここで、図1に示す如く、光ファイバ10の途中から先のクラッド14を、例えば化学エッチングで除去してコア12のみとする(コア径、例えば直径6μmから数百μm、除去長さ数mm〜数cm程度)。このとき、むき出しのコア側面12Bがセンシング面となる。   In an optical fiber, light is confined in a core and transmitted while being totally reflected at the boundary between an inner core having a high refractive index and an outer cladding having a low refractive index. Here, as shown in FIG. 1, the clad 14 from the middle of the optical fiber 10 is removed by, for example, chemical etching to make only the core 12 (core diameter, for example, from 6 μm to several hundred μm in diameter, removal length of several mm). ~ About several cm). At this time, the exposed core side surface 12B becomes a sensing surface.

この際、屈折率の大きいコアと屈折率の小さい周りの空気との間で、全反射条件は満たし続けるはずである。従って、測定対象の誘電体が近接しないときには、図2(A)に示す如く、エバネッセント光がコア12に戻り、全反射を維持してコア内を伝搬する。   At this time, the total reflection condition should continue to be satisfied between the core having a high refractive index and the surrounding air having a low refractive index. Accordingly, when the dielectric to be measured is not close, the evanescent light returns to the core 12 and propagates through the core while maintaining total reflection as shown in FIG.

一方、空気より屈折率が大きい誘電体(例えば透明体)ワークがコア側面(センシング面)12Bに近付いていき、光波長程度の距離(数μm)まで近接すると、図2(B)に示す如く、全反射が崩れ、エバネッセント光の一部がコア12に戻らず、近接した誘電体ワーク16側へ透過する現象が生じる。   On the other hand, when a dielectric (for example, transparent body) workpiece having a refractive index larger than that of air approaches the core side surface (sensing surface) 12B and approaches a distance (several μm) of the optical wavelength, as shown in FIG. Thus, total reflection is lost, and a part of the evanescent light does not return to the core 12 but is transmitted to the adjacent dielectric work 16 side.

従って、図1に示すプローブの第1例の如く、例えば光ファイバコア12の先端面12Aを平面研磨して、ミラーコートし、図1(B)の上から入射した光がファイバ10内を戻るようにしておけば、センシング面であるコア側面12Bへの誘電体の近接を、反射光の光量変化による検出されるファイバ中の光量減衰の度合から非接触で検出できる。なお、光ファイバ内を伝播する光を反射する方法は、これに限定されず、特許文献5に記載されているように、光ファイバのコア内部に特定の波長の光を反射する反射面を設けたり、コア端面の外側に別途反射面を設けても良い。   Accordingly, as in the first example of the probe shown in FIG. 1, for example, the front end surface 12A of the optical fiber core 12 is polished and mirror-coated, and the light incident from the top of FIG. By doing so, the proximity of the dielectric to the core side surface 12B, which is the sensing surface, can be detected in a non-contact manner from the degree of attenuation of the amount of light in the fiber detected by the change in the amount of reflected light. The method of reflecting the light propagating in the optical fiber is not limited to this, and a reflection surface that reflects light of a specific wavelength is provided inside the core of the optical fiber as described in Patent Document 5. Alternatively, a separate reflecting surface may be provided outside the core end surface.

本発明は、このような原理に基づいてなされたもので、側面がセンシング面であるコアのみで構成され、該コアの端面、または、前記センシング面とコア端面との間の該コア内、もしくは該コア端面の外側の少なくともいずれか一つに反射面を有する光ファイバを備えた非接触測定用プローブを用いて、該非接触測定用プローブの前記センシング面への誘電体ワークの近接により生じる、前記光ファイバに入射され、前記反射面で反射されて戻ってきた光の減衰を検出して、該光の減衰が閾値以上になった時にワーク近接検出信号を生成することを特徴とする誘電体形状の非接触測定方法により、前記課題を解決したものである。 The present invention has been made based on such a principle, and includes only a core whose side surface is a sensing surface, and the end surface of the core, or the core between the sensing surface and the core end surface, or Using a non-contact measurement probe including an optical fiber having a reflection surface on at least one of the outer sides of the core end surface, and caused by the proximity of a dielectric workpiece to the sensing surface of the non-contact measurement probe , A dielectric shape characterized by detecting an attenuation of light incident on an optical fiber and reflected and returned by the reflecting surface, and generating a workpiece proximity detection signal when the attenuation of the light exceeds a threshold value The above-mentioned problem is solved by the non-contact measurement method .

本発明は、又、側面がセンシング面であるコアのみで構成され、該コアの端面、または、前記センシング面とコア端面との間の該コア内、もしくは該コア端面の外側の少なくともいずれか一つに反射面を有する光ファイバを備えた非接触測定用プローブと、該プローブの光ファイバに光を入射する光源と、前記プローブの前記反射面で反射されて光ファイバを戻ってきた光を受光する受光素子と、該受光素子で検出される光の減衰を検出する光量減衰検出回路と、該光量減衰検出回路で検出される、前記センシング面への誘電体ワークの近接により生じる光の減衰が閾値以上になった時にワーク近接検出信号を生成するワーク近接検出信号生成回路と、を備えたことを特徴とする誘電体形状の非接触測定装置を提供するものである。   The present invention also includes only a core whose side surface is a sensing surface, and is at least one of the end surface of the core, the inside of the core between the sensing surface and the core end surface, or the outside of the core end surface. A non-contact measurement probe having an optical fiber having a reflecting surface, a light source for entering light into the optical fiber of the probe, and light reflected by the reflecting surface of the probe and returned to the optical fiber A light-attenuating element that detects the attenuation of light detected by the light-receiving element, and a light-attenuation detecting circuit that detects the attenuation of light detected by the light-receiving element. There is provided a dielectric-shaped non-contact measuring device including a workpiece proximity detection signal generation circuit that generates a workpiece proximity detection signal when a threshold value is exceeded.

本発明によれば、(1)測定を非接触で行なえるので、高精度化を図ることができる。即ち、特許文献1や2のスタイラス先端球の形状誤差等が無い。又、非接触式なので、測定力によるワークの変形や、スタイラス軸の変形による測定誤差が無く、軟質ワークでも、精度良く測定できる。更に、プローブ内に能動素子が無いので、発熱によるドリフトが無い。   According to the present invention, (1) since the measurement can be performed in a non-contact manner, high accuracy can be achieved. That is, there is no shape error or the like of the stylus tip sphere of Patent Documents 1 and 2. Moreover, since it is a non-contact type, there is no measurement error due to deformation of the workpiece due to measurement force or deformation of the stylus shaft, and even a soft workpiece can be measured with high accuracy. Further, since there are no active elements in the probe, there is no drift due to heat generation.

又、(2)プローブの構造が簡単で、光ファイバ内に光を送り、戻り光の光量減衰を検出するだけの簡単な信号処理であるため、システムの低価格化と簡素化が実現できる。   Also, (2) the probe structure is simple, and the signal processing is simple by simply sending light into the optical fiber and detecting the light quantity attenuation of the return light, so that the system can be reduced in price and simplified.

更に、(3)光ファイバのむき出しのコアで構成されるセンシング部が細いので、微小穴の内径の測定が可能である。   In addition, (3) since the sensing portion composed of the bare core of the optical fiber is thin, the inner diameter of the minute hole can be measured.

本発明に係るプローブの第1例の構成を示す(A)平面図及び(B)縦断面図1A is a plan view and FIG. 1B is a longitudinal sectional view showing a configuration of a first example of a probe according to the present invention. 本発明の原理を示す断面図Sectional view showing the principle of the present invention 本発明に係る測定装置の第1実施形態の構成を示すブロック図The block diagram which shows the structure of 1st Embodiment of the measuring apparatus which concerns on this invention. 第1実施形態を三次元座標測定機に取付けた状態を示す斜視図The perspective view which shows the state which attached 1st Embodiment to the three-dimensional coordinate measuring machine. 本発明の作用を説明するための平面図The top view for demonstrating the effect | action of this invention 本発明に係る測定装置の第2実施形態の要部構成を示す正面図The front view which shows the principal part structure of 2nd Embodiment of the measuring apparatus which concerns on this invention. 本発明に係る測定装置の第3実施形態の要部構成を示す正面図The front view which shows the principal part structure of 3rd Embodiment of the measuring apparatus which concerns on this invention. 本発明に係るプローブの第2例の構成を示す断面図Sectional drawing which shows the structure of the 2nd example of the probe which concerns on this invention

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る測定装置の第1実施形態は、図3に示す如く、先端部のクラッドを除去してコアのみを残し、コア先端面(図では下端面)を平面研磨してミラーコートした光ファイバ10(図1参照)を備えた第1例のプローブ20と、該プローブ20の光ファイバ10に光を入射する光源(例えばレーザダイオードLD)22と、該光源22を駆動する発光回路24と、前記プローブ20のコア先端面で反射されて光ファイバ10を戻ってきた光を取り出すための、例えば特許文献3に記載されたような構成の光ファイバカプラ30と、該光ファイバカプラ30によって光ファイバ32に取り出した光を受光する受光素子34と、該受光素子34で検出される光の減衰を検出する光量減衰検出回路36と、該光量減衰検出回路36で検出される、センシング面であるコア側面への誘電体ワーク16の近接による生じる光の減衰が閾値以上になったときにワーク近接検出信号を生成するワーク近接検出信号生成回路38とを備えている。   As shown in FIG. 3, the first embodiment of the measuring apparatus according to the present invention is a light which is mirror-coated by removing the clad at the tip and leaving only the core, and polishing the tip of the core (bottom edge in the figure). A probe 20 of the first example including the fiber 10 (see FIG. 1), a light source (for example, a laser diode LD) 22 that makes light incident on the optical fiber 10 of the probe 20, and a light emitting circuit 24 that drives the light source 22. For example, an optical fiber coupler 30 having a configuration as described in Patent Document 3 for taking out light reflected by the core tip surface of the probe 20 and returning from the optical fiber 10, and light is transmitted by the optical fiber coupler 30. A light receiving element 34 for receiving the light extracted into the fiber 32, a light amount attenuation detecting circuit 36 for detecting the attenuation of the light detected by the light receiving element 34, and the light amount attenuation detecting circuit 36. , And a workpiece proximity detection signal generating circuit 38 for generating a workpiece proximity detection signal when the attenuation of the light generated by the dielectric adjacent the workpiece 16 to the core side is a sensing surface is equal to or greater than a threshold value.

前記プローブ20は、微動機構40により、ワーク16の(内径)測定方向へ狭い範囲で高精度に移動される。   The probe 20 is moved with high accuracy in a narrow range in the (inner diameter) measurement direction of the workpiece 16 by the fine movement mechanism 40.

又、前記プローブ20及び微動機構40は、例えば図4に示すような3次元座標測定装置42のヘッド44に装着され、ワーク16の全体形状に沿って移動可能とされている。   The probe 20 and the fine movement mechanism 40 are mounted on a head 44 of a three-dimensional coordinate measuring device 42 as shown in FIG. 4, for example, and can move along the entire shape of the workpiece 16.

以下、ガラス等の透明な誘電体に開いた微小穴(直径数十μm程度)の内径測定を例にとって、作用を説明する。   Hereinafter, the operation will be described by taking an example of measuring the inner diameter of a minute hole (about several tens of micrometers in diameter) opened in a transparent dielectric such as glass.

図5に示す如く、光ファイバ10の先端を、ワーク16の穴16Aの中に入れ、穴の直径方向に移動可能な微動機構40で動かし、戻り光が減衰閾値になる穴径方向両端の位置x1、x2を測定する。   As shown in FIG. 5, the tip of the optical fiber 10 is placed in the hole 16A of the workpiece 16, moved by a fine movement mechanism 40 movable in the diameter direction of the hole, and positions at both ends in the hole diameter direction where return light becomes an attenuation threshold. x1 and x2 are measured.

すると、穴の内径Dは、次式により測定できる。   Then, the inner diameter D of the hole can be measured by the following equation.

D=X+2r+2d …(1)
ここで、Xは、前記両端位置x1、x2の間の距離(x2−x1)、rは光ファイバ10のコア12の半径、dは、減衰閾値での誘電体とコア側面12B間の距離である。
D = X + 2r + 2d (1)
Here, X is the distance (x2-x1) between the both end positions x1, x2, r is the radius of the core 12 of the optical fiber 10, and d is the distance between the dielectric and the core side surface 12B at the attenuation threshold. is there.

なお、光ファイバには、ガラス光ファイバとプラスチック光ファイバとがあるが、本発明は、いずれの光ファイバにも適用可能である。ガラスには、空気中の水分(水酸基)による材料劣化特性があるので、保護膜を光ファイバにコートすることが望ましい。このとき、センシング面であるコア側面12Bのコート厚さは、サブミクロン以下として、センシング感度を確保することができる。   The optical fiber includes a glass optical fiber and a plastic optical fiber, but the present invention can be applied to any optical fiber. Since glass has material deterioration characteristics due to moisture (hydroxyl) in the air, it is desirable to coat the optical fiber with a protective film. At this time, the coating thickness of the core side surface 12B, which is the sensing surface, can be set to submicron or less to ensure sensing sensitivity.

又、光ファイバを伝搬する光のモードとしては、シングルモード、マルチモードのいずれも使用可能である。   Moreover, as a mode of light propagating through the optical fiber, either single mode or multi mode can be used.

コアをむき出しにする方法は、化学エッチングに限定されず、戻り光を取り出す方法も、光ファイバカプラ30を用いる方法に限定されない。   The method of exposing the core is not limited to chemical etching, and the method of extracting return light is not limited to the method using the optical fiber coupler 30.

前記実施形態においては、本発明が穴の内径の測定に適用されていたが、本発明の適用対象はこれに限定されず、図4に示したように、例えば3次元座標測定機42のヘッド44により、プローブ20をワーク16の外側に沿って移動することによって、外形等、穴以外の微細形状の測定も可能である。   In the above embodiment, the present invention is applied to the measurement of the inner diameter of the hole. However, the application target of the present invention is not limited to this, and as shown in FIG. 4, for example, the head of the three-dimensional coordinate measuring machine 42 By moving the probe 20 along the outside of the workpiece 16 by 44, it is possible to measure a fine shape other than the hole, such as the outer shape.

更に、ワーク16の形状によっては、図6に示す第2実施形態の如く、コア12の下端を把持機構46により把持し、下方から引張ってコア側面(センシング面)12Bが曲がらないようにすることができる。この場合、把持機構46側にミラーコートしても良い。   Furthermore, depending on the shape of the workpiece 16, as in the second embodiment shown in FIG. 6, the lower end of the core 12 is gripped by the gripping mechanism 46 and pulled from below so that the core side surface (sensing surface) 12B does not bend. Can do. In this case, the grip mechanism 46 may be mirror coated.

又、図7に示す第3実施形態の如く、コア12をU字形状に曲げて、ワーク16の側面でなく、上面の位置を検出可能とすることもできる。   Further, as in the third embodiment shown in FIG. 7, the core 12 can be bent into a U shape so that the position of the upper surface, not the side surface of the workpiece 16, can be detected.

又、プローブに関しても、図1に示した第1例に限定されず、図8に示す第2例のように、特許文献5に記載されたような、光ファイバのコア内部に特定の波長の光を反射する反射面を設けた物を用いても良い。図において、50はファイバコリメータ(屈折率分布型ファイバチップレンズ)、52はファイバ回折格子(ブラック回折格子付ガラスファイバチップ)である。又、図6の場合は、光ファイバ側でなく、把持機構46側に反射面を設けても良い。   In addition, the probe is not limited to the first example shown in FIG. 1, and has a specific wavelength inside the core of the optical fiber as described in Patent Document 5 as in the second example shown in FIG. 8. You may use the thing provided with the reflective surface which reflects light. In the figure, reference numeral 50 denotes a fiber collimator (refractive index distribution type fiber chip lens), and 52 denotes a fiber diffraction grating (glass fiber chip with a black diffraction grating). In the case of FIG. 6, a reflecting surface may be provided on the gripping mechanism 46 side instead of the optical fiber side.

10…光ファイバ
12…コア
12A…コア先端面(ミラーコート面)
12B…コア側面(センシング面)
14…クラッド
16…誘電体ワーク
16A…穴
20…プローブ
22…光源(LD)
24…発光回路
30…光ファイバカプラ
34…受光素子
36…光量減衰検出回路
38…ワーク近接検出信号生成回路
40…微動機構
42…3次元座標測定機
44…ヘッド
DESCRIPTION OF SYMBOLS 10 ... Optical fiber 12 ... Core 12A ... Core front end surface (mirror coat surface)
12B ... Core side (sensing side)
14 ... Cladding 16 ... Dielectric work 16A ... Hole 20 ... Probe 22 ... Light source (LD)
DESCRIPTION OF SYMBOLS 24 ... Light emission circuit 30 ... Optical fiber coupler 34 ... Light receiving element 36 ... Light quantity attenuation detection circuit 38 ... Work proximity detection signal generation circuit 40 ... Fine movement mechanism 42 ... Three-dimensional coordinate measuring machine 44 ... Head

Claims (2)

側面がセンシング面であるコアのみで構成され、該コアの端面、または、前記センシング面とコア端面との間の該コア内、もしくは該コア端面の外側の少なくともいずれか一つに反射面を有する光ファイバを備えた非接触測定用プローブを用いて、
該非接触測定用プローブの前記センシング面への誘電体ワークの近接により生じる、前記光ファイバに入射され、前記反射面で反射されて戻ってきた光の減衰を検出して、該光の減衰が閾値以上になった時にワーク近接検出信号を生成することを特徴とする誘電体形状の非接触測定方法
It has only a core whose side surface is a sensing surface, and has a reflecting surface on at least one of the end surface of the core, the inside of the core between the sensing surface and the core end surface, or the outside of the core end surface. Using a non-contact measurement probe with an optical fiber ,
Attenuation of light incident on the optical fiber, reflected by the reflecting surface and returned by the proximity of the dielectric work to the sensing surface of the non-contact measurement probe is detected, and the attenuation of the light is a threshold value. A non-contact measuring method for a dielectric shape , wherein a workpiece proximity detection signal is generated when the above is reached .
側面がセンシング面であるコアのみで構成され、該コアの端面、または、前記センシング面とコア端面との間の該コア内、もしくは該コア端面の外側の少なくともいずれか一つに反射面を有する光ファイバを備えた非接触測定用プローブと、
該プローブの光ファイバに光を入射する光源と、
前記プローブの前記反射面で反射されて光ファイバを戻ってきた光を受光する受光素子と、
該受光素子で検出される光の減衰を検出する光量減衰検出回路と、
該光量減衰検出回路で検出される、前記センシング面への誘電体ワークの近接により生じる光の減衰が閾値以上になった時にワーク近接検出信号を生成するワーク近接検出信号生成回路と、
を備えたことを特徴とする誘電体形状の非接触測定装置。
It has only a core whose side surface is a sensing surface, and has a reflecting surface on at least one of the end surface of the core, the inside of the core between the sensing surface and the core end surface, or the outside of the core end surface. A non-contact measuring probe with an optical fiber;
A light source for entering light into the optical fiber of the probe;
A light receiving element that receives light reflected by the reflecting surface of the probe and returning from the optical fiber;
A light amount attenuation detection circuit for detecting attenuation of light detected by the light receiving element;
A workpiece proximity detection signal generation circuit that generates a workpiece proximity detection signal when the attenuation of light generated by the proximity of the dielectric workpiece to the sensing surface exceeds a threshold detected by the light amount attenuation detection circuit;
A non-contact measuring apparatus having a dielectric shape, comprising:
JP2009175794A 2009-07-28 2009-07-28 Method and apparatus for non-contact measurement of dielectric shape Expired - Fee Related JP5256141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009175794A JP5256141B2 (en) 2009-07-28 2009-07-28 Method and apparatus for non-contact measurement of dielectric shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175794A JP5256141B2 (en) 2009-07-28 2009-07-28 Method and apparatus for non-contact measurement of dielectric shape

Publications (2)

Publication Number Publication Date
JP2011027639A JP2011027639A (en) 2011-02-10
JP5256141B2 true JP5256141B2 (en) 2013-08-07

Family

ID=43636550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175794A Expired - Fee Related JP5256141B2 (en) 2009-07-28 2009-07-28 Method and apparatus for non-contact measurement of dielectric shape

Country Status (1)

Country Link
JP (1) JP5256141B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827121A (en) * 1988-02-24 1989-05-02 Measurex Corporation System for detecting chemical changes in materials by embedding in materials an unclad fiber optic sensor section
US5585634A (en) * 1994-09-29 1996-12-17 Foster-Miller, Inc. Attenuated total reflectance sensing
JP3592065B2 (en) * 1998-02-06 2004-11-24 キヤノン株式会社 Detection device and surface plasmon sensor used therefor
JP2003329581A (en) * 2002-05-15 2003-11-19 Tama Tlo Kk Optical fiber type multiple wavelength spectrometric apparatus and multiple wavelength spectrometric method using optical fiber
DE102005052223B3 (en) * 2005-10-30 2007-06-14 Küpper, Lukas, Dipl.-Phys. Temperature-resistant infrared probe
JP2007322335A (en) * 2006-06-02 2007-12-13 Ricoh Co Ltd Inspection method and inspection device
CN101424683A (en) * 2007-10-31 2009-05-06 株式会社精工技研 Biosensor, method for producing the same and sensor measurement system

Also Published As

Publication number Publication date
JP2011027639A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP4412620B2 (en) Optical waveguide probe
US6885808B2 (en) Optical probe and optical pick-up apparatus
US20070211986A1 (en) Optical microcantilever, manufacturing method thereof, and optical microcantilever holder
JP6556236B2 (en) Scanning probe microscope head design
Lomer et al. A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable
US6239426B1 (en) Scanning probe and scanning probe microscope
US9797922B2 (en) Scanning probe microscope head design
JP3517185B2 (en) Scale member, manufacturing method thereof, and displacement meter using the same
JP2006515682A (en) Integrated simulation, processing and characterization for micro and nano optics
JP2015156019A (en) optical fiber termination of low back reflection
JP6413011B2 (en) Optical bending measuring device and tubular insert
JP5256141B2 (en) Method and apparatus for non-contact measurement of dielectric shape
CN110986836B (en) High-precision roughness measuring device based on annular core optical fiber
JP4717235B2 (en) Optical waveguide probe, manufacturing method thereof, and scanning near-field microscope
US6753970B1 (en) Transducer for generating optical contrasts
JP4611436B2 (en) Optical micro cantilever
JP7134425B2 (en) Optical fiber sensor, displacement detector, deformation sensing device and optical fiber sensor system
Demagh et al. Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre
US20060042321A1 (en) Integrated simulation fabrication and characterization of micro and nano optical elements
JP7115675B2 (en) Position detection device and shape detection device
US20120127474A1 (en) Optical fiber device for interferometric analysis of the surface condition of an object
Uchiyama et al. Development of a Sharp-Tipped L-Shaped Stylus for Measurement of Nanoscale Sidewall Features
US8559023B2 (en) Micro focal-length collimation based micro-cavity measuring method and detecting equipment thereof
CN109443241A (en) A kind of high speed axial direction scanning confocal micro-measurement apparatus and method based on tuning fork driving
JP2007322159A (en) Optical fiber probe, photodetector, and photodetection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Ref document number: 5256141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees