JP5252612B2 - Resin composite composition and method for producing the same - Google Patents

Resin composite composition and method for producing the same Download PDF

Info

Publication number
JP5252612B2
JP5252612B2 JP2006267240A JP2006267240A JP5252612B2 JP 5252612 B2 JP5252612 B2 JP 5252612B2 JP 2006267240 A JP2006267240 A JP 2006267240A JP 2006267240 A JP2006267240 A JP 2006267240A JP 5252612 B2 JP5252612 B2 JP 5252612B2
Authority
JP
Japan
Prior art keywords
resin
inorganic fine
composite composition
fine particles
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006267240A
Other languages
Japanese (ja)
Other versions
JP2007119769A (en
Inventor
ホアイ ナム ファム
庭昌 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Du Pont Mitsui Fluorochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Fluorochemicals Co Ltd filed Critical Du Pont Mitsui Fluorochemicals Co Ltd
Priority to JP2006267240A priority Critical patent/JP5252612B2/en
Publication of JP2007119769A publication Critical patent/JP2007119769A/en
Application granted granted Critical
Publication of JP5252612B2 publication Critical patent/JP5252612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無機微粒子が樹脂中にナノレベルに均一に分散された樹脂複合体組成物およびその製造方法に関するものである。   The present invention relates to a resin composite composition in which inorganic fine particles are uniformly dispersed at a nano level in a resin and a method for producing the same.

従来、様々な分野においてより高い性能を有する樹脂組成物が必要とされており、樹脂に充填材を分散させることで機械的強度、寸法安定性、圧縮クリープ特性、溶融成性などを改善することが行われている。 Conventionally, there is a need for a resin composition having a higher performance in various fields, mechanical strength by dispersing a filler in a resin, dimensional stability, compressive creep characteristics, to improve such melt forming shape retention Things have been done.

特に、最近高分子材料に無機微粒子などのナノ粒子を直接溶融混合して機械的特性、熱変形温度、寸法安定性などを向上させる手法が多くなされている。しかし、無機微粒子或いは無機ナノ粒子を樹脂に溶融混合すると、微粒子の凝集力は粒径が小さくなるほど大きくなり、粒子同士の再凝集が起こるため、ナノ粒子を樹脂と直接溶融混合してもナノ粒子をそのままナノ分散させることは極めて難しい(第47回 日本学術会議材料研究連合講演会、Vol.47、P150, 2003)。   In particular, recently, many techniques have been made to improve the mechanical properties, heat distortion temperature, dimensional stability, etc. by directly melt-mixing nanoparticles such as inorganic fine particles into a polymer material. However, when inorganic fine particles or inorganic nanoparticles are melt-mixed with resin, the agglomeration force of the fine particles increases as the particle size decreases, causing reaggregation of the particles. It is extremely difficult to nano-disperse the material as it is (The 47th Japan Society for the Science Conference on Materials Research, Vol. 47, P150, 2003).

この直接溶融混合法の問題に対処する方法として、無機微粒子が安定に分散されているコロイド溶液と樹脂水性分散液を混合する溶液混合法が公知である。例えば、含フッ素表面処理剤で処理された平均粒径1000nm以下の無機微粒子が非プロトン性含フッ素溶媒またはこの溶媒とプロトン性含フッ素溶媒との混合溶媒に分散したオルガノゾルに非晶質ペルフルオロポリマーが溶解されている組成物(コーティング剤)が提案されている(特開2004−285361)。   As a method for coping with the problem of the direct melt mixing method, a solution mixing method is known in which a colloidal solution in which inorganic fine particles are stably dispersed and a resin aqueous dispersion are mixed. For example, an amorphous perfluoropolymer is formed in an organosol in which inorganic fine particles having an average particle diameter of 1000 nm or less treated with a fluorine-containing surface treatment agent are dispersed in an aprotic fluorine-containing solvent or a mixed solvent of this solvent and a protic fluorine-containing solvent. A dissolved composition (coating agent) has been proposed (Japanese Patent Application Laid-Open No. 2004-285361).

コロイダルシリカを予めオルガノアルコキシシランで処理した後に含フッ素樹脂重合体水性分散液と混合して貯蔵安定性を改良した水性分散組成物も提案されている(特開平11−124534号)が、これらのコーティング剤(塗料)または混合液は、無機微粒子の表面処理が必要であること、また数百ミクロンの薄膜しか得ることができず、通常の圧縮、押出または射出成品を得ることはできない等の問題があった。 There has also been proposed an aqueous dispersion composition in which colloidal silica is treated with an organoalkoxysilane in advance and then mixed with a fluororesin polymer aqueous dispersion to improve storage stability (Japanese Patent Laid-Open No. 11-124534). coatings (paint) or mixture, that the surface treatment of the inorganic fine particles is required, also can not be obtained only a few hundred microns of film can not be obtained conventional compression, extrusion or injection molding products, etc. There was a problem.

また、無機微粒子を表面処理することで塗料または混合液の貯蔵安定性は改良されるが、乾燥、焼成後に得られた塗膜では無機微粒子が乾燥する前の塗料または混合液の様に均一に分散されたか否かについては記述されてないため、塗料を塗布した後の乾燥過程で無機微粒子間の再凝集が起こる可能性がある。   In addition, the surface stability of the inorganic fine particles improves the storage stability of the paint or mixed solution, but the coating obtained after drying and baking is uniform as in the paint or mixed solution before the inorganic fine particles are dried. Since it is not described whether it is dispersed or not, there is a possibility that re-aggregation between the inorganic fine particles may occur in the drying process after applying the paint.

この直接溶液混合法の問題に対処するもう1つの方法として、塩化カリウム(KCl)を入れてpHを5.6に調整したコロイダルシリカとポリスチレンエマルジョンの異種粒子間の混合溶液から形成される凝集体は、シリカ粒子と樹脂一次粒子径比が3以上の場合のみにシリカが均一に分散された安定な凝集体を形成することが報告されている(Colloid and Surface,vol.63,P103,1992)。しかし、使用したコロイダルシリカの粒子径が240nmであり、混合溶液中のシリカの分散状態および凝集状態を観察したのみであって、乾燥後にもシリカ粒子が樹脂中に均一に分散されているかについては記載されてない。   Another method for coping with the problem of this direct solution mixing method is an agglomerate formed from a mixed solution between different particles of colloidal silica and polystyrene emulsion containing potassium chloride (KCl) and adjusted to pH 5.6. Has been reported to form stable aggregates in which silica is uniformly dispersed only when the silica particle to resin primary particle size ratio is 3 or more (Colloid and Surface, vol. 63, P103, 1992). . However, the particle diameter of the colloidal silica used was 240 nm, and only the dispersion state and aggregation state of silica in the mixed solution were observed, and whether the silica particles were uniformly dispersed in the resin even after drying. It is not listed.

また、疎水性改質剤で改質された0.1〜50nmの孔径を有する疎水性改質中空シリカ粉末をフッ素樹脂エマルジョンへ加え、凝集した後、水を切り、乾燥させた疎水性改質中空シリカ/フッ素樹脂複合材料が提案されている(特開2005−163006)。しかし、この明細書には使用するシリカの粒子径および分散状態についての規定や記述がなく、コロイダルシリカの代わりにシリカ粉末をフッ素樹脂エマルジョンへ加えている。また、実施例の図からは、疎水性改質中空シリカの粒子径は1000nm以上である。   In addition, hydrophobic modified hollow silica powder having a pore size of 0.1 to 50 nm modified with a hydrophobic modifier is added to the fluororesin emulsion, and after aggregation, drained and dried to improve hydrophobicity A hollow silica / fluororesin composite material has been proposed (Japanese Patent Laid-Open No. 2005-163006). However, this specification does not specify or describe the particle size and dispersion state of silica used, and silica powder is added to the fluororesin emulsion instead of colloidal silica. Moreover, from the figure of an Example, the particle diameter of hydrophobic modification | reformation hollow silica is 1000 nm or more.

更に、フッ素樹脂エマルジョンに、アミノシラン系表面処理剤で表面処理された平均粒子径4000nmの炭化珪素粒子を添加した後、硝酸を加えてフッ素樹脂のエマルジョンを破壊して、ついでトリクロロトリフロロエタンを加え凝集・造粒させて平均粒子径3mmの凝集粉体を得る方法が提案されている(特公平7−64936)。が、粒子径4μmの炭化珪素粉末をフッ素樹脂のエマルジョンに加えているため、凝集している。   Furthermore, after adding silicon carbide particles having an average particle diameter of 4000 nm surface-treated with an aminosilane-based surface treatment agent to the fluororesin emulsion, nitric acid is added to destroy the fluororesin emulsion, and then trichlorotrifluoroethane is added. A method for agglomerating and granulating to obtain an agglomerated powder having an average particle diameter of 3 mm has been proposed (Japanese Patent Publication No. 7-64936). However, since silicon carbide powder having a particle diameter of 4 μm is added to the fluororesin emulsion, the powder is agglomerated.

特開2004−285361号公報JP 2004-285361 A 特開平11−124534号公報Japanese Patent Laid-Open No. 11-124534 特開2005−163006号公報JP 2005-163006 A 特公平7−64936号公報Japanese Patent Publication No. 7-64936

そこで本発明者は、樹脂一次粒子が界面活性剤(以下、乳化剤ということがある)に取り囲まれ溶媒中に安定に分散した樹脂エマルジョン(以下、ラテックスということがある)と無機微粒子表面に電気二重層が形成され、無機微粒子間の反発力によって無機微粒子が安定に分散されているコロイダル溶液(以下、無機微粒子ゾルということがある)とを攪拌して、樹脂一次粒子と無機微粒子を均一に混合した水性分散液を、0℃以下の温度で凍結するか、電解物質を加えて混合液のイオン強度またはpHを変化させるか、せん断力をかけることで、樹脂一次粒子と無機微粒子の均一混合状態を固定させた後、得られた粒子凝集体を水性の溶液から分離・乾燥することで無機微粒子を樹脂中にナノレベルに均一に分散させることが可能であることに着目した。   In view of this, the present inventor has developed a resin emulsion (hereinafter sometimes referred to as latex) in which the resin primary particles are surrounded by a surfactant (hereinafter sometimes referred to as an emulsifier) and stably dispersed in a solvent, and the surface of the inorganic fine particles. The resin primary particles and inorganic fine particles are uniformly mixed by stirring a colloidal solution (hereinafter sometimes referred to as inorganic fine particle sol) in which multiple layers are formed and the inorganic fine particles are stably dispersed by the repulsive force between the inorganic fine particles. The aqueous dispersion is frozen at a temperature of 0 ° C. or lower, or an ionic strength or pH of the mixed solution is changed by adding an electrolytic substance, or a shearing force is applied to uniformly mix the resin primary particles and inorganic fine particles. After fixing the particles, it is possible to uniformly disperse the inorganic fine particles in the resin at the nano level by separating and drying the obtained particle aggregate from the aqueous solution. Focused on.

即ち本発明は、無機微粒子が樹脂中にナノレベルに均一に分散された樹脂複合体組成物、その製造方法およびそれから得られる成品を提供することを目的とする。 That is, the present invention, the inorganic fine particles are resin composite composition which is uniformly dispersed in the nano level in the resin, and to provide a manufacturing method thereof and then the resulting formed molded article.

本発明は、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエ−テル)、ビニリデンフルオライド及びビニルフルオライドから選ばれるモノマーの重合体又は共重合体からなる樹脂のエマルジョンと、平均粒子径が5〜500nmである無機微粒子のコロイダル溶液とを、攪拌下に混合した水性分散液に、電解物質を樹脂エマルジョンと無機微粒子コロイダル溶液の合計重量に対して0.001〜15重量%の割合で加えて混合液のイオン強度またはpHを変化させることによって得られる凝集体を、水性の溶液から分離・乾燥することを特徴とする脂複合組成物の製造方法を提供する。
The present invention relates to a resin emulsion comprising a polymer or copolymer of monomers selected from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), vinylidene fluoride and vinyl fluoride. And an aqueous dispersion in which an inorganic fine particle colloidal solution having an average particle size of 5 to 500 nm is mixed with stirring, and an electrolytic substance is 0.001 to the total weight of the resin emulsion and the inorganic fine particle colloidal solution. the aggregate obtained by changing the ionic strength or pH of the mixture was added at a ratio of 15 wt%, to provide a method of manufacturing a tree fat composite composition and separating and drying the aqueous solutions .

無機微粒子のコロイダル溶液が、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化亜鉛と五酸化アンチモンを結合させた複合酸化物から選ばれる少なくとも1つの無機微粒子のコロイダル溶液である、前記樹脂複合組成物の製造方法は本発明の好ましい態様である。   Production of the resin composite composition, wherein the colloidal solution of inorganic fine particles is a colloidal solution of at least one inorganic fine particle selected from silicon oxide, titanium oxide, aluminum oxide, a composite oxide in which zinc oxide and antimony pentoxide are combined. The method is a preferred embodiment of the present invention.

無機微粒子のコロイダル溶液が、樹脂エマルジョン中の固形成分の重量に対し0.1〜80重量%の無機微粒子を含有する無機微粒子のコロイダル溶液である、前記樹脂複合組成物の製造方法は本発明の好ましい態様である。 The method for producing a resin composite composition according to the present invention, wherein the colloidal solution of inorganic fine particles is a colloidal solution of inorganic fine particles containing 0.1 to 80% by weight of inorganic fine particles based on the weight of the solid component in the resin emulsion. a preferred embodiment der Ru.

前記樹脂エマルジョン中の平均一次粒子径(D  Average primary particle diameter in the resin emulsion (D A )と無機微粒子のコロイダル溶液中の無機微粒子の平均粒子径(D) And the average particle size of inorganic fine particles in a colloidal solution of inorganic fine particles (D B )との比(D) (D) B /D/ D A )が0.1以上である前記樹脂複合組成物の製造方法は本発明の好ましい態様である。) Is 0.1 or more is a preferred embodiment of the present invention.

脂エマルジョンが、乳化重合により得られる樹脂エマルジョンである、前記樹脂複合組成物の製造方法は本発明の好ましい態様である。 Tree fat emulsion is a resin emulsion obtained by emulsion polymerization, the method for producing a resin composite composition is a preferred embodiment of the present invention.

また本発明は、前記樹脂複合体組成物の製造方法により得られる樹脂複合体組成物を提供する。   Moreover, this invention provides the resin composite composition obtained by the manufacturing method of the said resin composite composition.

動的粘弾性測定装置の平行板モードにて、結晶性樹脂の場合は融点以上の温度で、非結晶性樹脂の場合はガラス転移点以上の温度で、測定した1rad/secにおける粘度(V)と0.1rad/secにおける粘度(V0.1)の比(V0.1/V)が1.4以上でありうる、前記樹脂複合体組成物は本発明の好ましい態様である。 In the parallel plate mode of the dynamic viscoelasticity measuring device, the viscosity at 1 rad / sec (V 1) measured at a temperature above the melting point in the case of a crystalline resin and at a temperature above the glass transition point in the case of an amorphous resin. ) And the viscosity (V 0.1 ) ratio (V 0.1 / V 1 ) at 0.1 rad / sec can be 1.4 or more, the resin composite composition is a preferred embodiment of the present invention.

樹脂複合体組成物の200℃での貯蔵弾性率が、樹脂単体の1.7倍以上である、前記樹脂複合体組成物は本発明の好ましい態様である。 Storage elastic modulus at 200 ° C. of the resin composite composition is simple resin of 1.7 times or more, the resin composite composition Ru preferred embodiment der of the present invention.

らに本発明は、前記樹脂複合体組成物を造粒して得られる造粒粉末を提供する。 Is found in the present invention provides a granulated powder obtained by granulating the resin composite composition.

また本発明は、前記樹脂複合体組成物をまたは樹脂複合体組成物の造粒粉末を溶融押出して得られるペレットを提供する。   The present invention also provides a pellet obtained by melt-extruding the resin composite composition or the granulated powder of the resin composite composition.

本発明は、前記樹脂複合体組成物からなる成品を提供する。 The present invention provides a formed molded article comprising the resin composite composition.

前記樹脂複合体組成物を圧縮成、押出し成、トランスファー成、ブロー成、射出成、回転成形またはライニング成して得られる成品は、本発明の成品の好ましい態様である。 The resin composite composition compression forming shapes, extruded formed shape, transfer formed shape, blow forming shapes, injection molding, rotational molding or lining formed shapes to formed molded product obtained is preferably a formed molded article of the present invention It is an aspect.

前記樹脂複合体組成物を成して得られるチューブ類、シート類、棒類、繊維類、パッキング類、ライニング類、電線被覆類またはシールリング類は、本発明の成品の好ましい態様である。 Tubing obtained by forming the shape of the resin composite composition, sheets, rods acids, fibers, packings such, linings such, wire coating such or sealing ring compound is a preferred embodiment of the formed molded article of the present invention is there.

本発明により、無機微粒子が樹脂中にナノレベルに均一に分散された樹脂複合体組成物を得ることができる。   According to the present invention, a resin composite composition in which inorganic fine particles are uniformly dispersed at a nano level in a resin can be obtained.

本発明は、無機微粒子が樹脂中にナノレベルに均一に分散された樹脂複合体組成物およびその製造方法を提供する。
本発明において用いられる樹脂エマルジョン中の樹脂は、特に限定されるものではなく、すでに広く知られているものを用いることができる。例えば、含フッ素樹脂エマルジョン中の含フッ素樹脂としては、テトラフルオロエチレン(TFE)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)、ビニリデンフルオライド(VdF)およびビニルフルオライド(VF)から選ばれるモノマーの重合体または共重合体などを挙げることができる。
The present invention provides a resin composite composition in which inorganic fine particles are uniformly dispersed at a nano level in a resin and a method for producing the same.
The resin in the resin emulsion used in the present invention is not particularly limited, and those already known widely can be used. For example, as the fluororesin in the fluororesin emulsion, tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), trifluoroethylene, hexafluoropropylene (HFP), perfluoro (alkyl vinyl ether) (PAVE), etc. or copolymers of monomers selected from vinylidene fluoride (VdF) and vinyl fluoride (VF) and the like.

含フッ素樹脂の具体的な例としては、ポリテトラフルオロエチレン(以下、PTFEという)、TFE/PAVE共重合体(以下、PFAという)、TFE/HFP共重合体(以下、FEPという)、TFE/HFP/PAVE共重合体(EPE)、ポリビニリデンフルオライド(PVdF)、ポリクロロトリフルオロエチレン(PCTFE)、TFE/VdF共重合体、TFE/VF共重合体、TFE/HFP/VF共重合体、HFP/VdF共重合体、VdF/CTFE共重合体、TFE/VdF/CTFE共重合体、TFE/HFP/VdF共重合体、などを挙げることができる。 Specific examples of the fluorine-containing resin include polytetrafluoroethylene (hereinafter referred to as PTFE), TFE / PAVE copolymer (hereinafter referred to as PFA), TFE / HFP copolymer (hereinafter referred to as FEP), TFE / HFP / PAVE copolymer (EPE), Po Li vinylidene fluoride (PVdF), polychlorotrifluoroethylene (PCTFE), TFE / VdF copolymer, TFE / VF copolymer, TFE / HFP / VF copolymer HFP / VdF copolymer, VdF / CTFE copolymer, TFE / VdF / CTFE copolymer, TFE / HFP / VdF copolymer, and the like.

テトラフルオロエチレンとパ−フルオロ(アルキルビニルエーテル)との共重合体(PFA)においては、パ−フルオロ(アルキルビニルエーテル)のアルキル基が炭素数1〜5、特に1〜3であることが好ましい。   In the copolymer (PFA) of tetrafluoroethylene and perfluoro (alkyl vinyl ether), the alkyl group of perfluoro (alkyl vinyl ether) preferably has 1 to 5 carbon atoms, particularly 1 to 3 carbon atoms.

これら重合体および共重合体粒子の樹脂エマルジョン(分散液)は、通常乳化重合によって製造されることが好ましい。   The resin emulsion (dispersion liquid) of these polymers and copolymer particles is usually preferably produced by emulsion polymerization.

本発明では、樹脂一次粒子が界面活性剤に取り囲まれ溶媒中に安定に分散した樹脂エマルジョンと無機微粒子が安定に分散されているコロイダル溶液とを攪拌して、樹脂一次粒子と無機微粒子を均一に混合してから樹脂エマルジョンまたは無機微粒子コロイド溶液の安定性を急に低下させ、樹脂一次粒子と無機微粒子の均一混合状態を固定させるため、樹脂エマルジョン中に存在する樹脂一次粒子の化学的な構造や融点などには関係なく無機微粒子が樹脂中にナノレベルに均一に分散された樹脂複合体組成物を得ることができる。 In the present invention, the resin primary particles surrounded by the surfactant and the colloidal solution in which the inorganic fine particles are stably dispersed are stirred and the resin primary particles and the inorganic fine particles are uniformly dispersed. After mixing, the stability of the resin emulsion or inorganic fine particle colloid solution is suddenly lowered, and the uniform structure of the resin primary particles and inorganic fine particles is fixed. etc. the melting point Ru can be obtained resin composite composition in which the inorganic fine particles regardless is uniformly dispersed in the nano level in the resin.

脂エマルジョン中の樹脂一次粒子の粒子径としては、使用するコロイド溶液中の無機微粒子の粒子径にもよるが、例えば50〜500nm、好ましくは70〜300nmである。 The particle size of the resin primary particles in the tree fat emulsion, depending on the particle size of the inorganic fine particles in the colloidal solution to be used, for example 50 to 500 nm, preferably from 70 to 300 nm.

本発明では、無機微粒子が安定に分散されているゾルを使用するが、ゾルの無機微粒子としては、酸化ケイ素(SiO),酸化チタン(TiO),ゼオライト、酸化ジルコニウム(ZrO),アルミナ(Al),酸化亜鉛(ZnO),五酸化アンチモンが好ましい。また、目的に応じて単独または組み合わせで使用しても良いし、上記のまたは他の微粒子を選択して組み合わせで使用しても良い。他の微粒子としては、炭化ケイ素(SiC),窒化アルミニウム(AlN),窒化ケイ素(Si)、チタン酸バリウム(BaTiO)、ボロンナイトライト、酸化鉛、酸化すず、酸化クロム、水酸化クロム、チタン酸コバルト、酸化セリウム、酸化マグネシウム、セリウムジルコネイト、カルシウムシリケート、ジルコニウムシリケート、金、銀、銅、遷移金属などの金属微粒子が挙げられる。 In the present invention, a sol in which inorganic fine particles are stably dispersed is used. Examples of the inorganic fine particles of the sol include silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), zeolite, zirconium oxide (ZrO 2 ), and alumina. (Al 2 O 3 ), zinc oxide (ZnO), and antimony pentoxide are preferable. Further, depending on the purpose, they may be used alone or in combination, or the above or other fine particles may be selected and used in combination. Other fine particles include silicon carbide (SiC), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), barium titanate (BaTiO 3 ), boron nitrite, lead oxide, tin oxide, chromium oxide, hydroxide Examples thereof include fine metal particles such as chromium, cobalt titanate, cerium oxide, magnesium oxide, cerium zirconate, calcium silicate, zirconium silicate, gold, silver, copper, and transition metals.

本発明の無機微粒子ゾルは、各種電解質や有機系添加剤などによって溶液状態で安定化されたものであるのが好ましい。例えば、コロイダルシリカゾルで説明すると、負に帯電した酸化ケイ素ナノ粒子を水中に分散させたコロイド溶液であり、粒子の表面にはシラノール基および水酸基が存在し、アルカリイオンにより電気二重層が形成され、粒子間の反発により安定化されている。   The inorganic fine particle sol of the present invention is preferably stabilized in a solution state with various electrolytes, organic additives and the like. For example, a colloidal silica sol is a colloidal solution in which negatively charged silicon oxide nanoparticles are dispersed in water. Silanol groups and hydroxyl groups are present on the surface of the particles, and an electric double layer is formed by alkali ions. Stabilized by repulsion between particles.

ゾルにおける無機微粒子の粒子径については、原料ゾルとして入手できるものであれば特に制限はなく、通常は平均粒子径1〜1000nm、好ましくは5〜500nm、更に好ましくは10〜500nmである。一般には平均粒子径は5〜500nmの範囲の無機微粒子を有するゾルが入手しやすく、無機微粒子がナノレベルに均一に分散されることで期待できる物性を得る目的としては平均粒子径が10〜400nmの無機微粒子を有する無機微粒子ゾルが特に好ましい。一般には無機微粒子の粒子径が500nm以上になると、無機微粒子が沈降し、コロイダルシリカゾルの貯蔵安定性が悪くなる。   The particle size of the inorganic fine particles in the sol is not particularly limited as long as it can be obtained as a raw material sol, and is usually an average particle size of 1 to 1000 nm, preferably 5 to 500 nm, more preferably 10 to 500 nm. In general, a sol having inorganic fine particles having an average particle size in the range of 5 to 500 nm is easily available, and the average particle size is 10 to 400 nm for the purpose of obtaining physical properties that can be expected by uniformly dispersing the inorganic fine particles at the nano level. Particularly preferred are inorganic fine particle sols having these inorganic fine particles. In general, when the particle diameter of the inorganic fine particles is 500 nm or more, the inorganic fine particles are precipitated, and the storage stability of the colloidal silica sol is deteriorated.

本発明では、乳化重合により樹脂一次粒子が界面活性剤に取り囲まれ溶媒中に安定に分散した樹脂エマルジョンと無機微粒子表面に電気二重層が形成され、無機微粒子間の反発力によって安定に分散されている無機微粒子ゾルとを攪拌して、樹脂一次粒子と無機微粒子を均一に混合してから、一気に樹脂一次粒子と無機微粒子の均一混合状態を固定する必要がある(以下、共凝集ということがある)。   In the present invention, the resin primary particles are surrounded by a surfactant by emulsion polymerization, and an electric double layer is formed on the surface of the inorganic fine particles and the resin emulsion stably dispersed in the solvent, and is stably dispersed by the repulsive force between the inorganic fine particles. It is necessary to agitate the inorganic fine particle sol and uniformly mix the resin primary particles and the inorganic fine particles, and then fix the uniform mixed state of the resin primary particles and the inorganic fine particles at once (hereinafter sometimes referred to as co-aggregation). ).

異種粒子間の混合溶液を凝集させる方法としては、攪拌装置による強いせん断力で樹脂エマルジョンと無機微粒子ゾル混合液を攪拌してフッ素樹脂エマルジョンの中の界面活性剤のミセル構造を破壊して凝集する方法(物理的凝集)、樹脂エマルジョンと無機微粒子ゾル混合液に電解物質を入れてイオン強度またはpHを変化させることで樹脂エマルジョンまたは無機微粒子コロイドの安定性を急に低下させて凝集する方法(化学的凝集)、樹脂エマルジョンと無機微粒子ゾル混合液を凍結して発生する氷晶の成長によって氷晶間でコロイド粒子を圧着させて凝集する方法(凍結凝集)などを挙げることができる。これらの中でも、樹脂エマルジョンと無機微粒子ゾルの混合液に電解物質または無機塩などを入れて樹脂エマルジョンまたは無機微粒子コロイド溶液の安定性を急に低下させて、一気に樹脂一次粒子と無機微粒子の均一混合状態を固定して異種粒子が均一に分散された凝集体を得る化学的凝集方法が好ましい。   As a method of aggregating the mixed solution between different kinds of particles, the resin emulsion and the inorganic fine particle sol mixed solution are agitated with a strong shearing force by a stirrer, and the micelle structure of the surfactant in the fluororesin emulsion is destroyed and agglomerated. Method (physical agglomeration), a method of agglomerating by suddenly reducing the stability of resin emulsion or inorganic fine particle colloid by changing the ionic strength or pH by adding electrolytic substance to resin emulsion and inorganic fine particle sol mixed solution (chemical) And a method in which colloidal particles are pressed and aggregated between ice crystals by the growth of ice crystals generated by freezing the resin emulsion and the inorganic fine particle sol mixed solution (freeze aggregation). Among these, an electrolytic substance or an inorganic salt is added to the mixed solution of the resin emulsion and the inorganic fine particle sol to rapidly reduce the stability of the resin emulsion or the inorganic fine particle colloid solution, and the resin primary particles and the inorganic fine particles are uniformly mixed at once. A chemical aggregation method is preferred in which the state is fixed to obtain an aggregate in which different types of particles are uniformly dispersed.

化学的に凝集する前の混合液中の樹脂一次粒子または無機微粒子の種類およびその割合にもよるが、例えば、フッ素樹脂水性分散液のフッ素樹脂一次粒子を化学的に凝集させる目的として使用される電解物質としては、水に可溶なHCl,HSO,HNO,HPO,NaSO,MgCl,CaCl,ギ酸ナトリウム、酢酸カリウム、炭酸アンモニウム、などの無機または有機の化合物を例示することができる。これらの中では、後の凝集体の乾燥工程で揮発可能な化合物、例えばHCl,HNO,(NH)COなどを使用するのが好ましい。 Used for the purpose of chemically agglomerating fluororesin primary particles in an aqueous fluororesin dispersion, for example, depending on the type and proportion of the resin primary particles or inorganic fine particles in the mixed liquid before chemical agglomeration Electrolytic substances include inorganic or organic water-soluble HCl, H 2 SO 4 , HNO 3 , H 3 PO 4 , Na 2 SO 4 , MgCl 2 , CaCl 2 , sodium formate, potassium acetate, ammonium carbonate, etc. The compound of can be illustrated. Among these, it is preferable to use a compound that can be volatilized in the subsequent drying step of the aggregate, such as HCl, HNO 3 , (NH 4 ) 2 CO 3, and the like.

また、上記電解物質以外にもハロゲン水素酸、燐酸、硫酸、モリブデン酸、硝酸のアルカリ金属塩、アルカリ土金属塩、アンモニウムの塩など、好ましくは、臭化カリウム、硝酸カリウム、ヨウ化カリウム(KI)、モリブデン酸アンモニウム、リン酸ニ水素ナトリウム、臭化アンモニウム(NHBr)、塩化カリウム、塩化カルシウム、塩化銅、硝酸カルシウムなどの無機塩を単独または組み合わせで使用することもでき、凝集・乾燥後に純水を用いて繰り返して残留無機塩の溶出を行うことで、無機塩を除去することができる。 In addition to the above electrolytic substances, halogen metal, phosphoric acid, sulfuric acid, molybdic acid, nitric acid alkali metal salt, alkaline earth metal salt, ammonium salt, etc., preferably potassium bromide, potassium nitrate, potassium iodide (KI) Inorganic salts such as ammonium molybdate, sodium dihydrogen phosphate, ammonium bromide (NH 4 Br), potassium chloride, calcium chloride, copper chloride, calcium nitrate can be used alone or in combination. By eluting the residual inorganic salt repeatedly using pure water, the inorganic salt can be removed.

これらの電解物質の使用量は、電解物質の種類、樹脂エマルジョンと無機微粒子ゾルの固形分濃度にもよるが、樹脂エマルジョンと無機微粒子ゾルの混合溶液の重量に対して0.001〜15重量%、特に0.05〜10重量%の割合で使用することが好ましい。また樹脂エマルジョンとゾル混合液に水溶液の形で添加するのが好ましい。電解物質の使用量が少なすぎる場合には、部分的にゆっくり凝集が起こる所があるため、全体的に一気に樹脂一次粒子と無機微粒子の均一混合状態を固定することができず、無機微粒子が樹脂中に均一に分散された樹脂複合体組成物を得ることができない場合がある。
また、樹脂エマルジョンと無機微粒子ゾルの固形分濃度にもよるが、樹脂エマルジョンと無機微粒子ゾルを攪拌して均一な混合液を得る目的で、樹脂エマルジョンまたは無機微粒子ゾルを予め純水などで薄めて固形分濃度を調整してから攪拌・混合することも可能である。
The amount of these electrolytic substances used depends on the type of the electrolytic substance and the solid content concentration of the resin emulsion and the inorganic fine particle sol, but is 0.001 to 15% by weight based on the weight of the mixed solution of the resin emulsion and the inorganic fine particle sol. In particular, it is preferably used in a proportion of 0.05 to 10% by weight. Further, it is preferably added to the resin emulsion and sol mixed solution in the form of an aqueous solution. When the amount of electrolyte used is too small, there is a place where the agglomeration occurs partly slowly, so that the uniform mixing state of the resin primary particles and the inorganic fine particles cannot be fixed all at once. There are cases where a resin composite composition uniformly dispersed therein cannot be obtained.
Depending on the solid content concentration of the resin emulsion and the inorganic fine particle sol, the resin emulsion or the inorganic fine particle sol is previously diluted with pure water for the purpose of stirring the resin emulsion and the inorganic fine particle sol to obtain a uniform mixed solution. It is also possible to stir and mix after adjusting the solid content concentration.

樹脂エマルジョンと無機微粒子ゾルとを攪拌して、樹脂一次粒子と無機微粒子を均一に混合してから、更に電解物質または無機塩を入れて混合・共凝集させる装置は、特に制限されるものではないが、攪拌速度が制御できる攪拌手段、例えばプロペラ翼、タービン翼、パドル翼、かい型翼、馬蹄形型翼、螺旋翼などと排水手段を備えた装置であることが好ましい。   There is no particular limitation on the device for stirring the resin emulsion and the inorganic fine particle sol to uniformly mix the resin primary particles and the inorganic fine particles, and then mixing and co-aggregating with an electrolytic substance or an inorganic salt. However, it is preferable that the apparatus includes a stirring means capable of controlling the stirring speed, for example, a propeller blade, a turbine blade, a paddle blade, a paddle blade, a horseshoe blade, a spiral blade, and a drainage device.

このような装置中に樹脂エマルジョン、無機微粒子ゾルおよび電解物質または無機塩を入れ攪拌することにより、樹脂のコロイド粒子または/および無機微粒子が凝集して異種粒子の凝集体となり、水性媒体から分離させる。凝集体から水性媒体を分離する工程の攪拌速度は、樹脂エマルジョンと無機微粒子ゾルの混合工程の攪拌速度より1.5倍以上早い方が好ましい。異種粒子の凝集体を、水性媒体を排出し必要に応じて水洗された後、樹脂の融点または熱分解開始温度以下の温度で乾燥することで樹脂複合組成物の粉末が得られる。乾燥する温度は、樹脂の熱劣化や分解が起こらない温度以下で、電解物質や界面活性剤などが揮発できる温度が好ましい。   The resin emulsion, inorganic fine particle sol and electrolytic substance or inorganic salt are placed in such an apparatus and stirred, whereby the resin colloidal particles or / and the inorganic fine particles are aggregated to form aggregates of different particles and separated from the aqueous medium. . The stirring speed in the step of separating the aqueous medium from the aggregate is preferably 1.5 times faster than the stirring speed in the mixing step of the resin emulsion and the inorganic fine particle sol. The agglomerates of different kinds of particles are discharged with an aqueous medium and washed with water as necessary, and then dried at a temperature not higher than the melting point of the resin or the thermal decomposition starting temperature, whereby a powder of the resin composite composition is obtained. The drying temperature is preferably a temperature at which the electrolytic substance, the surfactant and the like can be volatilized below the temperature at which the resin does not undergo thermal degradation or decomposition.

樹脂エマルジョンの樹脂固形成分に対する無機微粒子ゾル中の無機微粒子の割合は、樹脂複合体組成物の用途にもよるが、0.1〜80重量%、更に好ましくは0.3〜50重量%、もっとも好ましくは0.5〜30重量%である。無機微粒子が樹脂中にナノレベルで分散されたナノ樹脂複合体混合物或いはいわゆる高分子ナノコンポジットは、フィラーがミクロンレベルで分散された従来の樹脂複合体混合物に比べて、ナノ粒子と樹脂マトリックス間の界面面積が大幅に増えるため、従来の樹脂複合体混合物より少量の無機微粒子で物性の改善が期待できる利点がある。また、可視光の波長より粒径が小さい無機微粒子がナノレベルに均一に分散されると、樹脂ナノコンポジットは透明または半透明になることがある。   The ratio of the inorganic fine particles in the inorganic fine particle sol to the resin solid component of the resin emulsion is 0.1 to 80% by weight, more preferably 0.3 to 50% by weight, although it depends on the use of the resin composite composition. Preferably it is 0.5-30 weight%. A nano-resin composite mixture in which inorganic fine particles are dispersed at a nano level in a resin or a so-called polymer nano-composite is between a nano particle and a resin matrix compared to a conventional resin composite mixture in which a filler is dispersed at a micron level. Since the interface area greatly increases, there is an advantage that improvement in physical properties can be expected with a smaller amount of inorganic fine particles than the conventional resin composite mixture. In addition, when inorganic fine particles having a particle diameter smaller than the wavelength of visible light are uniformly dispersed at the nano level, the resin nanocomposite may become transparent or translucent.

樹脂エマルジョンと無機微粒子が分散されているゾルとを攪拌して、樹脂一次粒子と無機微粒子を均一に混合してから、凝集して樹脂一次粒子と無機微粒子が均一混合状態に固定された本発明の樹脂複合体混合物の特徴の1つは、無機微粒子が樹脂中にナノレベルに均一に分散されているため、大きさが数1000nm以上の無機粒子が充填されている従来の樹脂複合混合体とは異なる粘弾性的な挙動を示すことである。 The present invention in which the resin emulsion and the sol in which the inorganic fine particles are dispersed are stirred to uniformly mix the resin primary particles and the inorganic fine particles, and then aggregate to fix the resin primary particles and the inorganic fine particles in a uniform mixed state. One of the characteristics of the resin composite mixture is that the inorganic fine particles are uniformly dispersed at the nano level in the resin, so that the conventional resin composite mixture filled with inorganic particles having a size of several thousand nm or more Is to show different viscoelastic behavior.

一般の高分子濃厚溶液または溶融体は、代表的な非ニュートニアン流体であって、粘度はずり速度に依存して変化し、ずり速度が速くなると粘度は低くなり、ずり速度が小さくなると粘度は増加する。しかし、ずり速度が更に小さくなると漸近的に一定値に近づく。この極限値をゼロずり粘度(Zero Shear Rate Viscosity))とよび、高分子の粘度を表すもっとも重要な物理量の1つであり、分子量の指数関数で表される。   A general polymer concentrated solution or melt is a typical non-Newtonian fluid, and changes depending on the viscosity shear rate. When the shear rate increases, the viscosity decreases, and when the shear rate decreases, the viscosity decreases. To increase. However, as the shear rate is further reduced, it gradually approaches a constant value. This limit value is called zero shear rate viscosity (Zero Shear Rate Viscosity), one of the most important physical quantities representing the viscosity of a polymer, and is expressed by an exponential function of molecular weight.

例えば、通常、熱溶融性フッ素樹脂の溶融粘度は、ずり速度が小さくなると一定に近づき、ニュートニアン流体的な挙動を示す(図1のA)。また、粒子径約30000nmの溶融シリカを熱溶融性フッ素樹脂中に分散させた従来の樹脂複合混合体も、粘度そのものはシリカを入れてない熱溶融性フッ素樹脂に比べてほぼ一定の割合で高くなるが、ずり速度が小さくなると一定値に近づき、ニュートニアン流体的な挙動を示す(図1のB)。しかし、粒子径約66nmのシリカが熱溶融性フッ素樹脂中に均一に分散されている本発明の熱溶融性フッ素樹脂複合体は、ずり速度が小さくなっても溶融粘度が一定値に近づくのではなく、ずり速度が小さくなると粘度は更に高くなる(図1のC,D)。 For example, normally, the melt viscosity of the melt processible fluoropolymer is close to constant and is shear rate decreases, showing a Newtonian fluid behavior (A in Figure 1). In addition, the conventional resin composite mixture in which fused silica having a particle size of about 30000 nm is dispersed in a heat-melting fluororesin also has a viscosity that is higher at a substantially constant rate compared to a heat-melting fluororesin that does not contain silica. However, when the shear rate becomes small, the value approaches a constant value and shows a behavior like a Newtonian fluid (B in FIG. 1). However, the heat-meltable fluororesin composite of the present invention in which silica having a particle diameter of about 66 nm is uniformly dispersed in the heat-meltable fluororesin does not have a melt viscosity that approaches a constant value even when the shear rate is reduced. However, when the shear rate is decreased, the viscosity is further increased (C and D in FIG. 1).

本発明の樹脂複合体混合物のゼロずり粘度がずり速度が小さくなると更に高くなるのは、無機微粒子が樹脂中にナノレベルで分散されたナノ樹脂複合体混合物或いはいわゆる高分子ナノコンポジットは、フィラーがミクロンレベルで分散された従来の樹脂複合体混合物に比べて、ナノ粒子表面の活性が非常に高くなりまたナノ粒子と樹脂マトリックス間の界面面積が大幅に増えたこと、更に均一にナノ分散されたナノ粒子間距離がフィラーがミクロンレベルで分散された従来の樹脂複合体混合物に比べて短くなったのが原因であると思われる。直径約30000nmのシリカの代わりに同じ量の直径70nmのシリカを樹脂中に完全ナノ分散させると、シリカの表面積または樹脂との界面面積は約400倍も増えることになる。   The zero shear viscosity of the resin composite mixture of the present invention is further increased when the shear rate is reduced. The nanoresin composite mixture in which inorganic fine particles are dispersed at a nano level in a resin or a so-called polymer nanocomposite has a filler. Compared to the conventional resin composite mixture dispersed at the micron level, the activity of the nanoparticle surface is significantly increased, the interface area between the nanoparticle and the resin matrix is greatly increased, and the nanodispersion is more uniform. The reason seems to be that the distance between the nanoparticles is shorter than that of the conventional resin composite mixture in which the filler is dispersed at the micron level. If the same amount of 70 nm diameter silica is completely nano-dispersed in the resin instead of silica having a diameter of about 30000 nm, the surface area of the silica or the interface area with the resin will increase by about 400 times.

このようなナノ粒子の表面の活性と表面積または界面面性の大幅な増加が、無機微粒子が樹脂中にナノレベルで分散された高分子ナノコンポジットの特徴であり、従来の樹脂複合体混合物より少量の無機微粒子で物性の改善が期待できる理由である。例えば、本発明の無機ナノ粒子が均一にナノレベルに分散された熱溶融性フッ素樹脂複合体は、ずり速度が小さくなると粘度は更に高くなるため、電線などの樹脂製品に火災が発生した時の高温の液滴が落ちにくい(ドリップ防止)用途に使用できる。   Such a significant increase in the surface activity and surface area or interfacial property of the nanoparticle is characteristic of polymer nanocomposites in which inorganic fine particles are dispersed at the nano level in a resin, which is smaller than conventional resin composite mixtures. This is the reason why improvement in physical properties can be expected with the inorganic fine particles. For example, the heat-meltable fluororesin composite in which the inorganic nanoparticles of the present invention are uniformly dispersed at the nano level has a higher viscosity when the shear rate is reduced, so that when a fire occurs in a resin product such as an electric wire. It can be used for applications where high-temperature droplets are difficult to fall off (drip prevention).

また、樹脂中に分散されたナノ粒子の分散状態は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)で直接ナノ粒子の分散状態を観察するが、ナノ粒子を観察するためには非常に高い倍率で観察する必要があり、非常に局所的な部分しか観察できず、試料全体のナノ粒子の分散状態を調べるのは困難である。しかし、ずり速度が小さいときの粘度の変化を調べることで、ナノ粒子の分散状態を間接的に評価することも可能である。   In addition, the dispersion state of the nanoparticles dispersed in the resin can be observed directly with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It is necessary to observe at a very high magnification, only a very local portion can be observed, and it is difficult to examine the dispersion state of the nanoparticles in the entire sample. However, it is also possible to indirectly evaluate the dispersion state of the nanoparticles by examining the change in viscosity when the shear rate is low.

樹脂エマルジョンと無機微粒子が分散されている無機微粒子ゾルとを攪拌・混合してから、凝集して得られる熱溶融性フッ素樹脂複合体の場合は、動的粘弾性測定装置の平行板モードにて、結晶性樹脂の場合は融点以上の温度で、非結晶性樹脂の場合はガラス転移点以上の温度で、測定した1rad/secにおける粘度(V)と0.1rad/secにおける粘度(V0.1)の比(V0.1/V)が、樹脂一次粒子と無機微粒子の混合の割合および無機微粒子の粒子径にもよるが、1.4以上、好ましくは1.5以上、更に好ましくは2.0以上であることが望ましい。すなわち、該粘度の比(V0.1/V)は、上記温度の少なくとも1点の温度における測定において、該粘度の比(V0.1/V)を満たすものであることが望ましい。
動的粘弾性測定装置の平行板モードにおける測定は、結晶性樹脂の場合には樹脂の融点以上分解温度未満の温度で、非結晶性樹脂の場合にはガラス転移点以上分解温度未満で行われることが好ましい。例えば、結晶性樹脂である、PTFE或いはPFAの場合は340℃、同じくFEPの場合は280℃が挙げられる。非結晶性樹脂であるPSの場合には130℃、同じくPVAの場合には80℃が挙げられる。
In the case of a heat-meltable fluororesin composite obtained by stirring and mixing a resin emulsion and an inorganic fine particle sol in which inorganic fine particles are dispersed, and then agglomerating, use the parallel plate mode of the dynamic viscoelasticity measuring device. In the case of a crystalline resin, the viscosity at 1 rad / sec (V 1 ) and the viscosity at 0.1 rad / sec (V 0.1 ) are measured at a temperature above the melting point in the case of a crystalline resin and at a temperature above the glass transition point in the case of an amorphous resin. ) Ratio (V 0.1 / V 1 ) depends on the mixing ratio of the resin primary particles and the inorganic fine particles and the particle diameter of the inorganic fine particles, but is 1.4 or more, preferably 1.5 or more, more preferably 2. It is desirable that it is 0 or more. That is, the ratio of the viscosity (V 0.1 / V 1), in the measurement in a temperature of at least one point of the temperature, it is desirable that satisfy the ratio of the viscosity (V 0.1 / V 1).
The measurement in the parallel plate mode of the dynamic viscoelasticity measuring apparatus is performed at a temperature higher than the melting point of the resin and lower than the decomposition temperature in the case of a crystalline resin, and at a temperature higher than the glass transition point and lower than the decomposition temperature in the case of an amorphous resin. It is preferable. For example, in the case of PTFE or PFA which is a crystalline resin, 340 ° C. may be mentioned, and in the case of FEP, 280 ° C. may be mentioned. In the case of PS which is an amorphous resin, 130 ° C. is exemplified, and in the case of PVA, 80 ° C. is exemplified.

樹脂エマルジョン中の樹脂一次粒子径と無機微粒子ゾル中の無機微粒子の粒子径は、樹脂一次粒子と無機微粒子の混合の割合にもよるが、樹脂一次粒子径(D)と無機微粒子の粒子径(D)の比(D/D)が0.1以上、好ましくは0.35〜2.0である。無機微粒子の粒子径が小さすぎると、樹脂一次粒子同士が凝集される過程で、うまく樹脂一次粒子の間で囲まれて一緒に凝集できず、無機微粒子が不均一に分散された凝集体になる可能性がある。また、無機微粒子の粒子径が大きすぎると、無機微粒子ゾルや樹脂エマルジョンとの混合液の中で無機微粒子のみが沈降する傾向がある。 The resin primary particle size in the resin emulsion and the particle size of the inorganic fine particles in the inorganic fine particle sol depend on the mixing ratio of the resin primary particles and the inorganic fine particles, but the resin primary particle size (D A ) and the particle size of the inorganic fine particles. (D B) of the ratio (D B / D a) is 0.1 or more, preferably from 0.35 to 2.0. If the particle size of the inorganic fine particles is too small, the resin primary particles are agglomerated with each other and cannot be aggregated together, resulting in an aggregate in which the inorganic fine particles are dispersed unevenly. there is a possibility. Further, if the particle size of the inorganic fine particles is too large, only the inorganic fine particles tend to settle out in the mixed liquid with the inorganic fine particle sol or the resin emulsion.

本発明において、上記乾燥工程で得られる樹脂一次粒子と無機微粒子が均一に分散されている異種粒子の乾燥粉末は、通常の溶融押出し機を通してペレットにしてから押出成、射出成、トランスファー成などの溶融成をすることができる。勿論、前期のようにペレット化しない異種粒子の凝集体の粉末を直接成原料にするか、あるいは成機ホッパーで凝集体の粉末の食い込みをよくするためコンパクターで凝集体を固めて溶融成することもできる。凝集体の乾燥粉末試料とそれを更に溶融押出し機を通してペレット化した試料では、樹脂中に分散されている無機微粒子の分散状態はほぼ同じであることから、凝集体の乾燥粉末状態でシリカは樹脂中にナノ分散されている。更に、本発明で得られる樹脂一次粒子と無機微粒子が均一に分散されている異種粒子の凝集体を更に造粒して粉末成や粉末コーティング、回転成形用材料としても用いることができる。 In the present invention, the dry powder dry heterologous resin primary particle and the inorganic particles obtained by the process are uniformly dispersed particles, extruded formed shape after the pellets through a conventional melt extruder, injection molding, transfer formed it can be melt formed form such shapes. Of course, either directly formed form raw material powder of the aggregate of the pelleted not other particles as in the previous year, or at compactors order to improve the bite of the powder aggregates formed form machine hopper hardened agglomerates melting adult It can also be shaped . In the dry powder sample of the agglomerate and the sample pelletized through a melt extruder, the dispersion state of the inorganic fine particles dispersed in the resin is almost the same. Nano-dispersed inside. Furthermore, aggregate further granulated to powder formed shapes and powder coating of heterogeneous particles resin primary particle and the inorganic particles obtained in the present invention are uniformly dispersed, can be used as a rotation molding material.

また、溶融押出し機を通してペレットにする場合は、せん断応力の面から2軸押し出し機を用いるのが好ましい。2軸押し出し機のスクリュー構成や回転速度を変えることで更に無機微粒子を熱溶融体中に均一に分散させることができる。但し、ペレット化する目的以外に、無機微粒子の均一分散又は物性向上のために必ず溶融混合が必要であるということではない。また、溶融押出し機を通してペレット化する過程で、任意に添加剤を配合するか他の樹脂とブレンドすることができる。添加剤の配合は、溶融押出し工程では勿論、前記樹脂エマルジョンと無機微粒子ゾルからなる混合液の凝集工程で行うこともできる。このような添加剤として、ガラス繊維、炭素繊維、アラミド繊維、グラファイト、カーボンブラック、マイカ、クレイ、フラーレン、カーボンナノチューブ、カーボンナノファイバーなどを例示することができる。特に、マイカ、クレイなどの層状ケイ素化合物は水性溶媒でも安定に分散させることができるため、樹脂エマルジョンと無機微粒子ゾルの混合工程で水性分散液として一緒に入れて混合することが可能である。 Moreover, when making a pellet through a melt extruder, it is preferable to use a biaxial extruder from the surface of a shear stress. By changing the screw configuration and rotational speed of the twin screw extruder, the inorganic fine particles can be further uniformly dispersed in the hot melt. However, in addition to the purpose of pelletizing, it does not necessarily mean that melt mixing is necessary for uniform dispersion of inorganic fine particles or improvement of physical properties. Further, in the process of pelletizing through a melt extruder, additives can be optionally blended or blended with other resins. The blending of the additive can be performed not only in the melt extrusion process but also in the coagulation process of the mixed liquid composed of the resin emulsion and the inorganic fine particle sol. Examples of such additives include glass fiber, carbon fiber, aramid fiber, graphite, carbon black, mica, clay, fullerene, carbon nanotube, and carbon nanofiber. In particular, since layered silicon compounds such as mica and clay can be stably dispersed even in an aqueous solvent, they can be mixed together as an aqueous dispersion in the mixing step of the resin emulsion and the inorganic fine particle sol.

最終的に製造する成形品の種類は、樹脂中に粒子がナノレベルに均一に分散されることでその効果の改善が期待できるあらゆる分野に応用することができ、特に限定されるものではない。例えば、チューブ類、シート類、フィルム類、棒類、繊維類、パッキング類、ライニング類、シールリング類、電線被覆、プリント基板などがある。特に、粒子径100nm以下の無機微粒子が樹脂マトリックス中にナノレベルまで均一に分散された樹脂複合体組成物は、透明または半透明になるため、反射防止コーティング用フィルム、耐スクラッチ性フィルム、光ファイバー製造材料、透明フィルム、透明チューブ、電子材料などの種々の用途に有用である。更に、樹脂中に粒子がナノレベルに均一に分散されるとずり速度が非常に小さい時のゼロずり粘度がナノ分散されてない場合に比べて非常に高くなるため、電線などの樹脂製品に火災が発生した時の高温の液滴が落ちにくい(ドリップ防止)用途にも使用できる。   The type of the molded product to be finally produced is not particularly limited, and can be applied to any field where improvement of the effect can be expected by uniformly dispersing the particles in the resin at the nano level. For example, there are tubes, sheets, films, rods, fibers, packings, linings, seal rings, electric wire coating, printed circuit boards, and the like. In particular, since a resin composite composition in which inorganic fine particles having a particle diameter of 100 nm or less are uniformly dispersed in a resin matrix to a nano level becomes transparent or translucent, an antireflection coating film, a scratch resistant film, and an optical fiber manufacture It is useful for various applications such as materials, transparent films, transparent tubes, and electronic materials. Furthermore, if the particles are uniformly dispersed in the resin at the nano level, the zero shear viscosity when the shear rate is very low is much higher than when the particles are not nano-dispersed. It can also be used for applications where high temperature droplets are difficult to fall off when drip occurs (anti-drip).

以下に実施例によって、本発明をより具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。
本発明において、物性の測定は下記の方法によって行った。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
In the present invention, physical properties were measured by the following methods.

(A.物性の測定)
(1)融点(融解ピーク温度)
示差走査熱量計(Pyris1型DSC、パーキンエルマー社製)を用いた。試料約10mgを秤量して専用のアルミパンに入れ、専用のクリンパーによってクリンプした後、DSC本体に収納し、150℃から360℃まで10℃/分で昇温をする。この時得られる融解曲線から融解ピーク温度(Tm)を求めた。
(A. Measurement of physical properties)
(1) Melting point (melting peak temperature)
A differential scanning calorimeter (Pyris 1 type DSC, manufactured by Perkin Elmer) was used. About 10 mg of a sample is weighed and placed in a dedicated aluminum pan, crimped by a dedicated crimper, stored in the DSC body, and heated from 150 ° C. to 360 ° C. at a rate of 10 ° C./min. The melting peak temperature (Tm) was determined from the melting curve obtained at this time.

(2)メルトフローレート(MFR)
ASTM D−1238−95に準拠した耐食性のシリンダー、ダイ、ピストンを備えたメルトインデクサー(東洋精機製)を用いて、5gの試料粉末を372±1℃に保持されたシリンダーに充填して5分間保持した後、5kgの荷重(ピストンおよび重り)下でダイオリフィスを通して押出し、この時の押出速度(g/10分)をMFRとして求めた。PTFEについては、通常の溶融成ができないほど分子量が高いため、メルトフローレートの測定は行わなかった。
(2) Melt flow rate (MFR)
Using a melt indexer (manufactured by Toyo Seiki Co., Ltd.) equipped with a corrosion-resistant cylinder, die, and piston according to ASTM D-1238-95, 5 g of sample powder is filled into a cylinder held at 372 ± 1 ° C. After holding for 5 minutes, extrusion was performed through a die orifice under a load of 5 kg (piston and weight), and the extrusion speed (g / 10 minutes) at this time was determined as MFR. For PTFE, because the higher molecular weight can not be conventional melt formed shape, the measurement of the melt flow rate was not carried out.

(3)粒子径
フッ素樹脂エマルジョン中の樹脂一次粒子径およびシリカゾル中のシリカの粒子径は、純水を入れて濃度を5重量%に希釈したフッ素樹脂エマルジョンまたはシリカゾルをアルミ箔に塗布し、乾燥して得られた試料表面にある粒子を電子顕微鏡で観察し、平均粒子径を求めた。
(3) Particle size The primary particle size of the resin in the fluororesin emulsion and the silica particle size in the silica sol were applied to an aluminum foil by applying a fluororesin emulsion or silica sol diluted with pure water to a concentration of 5% by weight and dried. The particles on the sample surface thus obtained were observed with an electron microscope, and the average particle size was determined.

(4)シリカ分散状態
フッ素樹脂複合体組成物試料を350℃で溶融圧縮成形することによって作製された厚み約200μmのシート状試料より、10mm×10mmの試片を3ヶ所切り取り、光学顕微鏡(NIKON製、OPTIPHOT2−POL)を使用して、大きさが1000nm以上のシリカナノ粒子からなる凝集体があるか分散状態を評価した。
(4) Silica dispersion state Three pieces of 10 mm × 10 mm specimens were cut out from a sheet-like sample having a thickness of about 200 μm prepared by melt compression molding a fluororesin composite composition sample at 350 ° C., and an optical microscope (NIKON (Manufactured by OPTIPHOT2-POL), the dispersion state was evaluated for the presence of aggregates composed of silica nanoparticles having a size of 1000 nm or more.

1000nm以上のシリカナノ粒子からなる凝集体が観察されない試料のみ、液体窒素に入れ作製した破断面を電子顕微鏡で各試料につき3ヶ所観察し、シリカの分散状態を評価した。電子顕微鏡観察で、殆どのシリカが一次粒子まで分散されている場合を◎印で示し、シリカナノ粒子からなる凝集体が僅かに残っているある場合を○印で示し、光学顕微鏡で1000nm以上のシリカナノ粒子からなる凝集体が数多く残っている場合を×印で示した。   Only for samples in which aggregates composed of silica nanoparticles of 1000 nm or more were not observed, the fracture surface prepared in liquid nitrogen was observed at three locations for each sample with an electron microscope, and the silica dispersion state was evaluated. When observed with an electron microscope, the case where most of the silica is dispersed to the primary particles is indicated by 場合, the case where a few aggregates composed of silica nanoparticles remain is indicated by ◯, and the silica nanometer of 1000 nm or more is observed with an optical microscope. The case where many agglomerates composed of particles remain is indicated by crosses.

(5)ゼロずり粘度(Zero Shear Rate Viscosity)
樹脂複合体組成物試料を350℃で溶融圧縮成形することによって作製された厚み約1.5mmのシート状試料より直径25mmの試験試片を作り、Rheometric Scientific社製ARES粘弾性測定装置の25mm平行板を使用し、340℃で100〜0.1rad/secの周波数(ずり速度)範囲で溶融粘度を測定し、1rad/secにおける粘度(V)と0.1rad/secにおける粘度(V0.1)の比(V0.1/V)を計算した。
(5) Zero Shear Rate Viscosity
A test specimen having a diameter of 25 mm was prepared from a sheet-like sample having a thickness of about 1.5 mm produced by melt compression molding a resin composite composition sample at 350 ° C., and 25 mm parallel of an ARES viscoelasticity measuring apparatus manufactured by Rheometric Scientific. Using a plate, the melt viscosity was measured at a frequency (shear rate) of 100 to 0.1 rad / sec at 340 ° C., and the viscosity at 1 rad / sec (V 1 ) and the viscosity at 0.1 rad / sec (V 0.1 ). Ratio (V 0.1 / V 1 ) was calculated.

(6)貯蔵弾性率
樹脂複合体組成物試料を350℃で溶融圧縮成形することによって作製された厚み約1.5mmのシート状試料より12mm×45mm×1.5mmの試料片を作り、Rheometric Scientific社製ARES粘弾性測定装置を使用して、Torsion Mode、1Hz、−40℃から200℃まで昇温速度5℃/分で測定した。
(6) Storage elastic modulus A 12 mm x 45 mm x 1.5 mm sample piece was made from a sheet-like sample having a thickness of about 1.5 mm produced by melt-compression molding a resin composite composition sample at 350 ° C, and Rheometric Scientific Using an ARES viscoelasticity measuring device manufactured by KK, Torsion Mode was measured at 1 Hz, from −40 ° C. to 200 ° C. at a heating rate of 5 ° C./min.

(B.原料)
本発明の実施例、および比較例で用いた原料は下記の通りである。
(1)PFAエマルジョン
乳化重合により得られたPFA水性分散液
(PFA固形分:30重量%、PFA 一次粒子の平均粒子径:200nm、
pH:9、融点:309℃、メルトフローレート:2g/10分)
(2)PFA ペレット
(融点:309℃、メルトフローレート:2g/10分)
(3)PTFEエマルジョン
乳化重合により得られたPTFE水性分散液(固形分:50重量%、一次粒子の平均粒子径:210nm、pH:9、融点:326℃)
(B. Raw material)
The raw materials used in Examples and Comparative Examples of the present invention are as follows.
(1) PFA aqueous dispersion obtained by emulsion polymerization of PFA emulsion (PFA solid content: 30% by weight, average particle diameter of PFA primary particles: 200 nm,
(pH: 9, melting point: 309 ° C., melt flow rate: 2 g / 10 min)
(2) PFA pellets (melting point: 309 ° C., melt flow rate: 2 g / 10 min)
(3) PTFE emulsion PTFE aqueous dispersion obtained by emulsion polymerization (solid content: 50% by weight, average particle size of primary particles: 210 nm, pH: 9, melting point: 326 ° C.)

(4)シリカゾル
(a) 日産化学製、スノーテックス MP2040
(シリカ:40重量%、シリカ1次粒径:190nm、pH:9.5)
(b) 日産化学製、スノーテックス MP1040
(シリカ:40重量%、シリカ1次粒径:110nm、pH:9.5)
(c) 扶桑化学製、PL−7
(シリカ:23重量%、シリカ1次粒径:70nm、pH:7.4)、
(d) 扶桑化学製、PL−3
(シリカ:20重量%、シリカ1次粒径:35nm、pH:7.2)
(5)溶融シリカ
電気化学工業製、FB−74
(シリカ平均粒子径:32000nm)
(4) Silica sol (a) Made by Nissan Chemical Co., Snowtex MP2040
(Silica: 40% by weight, silica primary particle size: 190 nm, pH: 9.5)
(B) Made by Nissan Chemical Co., Snowtex MP1040
(Silica: 40% by weight, silica primary particle size: 110 nm, pH: 9.5)
(C) Fuso Chemical, PL-7
(Silica: 23% by weight, silica primary particle size: 70 nm, pH: 7.4),
(D) PL-3, manufactured by Fuso Chemical
(Silica: 20% by weight, silica primary particle size: 35 nm, pH: 7.2)
(5) Fused silica, FB-74, manufactured by Denki Kagaku Kogyo
(Silica average particle size: 32000 nm)

(実施例1)
日産化学製シリカゾル(MP-2040)33 gと純水1000 gをビーカー(2L)に入れ、ダウンフロータイププロペラ型4枚羽根付き攪拌機を用いて200rpmで20分間攪拌してから、シリカ含量がPFA樹脂複合体に対して5重量%になるように乳化重合で得られたPFA水性分散液853gを入れ、また20分攪拌したあと、60%硝酸9mlを加えて、ゲル化が進み攪拌ができなくなるまで攪拌しながらフッ素樹脂一次粒子とシリカナノ粒子を一気に凝集させた。得られたゲル状の凝集体をさらに350rpmで5分攪拌凝集体を水性媒体から分離させることで余分の水を除去した後に残った凝集体を150℃で10時間乾燥させ、凝集体の乾燥粉末を得た。凝集体の乾燥粉末を350℃で圧縮成形し、得られた厚み約1.5mmのシート状試料を用いて弾性率・粘度測定および光学・電子顕微鏡観察を行い、結果を表1および図3に示す。
Example 1
After putting 33 g of Nissan Chemical's silica sol (MP-2040) and 1000 g of pure water into a beaker (2 L) and stirring for 20 minutes at 200 rpm using a downflow type propeller type four-blade stirrer, the silica content is PFA. Add 853 g of PFA aqueous dispersion obtained by emulsion polymerization to 5% by weight with respect to the resin composite, and after stirring for 20 minutes, add 9 ml of 60% nitric acid, and gelation proceeds and stirring becomes impossible. While stirring until the fluororesin primary particles and silica nanoparticles were agglomerated at once. The resulting gel-like aggregate was further stirred at 350 rpm for 5 minutes. The aggregate was separated from the aqueous medium to remove excess water, and then the remaining aggregate was dried at 150 ° C. for 10 hours to obtain a dry powder of the aggregate Got. The dry powder of the agglomerates was compression molded at 350 ° C., and the obtained sheet-like sample having a thickness of about 1.5 mm was subjected to elastic modulus / viscosity measurement and optical / electron microscope observation. The results are shown in Table 1 and FIG. Show.

(実施例2)
シリカの含量をPFA樹脂複合体に対して15重量%になるようにシリカゾルとPFA水性分散液の量を調整した以外は、実施例1と同じ手順で凝集体の乾燥粉末を作製した。凝集体の乾燥粉末を350℃で圧縮成形し、得られた厚み約1.5mmのシート状試料を用いて弾性率・粘度測定および光学・電子顕微鏡観察を行い、結果を表1に示す。
(Example 2)
Aggregate dry powder was prepared in the same procedure as in Example 1 except that the amount of silica sol and PFA aqueous dispersion was adjusted so that the silica content was 15 wt% with respect to the PFA resin composite. The dry powder of the aggregate was compression molded at 350 ° C., and the obtained sheet-like sample having a thickness of about 1.5 mm was subjected to elastic modulus / viscosity measurement and observation with an optical / electron microscope. The results are shown in Table 1.

(実施例3)
シリカの含量をPFA樹脂複合体に対して20重量%になるようにシリカゾルとPFA水性分散液の量を調整した以外は、実施例1と同じ手順で凝集体の乾燥粉末を作製した。凝集体の乾燥粉末を350℃で圧縮成形し、得られた厚み約1.5mmのシート状試料を用いて弾性率・粘度測定をおよび光学・電子顕微鏡観察を行い、結果を表1および図1のCに示す。
(Example 3)
Aggregate dry powder was prepared in the same procedure as in Example 1 except that the amount of silica sol and PFA aqueous dispersion was adjusted so that the silica content was 20 wt% with respect to the PFA resin composite. The dry powder of the agglomerate was compression molded at 350 ° C., and the elastic modulus / viscosity measurement and optical / electron microscope observation were performed using the obtained sheet-like sample having a thickness of about 1.5 mm. The results are shown in Table 1 and FIG. Of C.

(実施例4)
シリカゾルをMP-2040の代わりにPL-7にして、シリカ含量をPFA樹脂複合体に対して10重量%にした以外は、実施例1と同じ手順で凝集体の乾燥粉末を作製した。凝集体の乾燥粉末を350℃で圧縮成形し、得られた厚み約1.5mmのシート状試料を用いて弾性率・粘度測定および光学・電子顕微鏡観察を行い、結果を表1および図2のE、図4に示す。また、得られた凝集体の乾燥粉末を圧縮成形する前のPFA一次粒子とシリカ粒子混合体の分散状態を高倍率の電子顕微鏡観察で観察するため、凝集体の乾燥粉末を更に295℃で12時間乾燥し、PFA一次粒子同士の表面が僅かに溶着した凝集体の乾燥粉末の電子顕微鏡を図5に示す。
Example 4
Aggregate dry powder was prepared in the same procedure as in Example 1 except that the silica sol was PL-7 instead of MP-2040 and the silica content was 10 wt% with respect to the PFA resin composite. The dried aggregate powder was compression molded at 350 ° C., and the obtained sheet-like sample having a thickness of about 1.5 mm was subjected to elastic modulus / viscosity measurement and optical / electron microscope observation. The results are shown in Table 1 and FIG. E, shown in FIG. Further, in order to observe the dispersion state of the PFA primary particles and the silica particle mixture before compression molding the obtained dry powder of the aggregate by observation with a high magnification electron microscope, the dry powder of the aggregate is further reduced to 12 at 295 ° C. FIG. 5 shows an electron microscope of the dried powder of the aggregate that was dried for a while and the surfaces of the PFA primary particles were slightly welded.

(実施例5)
シリカ含量をPFA樹脂複合体に対して20重量%(PL-7)にした以外は実施例4と同じ手順で凝集体の乾燥粉末を作製した。凝集体の乾燥粉末を350℃で圧縮成形し、得られた厚み約1.5mmのシート状試料を用いて弾性率・粘度測定および光学・電子顕微鏡観察を行い、結果を表1および図1のDおよび図2のDに示す。
(Example 5)
Aggregate dry powder was prepared in the same procedure as in Example 4 except that the silica content was 20 wt% (PL-7) based on the PFA resin composite. The dry powder of the agglomerate was compression molded at 350 ° C., and the obtained sheet-like sample having a thickness of about 1.5 mm was subjected to elastic modulus / viscosity measurement and observation with an optical / electron microscope. The results are shown in Table 1 and FIG. D and D in FIG.

(実施例6)
シリカゾルをMP-2040の代わりにPL-3にして、シリカ含量をPFA樹脂複合体に対して20重量%にした以外は、実施例1と同じ手順で凝集体の乾燥粉末を作製した。凝集体の乾燥粉末を350℃で圧縮成形し、得られた厚み約1.5mmのシート状試料を用いて弾性率・粘度測定および光学・電子顕微鏡観察を行い、結果を表1に示す。
(Example 6)
Aggregate dry powder was prepared in the same procedure as in Example 1 except that the silica sol was changed to PL-3 instead of MP-2040 and the silica content was 20 wt% with respect to the PFA resin composite. The dry powder of the aggregate was compression molded at 350 ° C., and the obtained sheet-like sample having a thickness of about 1.5 mm was subjected to elastic modulus / viscosity measurement and observation with an optical / electron microscope. The results are shown in Table 1.

(実施例7)
溶融成形できないPTFEを使用した例である。水性分散液の代わりにPTFE水性分散液を使用し、純水を入れてPTFE固形分を30重量%にし、シリカ含量を樹脂複合体に対して5重量%にした以外は実施例1と同じ手順で凝集体の乾燥粉末を作製し、粘度測定を行い、結果を表1に示す。PTFEは溶融粘度が極めて高いため、粘度測定は行わなかった。凝集体の乾燥粉末を350℃で圧縮成形し、得られた厚み約1.5mmのシート状試料を用いて光学・電子顕微鏡観察を行い、結果を表1および図6に示す。
(Example 7)
This is an example using PTFE that cannot be melt-molded. The same procedure as in Example 1 except that an aqueous PTFE dispersion was used instead of the aqueous dispersion, pure water was added to make the PTFE solid content 30% by weight, and the silica content was 5% by weight based on the resin composite. A dry powder of the aggregate was prepared and the viscosity was measured. The results are shown in Table 1. Since PTFE has an extremely high melt viscosity, viscosity measurement was not performed. The dried aggregate powder was compression molded at 350 ° C., and the obtained sheet-like sample having a thickness of about 1.5 mm was observed with an optical / electron microscope. The results are shown in Table 1 and FIG.

(比較例1)
平均粒子径が32000nmの溶融シリカと熱溶融性樹脂であるPFAペレットを溶融混合装置(東洋精機製、R-60ミキサー)を使用して、340℃、100rpmで5分間溶融混合し、平均粒子径が32000nmのシリカが熱溶融性フッ素樹脂中に分散されている従来の複合体組成物を得た。得られた試料を350℃で圧縮成形し、得られた厚み約1.5mmのシート状試料を用いて弾性率・粘度測定および光学・電子顕微鏡観察を行い、結果を表1および図1のBに示す。
(Comparative Example 1)
Fused silica with an average particle size of 32000 nm and PFA pellets, which are heat-meltable resins, are melt-mixed at 340 ° C. and 100 rpm for 5 minutes using a melt mixing device (R-60 mixer, manufactured by Toyo Seiki Co., Ltd.). Obtained a conventional composite composition in which 32000 nm of silica was dispersed in a heat-meltable fluororesin. The obtained sample was compression-molded at 350 ° C., and the obtained sheet-like sample having a thickness of about 1.5 mm was subjected to elastic modulus / viscosity measurement and observation with an optical / electron microscope. The results are shown in Table 1 and FIG. Shown in

(比較例2)
フッ素樹脂水性分散液とシリカゾルの混合液を凝集せずに、そのまま基材に塗布して作った膜の例である。日産化学製シリカゾル(MP-1040)33gと純水1000gをビーカー(2L)に入れ、ダウンフロータイププロペラ型4枚羽根付き攪拌機を使用して200rpmで20分間攪拌してから、乳化重合で得られたPFA水性分散液853g(シリカ:5重量%)を入れ、また20分攪拌してフッ素樹脂水性分散液とシリカゾルの混合液を得た。混合液をアルミ板の上に直接スプレー塗装し、120℃で30分乾燥してから更に350℃で15分焼成して厚み約50μmのコーティング物を得た。このコーティングの表面を光学・電子顕微鏡観察で観察し、結果を表1、図7に示す。
(Comparative Example 2)
This is an example of a film formed by directly applying a liquid mixture of a fluororesin aqueous dispersion and silica sol to a substrate without agglomeration. It is obtained by emulsion polymerization after putting 33g of Nissan Chemical's silica sol (MP-1040) and 1000g of pure water into a beaker (2L) and stirring at 200rpm for 20 minutes using a downflow type propeller type four-blade stirrer. In addition, 853 g (silica: 5% by weight) of PFA aqueous dispersion was added and stirred for 20 minutes to obtain a mixed liquid of fluororesin aqueous dispersion and silica sol. The mixed solution was directly spray-coated on an aluminum plate, dried at 120 ° C. for 30 minutes, and further baked at 350 ° C. for 15 minutes to obtain a coating having a thickness of about 50 μm. The surface of this coating was observed with an optical / electron microscope, and the results are shown in Table 1 and FIG.

(比較例3)
フッ素樹脂水性分散液とシリカゾルの混合液を凝集せずに、そのまま乾燥させた例である。シリカゾルをMP-2040の代わりにMP-1040にして、実施例4と同じ方法でシリカ含量10重量%のフッ素樹脂水性分散液とシリカゾルの混合液を得た。混合液を80℃で12時間乾燥して乾燥粉末を作製した。凝集体の乾燥粉末を350℃で圧縮成形し、得られた厚み約1.5mmのシート状試料を用いて弾性率・粘度測定および光学・電子顕微鏡観察を行い、結果を表1および図8に示す。
(Comparative Example 3)
In this example, the mixture of the fluororesin aqueous dispersion and the silica sol is dried as it is without agglomerating. A mixed solution of an aqueous fluororesin dispersion having a silica content of 10% by weight and silica sol was obtained in the same manner as in Example 4 except that the silica sol was changed to MP-1040 instead of MP-2040. The mixed solution was dried at 80 ° C. for 12 hours to prepare a dry powder. The dry powder of the aggregate was compression molded at 350 ° C., and the obtained sheet-like sample having a thickness of about 1.5 mm was subjected to elastic modulus / viscosity measurement and optical / electron microscope observation. The results are shown in Table 1 and FIG. Show.

(参考例1)
熱溶融性フッ素樹脂のみの物性を表1、図1のA、図2のAに示す。
(Reference Example 1)
The physical properties of only the heat-meltable fluororesin are shown in Table 1, A in FIG. 1, and A in FIG.

Figure 0005252612
Figure 0005252612

実施例1、実施例2および実施例3では、シリカナノ粒子は熱溶融性フッ素樹脂マトリックス中に完全ナノ分散されていた。ナノ分散されているシリカのため、粘度比(V0.1/V)は純粋な熱溶融性フッ素樹脂(参考例1)より高く、シリカ含量が増えると粘度比(V0.1/V)も大きくなった。また、シリカ量の増加と共に貯蔵弾性率も高くなった。 In Example 1, Example 2, and Example 3, the silica nanoparticles were completely nano-dispersed in the hot-melt fluororesin matrix. Due to the nano-dispersed silica, the viscosity ratio (V 0.1 / V 1 ) is higher than that of pure heat-meltable fluororesin (Reference Example 1), and the viscosity ratio (V 0.1 / V 1 ) increases with increasing silica content. became. Moreover, the storage elastic modulus became high with the increase in the amount of silica.

実施例4、実施例5でも、シリカナノ粒子は熱溶融性フッ素樹脂マトリックス中に完全ナノ分散されていた。また、同じシリカ含量20%の試料を比較するとシリカの粒子径が小さい実施例5の方が実施例3より粘度比(V0.1/V)も大きくなった。特に、実施例5では、凝集体の乾燥粉末を圧縮成形する前のPFA 一次粒子(平均粒径:約200nm)とシリカ粒子(平均粒径:約70nm)が凝集された混合体の表面からも、シリカ粒子同士の凝集体は観察されなかった。 In Examples 4 and 5, the silica nanoparticles were completely nano-dispersed in the hot-melt fluororesin matrix. Further, when samples having the same silica content of 20% were compared, the viscosity ratio (V 0.1 / V 1 ) of Example 5 having a smaller silica particle size was larger than that of Example 3. In particular, in Example 5, the PFA primary particles (average particle size: about 200 nm) and the silica particles (average particle size: about 70 nm) before compression-molding the dry powder of the aggregate were also aggregated from the surface of the mixture. No aggregates of silica particles were observed.

実施例6では、シリカの粒子径が35nmの場合でも、シリカナノ粒子は熱溶融性フッ素樹脂マトリックス中に完全ナノ分散されていた。また、光学顕微鏡観察からは大きさが1000nm以上のシリカナノ粒子からなる凝集体はなかったが、電子顕微鏡で2万倍で観察した時に粒子径が35nmのシリカ粒子からなる大きさ数百nm程度の凝集体が僅かに観察された。また、粘度比(V0.1/V)は、粒子径が70nmのシリカ含量20%の実施例5とほぼ同じであった。 In Example 6, even when the particle diameter of the silica was 35 nm, the silica nanoparticles were completely nano-dispersed in the heat-meltable fluororesin matrix. In addition, although there was no aggregate composed of silica nanoparticles having a size of 1000 nm or more from observation with an optical microscope, the size was about several hundreds of nanometers composed of silica particles having a particle diameter of 35 nm when observed at 20,000 times with an electron microscope. Slight aggregation was observed. The viscosity ratio (V 0.1 / V 1 ) was almost the same as that of Example 5 having a particle size of 70 nm and a silica content of 20%.

実施例3、実施例5、実施例6からは、シリカ量が20重量%の場合、シリカの粒子径が小さい程貯蔵弾性率が高くなった。
実施例7では、通常PTFEは溶融粘度が高いため、充填材や微粒子との溶融混合が困難なPTFEでも、シリカナノ粒子は熱溶融性フッ素樹脂マトリックス中に完全ナノ分散されていた。
From Example 3, Example 5, and Example 6, when the amount of silica was 20% by weight, the storage modulus increased as the particle size of silica decreased.
In Example 7, since PTFE usually has a high melt viscosity, silica nanoparticles were completely nano-dispersed in the heat-meltable fluororesin matrix even in PTFE, which is difficult to melt and mix with fillers and fine particles.

比較例1では、平均粒子径が32000nmのシリカが熱溶融性フッ素樹脂中に分散されている従来の複合体組成物であるため、粘度比(V0.1/V)はシリカを入れてない熱溶融性フッ素樹脂とほぼ同じである。これは、シリカがナノ分散されてないためである。 In Comparative Example 1, since it is a conventional composite composition in which silica having an average particle size of 32000 nm is dispersed in a heat-meltable fluororesin, the viscosity ratio (V 0.1 / V 1 ) is a heat without silica. It is almost the same as a meltable fluororesin. This is because silica is not nano-dispersed.

比較例2では、フッ素樹脂水性分散液とシリカゾルの混合液を凝集せずに、そのまま基材に塗布して得られた膜では、混合液の乾燥過程でフッ素樹脂一次粒子とシリカナノ粒子間の分離・凝集が起こり、焼成後の膜表面では大きさ数μmのシリカナノ粒子の凝集体が多く観察された。   In Comparative Example 2, in the film obtained by directly applying the mixture of the fluororesin aqueous dispersion and silica sol to the base material without agglomeration, separation between the fluororesin primary particles and the silica nanoparticles during the drying of the mixture Aggregation occurred, and many aggregates of silica nanoparticles having a size of several μm were observed on the film surface after firing.

したがって、フッ素樹脂水性分散液とシリカゾルの混合液を凝集せず、乾燥するだけではシリカのナノ分散はできないことが分かる。シリカをナノ分散させるためには、フッ素樹脂水性分散液とシリカゾルの混合液を凝集して一気に樹脂一次粒子と無機微粒子の均一混合状態を固定する必要がある。
比較例3では、フッ素樹脂水性分散液とシリカゾルの混合液を凝集せずに、そのまま乾燥させたため、シリカナノ粒子同士の凝集体が観察された。
Therefore, it can be seen that the silica nano-dispersion cannot be achieved simply by drying without mixing the mixed liquid of the fluororesin aqueous dispersion and the silica sol. In order to nano-disperse silica, it is necessary to agglomerate a mixture of a fluororesin aqueous dispersion and silica sol to fix a uniform mixed state of resin primary particles and inorganic fine particles at once.
In Comparative Example 3, since the liquid mixture of the fluororesin aqueous dispersion and the silica sol was dried as it was without agglomeration, aggregates of silica nanoparticles were observed.

本発明では、無機微粒子を表面処理しなくても、樹脂一次粒子が界面活性剤に取り囲まれ溶媒中に安定に分散した樹脂エマルジョンと無機微粒子表面に電気二重層が形成され、無機微粒子間の反発力によって無機微粒子が安定に分散されているコロイド溶液とを攪拌して、樹脂一次粒子と無機微粒子を均一に混合した水性分散液に、電解物質を加えて混合液のイオン強度またはpHを変化させることで樹脂一次粒子と無機微粒子の均一混合状態を固定させた後、得られた粒子凝集体を水性の溶液から分離・乾燥することで無機微粒子と樹脂一次粒子がナノレベルに均一に混合・分散された樹脂複合体組成物を得ることができる。したがって、本発明によって提供される樹脂複合体組成物は、無機微粒子がナノレベルに均一に分散されていることによって、広い分野に応用することができる。 In the present invention, even if the inorganic fine particles are not subjected to a surface treatment, the resin primary particles are surrounded by the surfactant and the electric double layer is formed on the surface of the inorganic fine particles and the resin fine particles are stably dispersed in the solvent. by stirring the colloidal solution in which the inorganic fine particles are stably dispersed by a force, changing the ionic strength or pH of the aqueous dispersion were uniformly mixed resin primary particles and inorganic fine particles, a mixture by adding electrolytic material after fixing the uniform mixed state of the resin primary particle and the inorganic fine particles in the Turkey is, the resulting agglomerates of particles uniformly to the nano-level fine inorganic particles and the resin primary particles by separating and drying from aqueous solutions A mixed / dispersed resin composite composition can be obtained. Therefore, the resin composite composition provided by the present invention can be applied to a wide range of fields because the inorganic fine particles are uniformly dispersed at the nano level.

更に、本発明によって提供される樹脂複合体組成物から製造される成形品は、樹脂中に粒子がナノレベルに均一に分散されているので、広い分野に応用することができる。具体的な用途の例としては、チューブ類、シート類、フィルム類、棒類、繊維類、パッキング類、ライニング類、シールリング類、電線被覆、プリント基板などがある。   Furthermore, the molded article produced from the resin composite composition provided by the present invention can be applied to a wide range of fields because the particles are uniformly dispersed at the nano level in the resin. Specific examples of applications include tubes, sheets, films, rods, fibers, packings, linings, seal rings, electric wire coating, printed circuit boards, and the like.

特に、粒子径350nm以下の無機微粒子が樹脂マトリックス中にナノレベルまで均一に分散された樹脂複合体組成物は、透明または半透明になるため、反射防止コーティング用フィルム、耐スクラッチ性フィルム、光ファイバー製造材料、透明フィルム、透明チューブ、電子材料などの種々の用途に有用である。   In particular, a resin composite composition in which inorganic fine particles having a particle diameter of 350 nm or less are uniformly dispersed in a resin matrix becomes transparent or translucent, and therefore, an antireflection coating film, a scratch-resistant film, and an optical fiber manufacture It is useful for various applications such as materials, transparent films, transparent tubes, and electronic materials.

更に、樹脂中に粒子がナノレベルに均一に分散されるとずり速度が非常に小さい時のゼロずり粘度がナノ分散されてない場合に比べて非常に高くなるため、電線などの樹脂製品に火災が発生した時の高温の液滴が落ちにくい(ドリップ防止)用途にも使用できる。   Furthermore, if the particles are uniformly dispersed in the resin at the nano level, the zero shear viscosity when the shear rate is very low is much higher than when the particles are not nano-dispersed. It can also be used for applications where high temperature droplets are difficult to fall off when drip occurs (anti-drip).

熱溶融性樹脂複合体組成物のゼロずり粘度測定結果である(シリカ20重量%)。It is a zero shear viscosity measurement result of a heat-meltable resin composite composition (silica 20% by weight). PL-7を使用した熱溶融性樹脂複合体組成物のゼロずり粘度測定結果である。It is a zero shear viscosity measurement result of the heat-meltable resin composite composition using PL-7. 実施例1で使用した熱溶融性フッ素樹脂複合体組成物試料の破断面の電子顕微鏡写真。The electron micrograph of the torn surface of the heat-meltable fluororesin composite composition sample used in Example 1. 実施例4で使用した熱溶融性フッ素樹脂複合体組成物試料の破断面の電子顕微鏡写真。The electron micrograph of the torn surface of the heat-meltable fluororesin composite composition sample used in Example 4. 実施例4で使用した凝集体の乾燥粉末の表面の電子顕微鏡写真。The electron micrograph of the surface of the dry powder of the aggregate used in Example 4. FIG. 実施例7で使用した熱溶融性フッ素樹脂複合体組成物試料の破断面の電子顕微鏡写真。The electron micrograph of the torn surface of the heat-meltable fluororesin composite composition sample used in Example 7. 比較例2で使用した熱溶融性フッ素樹脂複合体組成物試料の表面の電子顕微鏡写真。The electron micrograph of the surface of the heat-meltable fluororesin composite composition sample used in Comparative Example 2. 比較例3で使用した熱溶融性フッ素樹脂複合体組成物試料の破断面の電子顕微鏡写真。The electron micrograph of the fracture surface of the heat-meltable fluororesin composite composition sample used in Comparative Example 3.

Claims (13)

テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエ−テル)、ビニリデンフルオライド及びビニルフルオライドから選ばれるモノマーの重合体又は共重合体からなる樹脂のエマルジョンと、平均粒子径が5〜500nmである無機微粒子のコロイダル溶液とを、攪拌下に混合した水性分散液に、電解物質を樹脂エマルジョンと無機微粒子コロイダル溶液の合計重量に対して0.001〜15重量%の割合で加えて混合液のイオン強度またはpHを変化させることによって得られる凝集体を、水性の溶液から分離・乾燥することを特徴とする樹脂複合組成物の製造方法。 Resin emulsion consisting of a polymer or copolymer of monomers selected from tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), vinylidene fluoride and vinyl fluoride, and average particles In an aqueous dispersion obtained by mixing a colloidal solution of inorganic fine particles having a diameter of 5 to 500 nm with stirring, the electrolytic substance is added in an amount of 0.001 to 15% by weight based on the total weight of the resin emulsion and the inorganic fine particle colloidal solution. A method for producing a resin composite composition, characterized in that an aggregate obtained by changing the ionic strength or pH of a mixed solution by adding in proportion is separated from an aqueous solution and dried. 無機微粒子のコロイダル溶液が、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化亜鉛と五酸化アンチモンを結合させた複合酸化物から選ばれる少なくとも1つの無機微粒子のコロイダル溶液である、請求項1に記載の樹脂複合体組成物の製造方法。   The resin according to claim 1, wherein the colloidal solution of inorganic fine particles is a colloidal solution of at least one inorganic fine particle selected from silicon oxide, titanium oxide, aluminum oxide, a composite oxide in which zinc oxide and antimony pentoxide are combined. A method for producing a composite composition. 無機微粒子のコロイダル溶液が、樹脂エマルジョン中の固形成分の重量に対し0.1〜80重量%の無機微粒子を含有する無機微粒子のコロイダル溶液である、請求項1または2に記載の樹脂複合体組成物の製造方法。   The resin composite composition according to claim 1 or 2, wherein the colloidal solution of inorganic fine particles is a colloidal solution of inorganic fine particles containing 0.1 to 80% by weight of inorganic fine particles with respect to the weight of the solid component in the resin emulsion. Manufacturing method. 樹脂エマルジョン中の平均一次粒子径(D)と無機微粒子のコロイダル溶液中の無機微粒子の平均粒子径(D)との比(D/D)が0.1以上である請求項1〜3のいずれかに記載の樹脂複合組成物の製造方法。 Claim ratio of the average primary particle size in the resin emulsion and (D A) and the average particle size of the inorganic fine colloidal solution of the inorganic fine particles (D B) (D B / D A) is 0.1 or more 1 The manufacturing method of the resin composite composition in any one of -3. 樹脂エマルジョンが、乳化重合により得られる樹脂エマルジョンである請求項1〜4のいずれかに記載の樹脂複合体組成物の製造方法。   The method for producing a resin composite composition according to any one of claims 1 to 4, wherein the resin emulsion is a resin emulsion obtained by emulsion polymerization. 請求項1〜5のいずれかに記載の樹脂複合体組成物の製造方法により得られる樹脂複合体組成物。   The resin composite composition obtained by the manufacturing method of the resin composite composition in any one of Claims 1-5. 請求項6に記載の樹脂複合体組成物の製造方法により得られる樹脂複合体組成物であって、動的粘弾性測定装置の平行板モードにて樹脂の融点(樹脂が非結晶性樹脂の場合はガラス転移点)以上の温度で測定した、1rad/secにおける粘度(V)と0.1rad/secにおける粘度(V0.1)の比(V0.1/V)が、1.4以上でありうる樹脂複合体組成物。 A resin composite composition obtained by the method for producing a resin composite composition according to claim 6, wherein the melting point of the resin in the parallel plate mode of the dynamic viscoelasticity measuring device (when the resin is an amorphous resin) The ratio (V 0.1 / V 1 ) of the viscosity (V 1 ) at 1 rad / sec and the viscosity (V 0.1 ) at 0.1 rad / sec, measured at a temperature equal to or higher than the glass transition point, is 1.4 or higher. A resin composite composition. 樹脂複合体組成物の200℃での貯蔵弾性率が、樹脂単体の1.7倍以上である、請求項6または7に記載の樹脂複合体組成物。   The resin composite composition according to claim 6 or 7, wherein a storage elastic modulus at 200 ° C of the resin composite composition is 1.7 times or more that of a single resin. 請求項6〜8のいずれかに記載の樹脂複合体組成物を造粒して得られる造粒粉末。   The granulated powder obtained by granulating the resin composite composition in any one of Claims 6-8. 請求項6〜9のいずれかに記載の樹脂複合体組成物または造粒粉末を溶融押出して得られるペレット。   The pellet obtained by melt-extruding the resin composite composition or granulated powder in any one of Claims 6-9. 請求項6〜10のいずれかに記載の樹脂複合体組成物、造粒粉末またはペレットから得られる成形品。   The molded product obtained from the resin composite composition in any one of Claims 6-10, granulated powder, or a pellet. 成形品が、圧縮成形、押出し成形、トランスファー成形、ブロー成形、射出成形、回転成形またはライニング成形により得られるものである請求項11に記載の成形品。   The molded article according to claim 11, which is obtained by compression molding, extrusion molding, transfer molding, blow molding, injection molding, rotational molding or lining molding. 成形品が、チューブ類、シート類、棒類、繊維類、パッキング類、ライニング類、電線被覆類およびシールリング類から選ばれるものである請求項11または12に記載の成形品。   The molded article according to claim 11 or 12, wherein the molded article is selected from tubes, sheets, rods, fibers, packings, linings, wire coatings and seal rings.
JP2006267240A 2005-09-30 2006-09-29 Resin composite composition and method for producing the same Active JP5252612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267240A JP5252612B2 (en) 2005-09-30 2006-09-29 Resin composite composition and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005287314 2005-09-30
JP2005287314 2005-09-30
JP2006267240A JP5252612B2 (en) 2005-09-30 2006-09-29 Resin composite composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007119769A JP2007119769A (en) 2007-05-17
JP5252612B2 true JP5252612B2 (en) 2013-07-31

Family

ID=38143928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267240A Active JP5252612B2 (en) 2005-09-30 2006-09-29 Resin composite composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5252612B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110319545A1 (en) * 2010-06-25 2011-12-29 E.I. Du Pont De Nemours And Company Process for preparing curable perfluoroelastomer compositions
JP5908921B2 (en) * 2010-11-18 2016-04-26 スリーエム イノベイティブ プロパティズ カンパニー Method for coagulating amorphous fluoropolymer latex
WO2013025832A1 (en) 2011-08-16 2013-02-21 E. I. Du Pont De Nemours And Company Reflector for light-emitting diode and housing
JP6166577B2 (en) 2013-04-16 2017-07-19 三井・デュポンフロロケミカル株式会社 Fluororesin composition and molded product thereof
JP6052094B2 (en) * 2013-08-06 2016-12-27 信越化学工業株式会社 Method for producing polytetrafluoroethylene powder composition and method for producing resin composition containing the same
JP2015044288A (en) * 2013-08-27 2015-03-12 日東電工株式会社 Method for producing heat-conductive sheet, and heat-conductive sheet
JP6048392B2 (en) 2013-12-20 2016-12-21 コニカミノルタ株式会社 Method for producing organic-inorganic composite material and method for producing optical material
JP6521690B2 (en) * 2014-03-25 2019-05-29 住友化学株式会社 Method for producing inorganic particle-containing thermoplastic resin
JP6757934B2 (en) 2015-12-14 2020-09-23 ジャパンマテックス株式会社 Fluorine-based resin-aluminum oxide mixed dispersion and its manufacturing method
JP6603589B2 (en) * 2016-01-26 2019-11-06 ジャパンマテックス株式会社 Gland packing and manufacturing method thereof
JP2017203152A (en) * 2016-05-09 2017-11-16 ジャパンマテックス株式会社 Fluorine resin-metal oxide mixed dispersion and method for producing the same
US10294384B2 (en) 2016-12-14 2019-05-21 Japan Matex Co., Ltd. Fluororesin-aluminum oxide mixed dispersion and method of manufacturing the same
EP3750942A4 (en) * 2018-02-23 2021-11-10 Daikin Industries, Ltd. Non-aqueous dispersion
CN113929940B (en) * 2021-10-26 2023-08-29 嘉兴杰特新材料股份有限公司 Folding-resistant PTFE composite film material and preparation method thereof
CN115627041B (en) * 2022-11-02 2023-11-24 浙江工业大学 PTFE-PFA composite material and preparation method thereof
CN115820172B (en) * 2022-11-30 2024-01-26 杭州志和新材料有限公司 PP film EVA hot melt adhesive capable of being peeled naturally and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114644A (en) * 1976-03-23 1977-09-26 Daikin Ind Ltd Preparation of finely powdered polytetrafluoroethylene containing fill ers
JP3446377B2 (en) * 1995-03-17 2003-09-16 ダイキン工業株式会社 Polytetrafluoroethylene fine powder and method for producing the same
JPH11236454A (en) * 1998-02-24 1999-08-31 Du Pont Mitsui Fluorochem Co Ltd Production of granulated powder of polytetrafluoroethylene
JPH11246607A (en) * 1998-02-27 1999-09-14 Asahi Glass Co Ltd Production of aqueous dispersion containing polytetrafluoroethylene
JP4032626B2 (en) * 1999-11-11 2008-01-16 住友化学株式会社 Resin composition and method for producing the same
JP4320506B2 (en) * 2000-09-25 2009-08-26 旭硝子株式会社 Polytetrafluoroethylene composition, method for producing the same, and granulated product

Also Published As

Publication number Publication date
JP2007119769A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5252612B2 (en) Resin composite composition and method for producing the same
US8779046B2 (en) Polymer composition with uniformly distributed nano-sized inorganic particles
KR100991167B1 (en) Process for manufacturing a heat-meltable fluoropolymer composite composition and a heat-meltable fluoropolymer composite composition
US20070117900A1 (en) Melt processible fluoropolymer composition containing nano particles
JP2008115336A (en) Adhesive fluororesin composite composition
US8784961B2 (en) Fluoropolymer blends with inorganic layered compounds
TWI403551B (en) Melt processible fluoropolymer composition containing nano particles
JP2008239882A (en) Anti-bacterial fluororesin composition
JP2008088305A (en) Perfluorofluororesin composite composition
JP2008013610A (en) Molded article composed of fluororesin composite composition
JP2006213870A (en) Thermoplastic resin composite composition and method for producing the same
JP2008115335A (en) Transparent member comprising fluororesin composite composition
WO2007120122A1 (en) Melt processible fluoropolymer composition containing nano particles
JP2008088306A (en) Perfluorofluororesin composite composition
JP2006213577A (en) Inorganic particulate agglomerate and its producing method
JP4133035B2 (en) Conductive fluororesin composition and process for producing the same
KR20100136176A (en) Preparing method of resin composite compositions
JP2008106285A (en) Electrically-conductive fluororesin composition and its manufacturing method
KR20110033335A (en) Perfluroro fluororesin composite
CN114599726B (en) Fluoropolymer compositions and methods of making the same
KR20110033334A (en) Transparent member based on fluororesin composite
JP2008239884A (en) Low electrically charging fluororesin composition
KR20230069175A (en) Compression Molding Compositions, Methods for Their Preparation, and Molded Articles
JP2006321850A (en) Sliding member made of fluororesin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Ref document number: 5252612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250