JP5252891B2 - Manufacturing method of semiconductor chip and manufacturing method of semiconductor chip laminated module - Google Patents

Manufacturing method of semiconductor chip and manufacturing method of semiconductor chip laminated module Download PDF

Info

Publication number
JP5252891B2
JP5252891B2 JP2007298746A JP2007298746A JP5252891B2 JP 5252891 B2 JP5252891 B2 JP 5252891B2 JP 2007298746 A JP2007298746 A JP 2007298746A JP 2007298746 A JP2007298746 A JP 2007298746A JP 5252891 B2 JP5252891 B2 JP 5252891B2
Authority
JP
Japan
Prior art keywords
semiconductor chip
insulating adhesive
conductive filler
semiconductor
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007298746A
Other languages
Japanese (ja)
Other versions
JP2009124056A (en
Inventor
耕一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007298746A priority Critical patent/JP5252891B2/en
Publication of JP2009124056A publication Critical patent/JP2009124056A/en
Application granted granted Critical
Publication of JP5252891B2 publication Critical patent/JP5252891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Description

本発明は、複数個の半導体チップをひとつのモジュールに3次元積層された半導体チップ積層モジュール及びそれを構成する半導体チップならびにそれらの製造方法に関するものである。   The present invention relates to a semiconductor chip stacked module in which a plurality of semiconductor chips are three-dimensionally stacked in one module, a semiconductor chip constituting the same, and a method for manufacturing the same.

従来より複数個の半導体チップをモジュール化し、インターポーザ基板を介してパッケージ化する技術は行なわれているが、多くの場合、インターポーザ基板上に半導体チップを2次元に配置したものであり、高機能化のために半導体チップの配置個数が増えるほど実装面積が大きくなるという問題があった。それに対し、パッケージサイズを小型化する取組みとして、半導体チップを3次元に積層してモジュール化し、このモジュールをインターポーザ基板を介してパッケージ化する技術が試みられている。   Conventionally, a technology for modularizing a plurality of semiconductor chips and packaging them through an interposer substrate has been performed. In many cases, however, semiconductor chips are two-dimensionally arranged on the interposer substrate, thereby improving functionality. Therefore, there is a problem that the mounting area increases as the number of semiconductor chips arranged increases. On the other hand, as an approach for reducing the package size, a technique has been attempted in which semiconductor chips are three-dimensionally stacked to form a module, and this module is packaged via an interposer substrate.

図11は従来の半導体チップ積層モジュールの構造を示す図である。
図11において、半導体チップ101の上面には、全面に亘ってSiO等の保護膜102を成長させて形成してある。103はアルミニウム(Al)等で形成されて半導体集積回路と導通する配線用パッドであって、保護膜102に上面と側面に開口する切欠部104を設けて外部に露出させている。105は金属の蒸着によって形成される配線部であって、この配線部105によって異なる半導体チップ101の配線用パッド103同士を電気的に接続してある。106はAl等で形成され半導体集積回路と導通するワイヤボンディング用パッドであって、最上の半導体チップ101の保護膜102に上面が開口する開口部107を設けて露出させてある(例えば、特許文献1参照)。
特開平8−236690号公報
FIG. 11 shows the structure of a conventional semiconductor chip stacked module.
In FIG. 11, a protective film 102 made of SiO 2 or the like is grown on the upper surface of the semiconductor chip 101 over the entire surface. Reference numeral 103 denotes a wiring pad that is formed of aluminum (Al) or the like and is electrically connected to the semiconductor integrated circuit. The protective film 102 is provided with a notch 104 that opens on the upper surface and side surfaces and is exposed to the outside. Reference numeral 105 denotes a wiring portion formed by metal deposition, and the wiring pads 103 of the different semiconductor chips 101 are electrically connected to each other by the wiring portion 105. Reference numeral 106 denotes a wire bonding pad formed of Al or the like, which is electrically connected to the semiconductor integrated circuit, and is exposed by providing an opening 107 having an upper surface opened in the protective film 102 of the uppermost semiconductor chip 101 (for example, Patent Literature 1).
JP-A-8-236690

しかしながら、特許文献1に示される前記従来の構成では、予め3次元積層用に側面に電極を露出するように製作した専用の半導体チップでなければ積層できないという問題点があった。   However, the conventional configuration disclosed in Patent Document 1 has a problem in that stacking can be performed only by a dedicated semiconductor chip manufactured in advance so that electrodes are exposed on the side surfaces for three-dimensional stacking.

また、工程についてであるが、まず、積層する半導体チップ同士の貼り合わせ面を接着剤にて固定し、次に、側面配線の金属蒸着のために、張り合わせた半導体チップの側面にフォトレジストを形成し、露光、現像により必要箇所のフォトレジストを除去する。次に、側面の配線電極となる金属蒸着を行い、フォトレジストとその上に堆積している金属とを除去することで側面配線を作成していた。また別の方法として、接着剤にて貼り合わせて積層した半導体チップの側面に最初に金属を蒸着し、その後、金属表面にフォトレジストを形成し、配線用パッド部分及びその周辺以外のフォトレジストを露光、現像により除去して金属を露出させてから、露出している金属部分をエッチングにて除去することにより側面配線を作成していた。以上のように、3次元積層を行い、モジュールの側面に配線を形成するために、どちらの工程においても、接着剤貼り付け工程、フォトレジスト形成工程、露光、現像工程、金属蒸着工程、フォトレジスト除去工程と、多くの工程が必要で、複雑な上に時間とコストも要するという問題点があった。また、外形寸法の異なった半導体チップの積層を行う場合は、工程がさらに困難となる。   Regarding the process, first, the bonding surfaces of the stacked semiconductor chips are fixed with an adhesive, and then a photoresist is formed on the side surfaces of the bonded semiconductor chips for metal deposition of the side wiring. Then, the photoresist at a necessary portion is removed by exposure and development. Next, metal deposition to be the side wiring electrode is performed, and the side wiring is created by removing the photoresist and the metal deposited thereon. As another method, a metal is first deposited on the side surface of the laminated semiconductor chip bonded with an adhesive, and then a photoresist is formed on the metal surface, and a photoresist other than the wiring pad portion and its periphery is applied. After removing the metal by exposure and development to expose the metal, the exposed metal portion is removed by etching to create the side wiring. As described above, in order to perform three-dimensional lamination and form wiring on the side surface of the module, in any of the processes, an adhesive application process, a photoresist formation process, an exposure, a development process, a metal vapor deposition process, a photoresist The removal process and many processes are necessary, and there is a problem that it is complicated and requires time and cost. Further, when stacking semiconductor chips having different external dimensions, the process becomes more difficult.

本発明は、前記従来の問題点を解決するもので、外形寸法の異なる半導体チップまたは、予め側面に配線を形成されていない半導体チップにおいても、少ない工程で、容易に3次元に積層することを目的とする。   The present invention solves the above-mentioned conventional problems, and even in a semiconductor chip having a different external dimension or a semiconductor chip in which a wiring is not formed in advance on a side surface, it is easy to stack three-dimensionally with few steps. Objective.

上記目的を達成するために、本発明の半導体チップの製造方法は、複数枚3次元積層されて半導体チップ積層モジュールを形成する1つの半導体チップを製造するに際し、第1面に回路及び電極が形成される半導体チップを用意する工程と、前記半導体チップの前記第1面及び前記第1面と接する側面に導電フィラーを含有する絶縁接着剤を供給する工程と、圧力を加えて体積を縮小させることにより、前記絶縁接着剤の所望の箇所の前記導電フィラーを凝集することで前記半導体チップの電極から側面に到る導電経路を形成する工程とを有し、前記導電経路を用いて前記半導体チップ積層モジュール製造時の前記半導体チップ間を電気的に接続することを特徴とする。 In order to achieve the above object, according to the method for manufacturing a semiconductor chip of the present invention , a circuit and an electrode are formed on the first surface when manufacturing one semiconductor chip that is three-dimensionally stacked to form a semiconductor chip stacked module. A step of preparing a semiconductor chip to be manufactured, a step of supplying an insulating adhesive containing a conductive filler to the first surface of the semiconductor chip and a side surface in contact with the first surface, and applying pressure to reduce the volume Accordingly, and forming the conductive path from the semiconductor chip electrode on the side surface by aggregating the conductive filler of a desired portion of the insulating adhesive, the semiconductor chip laminated by using the conductive path The semiconductor chips at the time of module manufacture are electrically connected.

また、前記絶縁接着剤が、所定の温度での熱硬化性を備えても良い
また、前記絶縁接着剤及び前記積層側面絶縁接着剤が、所定の温度での熱硬化性を備えても良い
The insulating adhesive may have thermosetting properties at a predetermined temperature .
Further, the insulating adhesive and the edge surface insulating adhesive may comprise thermosetting at a given temperature.

以上により、外形寸法の異なる半導体チップまたは、予め側面に配線を形成されていない半導体チップにおいても、少ない工程で、容易に3次元に積層することができる。   As described above, even a semiconductor chip having a different external dimension or a semiconductor chip in which a wiring is not formed in advance on a side surface can be easily three-dimensionally stacked with few steps.

以上のように、電極パッドが形成される第1面、及び積層された半導体チップの側面全面に導電フィラー入り接着剤を供給し、第1面及び側面を通って所定の電極パッド間を電気的に接続する再配線を形成することにより、側面に積層された半導体チップ間を接続するための電極パッドを形成していないような半導体チップを積層させた場合や半導体チップの外形寸法が異なる半導体チップを積層する場合であっても、再配線を同一材料で形成することで容易に、電気的に接続された半導体チップ積層モジュールを形成することができる。   As described above, the adhesive containing the conductive filler is supplied to the entire first surface where the electrode pads are formed and the side surfaces of the stacked semiconductor chips, and the predetermined electrode pads are electrically connected between the first surface and the side surfaces. By forming a rewiring that connects to the semiconductor chip, semiconductor chips that do not have electrode pads for connecting the semiconductor chips stacked on the side surfaces are stacked, or semiconductor chips having different external dimensions Even in the case of stacking, it is possible to easily form an electrically connected semiconductor chip stacked module by forming the rewiring with the same material.

以下本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は実施の形態1における半導体チップ積層モジュールの構成を示す図であり、図1(a)は半導体チップ積層モジュールの斜視図、図1(b)は半導体チップ積層モジュールの断面図を示している。図1では、半導体チップ1の電極パッド2から再配線4aによって、電極パッド2が形成される第1面と接する面(以下、側面と称す)に電極を引き出して電極パッド2から側面に達する導電経路を形成し、同様の仕様の半導体チップ1を複数、図の場合は、4チップを3次元積層して貼り合わせてあり、それぞれの半導体チップ1の側面全体である積層方向と平行な側面(以下、積層側面と称す)にわたりさらに再配線4bにより導電経路を形成した例を示している。
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
1A and 1B are diagrams showing a configuration of a semiconductor chip laminated module according to Embodiment 1, FIG. 1A is a perspective view of the semiconductor chip laminated module, and FIG. 1B is a cross-sectional view of the semiconductor chip laminated module. Yes. In FIG. 1, the electrode leads 2 from the electrode pad 2 of the semiconductor chip 1 to the surface in contact with the first surface on which the electrode pad 2 is formed (hereinafter referred to as a side surface) by the rewiring 4a. A plurality of semiconductor chips 1 having the same specifications are formed, and in the case shown in the figure, four chips are three-dimensionally stacked and bonded to each other. Hereinafter, an example in which a conductive path is further formed by the rewiring 4b over the stacked side surface) is shown.

図1において、それぞれの半導体チップ1は、前もってアクティブ面(回路形成面)と再配線引き出し側の積層側面に、導電フィラーを含有した絶縁接着剤からなる導電フィラー入り接着剤を供給した状態で、所望の再配線箇所に熱エネルギーあるいは加圧治具によって導電フィラーを凝集させて、電極パッド2から積層側面に到るまでの導電経路としての再配線4aを確保した状態であり、熱エネルギー及び加圧治具による加圧を加えていない箇所の絶縁接着剤は硬化しない状態のまま、複数枚の半導体チップ1を積層する。その後、全体に所定の熱を付与することで貼り合わせ面に存在する導電フィラー入り絶縁接着剤5(熱硬化)の接着力により絶縁状態を保ったまま固定されている。貼り合わせた後の複数の半導体チップ側面に亘る再配線4bについても同様に積層側面に供給された積層側面絶縁接着剤に熱エネルギーあるいは加圧治具によって再配線がなされた状態である。これにより、所定の各半導体チップの電極パッド2間を再配線4a及び再配線4bにて接続している。   In FIG. 1, each semiconductor chip 1 is supplied with a conductive filler-containing adhesive made of an insulating adhesive containing a conductive filler on the active surface (circuit forming surface) and the side surface of the rewiring lead side in advance. In this state, the conductive filler is agglomerated by heat energy or a pressing jig at a desired rewiring location to secure a rewiring 4a as a conductive path from the electrode pad 2 to the side surface of the laminate. A plurality of semiconductor chips 1 are stacked while the insulating adhesive at the portion where no pressure is applied by the pressure jig is not cured. After that, by applying predetermined heat to the whole surface, the insulating adhesive 5 containing the conductive filler existing on the bonding surface (thermosetting) is fixed while being kept in an insulating state. Similarly, the rewiring 4b extending over the side surfaces of the plurality of semiconductor chips after being bonded is in a state where rewiring has been made to the laminated side insulating adhesive supplied to the laminated side surface by thermal energy or a pressing jig. Thereby, the electrode pads 2 of each predetermined semiconductor chip are connected by the rewiring 4a and the rewiring 4b.

図2は実施の形態1における半導体チップの製造工程を示す斜視図、図3は実施の形態1における半導体チップの製造工程を示す断面図である。以下、製造プロセスについて図2,図3を用いて説明する。   FIG. 2 is a perspective view showing the manufacturing process of the semiconductor chip in the first embodiment, and FIG. 3 is a cross-sectional view showing the manufacturing process of the semiconductor chip in the first embodiment. Hereinafter, the manufacturing process will be described with reference to FIGS.

まず、図2(a),図3(a)は第1面に半導体回路を形成し、電極パッド2まで形成された後に、電極パッド2以外の部分は絶縁保護膜に覆われた状態でダイシングによって半導体ウェハから個片化され、さらにはダイシングされた積層側面も絶縁保護膜で覆われた半導体チップ1を示している。次に、図2(b),図3(b)示すように、半導体チップの第1面であるアクティブ面(回路形成面)と積層側面に導電フィラー入り接着剤3を供給する。導電フィラー入り接着剤3の供給方法としては、ペースト状の材料をほぼ均等の厚さになるように塗布を行うか、または材料を所定の厚さでシート状に加工したものを貼り付ける手段等がある。   First, in FIG. 2A and FIG. 3A, a semiconductor circuit is formed on the first surface, and after the electrode pad 2 is formed, dicing is performed in a state where the portions other than the electrode pad 2 are covered with an insulating protective film. The semiconductor chip 1 is shown in which the laminated side surfaces separated from the semiconductor wafer by, and further diced are covered with an insulating protective film. Next, as shown in FIGS. 2B and 3B, an adhesive 3 containing a conductive filler is supplied to the active surface (circuit forming surface) which is the first surface of the semiconductor chip and the side surface of the stack. As a method for supplying the conductive filler-containing adhesive 3, a paste-like material is applied so as to have a substantially uniform thickness, or a material processed into a sheet shape with a predetermined thickness is attached. There is.

次に、図2(c),図3(c)に示すように、半導体チップ1の電極パッド2から積層側面への電極引き出しのための再配線4aを行う。再配線4aの手段としては、高い熱エネルギーを有するレーザ光もしくは光ビームなどの熱エネルギー6の照射スポット径を、再配線時の所望の配線幅になるように調節した状態で、電極パッド2から積層側面の所望の箇所まで至る導電経路をトレースする。これらの熱エネルギー6により導電フィラー入り接着剤3の中の導電フィラーどうしが接触することを妨げている成分(絶縁接着剤)を除去し、熱エネルギー6を加えた箇所でのみ導電フィラーが接触して導電性が得られ、再配線4aが形成される。また、この時点では熱エネルギー6を加えていない箇所の導電フィラー入り接着剤3は硬化もせず、絶縁性を保ったままである。なお、加圧治具などにより所望の導電経路に対してのみ圧力を加えることで導電フィラーどうしの接触を得て導電経路を形成しても良い。   Next, as shown in FIG. 2C and FIG. 3C, rewiring 4a is performed for drawing out the electrodes from the electrode pads 2 of the semiconductor chip 1 to the stacked side surfaces. As a means for the rewiring 4a, the irradiation spot diameter of the thermal energy 6 such as a laser beam or a light beam having a high thermal energy is adjusted from the electrode pad 2 in a state in which it is adjusted to a desired wiring width at the time of the rewiring. Trace the conductive path to the desired location on the side of the stack. The component (insulating adhesive) that prevents the conductive fillers in the adhesive 3 containing conductive fillers from contacting with each other by the thermal energy 6 is removed, and the conductive filler contacts only at the location where the thermal energy 6 is applied. Thus, conductivity is obtained, and the rewiring 4a is formed. At this time, the conductive filler-containing adhesive 3 where the thermal energy 6 is not applied is not cured and remains insulative. Note that the conductive path may be formed by applying a pressure only to a desired conductive path with a pressurizing jig to obtain contact between the conductive fillers.

最後に、図2(d),図3(d)に示すように、導電フィラー入り接着剤3に所定の熱硬化条件にて全体に熱を加え、再配線4aが形成された箇所以外の導電フィラー入り接着剤3を絶縁性を保ったままで硬化させて硬化後の接着剤5とする。なお、この工程においては導電フィラー入り接着剤3の硬化条件として紫外線(UV)硬化のものを用いて、半導体チップ全面に紫外線を照射して導電フィラー入り接着剤の硬化を行っても良い。   Finally, as shown in FIGS. 2 (d) and 3 (d), heat is applied to the entire adhesive filler-containing adhesive 3 under predetermined thermosetting conditions, and the conductive portions other than the portion where the rewiring 4a is formed. The adhesive 3 with filler is cured while maintaining the insulating property to obtain an adhesive 5 after curing. In this step, the adhesive containing the conductive filler 3 may be cured by irradiating the entire surface of the semiconductor chip with ultraviolet rays using a curing condition of the adhesive 3 containing the conductive filler.

図4は実施の形態1における半導体チップ積層モジュールの製造工程を示す図である。
以下、図4にしたがって半導体チップ積層モジュールの製造プロセスについて順を追って説明する。
FIG. 4 is a diagram showing a manufacturing process of the semiconductor chip laminated module in the first embodiment.
Hereinafter, the manufacturing process of the semiconductor chip laminated module will be described in order according to FIG.

まず、図4(a)は半導体チップ7を積層した状態を示している。ここで、半導体チップ7とは、チップの第1の面であるアクティブ面(回路形成面)から積層側面にかけて導電フィラー入り接着剤3が供給され、電極パッド2から積層側面にいたる再配線4aが熱エネルギー6(図3参照)等の照射により完了した状態であり、再配線4aが行われていない箇所の導電フィラー入り接着剤3の熱硬化はまだ行われていない状態の半導体チップを言う。次に、図4(b)に示すように、位置合わせをして重ね合わせた複数の半導体チップ7全体に所定の熱を与えて、図4(a)では未硬化であった部分の導電フィラー入り接着剤3を熱硬化させて接着剤5とし、それぞれの半導体チップ7同士の貼り合わせ面を接着固定する。この段階では一つのモジュールとして固定はされているが、それぞれのチップの電極どうしの接続、配線は行われていない。   First, FIG. 4A shows a state in which the semiconductor chips 7 are stacked. Here, the semiconductor chip 7 is an adhesive 3 containing a conductive filler supplied from an active surface (circuit forming surface), which is the first surface of the chip, to the laminated side surface, and a rewiring 4a from the electrode pad 2 to the laminated side surface. This refers to a semiconductor chip that has been completed by irradiation with thermal energy 6 (see FIG. 3), etc., and has not yet been thermally cured with the conductive filler-containing adhesive 3 at a location where rewiring 4a has not been performed. Next, as shown in FIG. 4 (b), predetermined heat is applied to the whole of the plurality of semiconductor chips 7 that are aligned and overlapped, and the conductive filler in the uncured portion in FIG. 4 (a). The adhesive 3 is thermally cured to form an adhesive 5, and the bonding surfaces of the semiconductor chips 7 are bonded and fixed. At this stage, the module is fixed as a single module, but the electrodes of each chip are not connected or wired.

次に、図4(c)に示すように、接着固定された複数の半導体チップ7の積層側面全体に導電フィラー入り接着剤3を積層側面絶縁接着剤として供給する。なお、この工程での材料供給手段も、ペースト状材料の塗布か、シート状材料の貼り付け手段を用いる。次に、図4(d)に示すように、積層した複数の半導体チップ7どうしの側面再配線4bを形成する。複数半導体チップの側面に亘る所望の導電経路を形成するため、レーザ等の熱エネルギーを所定の照射幅で照射し、所定の形状の導電経路を形成する。なお、加圧治具などにより所望の導電経路に対してのみ圧力を加えることで導電フィラーどうしの接触を得て導電経路を形成しても良い。   Next, as shown in FIG. 4C, the adhesive 3 containing conductive filler is supplied as the laminated side insulating adhesive to the entire laminated side surface of the plurality of semiconductor chips 7 that are bonded and fixed. Note that the material supply means in this step also uses paste-like material application or sheet-like material application means. Next, as shown in FIG. 4D, the side surface rewiring 4b between the stacked semiconductor chips 7 is formed. In order to form a desired conductive path across the side surfaces of a plurality of semiconductor chips, thermal energy such as a laser is irradiated with a predetermined irradiation width to form a conductive path having a predetermined shape. Note that the conductive path may be formed by applying a pressure only to a desired conductive path with a pressurizing jig to obtain contact between the conductive fillers.

最後に、図4(e)に示すように、モジュール全体に所定の温度を付与することで、積層側面に供給した導電フィラー入り接着剤3の未硬化部分を硬化させて接着剤5とし、半導体積層モジュールを完成する。   Finally, as shown in FIG. 4 (e), by applying a predetermined temperature to the entire module, the uncured portion of the conductive filler-containing adhesive 3 supplied to the laminated side surface is cured to form an adhesive 5. Complete the laminated module.

なお、積層側面に供給する導電フィラー入り接着剤においては、硬化条件として紫外線(UV)硬化のものを用いて、側面に紫外線を照射して導電フィラー入り接着剤の硬化を行っても良い。   Note that the adhesive containing conductive filler supplied to the side surface of the laminate may be cured using ultraviolet (UV) curing as the curing condition, and the adhesive containing conductive filler is irradiated by irradiating the side surface with ultraviolet light.

以上のように、電極パッドが形成される第1面、及び積層された半導体チップの積層側面全面に導電フィラー入り接着剤を供給し、第1面及び積層側面を通って所定の電極パッド間を電気的に接続する再配線を導電フィラー入り接着剤中の導電フィラーを接触させて形成することにより、側面に積層された半導体チップ間を接続するための電極パッドを形成していないような半導体チップを積層させた場合や半導体チップの外形寸法が異なる半導体チップを積層する場合であっても、再配線を接着剤と同一材料で一括形成することで容易に、電気的に接続された半導体チップ積層モジュールを形成することができる。
(実施の形態2)
図5は実施の形態2における半導体チップ積層モジュールの製造工程を示す図である。以下、図5にしたがって半導体チップ積層モジュールの製造プロセスについて順を追って説明する。
As described above, the adhesive containing the conductive filler is supplied to the first surface on which the electrode pads are formed and to the entire side surface of the stacked semiconductor chips, and between the predetermined electrode pads through the first surface and the side surfaces. A semiconductor chip in which electrode pads for connecting between semiconductor chips stacked on the side surface are not formed by forming a rewiring to be electrically connected by contacting a conductive filler in an adhesive containing a conductive filler. Even when stacking semiconductor chips or stacking semiconductor chips with different external dimensions, the semiconductor chip stacking can be easily electrically connected by forming the rewiring all together with the same material as the adhesive. Modules can be formed.
(Embodiment 2)
FIG. 5 is a diagram showing a manufacturing process of the semiconductor chip laminated module in the second embodiment. Hereinafter, the manufacturing process of the semiconductor chip laminated module will be described in order according to FIG.

まず、図5(a)は、実施の形態1の図4(a)までの製造プロセスと同様の製造プロセスで製造した、半導体チップ7を積層した状態を示している。次に、実施の形態1と異なり、本工程では、導電フィラー入り接着剤3を供給し、半導体チップ7及び半導体チップモジュール全体に所定の熱を加えて絶縁状態を保ったまま熱硬化を行った後に、所望の導電経路を形成するためにレーザや光ビーム等の熱エネルギーを加えることで導電フィラーの接触を妨げている物質を除去して凝集し、再配線(4aまたは4b)を形成すること、つまり、導電フィラー入り接着剤3を熱硬化した後、熱エネルギーを加えることで導電経路を作り出す。そのため、図5(b)においては、図4(b)と同様の状態、つまり位置合わせをして重ね合わせたそれぞれの半導体チップ7全体に所定の熱を与えて、未硬化であった部分の導電フィラー入り接着剤3を熱硬化させ、それぞれの半導体チップ1同士の貼りあわせ面を接着固定する。そして、図5(c)において、この段階で、既に供給されている積層側面の硬化された接着剤5の所定の位置にレーザや光ビームなどの熱エネルギーを用いて積層側面の再配線4bを形成する。つまり、それぞれの半導体チップ7の積層側面にまで引き出された再配線4aどうしの間には熱硬化した導電フィラー入り接着剤5が存在するので、これに熱エネルギーを付与することで導電経路を形成し、再配線4bとするものである。なお、導電フィラー入り接着剤3を硬化させる熱エネルギー密度は、導電フィラー入り接着剤3の中の導電フィラーを凝集し導電経路を作る為の熱エネルギー密度より低くなる。従って通常は、導電フィラー入り接着剤3を硬化させる温度は、導電フィラー入り接着剤3の中の導電フィラーを凝集し導電経路を作る為の温度より低くなる。なお、導電フィラー入り接着剤3の中の導電フィラーを凝集する際には、加圧治具などにより所望の導電経路に対してのみ圧力を加えることで導電フィラーどうしの接触を得て導電経路を形成しても良い。   First, FIG. 5A shows a state in which the semiconductor chips 7 manufactured by the same manufacturing process as that up to FIG. 4A of the first embodiment are stacked. Next, unlike Embodiment 1, in this step, the adhesive 3 containing conductive filler is supplied, and predetermined heat is applied to the entire semiconductor chip 7 and the semiconductor chip module to perform thermosetting while maintaining an insulating state. Later, to form a rewiring (4a or 4b), a material that prevents contact with the conductive filler is removed by applying thermal energy such as a laser or a light beam to form a desired conductive path, thereby aggregating the material. That is, after thermally curing the adhesive 3 with conductive filler, a conductive path is created by applying thermal energy. Therefore, in FIG. 5B, the same state as in FIG. 4B, that is, a predetermined heat is applied to the entire semiconductor chips 7 that are aligned and overlapped, and the uncured portion The conductive filler-containing adhesive 3 is thermally cured, and the bonding surfaces of the respective semiconductor chips 1 are bonded and fixed. In FIG. 5 (c), at this stage, the rewiring 4b on the laminated side surface is applied to a predetermined position of the adhesive 5 that has already been supplied on the laminated side surface by using thermal energy such as a laser or a light beam. Form. In other words, since the adhesive 5 with a thermally-cured conductive filler exists between the rewirings 4a drawn to the side surfaces of the stacked semiconductor chips 7, a conductive path is formed by applying thermal energy thereto. The rewiring 4b is used. Note that the thermal energy density for curing the conductive filler-containing adhesive 3 is lower than the thermal energy density for aggregating the conductive filler in the conductive filler-containing adhesive 3 to create a conductive path. Therefore, normally, the temperature at which the adhesive 3 with conductive filler is cured is lower than the temperature for aggregating the conductive filler in the adhesive 3 with conductive filler to create a conductive path. When the conductive filler in the adhesive 3 with conductive filler is agglomerated, contact between the conductive fillers is obtained by applying pressure only to a desired conductive path with a pressurizing jig or the like. It may be formed.

以上により、積層側面に積層側面絶縁接着剤を形成することなく、既に硬化された接着剤から再配線を形成することにより、より容易な方法で、電気的に接続された半導体チップ積層モジュールを形成することができる。
(実施の形態3)
図6は実施の形態3における半導体パッケージの構成を示す図であり、実施の形態1あるいは実施の形態2で製作した半導体チップ積層モジュールをインターポーザ基板10に実装し、インターポーザ基板10の裏面電極にはんだボール11を形成した、半導体パッケージの最終的な完成形の例である。図6(a)は半導体パッケージの斜視図、図6(b)は断面図である。半導体チップ積層モジュールをインターポーザ基板10に実装する手段としては、はんだペーストを用いたはんだ接合による場合が一般的である。なお、図7は実施の形態3における半導体パッケージの製造工程を示す図であり、半導体積層モジュールをインターポーザ基板10に実装する工程においても、半導体積層モジュール作成の場合と同様の導電フィラー入り接着剤3を用いる方法を示している。この工程について図6,図7を用いて説明する。
As described above, an electrically connected semiconductor chip laminated module can be formed in an easier way by forming rewiring from an already cured adhesive without forming laminated side insulating adhesive on the laminated side. can do.
(Embodiment 3)
FIG. 6 is a diagram showing the configuration of the semiconductor package according to the third embodiment. The semiconductor chip laminated module manufactured in the first or second embodiment is mounted on the interposer substrate 10 and solder is applied to the back electrode of the interposer substrate 10. This is an example of a final completed semiconductor package in which balls 11 are formed. 6A is a perspective view of the semiconductor package, and FIG. 6B is a cross-sectional view. As a means for mounting the semiconductor chip laminated module on the interposer substrate 10, solder bonding using a solder paste is generally used. FIG. 7 is a diagram showing the manufacturing process of the semiconductor package according to the third embodiment. In the process of mounting the semiconductor laminated module on the interposer substrate 10, the adhesive 3 containing the conductive filler is the same as in the case of producing the semiconductor laminated module. The method using is shown. This process will be described with reference to FIGS.

まず、図7(a)に示すように、積層の完了した半導体チップ積層モジュールをインターポーザ基板10上に設置、仮固定し、接合を行うインターポーザ基板10の電極パッド12の周囲に導電フィラー入り接着剤3を供給する。ここで、半導体チップ積層モジュールの端子電極とインターポーザ基板10の電極パッド12の間にレーザ等の熱エネルギーを照射することで、半導体チップ積層モジュールの端子電極とインターポーザ基板10の電極パッド12とを電気的に接続する導電経路を形成し、インターポーザ基板10との接合を完了する。   First, as shown in FIG. 7A, an adhesive containing a conductive filler is provided around the electrode pad 12 of the interposer substrate 10 where the laminated semiconductor chip laminated module is placed on the interposer substrate 10, temporarily fixed, and bonded. 3 is supplied. Here, by irradiating thermal energy such as a laser between the terminal electrode of the semiconductor chip laminated module and the electrode pad 12 of the interposer substrate 10, the terminal electrode of the semiconductor chip laminated module and the electrode pad 12 of the interposer substrate 10 are electrically connected. Conductive paths to be connected are formed, and the bonding with the interposer substrate 10 is completed.

なお、図7(c)においては、積層してモジュール化する以前の半導体チップ7をインターポーザ基板10の上に位置決めして積み重ね、それぞれを仮固定し、積み重ねた側面からインターポーザ上の電極パッド12周辺にまでいたる導電フィラー入り接着剤3を供給した状態であり、その後、図7(d)のように、積み重ねた複数の半導体チップ7の積層側面からインターポーザ基板10の電極パッド12にいたる所望の再配線4bを形成する。この後、パッケージ全体に所定の熱を付与し、再配線4a及び4b以外の導電フィラー入り接着剤3を熱硬化させることによりパッケージ化が完了する。   In FIG. 7 (c), the semiconductor chips 7 before being stacked and modularized are positioned and stacked on the interposer substrate 10, each of them is temporarily fixed, and the periphery of the electrode pads 12 on the interposer from the stacked side surfaces. In this state, the adhesive 3 containing the conductive filler is supplied, and thereafter, as shown in FIG. 7 (d), the desired rebound from the stacked side surfaces of the stacked semiconductor chips 7 to the electrode pads 12 of the interposer substrate 10 is performed. A wiring 4b is formed. Thereafter, predetermined heat is applied to the entire package, and the packaging with the conductive filler other than the rewirings 4a and 4b is thermally cured to complete the packaging.

以上のように、実施の形態1または実施の形態2で形成された半導体チップ積層モジュールをインターポーザ基板上に搭載し、導電フィラー入り接着剤を用いて、半導体チップ積層モジュールの再配線あるいは半導体チップ積層モジュールの電極パッドから、インターポーザ基板の電極パッドにいたる所望の再配線を形成することにより、容易な方法で、半導体チップ積層モジュールを搭載する半導体パッケージの電気的接続を行うことができる。
(実施の形態4)
図8は実施の形態4における半導体パッケージの構成を示す図であり、インターポーザ基板10上に外形寸法の異なる半導体チップが外形の大きなものが下で、上に行くにしたがって外形の小さいチップが積み重ねられ、しかも上に載った半導体チップがその直下の半導体チップの電極パッドに被さらないという条件の下に積層されている。この場合、半導体チップの再配線として予めそれぞれの側面にいたる再配線は必要なく、インターポーザ基板10上に積み重ね、導電フィラー入り接着剤3を全面に供給した後に、各半導体チップ上の電極パッドとインターポーザ基板10上の電極パッド12を所望の再配線4cを行うことで一括してパッケージ化まで終了する。また、本実施の形態においては、上に積み重ねた半導体チップが直下の半導体チップの電極パッドに被さってしまう外形サイズだとしても、その部分だけ予め側面に再配線を引き出しておけば図8の場合と同様にインターポーザ基板10に対して一括して実装し、パッケージ化することが可能となる。
As described above, the semiconductor chip laminated module formed in the first embodiment or the second embodiment is mounted on the interposer substrate, and the wiring of the semiconductor chip laminated module or the semiconductor chip laminated is formed using the adhesive containing the conductive filler. By forming a desired rewiring from the electrode pad of the module to the electrode pad of the interposer substrate, electrical connection of the semiconductor package on which the semiconductor chip stacked module is mounted can be performed by an easy method.
(Embodiment 4)
FIG. 8 is a diagram showing the configuration of the semiconductor package according to the fourth embodiment. On the interposer substrate 10, semiconductor chips having different outer dimensions are stacked with a chip having a larger outer shape, and chips having a smaller outer shape are stacked as they go upward. In addition, the semiconductor chips placed thereon are stacked under the condition that they do not cover the electrode pads of the semiconductor chips immediately below. In this case, there is no need for rewiring to each side in advance as rewiring of the semiconductor chip. After stacking on the interposer substrate 10 and supplying the adhesive 3 with conductive filler to the entire surface, the electrode pads on each semiconductor chip and the interposer The desired rewiring 4c is performed on the electrode pads 12 on the substrate 10 to complete the packaging. Further, in this embodiment, even if the semiconductor chip stacked on top has an outer size that covers the electrode pad of the semiconductor chip immediately below, if the rewiring is drawn out to the side only in advance, the case shown in FIG. In the same manner as described above, it is possible to package and package the interposer substrate 10 at once.

このように、上層の半導体チップが直下の半導体チップよりも小さいか同じ外形寸法であれば、再配線4cと再配線4b、少なくとも再配線4cを用いて、積層される半導体チップ間の所定の電極パッド同士を電気的に接続することができる。   As described above, when the upper semiconductor chip is smaller than or equal to the semiconductor chip directly below, the rewiring 4c and the rewiring 4b, at least the rewiring 4c, are used to form predetermined electrodes between the stacked semiconductor chips. Pads can be electrically connected.

以下、図9,図10を用いて再配線の形成方法を説明する。
図9は本発明の再配線部分の構成を示す斜視図であり、本発明の実施の形態1から4における導電フィラー入り接着剤の再配線部分の斜視図である。ほぼ均一に供給された導電フィラー入り接着剤3に部分的に熱エネルギーを照射することで、または加圧治具により部分的に加圧することで、再配線4a部分の導電フィラーが凝集する。
Hereinafter, a method for forming the rewiring will be described with reference to FIGS.
FIG. 9 is a perspective view showing the configuration of the rewiring portion of the present invention, and is a perspective view of the rewiring portion of the adhesive with conductive filler in the first to fourth embodiments of the present invention. The conductive filler in the rewiring 4a is agglomerated by partially irradiating the adhesive 3 with conductive filler supplied substantially uniformly with heat energy or by partially applying pressure with a pressing jig.

この様子を、さらに図10の本発明の再配線の形成工程を示す工程断面図にて詳細に説明する。
まず、図10(a)は半導体チップ1上に、導電フィラー9と絶縁接着剤8とからなる導電フィラー入り接着剤3が供給されている状態を示す。次に、図10(b)に示すように、半導体チップ1上の電極パッド2を通る再配線4aのためにレーザ等の熱エネルギー6を照射することで、絶縁接着剤8が除去されて導電フィラー9が凝集し、導電フィラー9どうしが接触して導電経路が得られる。その後、図10(c)に示すように、所定の熱を全体に付与することで熱硬化された接着剤5とし、導電経路以外の部分では絶縁が保たれたまま硬化した状態となる。
This state will be further described in detail with reference to a process cross-sectional view showing a rewiring forming process of the present invention in FIG.
First, FIG. 10A shows a state in which a conductive filler-containing adhesive 3 composed of a conductive filler 9 and an insulating adhesive 8 is supplied onto the semiconductor chip 1. Next, as shown in FIG. 10B, the insulating adhesive 8 is removed by irradiating the thermal energy 6 such as a laser to the rewiring 4a passing through the electrode pad 2 on the semiconductor chip 1 so as to be conductive. The filler 9 aggregates and the conductive fillers 9 come into contact with each other to obtain a conductive path. Thereafter, as shown in FIG. 10C, the adhesive 5 is thermally cured by applying predetermined heat to the whole, and is cured while maintaining insulation at portions other than the conductive path.

本発明は、半導体チップを、少ない工程で、容易に3次元に積層することができ、複数個の半導体チップをひとつのモジュールに3次元積層された半導体チップ積層モジュール及びそれを構成する半導体チップならびにそれらの製造方法等に有用である。   The present invention enables a semiconductor chip to be easily three-dimensionally stacked with a small number of steps, a semiconductor chip stacked module in which a plurality of semiconductor chips are three-dimensionally stacked in one module, a semiconductor chip constituting the semiconductor chip, It is useful for their production methods.

実施の形態1における半導体チップ積層モジュールの構成を示す図The figure which shows the structure of the semiconductor chip lamination | stacking module in Embodiment 1. FIG. 実施の形態1における半導体チップの製造工程を示す斜視図The perspective view which shows the manufacturing process of the semiconductor chip in Embodiment 1 実施の形態1における半導体チップの製造工程を示す断面図Sectional drawing which shows the manufacturing process of the semiconductor chip in Embodiment 1. 実施の形態1における半導体チップ積層モジュールの製造工程を示す図The figure which shows the manufacturing process of the semiconductor chip lamination | stacking module in Embodiment 1. 実施の形態2における半導体チップ積層モジュールの製造工程を示す図The figure which shows the manufacturing process of the semiconductor chip lamination | stacking module in Embodiment 2. 実施の形態3における半導体パッケージの構成を示す図FIG. 5 shows a structure of a semiconductor package in Embodiment 3. 実施の形態3における半導体パッケージの製造工程を示す図The figure which shows the manufacturing process of the semiconductor package in Embodiment 3. 実施の形態4における半導体パッケージの構成を示す図FIG. 9 shows a structure of a semiconductor package in Embodiment 4. 本発明の再配線部分の構成を示す斜視図The perspective view which shows the structure of the rewiring part of this invention 本発明の再配線の形成工程を示す工程断面図Process sectional drawing which shows the formation process of the rewiring of this invention 従来の半導体チップ積層モジュールの構造を示す図The figure which shows the structure of the conventional semiconductor chip lamination module

符号の説明Explanation of symbols

1 半導体チップ
2 電極パッド
3 導電フィラー入り接着剤
4a 再配線
4b 再配線
4c 再配線
5 接着剤
6 熱エネルギー
7 半導体チップ
8 絶縁接着剤
9 導電フィラー
10 インターポーザ基板
11 はんだボール
12 電極パッド
101 半導体チップ
102 保護膜
103 配線用パッド
104 切欠部
105 配線部
106 ワイヤボンディング用パッド
107 開口部
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Electrode pad 3 Adhesive with conductive filler 4a Rewiring 4b Rewiring 4c Rewiring 5 Adhesive 6 Thermal energy 7 Semiconductor chip 8 Insulating adhesive 9 Conductive filler 10 Interposer substrate 11 Solder ball 12 Electrode pad 101 Semiconductor chip 102 Protective film 103 Wiring pad 104 Notch portion 105 Wiring portion 106 Wire bonding pad 107 Opening portion

Claims (5)

複数枚3次元積層されて半導体チップ積層モジュールを形成する1つの半導体チップを製造するに際し、
第1面に回路及び電極が形成される半導体チップを用意する工程と、
前記半導体チップの前記第1面及び前記第1面と接する側面に導電フィラーを含有する絶縁接着剤を供給する工程と、
圧力を加えて体積を縮小させることにより、前記絶縁接着剤の所望の箇所の前記導電フィラーを凝集することで前記半導体チップの電極から側面に到る導電経路を形成する工程と
を有し、前記導電経路を用いて前記半導体チップ積層モジュール製造時の前記半導体チップ間を電気的に接続することを特徴とする半導体チップの製造方法。
When manufacturing one semiconductor chip that is three-dimensionally stacked to form a semiconductor chip stacked module,
Preparing a semiconductor chip on which a circuit and electrodes are formed on the first surface;
Supplying an insulating adhesive containing a conductive filler to the first surface and the side surface in contact with the first surface of the semiconductor chip;
Forming a conductive path from the electrode of the semiconductor chip to the side surface by agglomerating the conductive filler at a desired location of the insulating adhesive by reducing the volume by applying pressure, and A method of manufacturing a semiconductor chip, wherein the semiconductor chips are electrically connected using a conductive path when the semiconductor chip stacked module is manufactured.
前記絶縁接着剤が、所定の温度での熱硬化性を有することを特徴とする請求項1記載の半導体チップの製造方法。   2. The method of manufacturing a semiconductor chip according to claim 1, wherein the insulating adhesive has thermosetting properties at a predetermined temperature. 複数枚3次元積層されて半導体チップ積層モジュールを形成する1つの半導体チップを製造するに際し、
第1面に回路及び電極が形成される半導体チップを用意する工程と、
前記半導体チップの前記第1面及び前記第1面と接する側面に導電フィラーを含有する絶縁接着剤を供給する工程と、
前記絶縁接着剤の所望の箇所の前記導電フィラーを凝集することで前記半導体チップの電極から側面に到る導電経路を形成する工程と
を有し、前記絶縁接着剤が所定の温度での熱硬化性を備え、前記導電経路を用いて前記半導体チップ積層モジュール製造時の前記半導体チップ間を電気的に接続することを特徴とする請求項1記載の半導体チップの製造方法。
When manufacturing one semiconductor chip that is three-dimensionally stacked to form a semiconductor chip stacked module,
Preparing a semiconductor chip on which a circuit and electrodes are formed on the first surface;
Supplying an insulating adhesive containing a conductive filler to the first surface and the side surface in contact with the first surface of the semiconductor chip;
Forming a conductive path from the electrode of the semiconductor chip to the side surface by agglomerating the conductive filler at a desired location of the insulating adhesive, and the insulating adhesive is thermally cured at a predetermined temperature. 2. The method of manufacturing a semiconductor chip according to claim 1, wherein the semiconductor chips are electrically connected using the conductive path when the semiconductor chip stacked module is manufactured.
第1面に回路及び電極が形成された半導体チップを複数枚3次元積層して半導体チップ積層モジュールを製造するに際し、
前記半導体チップの前記第1面及び前記第1面と接する側面に導電フィラーを含有する絶縁接着剤を供給する工程と、
圧力を加えて体積を縮小させることにより、前記絶縁接着剤の所望の箇所の前記導電フィラーを凝集することで前記半導体チップの電極から側面に到る第1の導電経路を形成する工程と、
前記絶縁接着剤及び前記第1の導電経路が設けられた前記半導体チップを複数枚3次元積層する工程と、
前記積層した複数枚の半導体チップの前記積層方向と平行な側面に導電フィラーを含有する積層側面絶縁接着剤を供給する工程と、
圧力を加えて体積を縮小させることにより、前記積層側面絶縁接着剤の所望の箇所の前記導電フィラーを凝集することで前記積層した複数枚の半導体チップの前記積層方向と平行な側面に第2の導電経路を形成する工程と
を有し、前記第1の導電経路及び前記第2の導電経路を用いて前記半導体チップ積層モジュールの前記半導体チップ間を電気的に接続することを特徴とする半導体チップ積層モジュールの製造方法。
When manufacturing a semiconductor chip laminated module by three-dimensionally laminating a plurality of semiconductor chips having circuits and electrodes formed on the first surface,
Supplying an insulating adhesive containing a conductive filler to the first surface and the side surface in contact with the first surface of the semiconductor chip;
Forming a first conductive path from the electrode of the semiconductor chip to the side surface by aggregating the conductive filler at a desired location of the insulating adhesive by reducing the volume by applying pressure;
A step of three-dimensionally laminating a plurality of the semiconductor chips provided with the insulating adhesive and the first conductive path;
Supplying a laminated side surface insulating adhesive containing a conductive filler on a side surface parallel to the laminating direction of the plurality of laminated semiconductor chips;
By applying pressure to reduce the volume, the conductive fillers at desired locations of the laminated side surface insulating adhesive are agglomerated to form a second side surface parallel to the laminating direction of the laminated semiconductor chips. Forming a conductive path, and electrically connecting the semiconductor chips of the semiconductor chip stacked module using the first conductive path and the second conductive path. A method for manufacturing a laminated module.
前記絶縁接着剤及び前記積層側面絶縁接着剤が、所定の温度での熱硬化性を有することを特徴とする請求項4記載の半導体チップ積層モジュールの製造方法。   5. The method of manufacturing a semiconductor chip laminated module according to claim 4, wherein the insulating adhesive and the laminated side surface insulating adhesive have thermosetting properties at a predetermined temperature.
JP2007298746A 2007-11-19 2007-11-19 Manufacturing method of semiconductor chip and manufacturing method of semiconductor chip laminated module Expired - Fee Related JP5252891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298746A JP5252891B2 (en) 2007-11-19 2007-11-19 Manufacturing method of semiconductor chip and manufacturing method of semiconductor chip laminated module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298746A JP5252891B2 (en) 2007-11-19 2007-11-19 Manufacturing method of semiconductor chip and manufacturing method of semiconductor chip laminated module

Publications (2)

Publication Number Publication Date
JP2009124056A JP2009124056A (en) 2009-06-04
JP5252891B2 true JP5252891B2 (en) 2013-07-31

Family

ID=40815860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298746A Expired - Fee Related JP5252891B2 (en) 2007-11-19 2007-11-19 Manufacturing method of semiconductor chip and manufacturing method of semiconductor chip laminated module

Country Status (1)

Country Link
JP (1) JP5252891B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574631B2 (en) * 1996-08-06 2010-11-04 日立化成工業株式会社 Multi-chip mounting method
JP2004063569A (en) * 2002-07-25 2004-02-26 Seiko Epson Corp Semiconductor device and manufacturing method therefor, circuit board, and electronic apparatus
JP4554152B2 (en) * 2002-12-19 2010-09-29 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor chip
JP2004303884A (en) * 2003-03-31 2004-10-28 Seiko Epson Corp Method of manufacturing three-dimensional mounted module and three-dimensional mounted module obtained thereby
JP2004335647A (en) * 2003-05-06 2004-11-25 Seiko Epson Corp Method of manufacturing semiconductor device
DE102004008135A1 (en) * 2004-02-18 2005-09-22 Infineon Technologies Ag Semiconductor device with a stack of semiconductor chips and method for producing the same
JP5113390B2 (en) * 2006-01-12 2013-01-09 パナソニック株式会社 Wiring connection method

Also Published As

Publication number Publication date
JP2009124056A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
US9443827B2 (en) Semiconductor device sealed in a resin section and method for manufacturing the same
TWI426587B (en) Chip scale package and fabrication method thereof
JP3888267B2 (en) Semiconductor device and manufacturing method thereof
TWI476841B (en) Semiconductor package and fabrication method thereof
JP2010165984A (en) Semiconductor device
US20090085224A1 (en) Stack-type semiconductor package
JP2013080912A (en) Semiconductor device and manufacturing method of the same
JP2004153084A (en) Multilayer circuit board and manufacture thereof
KR20150051358A (en) Interposer and method for manufacturing the same, and semiconductor package using the same
US20090309231A1 (en) Semiconductor device and method of manufacturing the same
JP2004335915A (en) Method for manufacturing semiconductor device
TWI534951B (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
JP2012114214A (en) Semiconductor device and method of manufacturing the same
JP2015225933A (en) Semiconductor device and manufacturing method of the same
JP6417142B2 (en) Semiconductor device and manufacturing method thereof
JP2015018897A (en) Semiconductor device manufacturing method
JP2007242684A (en) Laminated semiconductor device and laminating method of device
JP5252891B2 (en) Manufacturing method of semiconductor chip and manufacturing method of semiconductor chip laminated module
US20100055834A1 (en) Semiconductor device manufacturing method
KR101494411B1 (en) Semiconductor package, and method of manufacturing the same
TWI476873B (en) Integrated circuit constructions having through substrate vias and methods of forming integrated circuit constructions having through substrate vias
WO2010104001A1 (en) Method for manufacturing electronic device and apparatus for manufacturing electronic device
JP2007116030A (en) Semiconductor device and semiconductor package using it
JP2015115387A (en) Method of manufacturing semiconductor device
JP2006100666A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees