JP5251323B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP5251323B2
JP5251323B2 JP2008184167A JP2008184167A JP5251323B2 JP 5251323 B2 JP5251323 B2 JP 5251323B2 JP 2008184167 A JP2008184167 A JP 2008184167A JP 2008184167 A JP2008184167 A JP 2008184167A JP 5251323 B2 JP5251323 B2 JP 5251323B2
Authority
JP
Japan
Prior art keywords
imaging
focus detection
image
output
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008184167A
Other languages
Japanese (ja)
Other versions
JP2010026011A (en
Inventor
健 歌川
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008184167A priority Critical patent/JP5251323B2/en
Publication of JP2010026011A publication Critical patent/JP2010026011A/en
Application granted granted Critical
Publication of JP5251323B2 publication Critical patent/JP5251323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は撮像装置に関する。   The present invention relates to an imaging apparatus.

瞳分割位相差検出方式の焦点検出用画素を撮像素子の一部に配列し、この焦点検出用画素配列で撮影光学系の焦点検出を行うとともに、焦点検出用画素配列の周囲に二次元状にベイヤー配列した撮像用画素で撮像を行うようにした撮像装置が知られている(例えば、特許文献1参照)。
特開平01−216306号公報
Focus detection pixels of the pupil division phase difference detection method are arranged in a part of the image sensor, and the focus detection of the photographing optical system is performed with this focus detection pixel array, and two-dimensionally around the focus detection pixel array There has been known an imaging apparatus that performs imaging with imaging pixels arranged in a Bayer array (see, for example, Patent Document 1).
Japanese Unexamined Patent Publication No. 01-216306

しかしながら、上述した従来の撮像装置では、焦点検出用画素位置の画像出力を、周囲のベイヤー配列の撮像用画素の画素出力を用いて補間により求めなければならないので、撮影画面内の多くの位置で色々な方向の焦点検出を行うために、多くの焦点検出用画素配列を配置するほど補間処理が煩雑になって画像生成に時間がかかる上に、補間処理後の画像品質が劣化するという問題がある。   However, in the above-described conventional imaging device, the image output at the focus detection pixel position must be obtained by interpolation using the pixel outputs of the imaging pixels in the surrounding Bayer array, and therefore at many positions in the shooting screen. In order to perform focus detection in various directions, the more the pixel arrays for focus detection are arranged, the more complicated the interpolation processing becomes, and it takes time to generate an image, and the image quality after the interpolation processing deteriorates. is there.

(1) 請求項1の発明は、結像光学系を透過した光束を、所定の色成分の第1の光束と所定の色成分以外の色成分の第2の光束とに分割する光束分割手段と、結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、第1の光束を受光する第1の撮像素子と、所定の色以外の複数の色のカラーフィルターを有する撮像用画素であって、結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、第2の光束を受光する第2の撮像素子と、焦点検出用画素が配置された画素位置における画像出力を、焦点検出用画素の周辺の撮像用画素の出力に基づいて補間し、第1の撮像素子の出力と第2の撮像素子の出力とに基づいて被写体像を生成する像生成手段とを備える。
(2) 請求項2の発明は、結像光学系を透過した光束を互いに異なる第1の光束と第2の光束とに分割する光束分割手段と、所定の色のカラーフィルターを有する撮像用画素であって、結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、第1の光束を受光する第1の撮像素子と、所定の色以外の複数の色のカラーフィルターを有する撮像用画素であって、結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、第2の光束を受光する第2の撮像素子と、焦点検出用画素が配置された画素位置における画像出力を、焦点検出用画素の周辺の撮像用画素の出力に基づいて補間し、第1の撮像素子の出力と第2の撮像素子の出力とに基づいて被写体像を生成する像生成手段とを備える。
(3) 請求項3の発明は、請求項1または請求項2に記載の撮像装置において、像生成手段は、第1の撮像素子上の焦点検出用画素位置における画像出力を、第1の撮像素子上の撮像用画素の出力に基づいて補間により算出する。
(4) 請求項4の発明は、請求項1〜3のいずれか一項に記載の撮像装置において、像生成手段は、第2の撮像素子上の焦点検出用画素位置における画像出力を、第2の撮像素子上の撮像用画素の出力に基づいて補間により算出する。
(5) 請求項5の発明は、請求項1〜4のいずれか一項に記載の撮像装置において、像生成手段は、焦点検出用画素位置を通る複数の方向の直線に沿って配列される撮像用画素の出力の類似度を検出し、出力類似度が高い方向の直線上に配列される撮像用画素の出力に基づいて焦点検出用画素位置における画像出力を補間により算出する。
(6) 請求項6の発明は、請求項5に記載の撮像装置において、像生成手段は、第1および第2の撮像素子の内の一方の撮像素子上の焦点検出用画素配列の配列方向における撮像用画素の出力類似度を、他方の撮像素子上の配列方向に対応する方向に配列された撮像用画素の出力類似度に基づいて算出する。
(7) 請求項7の発明は、請求項1〜6のいずれか一項に記載の撮像装置において、第1の撮像素子上の焦点検出用画素の出力に基づいて結像光学系の焦点調節状態を検出するとともに、第2の撮像素子上の焦点検出用画素の出力に基づいて結像光学系の焦点調節状態を検出する焦点検出手段と、結像光学系の色収差量に基づいて焦点検出手段による検出結果を補正する色収差補正手段とを備える。
(8) 請求項8の発明は、請求項1〜7のいずれか一項に記載の撮像装置において、焦点検出用画素配列を、撮影光学系の撮影画面中央からの放射方向に直交する方向に沿って配置する。
(9) 請求項9の発明は、請求項1〜8のいずれか一項に記載の撮像装置において、撮像用画素は、マイクロレンズと、結像光学系からの光をマイクロレンズを介して受光する光電変換素子とを有し、焦点検出用画素は、マイクロレンズと、マイクロレンズの中心から偏心して配置され、結像光学系からの光をマイクロレンズを介して受光する光電変換素子とを有する。
(1) According to the first aspect of the present invention, the light beam dividing means for dividing the light beam transmitted through the imaging optical system into a first light beam having a predetermined color component and a second light beam having a color component other than the predetermined color component. And two-dimensionally array imaging pixels for capturing a subject image formed by the imaging optical system, and detect the focus adjustment state of the imaging optical system in a part of the two-dimensional array. An imaging pixel having a first pixel for receiving a first light beam and a plurality of color filters other than a predetermined color, which are connected by an imaging optical system. A pixel array for focus detection for detecting the focus adjustment state of the imaging optical system is arranged in a part of the two-dimensional array, as well as two-dimensionally arraying imaging pixels for capturing a subject image to be imaged. A second imaging element that receives the second light beam and a focus detection pixel are arranged The image output at the selected pixel position is interpolated based on the output of the imaging pixels around the focus detection pixel, and the subject image is generated based on the output of the first imaging element and the output of the second imaging element Image generating means.
(2) The invention according to claim 2 is an image pickup pixel having a light beam splitting unit that splits a light beam that has passed through the imaging optical system into a first light beam and a second light beam that are different from each other, and a color filter of a predetermined color. The imaging pixels for imaging the subject image formed by the imaging optical system are arranged two-dimensionally, and the focus adjustment state of the imaging optical system is partially set in the two-dimensional arrangement. An imaging pixel having a focus detection pixel array for detection and having a first image sensor that receives a first light beam and a plurality of color filters other than a predetermined color Focusing pixels for detecting the focus adjustment state of the imaging optical system in a part of the two-dimensional array while arranging the imaging pixels for capturing the subject image formed by the A second imaging device that provides an array and receives the second light flux The image output at the pixel position where the focus detection pixel is arranged is interpolated based on the output of the imaging pixels around the focus detection pixel, and the output of the first image sensor and the output of the second image sensor And image generation means for generating a subject image based on the above.
(3) The invention of claim 3 is the imaging apparatus according to claim 1 or 2, wherein the image generation means outputs the image output at the focus detection pixel position on the first imaging element as the first imaging. Calculation is performed by interpolation based on the output of the imaging pixels on the element.
(4) According to a fourth aspect of the present invention, in the imaging apparatus according to any one of the first to third aspects, the image generating means outputs the image output at the focus detection pixel position on the second imaging element. It calculates by interpolation based on the output of the imaging pixel on 2 imaging elements.
(5) According to a fifth aspect of the present invention, in the imaging device according to any one of the first to fourth aspects, the image generating means is arranged along straight lines in a plurality of directions passing through the focus detection pixel positions. The similarity of the output of the imaging pixel is detected, and the image output at the focus detection pixel position is calculated by interpolation based on the output of the imaging pixel arranged on the straight line in the direction in which the output similarity is high.
(6) According to a sixth aspect of the present invention, in the imaging apparatus according to the fifth aspect, the image generating means is arranged in an arrangement direction of the focus detection pixel array on one of the first and second imaging elements. Is calculated based on the output similarity of the imaging pixels arranged in the direction corresponding to the arrangement direction on the other imaging element.
(7) According to a seventh aspect of the present invention, in the imaging apparatus according to any one of the first to sixth aspects, the focus adjustment of the imaging optical system is performed based on the output of the focus detection pixel on the first image sensor. Focus detection means for detecting the state and detecting the focus adjustment state of the imaging optical system based on the output of the focus detection pixel on the second image sensor, and focus detection based on the amount of chromatic aberration of the imaging optical system Chromatic aberration correcting means for correcting the detection result by the means.
(8) According to an eighth aspect of the present invention, in the imaging device according to any one of the first to seventh aspects, the focus detection pixel array is arranged in a direction orthogonal to a radial direction from the center of the photographing screen of the photographing optical system. Arrange along.
(9) The invention of claim 9 is the imaging apparatus according to any one of claims 1 to 8, wherein the imaging pixel receives light from the microlens and the imaging optical system via the microlens. The focus detection pixel has a microlens and a photoelectric conversion element that is arranged eccentrically from the center of the microlens and receives light from the imaging optical system via the microlens. .

(1)請求項1の発明は、結像光学系を透過した光束を、所定の色成分の第1の光束と前記所定の色成分以外の色成分の第2の光束とに分割する光束分割手段と、前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に所定方向に沿って前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第1の光束を受光する第1の撮像素子と、前記所定の色以外の複数の色のカラーフィルターを有する撮像用画素であって、前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に前記所定方向と直交する方向に沿って前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第2の光束を受光する第2の撮像素子と、前記焦点検出用画素が配置された画素位置における画像出力を、前記焦点検出用画素の周辺の前記撮像用画素の出力に基づいて補間し、前記第1の撮像素子の出力と前記第2の撮像素子の出力とに基づいて被写体像を生成する像生成手段とを備えることを特徴とする。
(2)請求項2の発明は、結像光学系を透過した光束を、所定の色成分の第1の光束と前記所定の色成分以外の色成分の第2の光束とに分割する光束分割手段と、前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第1の光束を受光する第1の撮像素子と、前記所定の色以外の複数の色のカラーフィルターを有する撮像用画素であって、前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第2の光束を受光する第2の撮像素子と、前記焦点検出用画素が配置された画素位置における画像出力を、前記焦点検出用画素の周辺の前記撮像用画素の出力に基づいて補間し、前記第1の撮像素子の出力と前記第2の撮像素子の出力とに基づいて被写体像を生成する像生成手段とを備えるとともに、前記第1の撮像素子における前記焦点検出画素配列が受光する前記被写体像の領域と、前記第2の撮像素子における前記焦点検出画素配列が受光する前記被写体像の領域との配列方向が異なることを特徴とする。
(3)請求項3の発明は、請求項1または2に記載の撮像装置において、前記第1の撮像素子における前記焦点検出画素配列が受光する前記被写体像の領域と、前記第2の撮像素子における前記焦点検出画素配列が受光する前記被写体像の領域とが交差することを特徴とする。
(4)請求項4の発明は、結像光学系を透過した光束を互いに異なる第1の光束と第2の光束とに分割する光束分割手段と、所定の色のカラーフィルターを有する撮像用画素であって、前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に所定方向に沿って前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第1の光束を受光する第1の撮像素子と、前記所定の色以外の複数の色のカラーフィルターを有する撮像用画素であって、前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に前記所定方向と直交する方向に沿って前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第2の光束を受光する第2の撮像素子と、前記焦点検出用画素が配置された画素位置における画像出力を、前記焦点検出用画素の周辺の前記撮像用画素の出力に基づいて補間し、前記第1の撮像素子の出力と前記第2の撮像素子の出力とに基づいて被写体像を生成する像生成手段とを備えることを特徴とする。
(5)請求項5の発明は、請求項1〜4のいずれか一項に記載の撮像装置において、前記像生成手段は、前記第1の撮像素子上の前記焦点検出用画素位置における画像出力を、前記第1の撮像素子上の前記撮像用画素の出力に基づいて補間により算出することを特徴とする。
(6)請求項6の発明は、請求項1〜4のいずれか一項に記載の撮像装置において、前記像生成手段は、前記第2の撮像素子上の前記焦点検出用画素位置における画像出力を、前記第2の撮像素子上の前記撮像用画素の出力に基づいて補間により算出することを特徴とする。
(7)請求項7の発明は、請求項1〜6のいずれか一項に記載の撮像装置において、前記像生成手段は、前記焦点検出用画素位置を通る複数の方向の直線に沿って配列された隣接する撮像用画素の出力の類似度を検出し、出力類似度が高い方向の直線上に配列される前記撮像用画素の出力に基づいて前記焦点検出用画素位置における画像出力を補間により算出することを特徴とする。
(8)請求項8の発明は、請求項7に記載の撮像装置において、前記像生成手段は、前記第1および第2の撮像素子の内の一方の前記撮像素子上の前記焦点検出用画素配列の配列方向における撮像用画素の出力類似度を、他方の前記撮像素子上の前記配列方向に対応する方向に配列された撮像用画素の出力類似度に基づいて算出することを特徴とする。
(9)請求項9の発明は、請求項1〜8のいずれか一項に記載の撮像装置において、前記第1の撮像素子上の前記焦点検出用画素の出力に基づいて前記結像光学系の焦点調節状態を検出するとともに、前記第2の撮像素子上の前記焦点検出用画素の出力に基づいて前記結像光学系の焦点調節状態を検出する焦点検出手段と、前記結像光学系の色収差量に基づいて前記焦点検出手段による検出結果を補正する色収差補正手段とを備えることを特徴とする。
(10)請求項10の発明は、請求項1〜9のいずれか一項に記載の撮像装置において、前記焦点検出用画素配列を、前記撮影光学系の撮影画面中央からの放射方向に直交する方向に沿って配置することを特徴とする。
(11)請求項11の発明は、請求項1〜10のいずれか一項に記載の撮像装置において、前記撮像用画素は、マイクロレンズと、前記結像光学系からの光を前記マイクロレンズを介して受光する光電変換素子とを有し、前記焦点検出用画素は、マイクロレンズと、前記マイクロレンズの中心から偏心して配置され、前記結像光学系からの光を前記マイクロレンズを介して受光する光電変換素子とを有することを特徴とする。
(1) According to the first aspect of the present invention, the light beam splitting splits the light beam transmitted through the imaging optical system into a first light beam having a predetermined color component and a second light beam having a color component other than the predetermined color component. And imaging pixels for imaging a subject image imaged by the imaging optical system are arranged in a two-dimensional manner, and the imaging optics along a predetermined direction in a part of the two-dimensional arrangement An imaging pixel provided with a focus detection pixel array for detecting a focus adjustment state of the system, and having a first image sensor that receives the first light beam and a plurality of color filters other than the predetermined color The imaging pixels for imaging the subject image formed by the imaging optical system are two-dimensionally arranged, and a part of the two-dimensional arrangement is arranged in a direction orthogonal to the predetermined direction. focus detection for detecting the focusing state of the imaging optical system along An image output at a pixel position where the focus detection pixel is arranged, and a second image sensor that receives the second light flux, and an image output of the image pickup pixels around the focus detection pixel. And an image generating means for interpolating based on the output and generating a subject image based on the output of the first image sensor and the output of the second image sensor.
(2) According to the invention of claim 2, light beam splitting that splits the light beam transmitted through the imaging optical system into a first light beam having a predetermined color component and a second light beam having a color component other than the predetermined color component. Means and two-dimensionally arranged imaging pixels for imaging a subject image formed by the imaging optical system, and a focus adjustment state of the imaging optical system in a part of the two-dimensional array An imaging pixel having a first imaging element that receives a first light beam and a color filter of a plurality of colors other than the predetermined color; In order to two-dimensionally arrange imaging pixels for imaging a subject image formed by the imaging optical system, and to detect the focus adjustment state of the imaging optical system in a part of the two-dimensional array A focus detection pixel array for receiving the second light flux. An image output and an image output at a pixel position where the focus detection pixel is disposed are interpolated based on an output of the image pickup pixel around the focus detection pixel, and the output of the first image pickup element and the a region of the object image Rutotomoni a image generating means for generating an object image, the focus detection pixel array in the first image sensor receives light based on the output of the second image sensor, the second The focus detection pixel array in the image pickup element has a different arrangement direction from the region of the subject image received .
(3) According to a third aspect of the present invention, in the imaging apparatus according to the first or second aspect, the region of the subject image received by the focus detection pixel array in the first imaging element and the second imaging element The focus detection pixel array in FIG. 4 intersects the region of the subject image received by the light.
(4) According to a fourth aspect of the present invention, there is provided an imaging pixel having a light beam dividing means for dividing a light beam transmitted through the imaging optical system into a first light beam and a second light beam different from each other, and a color filter of a predetermined color. The imaging pixels for imaging the subject image formed by the imaging optical system are arranged two-dimensionally, and the imaging is performed along a predetermined direction in a part of the two-dimensional arrangement A focus detection pixel array for detecting a focus adjustment state of the optical system is provided, and includes a first image sensor that receives the first light beam, and a plurality of color filters other than the predetermined color. A pixel, in which two or more imaging pixels for imaging a subject image formed by the imaging optical system are arranged in a two-dimensional manner, and a direction orthogonal to the predetermined direction is partially in the two-dimensional arrangement The focus adjustment state of the imaging optical system along A focus detection pixel array for outputting the second image sensor that receives the second light flux; and an image output at a pixel position where the focus detection pixel is arranged, around the focus detection pixel. And an image generation means for generating a subject image based on the output of the first image sensor and the output of the second image sensor. .
(5) The invention according to claim 5 is the imaging apparatus according to any one of claims 1 to 4, wherein the image generation unit outputs an image at the focus detection pixel position on the first imaging element. Is calculated by interpolation based on the output of the imaging pixels on the first imaging device.
(6) The invention of claim 6 is the imaging apparatus according to any one of claims 1 to 4, wherein the image generating means outputs an image at the focus detection pixel position on the second imaging element. Is calculated by interpolation based on the output of the imaging pixels on the second imaging element.
(7) According to a seventh aspect of the present invention, in the imaging device according to any one of the first to sixth aspects, the image generating means is arranged along a plurality of directions of straight lines passing through the focus detection pixel positions. The output similarity of the adjacent imaging pixels is detected, and the image output at the focus detection pixel position is interpolated based on the output of the imaging pixels arranged on a straight line in the direction in which the output similarity is high. It is characterized by calculating.
(8) According to an eighth aspect of the present invention, in the imaging apparatus according to the seventh aspect, the image generation means is the focus detection pixel on one of the first and second imaging elements. The output similarity of the imaging pixels in the arrangement direction of the arrangement is calculated based on the output similarity of the imaging pixels arranged in a direction corresponding to the arrangement direction on the other imaging element.
(9) According to a ninth aspect of the present invention, in the imaging apparatus according to any one of the first to eighth aspects, the imaging optical system is based on an output of the focus detection pixel on the first imaging element. A focus detection unit that detects a focus adjustment state of the imaging optical system based on an output of the focus detection pixel on the second image sensor, and Chromatic aberration correction means for correcting the detection result by the focus detection means based on the amount of chromatic aberration.
(10) The invention of claim 10 is the imaging apparatus according to any one of claims 1 to 9, wherein the focus detection pixel array is orthogonal to a radiation direction from the center of the imaging screen of the imaging optical system. It arrange | positions along a direction, It is characterized by the above-mentioned.
(11) According to an eleventh aspect of the present invention, in the imaging apparatus according to any one of the first to tenth aspects, the imaging pixel includes a microlens and light from the imaging optical system. The focus detection pixels are arranged eccentrically from the center of the microlens, and receive light from the imaging optical system via the microlens. And a photoelectric conversion element.

図1は一実施の形態の構成を示す。一実施の形態のデジタルカメラ201は交換レンズ202とカメラボディ203から構成され、マウント部204を介して交換レンズ202がカメラボディ203に装着される。   FIG. 1 shows the configuration of an embodiment. A digital camera 201 according to an embodiment includes an interchangeable lens 202 and a camera body 203, and the interchangeable lens 202 is attached to the camera body 203 via a mount unit 204.

交換レンズ202はレンズ駆動制御装置206、ズーミングレンズ208、レンズ209、フォーカシングレンズ210、絞り211などを備えている。レンズ駆動制御装置206はマイクロコンピューターとメモリなどの周辺部品から構成され、フォーカシングレンズ210と絞り211の駆動制御、ズーミングレンズ208、フォーカシングレンズ210および絞り211の状態検出、後述するボディ駆動制御装置214との通信によりレンズ情報の送信とカメラ情報の受信などを行う。   The interchangeable lens 202 includes a lens drive control device 206, a zooming lens 208, a lens 209, a focusing lens 210, a diaphragm 211, and the like. The lens drive control device 206 includes peripheral components such as a microcomputer and a memory, and controls the driving of the focusing lens 210 and the aperture 211, detects the states of the zooming lens 208, the focusing lens 210 and the aperture 211, and a body drive control device 214 which will be described later. The lens information is transmitted and the camera information is received by the communication.

一方、カメラボディ203はボディ駆動制御装置214、液晶表示装置駆動回路215、液晶表示素子216、メモリカード219、第1撮像素子220、第2撮像素子221、波長選択性ハーフミラー223などを備えている。波長選択性ハーフミラー223は、交換レンズ202から到来する光束の緑G成分を透過し、他の成分を反射する波長選択性ハーフミラー面222を備えている。なお、波長選択性ハーフミラー223の光入射側には赤外線カットフィルター224が設けられている。   On the other hand, the camera body 203 includes a body drive control device 214, a liquid crystal display device drive circuit 215, a liquid crystal display device 216, a memory card 219, a first imaging device 220, a second imaging device 221, a wavelength selective half mirror 223, and the like. Yes. The wavelength-selective half mirror 223 includes a wavelength-selective half mirror surface 222 that transmits the green G component of the light beam coming from the interchangeable lens 202 and reflects other components. An infrared cut filter 224 is provided on the light incident side of the wavelength selective half mirror 223.

第1撮像素子220は、波長選択性ハーフミラー223を透過した緑G成分の光束を受光する固体撮像素子であり、交換レンズ202の予定結像面(撮像面)に配置される。一方、第2撮像素子221は、波長選択性ハーフミラー223を反射した緑G以外の成分の光束を受光する固体撮像素子であり、交換レンズ202の他の予定結像面(撮像面)に配置される。図1において、第1撮像素子220と第2撮像素子221の“A”が被写界の“天”の側に、“B”が被写界の“地”の側にそれぞれ対応する。なお、第1撮像素子220の撮像面(予定結像面)と、第2撮像素子221の撮像面(予定結像面)とは互いに共役の関係にある。第1撮像素子220および第2撮像素子221は、CCDやCMOSなどにより構成される。   The first image sensor 220 is a solid-state image sensor that receives the green G component light beam that has passed through the wavelength-selective half mirror 223, and is disposed on the planned imaging plane (imaging plane) of the interchangeable lens 202. On the other hand, the second image sensor 221 is a solid-state image sensor that receives a light beam of a component other than green G reflected from the wavelength selective half mirror 223, and is disposed on another scheduled imaging surface (imaging surface) of the interchangeable lens 202. Is done. In FIG. 1, “A” of the first image sensor 220 and the second image sensor 221 corresponds to the “heaven” side of the object scene, and “B” corresponds to the “ground” side of the object field. Note that the imaging surface (scheduled imaging surface) of the first imaging element 220 and the imaging surface (scheduled imaging surface) of the second imaging element 221 are in a conjugate relationship with each other. The first image sensor 220 and the second image sensor 221 are configured by a CCD, a CMOS, or the like.

ボディ駆動制御装置214はマイクロコンピューターとメモリなどの周辺部品から構成され、第1撮像素子220および第2撮像素子221からの画像信号の読み出しと補正、レンズ駆動制御装置206との通信(レンズ情報の受信、デフォーカス量などのカメラ情報の送信)、交換レンズ202の焦点調節状態(デフォーカス量)の検出、およびカメラ全体の動作制御を行う。ボディ駆動制御装置214とレンズ駆動制御装置206はマウント部204に設けられた電気接点213を介して通信を行い、レンズ情報、デフォーカス量、絞り情報などの各種情報の授受を行う。   The body drive control unit 214 includes a microcomputer and peripheral components such as a memory, reads and corrects image signals from the first image sensor 220 and the second image sensor 221, and communicates with the lens drive control unit 206 (for lens information). Reception, transmission of camera information such as defocus amount), detection of the focus adjustment state (defocus amount) of the interchangeable lens 202, and operation control of the entire camera. The body drive control device 214 and the lens drive control device 206 communicate via an electrical contact 213 provided in the mount unit 204 to exchange various information such as lens information, defocus amount, and aperture information.

この一実施の形態のカメラでは、液晶表示素子駆動回路215と液晶表示素子216によりEVF(Electric View Finder)を構成し、第1撮像素子220と第2撮像素子221による撮像画像を液晶表示素子216に表示して接眼レンズ217を介して撮影者に視認させる。なお、撮像画像はメモリカード219に記録される。   In the camera of this embodiment, the liquid crystal display element driving circuit 215 and the liquid crystal display element 216 constitute an EVF (Electric View Finder), and images captured by the first image sensor 220 and the second image sensor 221 are displayed on the liquid crystal display element 216. To the photographer through the eyepiece 217. The captured image is recorded in the memory card 219.

第1撮像素子220と第2撮像素子221にはそれぞれ撮像用画素が2次元状に配置されるとともに、焦点検出位置に対応した部分に焦点検出用画素配列が組み込まれている。交換レンズ202を透過して波長選択性ハーフミラー223により分割された光束により第1撮像素子220および第2撮像素子221上に形成された被写体像は、第1撮像素子220および第2撮像素子221により光電変換され、それらの出力はボディ駆動制御装置214へ送られる。   The first imaging element 220 and the second imaging element 221 have imaging pixels arranged two-dimensionally, and a focus detection pixel array is incorporated in a portion corresponding to the focus detection position. The subject image formed on the first image sensor 220 and the second image sensor 221 by the light beam transmitted through the interchangeable lens 202 and divided by the wavelength selective half mirror 223 is the first image sensor 220 and the second image sensor 221. Are subjected to photoelectric conversion, and their outputs are sent to the body drive control device 214.

ボディ駆動制御装置214は、焦点検出用画素の出力に基づき焦点検出位置におけるデフォーカス量を算出し、このデフォーカス量をレンズ駆動制御装置206へ送る。また、ボディ駆動制御装置214は、撮像用画素の出力に基づき生成した画像信号をメモリカード219に格納するとともに、画像信号を液晶表示素子駆動回路215へ送り、画像信号を液晶表示素子216に表示させる。さらに、ボディ駆動制御装置214は、レンズ駆動制御装置206へ絞り制御情報を送り、絞り開口の大きさを制御させる。   The body drive control device 214 calculates a defocus amount at the focus detection position based on the output of the focus detection pixel, and sends this defocus amount to the lens drive control device 206. In addition, the body drive control device 214 stores the image signal generated based on the output of the imaging pixel in the memory card 219, sends the image signal to the liquid crystal display element drive circuit 215, and displays the image signal on the liquid crystal display element 216. Let Further, the body drive control device 214 sends aperture control information to the lens drive control device 206 to control the size of the aperture opening.

レンズ駆動制御装置206は、レンズ情報をフォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じて更新する。具体的には、レンズ駆動制御装置206は、ズーミングレンズ208、フォーカシングレンズ210の位置と、絞り211の絞り位置をモニターし、モニター情報に応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからモニター情報に応じたレンズ情報を選択する。また、レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、レンズ駆動量に基づいてフォーカシングレンズ210を不図示のモーター等の駆動源により合焦点へ駆動するとともに、受信した絞り制御情報に基づいて絞り211を不図示のモーター等の駆動源により駆動する。   The lens drive control device 206 updates the lens information according to the focusing state, zooming state, aperture setting state, aperture opening F value, and the like. Specifically, the lens drive control device 206 monitors the positions of the zooming lens 208 and the focusing lens 210 and the aperture position of the aperture 211, calculates lens information according to the monitor information, or provides a look that is prepared in advance. Select lens information according to monitor information from the up table. The lens drive control device 206 calculates a lens drive amount based on the received defocus amount, and drives the focusing lens 210 to a focal point by a drive source such as a motor (not shown) based on the lens drive amount. Based on the received aperture control information, the aperture 211 is driven by a drive source such as a motor (not shown).

図2は、図1に示す交換レンズ202の撮影画面に設定された焦点検出エリアの配置を示す。図において、Aが被写界の天の側に、Bが被写界の地の側にそれぞれ対応する。この一実施の形態では、図に示すように、交換レンズ202の撮影画面100の中央部と周辺部の合計9カ所に焦点検出エリア100a〜100iを設定した例を示す。各焦点検出エリア100a〜100iは、被写界の水平方向に延びる焦点検出エリアと被写界の垂直方向に延びる焦点検出エリアが直交した十字型形状をしている。なお、焦点検出エリアの形状は十字型に限定されず、水平方向と垂直方向の焦点検出エリアが交差していなくてもよい。また、焦点検出エリアの個数と配置についてもこの一実施の形態に限定されない。   FIG. 2 shows the arrangement of focus detection areas set on the imaging screen of the interchangeable lens 202 shown in FIG. In the figure, A corresponds to the celestial side of the object scene, and B corresponds to the ground side of the object field. In this embodiment, as shown in the figure, an example is shown in which focus detection areas 100a to 100i are set at a total of nine locations in the central portion and the peripheral portion of the photographing screen 100 of the interchangeable lens 202. Each of the focus detection areas 100a to 100i has a cross shape in which a focus detection area extending in the horizontal direction of the object scene and a focus detection area extending in the vertical direction of the object scene are orthogonal to each other. Note that the shape of the focus detection area is not limited to a cross shape, and the focus detection areas in the horizontal direction and the vertical direction may not intersect each other. Further, the number and arrangement of the focus detection areas are not limited to this embodiment.

図3(a)は第1撮像素子220の正面図であり、図中の“A”が被写界の天の側に、“B”が被写界の地の側にそれぞれ対応する。また、図3(b)は、図3(a)に示す第1撮像素子220の“P1”部の拡大図であり、撮像用画素の配列を示す。図3(c)は、図3(a)に示す第1撮像素子220の“Q1”部の拡大図であり、撮像用画素と焦点検出用画素の配列を示す。なお、図3(c)はQ1部の焦点検出用画素配列220dを示すが、他の焦点検出用画素配列220a〜220c、220e〜220iについても同様である。   FIG. 3A is a front view of the first image sensor 220, in which “A” corresponds to the celestial side of the object scene, and “B” corresponds to the ground side of the object field. FIG. 3B is an enlarged view of the “P1” portion of the first image sensor 220 shown in FIG. 3A, and shows an array of imaging pixels. FIG. 3C is an enlarged view of the “Q1” portion of the first image sensor 220 shown in FIG. 3A, and shows an array of imaging pixels and focus detection pixels. FIG. 3C shows the focus detection pixel array 220d of the Q1 portion, but the same applies to the other focus detection pixel arrays 220a to 220c and 220e to 220i.

第1撮像素子220は、交換レンズ202(図1参照)の図2に示す撮影画面100に対応する撮像面全体に、図3(b)に示すように撮像用画素310が二次元状に配列されるとともに、撮影画面100内の9カ所の焦点検出エリア100a〜100iに対応する位置に、図3(c)に示すように焦点検出用画素配列220a〜220iが被写界の水平方向に沿って配置される。   In the first imaging element 220, the imaging pixels 310 are two-dimensionally arranged on the entire imaging surface corresponding to the imaging screen 100 shown in FIG. 2 of the interchangeable lens 202 (see FIG. 1), as shown in FIG. At the same time, as shown in FIG. 3C, focus detection pixel arrays 220a to 220i are arranged along the horizontal direction of the object scene at positions corresponding to the nine focus detection areas 100a to 100i in the photographing screen 100. Arranged.

図5は撮像用画素310の正面図、図6は撮像用画素310の断面図である。撮像用画素310はマイクロレンズ10と光電変換素子11を備えている。光電変換素子11は半導体回路基板29上に形成されており、光電変換素子11の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換素子11の形状が前方に投影される。第1撮像素子220の撮像用画素310には、マイクロレンズ10と光電変換素子11との間に緑G成分を透過するカラーフィルター(不図示)が設置される。   FIG. 5 is a front view of the imaging pixel 310, and FIG. 6 is a cross-sectional view of the imaging pixel 310. The imaging pixel 310 includes the microlens 10 and the photoelectric conversion element 11. The photoelectric conversion element 11 is formed on the semiconductor circuit substrate 29, the microlens 10 is disposed in front of the photoelectric conversion element 11, and the shape of the photoelectric conversion element 11 is projected forward by the microlens 10. A color filter (not shown) that transmits the green G component is installed between the microlens 10 and the photoelectric conversion element 11 in the imaging pixel 310 of the first imaging element 220.

上述したように、第1撮像素子220は波長選択性ハーフミラー223を透過した緑G成分の光束を受光する。図9は波長選択性ハーフミラー223の透過率特性を示し、図10はその反射率特性を示す。波長選択性ハーフミラー223は、G(緑の色光)成分を透過して他の色成分を反射する特性を有する。第1撮像素子220は波長選択性ハーフミラー223を透過した緑G成分の光束を受光するので、第1撮像素子220の撮像用画素310には緑G成分を透過するカラーフィルターを必ずしも設置する必要はない。   As described above, the first image sensor 220 receives the light beam of the green G component transmitted through the wavelength selective half mirror 223. FIG. 9 shows the transmittance characteristics of the wavelength selective half mirror 223, and FIG. 10 shows the reflectance characteristics thereof. The wavelength selective half mirror 223 has a characteristic of transmitting a G (green color light) component and reflecting other color components. Since the first image sensor 220 receives the green G component light beam that has passed through the wavelength-selective half mirror 223, the image pickup pixel 310 of the first image sensor 220 is necessarily provided with a color filter that transmits the green G component. There is no.

焦点検出用画素配列220a〜220iには、図3(c)に示すように2種類の焦点検出用画素313,314が直線上に交互に配置されている。図7は焦点検出用画素313,314の正面図、図8は焦点検出用画素313,314の断面図である。焦点検出用画素313は、マイクロレンズ10と光電変換素子13を備えている。光電変換素子13は半導体回路基板29上に形成されており、光電変換素子13の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換素子13の形状が前方に投影される。   In the focus detection pixel arrays 220a to 220i, as shown in FIG. 3C, two types of focus detection pixels 313 and 314 are alternately arranged on a straight line. FIG. 7 is a front view of the focus detection pixels 313 and 314, and FIG. 8 is a cross-sectional view of the focus detection pixels 313 and 314. The focus detection pixel 313 includes the microlens 10 and the photoelectric conversion element 13. The photoelectric conversion element 13 is formed on the semiconductor circuit substrate 29, the microlens 10 is disposed in front of the photoelectric conversion element 13, and the shape of the photoelectric conversion element 13 is projected forward by the microlens 10.

一方、焦点検出用画素314は、マイクロレンズ10と光電変換素子14を備えている。光電変換素子14は半導体回路基板29上に形成されており、光電変換素子14の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換素子14の形状が前方に投影される。焦点検出用画素313,314の光電変換素子13,14はともに長方形であり、マイクロレンズ10の中心(光軸)に対して対象に配置されている。なお、焦点検出用画素313,314にはカラーフィルターが設置されない。   On the other hand, the focus detection pixel 314 includes the microlens 10 and the photoelectric conversion element 14. The photoelectric conversion element 14 is formed on the semiconductor circuit substrate 29, the microlens 10 is disposed in front of the photoelectric conversion element 14, and the shape of the photoelectric conversion element 14 is projected forward by the microlens 10. The photoelectric conversion elements 13 and 14 of the focus detection pixels 313 and 314 are both rectangular and are arranged with respect to the center (optical axis) of the microlens 10. Note that no color filter is installed in the focus detection pixels 313 and 314.

次に、第2撮像素子221について説明する。図4(a)は第2撮像素子221の正面図であり、図中の“A”が被写界の天の側に、“B”が被写界の地の側にそれぞれ対応する。また、図4(b)は、図4(a)に示す第2撮像素子221の“P2”部の拡大図であり、撮像用画素の配列を示す。図4(c)は、図4(a)に示す第2撮像素子221の“Q2”部の拡大図であり、撮像用画素と焦点検出用画素の配列を示す。なお、図4(c)はQ2部の焦点検出用画素配列221dを示すが、他の焦点検出用画素配列221a〜221c、221e〜221iについても同様である。   Next, the second image sensor 221 will be described. FIG. 4A is a front view of the second image sensor 221. “A” in the drawing corresponds to the celestial side of the object scene, and “B” corresponds to the ground side of the object field. FIG. 4B is an enlarged view of the “P2” portion of the second image sensor 221 shown in FIG. 4A, and shows an array of imaging pixels. FIG. 4C is an enlarged view of the “Q2” portion of the second image sensor 221 shown in FIG. 4A, and shows an array of imaging pixels and focus detection pixels. FIG. 4C shows the focus detection pixel array 221d of the Q2 part, but the same applies to the other focus detection pixel arrays 221a to 221c and 221e to 221i.

第2撮像素子221は、交換レンズ202(図1参照)の図2に示す撮影画面100に対応する撮像面全体に、図4(b)に示すように撮像用画素310が二次元状に配列されるとともに、撮影画面100内の9カ所の焦点検出エリア100a〜100iに対応する位置に、図4(c)に示すように焦点検出用画素配列221a〜221iが被写界の垂直方向に沿って配置される。   In the second imaging element 221, the imaging pixels 310 are two-dimensionally arranged on the entire imaging surface corresponding to the imaging screen 100 shown in FIG. 2 of the interchangeable lens 202 (see FIG. 1) as shown in FIG. 4B. At the same time, as shown in FIG. 4C, focus detection pixel arrays 221a to 221i are arranged along the vertical direction of the object scene at positions corresponding to nine focus detection areas 100a to 100i in the photographing screen 100. Arranged.

第1撮像素子220の被写界の水平方向に沿って配置された焦点検出用画素配列220a〜220i(図3参照)と、第2撮像素子221の被写界の垂直方向に沿って配置された焦点検出用画素配列221a〜220i(図4参照)とによって、図2に示す被写界の垂直方向と水平方向に十字型に交差する焦点検出エリア100a〜100iが構成される。   The focus detection pixel arrays 220a to 220i (see FIG. 3) arranged along the horizontal direction of the object scene of the first image sensor 220, and the pixels of the second image sensor 221 arranged along the vertical direction of the object field. The focus detection pixel arrays 221a to 220i (see FIG. 4) constitute focus detection areas 100a to 100i that intersect in a cross shape in the vertical and horizontal directions of the object scene shown in FIG.

第2撮像素子221の撮像用画素310は、図5および図6に示す上述した第1撮像素子220の撮像用画素310と同様な構成を備えているが、マイクロレンズ10と光電変換素子11の間に設置されるカラーフィルター(不図示)の色が異なる。第2撮像素子221では、図4(b)に示すように、青B成分を透過するカラーフィルターを備えた撮像用画素(青B画素)310と、赤R成分を透過するカラーフィルターを備えた撮像用画素(赤R画素)310とが市松模様に配置される。   The imaging pixel 310 of the second imaging element 221 has the same configuration as the imaging pixel 310 of the first imaging element 220 shown in FIGS. 5 and 6, but the microlens 10 and the photoelectric conversion element 11 The color filters (not shown) installed between them are different. As shown in FIG. 4B, the second image sensor 221 includes an imaging pixel (blue B pixel) 310 including a color filter that transmits a blue B component, and a color filter that transmits a red R component. The imaging pixels (red R pixels) 310 are arranged in a checkered pattern.

図11は青B成分を透過するカラーフィルターの透過率特性を示し、図12は赤R成分を透過するカラーフィルターの透過率特性を示す。上述したように、第2撮像素子221は波長選択性ハーフミラー223を反射した緑G成分以外の光を受光する。第2撮像素子221の青画素310は波長選択性ハーフミラー223により反射された光束の内の青B成分の光を受光し、赤画素310は赤R成分の光を受光する。   FIG. 11 shows the transmittance characteristics of the color filter that transmits the blue B component, and FIG. 12 shows the transmittance characteristics of the color filter that transmits the red R component. As described above, the second image sensor 221 receives light other than the green G component reflected by the wavelength selective half mirror 223. The blue pixel 310 of the second image sensor 221 receives blue B component light in the light beam reflected by the wavelength selective half mirror 223, and the red pixel 310 receives red R component light.

一方、第2撮像素子221の焦点検出用画素配列221a〜221iには、図4(c)に示すように上述した2種類の焦点検出用画素313,314が直線上に交互に配置されている。この第2撮像素子221の焦点検出用画素配列221a〜221iは、焦点検出用画素313,314の配列方向が異なる以外は第1撮像素子221の焦点検出用画素配列220a〜220iと同様である。   On the other hand, in the focus detection pixel arrays 221a to 221i of the second image sensor 221, the two types of focus detection pixels 313 and 314 described above are alternately arranged on a straight line as shown in FIG. . The focus detection pixel arrays 221a to 221i of the second image sensor 221 are the same as the focus detection pixel arrays 220a to 220i of the first image sensor 221 except that the array directions of the focus detection pixels 313 and 314 are different.

図13は、波長選択性ハーフミラー223の光入射側に配置された赤外線カットフィルター224の透過率特性を示す。   FIG. 13 shows the transmittance characteristics of the infrared cut filter 224 disposed on the light incident side of the wavelength selective half mirror 223.

このように、一実施の形態の撮像装置では、波長選択性ハーフミラー223により緑G成分の光を透過するとともに緑G成分以外の光を反射し、透過光を第1撮像素子220で受光するとともに、反射光の内の青B成分と赤R成分の光を第2撮像素子221で受光するようにしたので、RGB画素がベイヤー配列された1枚の撮像素子で被写体からの光を受光するのに比べ、2倍の光量を受光することができる。   As described above, in the imaging apparatus according to the embodiment, the wavelength-selective half mirror 223 transmits the green G component light and reflects the light other than the green G component, and the first imaging element 220 receives the transmitted light. At the same time, the blue B component and the red R component of the reflected light are received by the second image sensor 221, so light from the subject is received by one image sensor in which RGB pixels are arranged in a Bayer array. As compared with the above, twice the amount of light can be received.

次に、焦点検出用画素位置における画像出力を周囲の撮像用画素の画素出力に基づいて補間により求める一実施の形態の補間方法、すなわち欠陥補正方法を説明する。撮像用画素に代えて焦点検出用画素を配置すると、その焦点検出用画素位置では撮像結果の画像出力が得られないので欠陥画素となる。そこで、焦点検出用画素位置における画像出力を、周囲の撮像用画素の出力に基づいて補間により求める、つまり欠陥補正を行う。ところが、撮影画面内に多くの焦点検出エリアが配置されると、補間処理を行う画素数が多くなり、欠陥補正に関わる画像処理時間が長くなる。   Next, an interpolation method according to an embodiment, that is, a defect correction method, for obtaining an image output at a focus detection pixel position by interpolation based on pixel outputs of surrounding imaging pixels will be described. If a focus detection pixel is arranged in place of the image pickup pixel, an image output of the image pickup result cannot be obtained at the focus detection pixel position, and the pixel becomes a defective pixel. Therefore, the image output at the focus detection pixel position is obtained by interpolation based on the output of the surrounding imaging pixels, that is, defect correction is performed. However, when many focus detection areas are arranged in the photographing screen, the number of pixels to be subjected to interpolation processing increases, and the image processing time for defect correction becomes longer.

そこで、この一実施の形態では、緑G成分の光を受光する第1撮像素子220と、青B成分と赤R成分の光を受光する第2撮像素子221の2枚の撮像素子により被写体光を受光する構成とし、高速な補間処理を達成するためにそれぞれの撮像素子220、221ごとに独立に補間処理を行う。つまり、第1撮像素子220では第2撮像素子221とは無関係に欠陥補正を完成させるとともに、第2撮像素子221では第1撮像素子220とは無関係に欠陥補正を完成させる。この一実施の形態の撮像装置において、第1撮像素子220と第2撮像素子221のそれぞれは、1枚の撮像素子で受光するのに比べ、焦点検出用画素の数を少なくすることができる。しかも、並列して欠陥補正が行われるので、高速となる。   Therefore, in this embodiment, subject light is obtained by two image sensors, a first image sensor 220 that receives green G component light, and a second image sensor 221 that receives blue B component and red R component light. In order to achieve high-speed interpolation processing, interpolation processing is performed independently for each of the image sensors 220 and 221. That is, the first image sensor 220 completes the defect correction regardless of the second image sensor 221, and the second image sensor 221 completes the defect correction regardless of the first image sensor 220. In the image pickup apparatus according to the embodiment, each of the first image pickup element 220 and the second image pickup element 221 can reduce the number of focus detection pixels as compared with light reception by one image pickup element. In addition, since the defect correction is performed in parallel, the speed is increased.

まず、第1撮像素子220の欠陥補正について説明する。図14は、第1撮像素子220の欠陥補正を説明するための第1撮像素子220の部分拡大図である。例えば、図中の2段目の行の中央の焦点検出用画素位置における画像出力、つまりこの位置に本来の撮像用画素310を配置した場合に得られる画素出力(G2)は、この位置の上下に隣接する撮像用画素310の画素出力G1とG3の平均として求められる。
(G2)=(G1+G3)/2 ・・・(1)
この方法により、第1撮像素子220上に配列されるすべての焦点検出用画素位置の画像出力を、第1撮像素子220上の撮像用画素310の出力に基づいて求めることができる。
First, the defect correction of the first image sensor 220 will be described. FIG. 14 is a partial enlarged view of the first image sensor 220 for explaining defect correction of the first image sensor 220. For example, the image output at the focus detection pixel position in the center of the second row in the figure, that is, the pixel output (G2) obtained when the original imaging pixel 310 is arranged at this position, is above and below this position. Is obtained as an average of the pixel outputs G1 and G3 of the imaging pixel 310 adjacent to the pixel.
(G2) = (G1 + G3) / 2 (1)
With this method, the image outputs of all focus detection pixel positions arranged on the first image sensor 220 can be obtained based on the outputs of the image pixels 310 on the first image sensor 220.

次に、第2撮像素子221の欠陥補正について説明する。図15は、第2撮像素子221の欠陥補正を説明するための第2撮像素子221の部分拡大図である。例えば、図中の中央の列の上から4番目の焦点検出用画素位置における画像出力、つまりこの位置に撮像用青B画素310を配置した場合に得られる画素出力(B5)は、この位置の左右に隣接する撮像用青G画素310の画素出力B2とB8の平均として求められる。
(B5)=(B2+B8)/2 ・・・(2)
また、上記位置に撮像用赤R画素310を配置した場合に得られる画素出力(R5)は、この位置に最も近い斜め隣の4個のR画素R1、R3、R7、R9の平均として求められる。
(R5)=(R1+R3+R7+R9)/4 ・・・(3)
この方法により、第2撮像素子221上に配列されるすべての焦点検出用画素位置の画像出力を、第2撮像素子221上の撮像用画素310の出力に基づいて求めることができる。
Next, defect correction of the second image sensor 221 will be described. FIG. 15 is a partially enlarged view of the second image sensor 221 for explaining defect correction of the second image sensor 221. For example, the image output at the fourth focus detection pixel position from the top of the center column in the figure, that is, the pixel output (B5) obtained when the imaging blue B pixel 310 is arranged at this position, It is obtained as the average of the pixel outputs B2 and B8 of the imaging blue G pixels 310 adjacent to the left and right.
(B5) = (B2 + B8) / 2 (2)
Further, the pixel output (R5) obtained when the imaging red R pixel 310 is arranged at the above position is obtained as an average of the four diagonally adjacent R pixels R1, R3, R7, and R9 closest to this position. .
(R5) = (R1 + R3 + R7 + R9) / 4 (3)
With this method, the image outputs of all focus detection pixel positions arranged on the second image sensor 221 can be obtained based on the outputs of the image pixels 310 on the second image sensor 221.

ここで、第1撮像素子220および第2撮像素子221上に配列された焦点検出用画素配列220a〜220i、221a〜221iによる焦点検出方法を説明する。図16は、マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す。なお、焦点検出用画素の部分は拡大して示す。図において、90は、交換レンズ202(図1参照)の予定結像面に配置されたマイクロレンズから前方dの距離に設定された射出瞳である。この距離dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部との間の距離などに応じて決まる距離であって、この明細書では測距瞳距離と呼ぶ。91は交換レンズの光軸、10a〜10dはマイクロレンズ、13a、13b、14a、14bは光電変換素子、313a、313b、314a、314bは焦点検出用画素、73,74、83,84は焦点検出用光束である。   Here, a focus detection method using the focus detection pixel arrays 220a to 220i and 221a to 221i arranged on the first image sensor 220 and the second image sensor 221 will be described. FIG. 16 shows a configuration of a focus detection optical system of a pupil division type phase difference detection method using microlenses. The focus detection pixel portion is shown enlarged. In the figure, reference numeral 90 denotes an exit pupil set at a distance d forward from the microlens arranged on the planned imaging plane of the interchangeable lens 202 (see FIG. 1). This distance d is a distance determined according to the curvature and refractive index of the microlens, the distance between the microlens and the photoelectric conversion unit, and is referred to as a distance measuring pupil distance in this specification. 91 is an optical axis of the interchangeable lens, 10a to 10d are microlenses, 13a, 13b, 14a and 14b are photoelectric conversion elements, 313a, 313b, 314a and 314b are focus detection pixels, and 73, 74, 83 and 84 are focus detections. Luminous flux.

また、93は、マイクロレンズ10a、10cにより射出瞳90上に投影された光電変換素子13a、13bの領域であり、この明細書では測距瞳と呼ぶ。図16では、説明を解りやすくするために楕円形の領域で示しているが、実際には光電変換素子の形状が拡大投影された形状になる。同様に、94は、マイクロレンズ10b、10dにより射出瞳90上に投影された光電変換素子14a、14bの領域であり、この明細書では測距瞳と呼ぶ。図16では、説明を解りやすくするために楕円形の領域で示しているが、実際には光電変換素子の形状が拡大投影された形状になる。   Reference numeral 93 denotes a region of the photoelectric conversion elements 13a and 13b projected onto the exit pupil 90 by the microlenses 10a and 10c, and is referred to as a distance measuring pupil in this specification. In FIG. 16, for the sake of easy understanding, an elliptical region is illustrated. However, the shape of the photoelectric conversion element is actually an enlarged projection. Similarly, 94 is an area of the photoelectric conversion elements 14a and 14b projected onto the exit pupil 90 by the microlenses 10b and 10d, and is referred to as a distance measuring pupil in this specification. In FIG. 16, for the sake of easy understanding, an elliptical region is illustrated. However, the shape of the photoelectric conversion element is actually an enlarged projection.

図16では撮影光軸に隣接する4つの焦点検出用画素313a、313b、314a、314bを模式的に例示しているが、すべての焦点検出エリアのすべての焦点検出用画素においても、光電変換素子はそれぞれ対応した測距瞳93、94から各マイクロレンズに到来する光束を受光するように構成されている。焦点検出用画素の配列方向は一対の測距瞳の並び方向、すなわち一対の光電変換素子の並び方向と一致させる。   FIG. 16 schematically illustrates four focus detection pixels 313a, 313b, 314a, and 314b adjacent to the photographing optical axis, but photoelectric conversion elements are also used in all focus detection pixels in all focus detection areas. Are configured to receive light beams coming from the corresponding distance measuring pupils 93 and 94 to the respective microlenses. The arrangement direction of the focus detection pixels is made to coincide with the arrangement direction of the pair of distance measuring pupils, that is, the arrangement direction of the pair of photoelectric conversion elements.

マイクロレンズ10a〜10dは交換レンズ202(図1参照)の予定結像面近傍に配置されており、マイクロレンズ10a〜10dによりその背後に配置された光電変換部13a、13b、14a、14bの形状がマイクロレンズ10a〜10cから測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。すなわち、投影距離dにある射出瞳90上で各焦点検出用画素の光電変換素子の投影形状(測距瞳93,94)が一致するように、各焦点検出用画素におけるマイクロレンズと光電変換素子の相対的位置関係が定められ、それにより各焦点検出用画素における光電変換素子の投影方向が決定されている。   The microlenses 10a to 10d are disposed in the vicinity of the planned imaging plane of the interchangeable lens 202 (see FIG. 1), and the shapes of the photoelectric conversion units 13a, 13b, 14a, and 14b disposed behind the microlenses 10a to 10d. Is projected onto the exit pupil 90 separated from the microlenses 10a to 10c by the distance measurement pupil distance d, and the projection shape forms distance measurement pupils 93 and 94. That is, the microlens and the photoelectric conversion element in each focus detection pixel so that the projection shapes (ranging pupils 93 and 94) of the focus detection pixels coincide on the exit pupil 90 at the projection distance d. The relative positional relationship is determined, whereby the projection direction of the photoelectric conversion element in each focus detection pixel is determined.

光電変換素子13aは測距瞳93を通過し、マイクロレンズ10aに向う光束73によりマイクロレンズ10a上に形成される像の光強度に対応した信号を出力する。同様に、光電変換素子13bは測距瞳93を通過し、マイクロレンズ10cに向う光束83によりマイクロレンズ10c上に形成される像の光強度に対応した信号を出力する。また、光電変換素子14aは測距瞳94を通過し、マイクロレンズ10bに向う光束74によりマイクロレンズ10b上に形成される像の光強度に対応した信号を出力する。同様に、光電変換素子14bは測距瞳94を通過し、マイクロレンズ10dに向う光束84によりマイクロレンズ10d上に形成される像の光強度に対応した信号を出力する。   The photoelectric conversion element 13a passes through the distance measuring pupil 93 and outputs a signal corresponding to the light intensity of the image formed on the microlens 10a by the light beam 73 directed to the microlens 10a. Similarly, the photoelectric conversion element 13b passes through the distance measuring pupil 93 and outputs a signal corresponding to the light intensity of the image formed on the microlens 10c by the light beam 83 directed to the microlens 10c. The photoelectric conversion element 14a passes through the distance measuring pupil 94 and outputs a signal corresponding to the light intensity of the image formed on the microlens 10b by the light beam 74 directed to the microlens 10b. Similarly, the photoelectric conversion element 14b passes through the distance measuring pupil 94 and outputs a signal corresponding to the light intensity of the image formed on the microlens 10d by the light beam 84 directed to the microlens 10d.

上述した2種類の焦点検出用画素313、314を直線状に多数配置し、各画素の光電変換素子の出力を測距瞳93および測距瞳94に対応した出力グループにまとめることによって、測距瞳93と測距瞳94をそれぞれ通過する焦点検出用光束が焦点検出用画素配列上に形成する一対の像の光強度分布に関する情報が得られる。この情報に対して周知の像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に一対の測距瞳の重心間隔に応じた変換演算を行うことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。   The above-described two types of focus detection pixels 313 and 314 are arranged in a straight line, and the output of the photoelectric conversion element of each pixel is collected into a distance measurement pupil 93 and an output group corresponding to the distance measurement pupil 94, thereby ranging. Information on the light intensity distribution of the pair of images formed on the focus detection pixel array by the focus detection light fluxes passing through the pupil 93 and the distance measurement pupil 94, respectively, is obtained. By performing a known image shift detection calculation process (correlation calculation process, phase difference detection process) on this information, the image shift amount of a pair of images is detected by a so-called pupil division type phase difference detection method. Further, by performing a conversion operation according to the center-of-gravity interval of the pair of distance measuring pupils on the image shift amount, the current imaging plane with respect to the planned imaging plane (the focal point corresponding to the position of the microlens array on the planned imaging plane) The deviation (defocus amount) of the imaging plane at the detection position is calculated.

ところで、この一実施の形態では、波長選択性ハーフミラー223により緑G成分の光を透過するとともに緑G成分以外の光を反射し、透過光を第1撮像素子220で受光するとともに、反射光を第2撮像素子221で受光する構成としているので、第1撮像素子220上の焦点検出用画素配列220a〜220iによる焦点検出結果と、第2撮像素子221上の焦点検出用画素配列221a〜221iによる焦点検出結果との間には、交換レンズ202の色収差に起因した焦点検出誤差が生ずる。   In this embodiment, the wavelength-selective half mirror 223 transmits green G component light, reflects light other than the green G component, receives the transmitted light by the first image sensor 220, and reflects the reflected light. Is received by the second image sensor 221, the focus detection results by the focus detection pixel arrays 220 a to 220 i on the first image sensor 220 and the focus detection pixel arrays 221 a to 221 i on the second image sensor 221. A focus detection error caused by the chromatic aberration of the interchangeable lens 202 occurs between the focus detection results of the above.

そこで、レンズ駆動制御装置206に、緑G成分の光を受光する第1撮像素子220で求めた焦点検出結果のデフォーカス量を基準とした場合の、緑G成分以外の光を受光する第2撮像素子221で求めた焦点検出結果のデフォーカス量に加える交換レンズ202の色収差補正量を記憶しておき、ボディ駆動制御装置214における焦点検出演算の際に、第2撮像素子221で求めたデフォーカス量に色収差補正量を加算することによって、交換レンズ202の色収差による焦点検出誤差の影響を排除することができる。   Therefore, the lens drive control unit 206 receives the light other than the green G component when the defocus amount of the focus detection result obtained by the first image sensor 220 that receives the green G component light is used as a reference. The amount of chromatic aberration correction of the interchangeable lens 202 to be added to the defocus amount of the focus detection result obtained by the image sensor 221 is stored, and the defocus value obtained by the second image sensor 221 during the focus detection calculation in the body drive control device 214 is stored. By adding the chromatic aberration correction amount to the focus amount, the influence of the focus detection error due to the chromatic aberration of the interchangeable lens 202 can be eliminated.

《他の欠陥補正方法》
上述した一実施の形態の欠陥補正方法では、焦点検出用画素位置の画像信号を近接する撮像用画素の出力に基づいて推定する方法を説明したが、焦点検出用画素位置の上下方向、左右方向、右上がり斜め方向および左上がり斜め方向に隣接する撮像用画素の内、画素出力差が小さい方向、つまりコントラスト変化の少ない方向、さらに換言すれば画素出力の類似度の高い方向に隣接する画素出力に基づいて欠陥補正を行う方法を説明する。
《Other defect correction methods》
In the defect correction method of the embodiment described above, the method for estimating the image signal at the focus detection pixel position based on the output of the adjacent imaging pixels has been described. However, the vertical and horizontal directions of the focus detection pixel position are described. Among the pixels for imaging that are adjacent to the diagonally upward and diagonally rightward directions, the pixel output that is adjacent to the direction where the pixel output difference is small, that is, the direction where the contrast change is small, in other words, the direction where the similarity of the pixel output is high A method for performing defect correction based on FIG.

図17は、第1撮像素子220の他の欠陥補正方法を説明するための第1撮像素子220の部分拡大図である。例えば、図中の2段目の行の中央の焦点検出用画素位置における画像出力、つまりこの位置に撮像用画素310を配置した場合に得られる画素出力(G5)は次のようにして求める。(G5)位置の上下方向に隣接するG2とG8の画素出力差|G2−G8|、右上がり斜め方向に隣接するG3とG7の画素出力差|G3−G7|、左上がり斜め方向に隣接するG1とG9の画素出力差|G1−G9|の内、画素出力差が最小の方向、つまり画素出力の類似度が最も高い方向を選別する。例えば、右上がり斜め方向に隣接するG3とG7の画素出力差|G3−G7|が最小の場合には、画素出力(G5)を画素出力G3とG7の平均として求める。
(G5)=(G3+G7)/2 ・・・(4)
なお、第2撮像素子221についても同様である。
FIG. 17 is a partially enlarged view of the first image sensor 220 for explaining another defect correction method for the first image sensor 220. For example, the image output at the focus detection pixel position in the center of the second row in the figure, that is, the pixel output (G5) obtained when the imaging pixel 310 is arranged at this position is obtained as follows. (G5) Pixel output difference | G2-G8 | adjacent in the vertical direction of the position | G2-G8 |, pixel output difference | G3-G7 | adjacent in the diagonally upward right direction, adjacent in the diagonally upward left direction Among the pixel output differences | G1 to G9 | between G1 and G9, the direction with the smallest pixel output difference, that is, the direction with the highest similarity in pixel output is selected. For example, when the pixel output difference | G3-G7 | between G3 and G7 adjacent to each other in the diagonally upward direction is minimum, the pixel output (G5) is obtained as an average of the pixel outputs G3 and G7.
(G5) = (G3 + G7) / 2 (4)
The same applies to the second image sensor 221.

《他の欠陥補正方法》
欠陥補正の精度を上げるために他の撮像素子の出力を援用する欠陥補正方法を説明する。図18は、第1撮像素子220の他の欠陥補正方法を説明するための第1撮像素子220と第2撮像素子221の部分拡大図であり、(a)は第1撮像素子220の焦点検出用画素位置(G6)を中心とした部分を、(b)は(a)に示す第1撮像素子220の画素位置(G6)に対応する第2撮像素子221の画素B6を中心とした部分を示す。
《Other defect correction methods》
A defect correction method that uses the output of another image sensor in order to increase the accuracy of defect correction will be described. FIG. 18 is a partially enlarged view of the first image sensor 220 and the second image sensor 221 for explaining another defect correction method of the first image sensor 220. FIG. 18A shows focus detection of the first image sensor 220. (B) is a portion centered on the pixel B6 of the second image sensor 221 corresponding to the pixel position (G6) of the first image sensor 220 shown in (a). Show.

例えば、図18(a)の中央の焦点検出用画素位置(G6)における画像出力、つまりこの位置に撮像素子310を配置した場合に得られる画素出力(G6)は次のようにして求める。まず、(G6)位置を通る上下方向の画素出力の類似度K1と、(G6)位置に隣接する撮像用画素G2を通る左右方向の画素出力の類似度K2を調べる。
K1=|G2−G1|+|G2−G3| ・・・(5),
K2=|G2−G4|+|G2−G5| ・・・(6)
ここで、K1≦K2の場合には、上下方向の出力類似度が左右方向の出力類似度よりも高いので、上下方向の最近接画素G2とG3の平均値を画素出力(G6)とする。
(G6)=(G2+G3)/2 ・・・(7)
For example, the image output at the focus detection pixel position (G6) in the center of FIG. 18A, that is, the pixel output (G6) obtained when the image sensor 310 is arranged at this position is obtained as follows. First, the similarity K1 of the vertical pixel output passing through the position (G6) and the similarity K2 of the horizontal pixel output passing through the imaging pixel G2 adjacent to the position (G6) are examined.
K1 = | G2-G1 | + | G2-G3 | (5),
K2 = | G2-G4 | + | G2-G5 | (6)
Here, in the case of K1 ≦ K2, since the vertical output similarity is higher than the horizontal output similarity, the average value of the vertical closest pixels G2 and G3 is defined as a pixel output (G6).
(G6) = (G2 + G3) / 2 (7)

K1>K2の場合には、左右方向の出力類似度が上下方向の出力類似度よりも高いことになるが、焦点検出用画素位置(G6)の左右方向には撮像用画素310がないため、この場合は第1撮像素子220の焦点検出用画素位置(G6)に対応する第2撮像素子221の画素B6の周辺の画素出力に基づいて画像出力(G6)を推定する。横方向の出力類似度が高いことが解っているので、第1撮像素子220の画素G2に対応する第2撮像素子221の画素位置(B2)に注目する。実際にはこの画素位置(B2)に赤R画素が配置されているが、青B画素が配置されたと仮定して青B画素出力(B2)を推定する。
(B2)=(B7+B8)/2 ・・・(8)
In the case of K1> K2, the output similarity in the left-right direction is higher than the output similarity in the up-down direction, but there is no imaging pixel 310 in the left-right direction of the focus detection pixel position (G6). In this case, the image output (G6) is estimated based on the pixel output around the pixel B6 of the second image sensor 221 corresponding to the focus detection pixel position (G6) of the first image sensor 220. Since it is known that the output similarity in the horizontal direction is high, attention is paid to the pixel position (B2) of the second image sensor 221 corresponding to the pixel G2 of the first image sensor 220. Actually, the red R pixel is arranged at the pixel position (B2), but the blue B pixel output (B2) is estimated on the assumption that the blue B pixel is arranged.
(B2) = (B7 + B8) / 2 (8)

次に、第1撮像素子220の画素G3に対応する第2撮像素子221の画素位置(B3)に注目し、実際にはこの画素位置(B3)には赤R画素が配置されているが、青B画素が配置されたと仮定して青B画素出力(B3)を推定する。
(B3)=(B9+B10)/2 ・・・(9)
このようにして推定した画素出力(B2)、(B3)と、画素出力G2、G3を用いて第1撮像素子220の画素出力(G6)を推定する。
(G6)={G2・(B6/B2)+G3・(B6/B3)}/2 ・・・(10)
Next, paying attention to the pixel position (B3) of the second image sensor 221 corresponding to the pixel G3 of the first image sensor 220, the red R pixel is actually arranged at this pixel position (B3). The blue B pixel output (B3) is estimated on the assumption that blue B pixels are arranged.
(B3) = (B9 + B10) / 2 (9)
The pixel output (G6) of the first image sensor 220 is estimated using the pixel outputs (B2) and (B3) thus estimated and the pixel outputs G2 and G3.
(G6) = {G2 · (B6 / B2) + G3 · (B6 / B3)} / 2 (10)

なお、焦点検出用画素位置(G6)の画像出力を求めるために、上下方向と左右方向の出力類似度の内の高い方向の画素出力を用いた例を示したが、上下方向、左右方向、右上がり斜め方向および左上がり斜め方向の4方向の画素出力の類似度の内の高い方向の画素出力を用いるようにすれば、さらに正確に画素出力(G6)を推定することができる。   In addition, in order to obtain the image output of the focus detection pixel position (G6), the example in which the pixel output in the higher direction among the output similarities in the vertical direction and the horizontal direction is shown, but the vertical direction, the horizontal direction, By using the pixel output in the higher direction among the similarities of the pixel outputs in the four directions of the right-up diagonal direction and the left-up diagonal direction, the pixel output (G6) can be estimated more accurately.

ボディ駆動制御装置214は、焦点検出用画素位置の画像信号を周辺の撮像用画素の出力に基づいて補間した後、第1撮像素子220の緑G成分の画像出力と、第2撮像素子221の青B成分と赤R成分の画像出力とに基づいて被写体像を生成し、メモリカード219へ記録する。   The body drive control device 214 interpolates the image signal at the focus detection pixel position based on the output of the surrounding imaging pixels, and then outputs the green G component image output of the first imaging element 220 and the second imaging element 221. A subject image is generated based on the image output of the blue B component and the red R component, and is recorded on the memory card 219.

《焦点検出エリアの他の配置例》
上述した一実施の形態では、図2に示すように、被写界の水平方向に延びる焦点検出エリアと垂直方向に延びる焦点検出エリアとが十字型に交差した焦点検出エリアを配置した例を示したが、例えば図19に示すように、撮影画面100の中心から放射方向に延びる焦点検出エリアと、撮影画面中心からの放射方向と直交する方向に延びる焦点検出エリアとが十字型に交差した4個の焦点検出エリア100a’、100b’、100c’、100d’を配置してもよい。図において、Aが被写界の天の側に、Bが被写界の地の側にそれぞれ対応する。
<< Other arrangement examples of the focus detection area >>
In the embodiment described above, as shown in FIG. 2, an example is shown in which a focus detection area in which a focus detection area extending in the horizontal direction and a focus detection area extending in the vertical direction intersect in a cross shape is arranged. However, for example, as shown in FIG. 19, the focus detection area extending in the radial direction from the center of the imaging screen 100 and the focus detection area extending in the direction orthogonal to the radial direction from the center of the imaging screen intersect in a cross shape 4 The focus detection areas 100a ′, 100b ′, 100c ′, and 100d ′ may be arranged. In the figure, A corresponds to the celestial side of the object scene, and B corresponds to the ground side of the object field.

このような焦点検出エリア配置に対しては、波長選択性ハーフミラー223により緑G成分の光を透過するとともに緑G成分以外の光を反射し、透過光を第1撮像素子220’で受光するとともに、反射光の内の青B成分と赤R成分の光を第2撮像素子221’で受光する。図20は、第1撮像素子220’における焦点検出エリア100a’に対応する焦点検出用画素313’、314’の配列を示す。また、図21は、第2撮像素子221’における焦点検出エリア100a’に対応する焦点検出用画素313’、314’の配列を示す。第1撮像素子220’の焦点検出用画素配列と第2撮像素子221’の焦点検出用画素配列とにより、十字型の焦点検出エリア100a’が構成される。なお、他の焦点検出エリア100b’〜100d’についても同様である。   For such focus detection area arrangement, the wavelength-selective half mirror 223 transmits green G component light and reflects light other than the green G component, and the first imaging element 220 ′ receives the transmitted light. At the same time, the blue B component and the red R component of the reflected light are received by the second image sensor 221 ′. FIG. 20 shows an array of focus detection pixels 313 ′ and 314 ′ corresponding to the focus detection area 100 a ′ in the first image sensor 220 ′. FIG. 21 shows an array of focus detection pixels 313 ′ and 314 ′ corresponding to the focus detection area 100 a ′ in the second image sensor 221 ′. The focus detection pixel array of the first image sensor 220 'and the focus detection pixel array of the second image sensor 221' constitute a cross-shaped focus detection area 100a '. The same applies to the other focus detection areas 100b 'to 100d'.

このように、交換レンズ202の撮影画面100の周辺部に焦点検出エリアを配置する場合に、少なくとも撮影画面中心からの放射方向と直交する方向に焦点検出エリアを配置することによって、焦点検出用光束に交換レンズ202によるケラレが生じても、焦点検出精度が低下するのを防止できる。   As described above, when the focus detection area is arranged in the peripheral portion of the imaging screen 100 of the interchangeable lens 202, the focus detection light beam is arranged at least in the direction orthogonal to the radiation direction from the center of the imaging screen. Even if vignetting is caused by the interchangeable lens 202, it is possible to prevent the focus detection accuracy from being lowered.

なお、上述した一実施の形態では、緑G成分の光を受光する第1撮像素子と、青B成分と赤R成分の光を受光する第2撮像素子の2枚の撮像素子により被写体光を受光する構成とした例を示したが、撮像素子が受光する光の色成分については上述した一実施の形態に限定されず、第1撮像素子で所定の色成分の光を受光し、第2撮像素子で所定の色成分以外の複数の色成分の光を受光する構成としてもよい。その場合、所定の色成分は人間の視感度に最も近い緑色とすることが望ましいが、緑色以外の色としてもよい。また、第2撮像素子では所定の色成分以外の3色以上の色成分の光をカラーフィルターを用いて弁別受光するようにしてもよい。   In the above-described embodiment, the subject light is received by the two image sensors, the first image sensor that receives the green G component light and the second image sensor that receives the blue B component and red R component light. Although an example of a configuration for receiving light is shown, the color component of light received by the image sensor is not limited to the above-described embodiment, and the first image sensor receives light of a predetermined color component, and the second The image sensor may receive light of a plurality of color components other than a predetermined color component. In this case, the predetermined color component is desirably green that is closest to human visibility, but may be a color other than green. Further, the second image sensor may discriminately receive light of three or more color components other than the predetermined color component using a color filter.

また、上述した一実施の形態の撮像装置では、波長選択性ハーフミラーにより緑G成分の光を透過するとともに緑G成分以外の光を反射し、透過光を第1撮像素子で受光するとともに、反射光の内の青B成分と赤R成分の光を第2撮像素子で受光する例を示したが、波長選択性の光束分割手段はハーフミラーに限定されず、所定の色成分の光を透過するとともに所定の色成分以外の色成分の光を反射する波長選択性の光束分割手段であればどのようなものでもよい。例えば、波長選択性のペリクルミラーやビームスプリッターを用いてもよい。   In the imaging device according to the embodiment described above, the wavelength-selective half mirror transmits light of the green G component and reflects light other than the green G component, and the transmitted light is received by the first imaging device. Although the example in which the second image sensor receives light of the blue B component and the red R component of the reflected light has been shown, the wavelength selective light beam splitting means is not limited to the half mirror, and the light of a predetermined color component is received. Any wavelength splitting beam splitting means that transmits light and reflects light of a color component other than a predetermined color component may be used. For example, a wavelength-selective pellicle mirror or beam splitter may be used.

上述した一実施の形態では、波長選択性ハーフミラーにより緑G成分の光を透過するとともに緑G成分以外の光を反射し、透過光を第1撮像素子で受光するとともに、反射光の内の青B成分と赤R成分の光を第2撮像素子で受光する例を示したが、波長選択性でない、つまり分光特性を持たないハーフミラーや、ペリクルミラー、ビームスプリッターにより第1光束と第2光束とに分割し、第1光束を所定の色成分のカラーフィルターを備えた撮像用画素の第1撮像素子で受光するとともに、第2光束を所定の色成分以外の複数の色成分のカラーフィルターを備えた撮像用画素の第2撮像素子で受光する構成としてもよい。   In the above-described embodiment, the wavelength-selective half mirror transmits the green G component light, reflects the light other than the green G component, receives the transmitted light by the first image sensor, and includes the reflected light. Although an example in which the light of the blue B component and the red R component is received by the second image sensor has been shown, the first light beam and the second light beam are not reflected by the wavelength selectivity, that is, by the half mirror, pellicle mirror, or beam splitter that does not have spectral characteristics. The first luminous flux is divided into luminous fluxes, and the first luminous flux is received by a first imaging element of an imaging pixel having a color filter of a predetermined color component, and the second luminous flux is a color filter of a plurality of color components other than the predetermined color component. It is good also as a structure which receives light with the 2nd image pick-up element of the pixel for imaging provided with.

上述した一実施の形態では2種類の焦点検出用画素を交互に配列した例を示したが、2種類の焦点検出用画素の配列はこの一実施の形態に限定されず、例えば第1、第1、第2、第2、第1、第1、第2、第2、・・・のような配列であってもよい。さらには、焦点検出用画素配列を2列並べて配列することも可能である。   In the above-described embodiment, an example in which two types of focus detection pixels are alternately arranged has been described. However, the arrangement of the two types of focus detection pixels is not limited to this one embodiment. Arrangements such as 1, 2, 2, 1, 1, 1, 2, 2... Furthermore, it is also possible to arrange the focus detection pixel arrays in two rows.

上述した一実施の形態では正面形状が左半分の矩形の光電変換素子を有する第1焦点検出用画素と、正面形状が右半分の矩形の光電変換素子を有する第2焦点検出用画素とを用いた例を示したが、焦点検出用画素の光電変換素子の正面形状はこの一実施の形態の正面形状に限定されず、例えば左半円形と右半円形であってもよい。さらに、一つの焦点検出用画素の中に、正面形状が左半分(または上半分)の矩形の光電変換素子と、照明形状が左半分(または下半分)の矩形の光電変換素子とを備えた焦点検出用画素を用いてもよい。   In the above-described embodiment, the first focus detection pixel having a rectangular photoelectric conversion element whose front shape is the left half and the second focus detection pixel having a rectangular photoelectric conversion element whose front shape is the right half are used. However, the front shape of the photoelectric conversion element of the focus detection pixel is not limited to the front shape of this embodiment, and may be, for example, a left semicircle and a right semicircle. Furthermore, one focus detection pixel includes a rectangular photoelectric conversion element whose front shape is the left half (or upper half) and a rectangular photoelectric conversion element whose illumination shape is the left half (or lower half). Focus detection pixels may be used.

なお、上述した一実施の形態とそれらの変形例において、一実施の形態と変形例とのあらゆる組み合わせが可能である。   It should be noted that in the above-described one embodiment and the modifications thereof, any combination of the one embodiment and the modification is possible.

上述した実施の形態とその変形例によれば以下のような作用効果を奏することができる。まず、交換レンズ202を透過した光束を、緑色成分の第1の光束と緑色成分以外の色成分の第2の光束とに分割する波長選択性ハーフミラー223と、交換レンズ202により結像される被写体像を撮像するための撮像用画素310を二次元状に配列するとともに、その二次元配列中の一部に交換レンズ202の焦点調節状態を検出するための焦点検出用画素配列313,314を設け、第1の光束を受光する第1撮像素子220と、緑色以外の複数の色のカラーフィルターを有する撮像用画素310であって、交換レンズ202により結像される被写体像を撮像するための撮像用画素310を二次元状に配列するとともに、その二次元配列中の一部に交換レンズ202の焦点調節状態を検出するための焦点検出用画素配列313,314を設け、第2の光束を受光する第2撮像素子221とを備え、焦点検出用画素313,314が配置された画素位置における画像出力を、焦点検出用画素313,314の周辺の撮像用画素310の出力に基づいて補間し、第1撮像素子220の出力と第2撮像素子221の出力とに基づいて被写体像を生成するようにしたので、撮影画面内の多くの位置で色々な方向の焦点検出を行う場合でも、焦点検出用画素位置における補間処理が簡略化されて短い時間で被写体像を生成することができ、補間処理による画像品質の劣化を防止することができる。   According to the above-described embodiment and its modifications, the following operational effects can be achieved. First, an image is formed by the interchangeable lens 202 and a wavelength-selective half mirror 223 that divides the light beam transmitted through the interchangeable lens 202 into a first light beam of a green component and a second light beam of a color component other than the green component. The imaging pixels 310 for capturing the subject image are arranged in a two-dimensional manner, and focus detection pixel arrays 313 and 314 for detecting the focus adjustment state of the interchangeable lens 202 are partially arranged in the two-dimensional array. An imaging pixel 310 having a first imaging element 220 that receives the first luminous flux and a color filter of a plurality of colors other than green, and for imaging a subject image formed by the interchangeable lens 202 The imaging pixels 310 are arrayed two-dimensionally, and focus detection pixel arrays 313 and 314 for detecting the focus adjustment state of the interchangeable lens 202 in a part of the two-dimensional array. Provided with a second image sensor 221 that receives the second light flux, and outputs an image output at a pixel position where the focus detection pixels 313 and 314 are arranged, to the imaging pixels 310 around the focus detection pixels 313 and 314. Since the subject image is generated based on the output of the first image sensor 220 and the output of the second image sensor 221, the focus in various directions is obtained at many positions in the shooting screen. Even when detection is performed, the interpolation processing at the focus detection pixel position is simplified, and a subject image can be generated in a short time, so that deterioration in image quality due to the interpolation processing can be prevented.

また、結像光学系を透過した光束を互いに異なる第1の光束と第2の光束とに分割するハーフミラーと、所定の色のカラーフィルターを有する撮像用画素であって、結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、第1の光束を受光する第1撮像素子と、所定の色以外の複数の色のカラーフィルターを有する撮像用画素であって、結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、第2の光束を受光する第2撮像素子とを備え、焦点検出用画素が配置された画素位置における画像出力を、焦点検出用画素の周辺の撮像用画素の出力に基づいて補間し、第1撮像素子の出力と第2撮像素子の出力とに基づいて被写体像を生成するようにしたので、撮影画面内の多くの位置で色々な方向の焦点検出を行う場合でも、焦点検出用画素位置における補間処理が簡略化されて短い時間で被写体像を生成することができ、補間処理による画像品質の劣化を防止することができる。   An imaging pixel having a half mirror that divides a light beam transmitted through the imaging optical system into a first light beam and a second light beam different from each other, and a color filter of a predetermined color. A pixel array for focus detection for detecting the focus adjustment state of the imaging optical system in a part of the two-dimensional array as well as two-dimensionally arraying the imaging pixels for capturing the subject image to be formed An imaging pixel having a first imaging element that receives the first light flux and a color filter of a plurality of colors other than a predetermined color, and images a subject image formed by an imaging optical system In addition, the imaging pixels are arranged in a two-dimensional array, and a focus detection pixel array for detecting the focus adjustment state of the imaging optical system is provided in a part of the two-dimensional array to receive the second light flux A second image pickup device, and a focus detection image Is interpolated based on the output of the image pickup pixels around the focus detection pixel, and generates a subject image based on the output of the first image pickup device and the output of the second image pickup device. So, even when performing focus detection in various directions at many positions in the shooting screen, the interpolation processing at the focus detection pixel position is simplified and a subject image can be generated in a short time. Degradation of image quality due to interpolation processing can be prevented.

上述した一実施の形態とその変形例によれば、第1撮像素子上の焦点検出用画素位置における画像出力を、第1撮像素子上の撮像用画素の出力に基づいて補間により算出するとともに、第2撮像素子上の焦点検出用画素位置における画像出力を、第2撮像素子上の撮像用画素の出力に基づいて補間により算出するようにしたので、第1撮像素子では第2撮像素子とは無関係に欠陥補正を完成させるとともに、第2撮像素子では第1撮像素子とは無関係に欠陥補正を完成させ、撮像素子ごとに独立に補間処理を行って高速な補間処理を達成することができる。   According to the above-described embodiment and its modification, the image output at the focus detection pixel position on the first image sensor is calculated by interpolation based on the output of the image sensor pixel on the first image sensor, Since the image output at the focus detection pixel position on the second image sensor is calculated by interpolation based on the output of the image sensor pixel on the second image sensor, what is the second image sensor in the first image sensor? The defect correction can be completed independently of each other, and the second image sensor can complete the defect correction independently of the first image sensor, and the interpolation process can be performed independently for each image sensor to achieve a high-speed interpolation process.

上述した一実施の形態とその変形例によれば、焦点検出用画素位置を通る複数の方向の直線に沿って配列される撮像用画素の出力の類似度を検出し、出力類似度が高い方向の直線上に配列される撮像用画素の出力に基づいて焦点検出用画素位置における画像出力を補間により算出するようにしたので、焦点検出用画素位置の画像信号を正確に求めることができ、高い品質の被写体像を生成することができる。   According to the embodiment and the modification described above, the output similarity of the imaging pixels arranged along the straight lines in the plurality of directions passing through the focus detection pixel positions is detected, and the direction in which the output similarity is high Since the image output at the focus detection pixel position is calculated by interpolation based on the output of the imaging pixels arranged on the straight line, the image signal at the focus detection pixel position can be accurately obtained, which is high. A quality subject image can be generated.

上述した一実施の形態とその変形例によれば、第1および第2の撮像素子の内の一方の撮像素子上の焦点検出用画素配列の配列方向における撮像用画素の出力類似度を、他方の撮像素子上の前記配列方向に対応する方向に配列された撮像用画素の出力類似度に基づいて算出するようにしたので、焦点検出用画素配列方向の画素出力の類似度を正確に推定することができ、高い品質の被写体像を生成することができる。   According to the above-described embodiment and its modification, the output similarity of the imaging pixels in the arrangement direction of the focus detection pixel array on one of the first and second imaging elements is calculated on the other side. Since the calculation is based on the output similarity of the imaging pixels arranged in the direction corresponding to the arrangement direction on the imaging element, the similarity of the pixel outputs in the focus detection pixel arrangement direction is accurately estimated. And a high-quality subject image can be generated.

上述した一実施の形態とその変形例によれば、第1撮像素子上の焦点検出用画素の出力に基づいて結像光学系の焦点調節状態を検出するとともに、第2撮像素子上の焦点検出用画素の出力に基づいて結像光学系の焦点調節状態を検出し、結像光学系の色収差量に基づいて焦点検出結果を補正するようにしたので、撮像素子で受光する色の違いによる焦点検出結果の誤差を少なくすることができる。   According to the above-described embodiment and its modification, the focus adjustment state of the imaging optical system is detected based on the output of the focus detection pixel on the first image sensor, and the focus detection on the second image sensor. Since the focus adjustment state of the imaging optical system is detected based on the output of the imaging pixel and the focus detection result is corrected based on the amount of chromatic aberration of the imaging optical system, the focus due to the difference in color received by the image sensor The error in the detection result can be reduced.

一実施の形態の構成を示す図The figure which shows the structure of one embodiment 図1に示す交換レンズの撮影画面に設定された焦点検出エリアの配置を示す図The figure which shows arrangement | positioning of the focus detection area set to the imaging | photography screen of the interchangeable lens shown in FIG. 第1撮像素子の正面図および部分拡大図Front view and partial enlarged view of the first image sensor 第2撮像素子の正面図および部分拡大図Front view and partial enlarged view of second image sensor 撮像用画素の正面図Front view of imaging pixels 撮像用画素の断面図Cross-sectional view of imaging pixels 焦点検出用画素の正面図Front view of focus detection pixels 焦点検出用画素の断面図Cross section of focus detection pixel 波長選択性ハーフミラーの透過率特性を示す図Diagram showing transmittance characteristics of wavelength selective half mirror 波長選択性ハーフミラーの反射率特性を示す図Diagram showing reflectance characteristics of wavelength selective half mirror 撮像用青B画素に設置されるカラーフィルターの透過率特性を示す図The figure which shows the transmittance | permeability characteristic of the color filter installed in the blue B pixel for imaging 撮像用赤R画素に設置されるカラーフィルターの透過率特性を示す図The figure which shows the transmittance | permeability characteristic of the color filter installed in the red R pixel for imaging 赤外線カットフィルターの透過率特性を示す図Diagram showing transmittance characteristics of infrared cut filter 第1撮像素子の欠陥補正を説明するための第1撮像素子の部分拡大図The elements on larger scale of the 1st image sensor for demonstrating defect correction of the 1st image sensor 第2撮像素子の欠陥補正を説明するための第2撮像素子の部分拡大図Partial enlarged view of the second image sensor for explaining defect correction of the second image sensor マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す図The figure which shows the structure of the focus detection optical system of the pupil division type phase difference detection method using a micro lens 第1撮像素子の他の欠陥補正方法を説明するための第1撮像素子の部分拡大図The elements on larger scale of the 1st image sensor for demonstrating other defect correction methods of the 1st image sensor 第1撮像素子の他の欠陥方法を説明するための第1撮像素子と第2撮像素子221の部分拡大図The elements on larger scale of the 1st image sensor and the 2nd image sensor 221 for explaining other defective methods of the 1st image sensor 焦点検出エリアの他の配置例を示す図The figure which shows the other example of arrangement | positioning of a focus detection area 図19に示す焦点検出エリアに対応する第1撮像素子上の焦点検出用画素配列を示す図The figure which shows the pixel array for focus detection on the 1st image pick-up element corresponding to the focus detection area shown in FIG. 図19に示す焦点検出エリアに対応する第1撮像素子上の焦点検出用画素配列を示す図The figure which shows the pixel array for focus detection on the 1st image pick-up element corresponding to the focus detection area shown in FIG.

符号の説明Explanation of symbols

10;マイクロレンズ、11,12,13;光電変換素子、201;撮像装置、220;第1撮像素子、221;第2撮像素子、220a〜220i、221a〜221i;焦点検出用画素配列、214;ボディ駆動制御装置、223;波長選択性ハーフミラー、310;撮像用画素、313,314;焦点検出用画素 10; microlens, 11, 12, 13; photoelectric conversion element, 201; imaging device, 220; first imaging element, 221; second imaging element, 220a to 220i, 221a to 221i; focus detection pixel array, 214; Body drive control device, 223; wavelength selective half mirror, 310; imaging pixel, 313, 314; focus detection pixel

Claims (11)

結像光学系を透過した光束を、所定の色成分の第1の光束と前記所定の色成分以外の色成分の第2の光束とに分割する光束分割手段と、
前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に所定方向に沿って前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第1の光束を受光する第1の撮像素子と、
前記所定の色以外の複数の色のカラーフィルターを有する撮像用画素であって、前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に前記所定方向と直交する方向に沿って前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第2の光束を受光する第2の撮像素子と、
前記焦点検出用画素が配置された画素位置における画像出力を、前記焦点検出用画素の周辺の前記撮像用画素の出力に基づいて補間し、前記第1の撮像素子の出力と前記第2の撮像素子の出力とに基づいて被写体像を生成する像生成手段とを備えることを特徴とする撮像装置。
A light beam splitting unit that splits a light beam transmitted through the imaging optical system into a first light beam having a predetermined color component and a second light beam having a color component other than the predetermined color component;
The imaging pixels for imaging the subject image formed by the imaging optical system are arranged two-dimensionally, and a focal point of the imaging optical system is arranged along a predetermined direction in a part of the two-dimensional arrangement. A first image sensor for providing a focus detection pixel array for detecting an adjustment state and receiving the first light beam;
An imaging pixel having a color filter of a plurality of colors other than the predetermined color, the imaging pixels for imaging a subject image formed by the imaging optical system are two-dimensionally arranged, A focus detection pixel array for detecting a focus adjustment state of the imaging optical system is provided in a part of the two-dimensional array along a direction orthogonal to the predetermined direction, and receives a second light flux. Two image sensors;
The image output at the pixel position where the focus detection pixel is arranged is interpolated based on the output of the imaging pixel around the focus detection pixel, and the output of the first imaging device and the second imaging An imaging apparatus comprising: an image generation unit configured to generate a subject image based on an output of the element.
結像光学系を透過した光束を、所定の色成分の第1の光束と前記所定の色成分以外の色成分の第2の光束とに分割する光束分割手段と、
前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第1の光束を受光する第1の撮像素子と、
前記所定の色以外の複数の色のカラーフィルターを有する撮像用画素であって、前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第2の光束を受光する第2の撮像素子と、
前記焦点検出用画素が配置された画素位置における画像出力を、前記焦点検出用画素の周辺の前記撮像用画素の出力に基づいて補間し、前記第1の撮像素子の出力と前記第2の撮像素子の出力とに基づいて被写体像を生成する像生成手段とを備えるとともに、
前記第1の撮像素子における前記焦点検出画素配列が受光する前記被写体像の領域と、前記第2の撮像素子における前記焦点検出画素配列が受光する前記被写体像の領域との配列方向が異なることを特徴とする撮像装置。
A light beam splitting unit that splits a light beam transmitted through the imaging optical system into a first light beam having a predetermined color component and a second light beam having a color component other than the predetermined color component;
The imaging pixels for imaging the subject image formed by the imaging optical system are arranged two-dimensionally, and the focus adjustment state of the imaging optical system is detected in a part of the two-dimensional arrangement A first image sensor for providing a focus detection pixel array for receiving the first light flux;
An imaging pixel having a color filter of a plurality of colors other than the predetermined color, the imaging pixels for imaging a subject image formed by the imaging optical system are two-dimensionally arranged, A focus detection pixel array for detecting a focus adjustment state of the imaging optical system is provided in a part of the two-dimensional array, and a second image sensor that receives the second light flux;
The image output at the pixel position where the focus detection pixel is arranged is interpolated based on the output of the imaging pixel around the focus detection pixel, and the output of the first imaging device and the second imaging Rutotomoni a image generating means for generating an object image on the basis of the output of the device,
The array direction of the subject image area received by the focus detection pixel array in the first image sensor is different from the array direction of the subject image area received by the focus detection pixel array in the second image sensor. An imaging device that is characterized.
請求項1または2に記載の撮像装置において、
前記第1の撮像素子における前記焦点検出画素配列が受光する前記被写体像の領域と、前記第2の撮像素子における前記焦点検出画素配列が受光する前記被写体像の領域とが交差することを特徴とする撮像装置。
The imaging device according to claim 1 or 2 ,
A region of the subject image received by the focus detection pixel array in the first image sensor intersects with a region of the subject image received by the focus detection pixel array in the second image sensor. An imaging device.
結像光学系を透過した光束を互いに異なる第1の光束と第2の光束とに分割する光束分割手段と、
所定の色のカラーフィルターを有する撮像用画素であって、前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に所定方向に沿って前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第1の光束を受光する第1の撮像素子と、
前記所定の色以外の複数の色のカラーフィルターを有する撮像用画素であって、前記結像光学系により結像される被写体像を撮像するための撮像用画素を二次元状に配列するとともに、その二次元配列中の一部に前記所定方向と直交する方向に沿って前記結像光学系の焦点調節状態を検出するための焦点検出用画素配列を設け、前記第2の光束を受光する第2の撮像素子と、
前記焦点検出用画素が配置された画素位置における画像出力を、前記焦点検出用画素の周辺の前記撮像用画素の出力に基づいて補間し、前記第1の撮像素子の出力と前記第2の撮像素子の出力とに基づいて被写体像を生成する像生成手段とを備えることを特徴とする撮像装置。
A light beam splitting means for splitting a light beam transmitted through the imaging optical system into a first light beam and a second light beam different from each other;
An imaging pixel having a color filter of a predetermined color, wherein the imaging pixels for imaging the subject image formed by the imaging optical system are two-dimensionally arranged, A first imaging element for receiving a first light flux, wherein a focus detection pixel array for detecting a focus adjustment state of the imaging optical system is provided in a part along a predetermined direction ;
An imaging pixel having a color filter of a plurality of colors other than the predetermined color, the imaging pixels for imaging a subject image formed by the imaging optical system are two-dimensionally arranged, A focus detection pixel array for detecting a focus adjustment state of the imaging optical system is provided in a part of the two-dimensional array along a direction orthogonal to the predetermined direction, and receives a second light flux. Two image sensors;
The image output at the pixel position where the focus detection pixel is arranged is interpolated based on the output of the imaging pixel around the focus detection pixel, and the output of the first imaging device and the second imaging An imaging apparatus comprising: an image generation unit configured to generate a subject image based on an output of the element.
請求項1〜4のいずれか一項に記載の撮像装置において、
前記像生成手段は、前記第1の撮像素子上の前記焦点検出用画素位置における画像出力を、前記第1の撮像素子上の前記撮像用画素の出力に基づいて補間により算出することを特徴とする撮像装置。
In the imaging device according to any one of claims 1 to 4 ,
The image generation means calculates an image output at the focus detection pixel position on the first image pickup device by interpolation based on an output of the image pickup pixel on the first image pickup device. An imaging device.
請求項1〜4のいずれか一項に記載の撮像装置において、
前記像生成手段は、前記第2の撮像素子上の前記焦点検出用画素位置における画像出力を、前記第2の撮像素子上の前記撮像用画素の出力に基づいて補間により算出することを特徴とする撮像装置。
In the imaging device according to any one of claims 1 to 4 ,
The image generation means calculates an image output at the focus detection pixel position on the second imaging element by interpolation based on an output of the imaging pixel on the second imaging element. An imaging device.
請求項1〜6のいずれか一項に記載の撮像装置において、
前記像生成手段は、前記焦点検出用画素位置を通る複数の方向の直線に沿って配列された隣接する撮像用画素の出力の類似度を検出し、出力類似度が高い方向の直線上に配列される前記撮像用画素の出力に基づいて前記焦点検出用画素位置における画像出力を補間により算出することを特徴とする撮像装置。
In the imaging device according to any one of claims 1 to 6 ,
The image generating means detects the similarity of outputs of adjacent imaging pixels arranged along a plurality of directional lines passing through the focus detection pixel position, and is arranged on a straight line having a high output similarity. An image output apparatus that calculates an image output at the focus detection pixel position by interpolation based on the output of the image pickup pixel.
請求項7に記載の撮像装置において、
前記像生成手段は、前記第1および第2の撮像素子の内の一方の前記撮像素子上の前記焦点検出用画素配列の配列方向における撮像用画素の出力類似度を、他方の前記撮像素子上の前記配列方向に対応する方向に配列された撮像用画素の出力類似度に基づいて算出することを特徴とする撮像装置。
The imaging apparatus according to claim 7 ,
The image generation means calculates the output similarity of the imaging pixels in the arrangement direction of the focus detection pixel array on one of the first and second imaging elements on the other imaging element. An image pickup apparatus that calculates based on output similarity of image pickup pixels arranged in a direction corresponding to the arrangement direction.
請求項1〜8のいずれか一項に記載の撮像装置において、
前記第1の撮像素子上の前記焦点検出用画素の出力に基づいて前記結像光学系の焦点調節状態を検出するとともに、前記第2の撮像素子上の前記焦点検出用画素の出力に基づいて前記結像光学系の焦点調節状態を検出する焦点検出手段と、
前記結像光学系の色収差量に基づいて前記焦点検出手段による検出結果を補正する色収差補正手段とを備えることを特徴とする撮像装置。
In the imaging device according to any one of claims 1 to 8 ,
The focus adjustment state of the imaging optical system is detected based on the output of the focus detection pixel on the first image sensor, and based on the output of the focus detection pixel on the second image sensor. Focus detection means for detecting a focus adjustment state of the imaging optical system;
An imaging apparatus comprising: a chromatic aberration correction unit that corrects a detection result of the focus detection unit based on a chromatic aberration amount of the imaging optical system.
請求項1〜9のいずれか一項に記載の撮像装置において、
前記焦点検出用画素配列を、前記撮影光学系の撮影画面中央からの放射方向に直交する方向に沿って配置することを特徴とする撮像装置。
In the imaging device according to any one of claims 1 to 9 ,
The imaging apparatus, wherein the focus detection pixel array is arranged along a direction orthogonal to a radiation direction from a center of a photographing screen of the photographing optical system.
請求項1〜10のいずれか一項に記載の撮像装置において、
前記撮像用画素は、マイクロレンズと、前記結像光学系からの光を前記マイクロレンズを介して受光する光電変換素子とを有し、
前記焦点検出用画素は、マイクロレンズと、前記マイクロレンズの中心から偏心して配置され、前記結像光学系からの光を前記マイクロレンズを介して受光する光電変換素子とを有することを特徴とする撮像装置。
In the imaging device according to any one of claims 1 to 10 ,
The imaging pixel includes a microlens and a photoelectric conversion element that receives light from the imaging optical system via the microlens,
The focus detection pixel includes a microlens and a photoelectric conversion element that is arranged eccentrically from the center of the microlens and receives light from the imaging optical system via the microlens. Imaging device.
JP2008184167A 2008-07-15 2008-07-15 Imaging device Expired - Fee Related JP5251323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184167A JP5251323B2 (en) 2008-07-15 2008-07-15 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184167A JP5251323B2 (en) 2008-07-15 2008-07-15 Imaging device

Publications (2)

Publication Number Publication Date
JP2010026011A JP2010026011A (en) 2010-02-04
JP5251323B2 true JP5251323B2 (en) 2013-07-31

Family

ID=41731941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184167A Expired - Fee Related JP5251323B2 (en) 2008-07-15 2008-07-15 Imaging device

Country Status (1)

Country Link
JP (1) JP5251323B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045801B2 (en) * 2009-09-09 2012-10-10 株式会社ニコン Focus detection device, photographing lens unit, imaging device, and camera system
JP5434761B2 (en) * 2010-04-08 2014-03-05 株式会社ニコン Imaging device and imaging apparatus
JP5589799B2 (en) * 2010-11-26 2014-09-17 株式会社ニコン Imaging device
JP5850627B2 (en) * 2011-03-30 2016-02-03 キヤノン株式会社 Imaging device
JP5998583B2 (en) * 2012-03-30 2016-09-28 株式会社ニコン Imaging device
JP5697801B2 (en) * 2012-06-19 2015-04-08 富士フイルム株式会社 Imaging apparatus and automatic focusing method
JP5701942B2 (en) * 2013-07-10 2015-04-15 オリンパス株式会社 Imaging apparatus, camera system, and image processing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3118849B2 (en) * 1991-03-06 2000-12-18 株式会社ニコン Focus detection device
JPH06237464A (en) * 1992-12-04 1994-08-23 Hitachi Ltd High definition image pickup device and recorder and reproduction device for high definition picture information
JP2004318425A (en) * 2003-04-15 2004-11-11 Konica Minolta Photo Imaging Inc Image processing method, image processor, and program
JP4867552B2 (en) * 2006-09-28 2012-02-01 株式会社ニコン Imaging device
JP2008147751A (en) * 2006-12-06 2008-06-26 Sony Corp Imaging device

Also Published As

Publication number Publication date
JP2010026011A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4807131B2 (en) Imaging device and imaging apparatus
JP5176959B2 (en) Imaging device and imaging apparatus
JP4961993B2 (en) Imaging device, focus detection device, and imaging device
JP5901246B2 (en) Imaging device
JP5012495B2 (en) IMAGING ELEMENT, FOCUS DETECTION DEVICE, FOCUS ADJUSTMENT DEVICE, AND IMAGING DEVICE
JP5169499B2 (en) Imaging device and imaging apparatus
JP4952060B2 (en) Imaging device
JP5947602B2 (en) Imaging device
JP5619294B2 (en) Imaging apparatus and focusing parameter value calculation method
JP5045007B2 (en) Imaging device
JP4826507B2 (en) Focus detection apparatus and imaging apparatus
JP5251323B2 (en) Imaging device
JP5629832B2 (en) Imaging device and method for calculating sensitivity ratio of phase difference pixel
JP2008040087A (en) Imaging device, imaging apparatus and focus detecting device
JP4983271B2 (en) Imaging device
JP4858179B2 (en) Focus detection apparatus and imaging apparatus
JP5348258B2 (en) Imaging device
JP5381646B2 (en) Imaging device
JP2018174542A (en) Image pickup device and image pickup apparatus
JP5338112B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5589799B2 (en) Imaging device
JP2010091848A (en) Focus detecting apparatus and imaging apparatus
JP5691440B2 (en) Imaging device
JP2010139624A (en) Imaging element and imaging apparatus
JP5332384B2 (en) Correlation calculation device, focus detection device, and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees