JP5245858B2 - Metal outer case and non-aqueous secondary battery for non-aqueous secondary battery with little capacity drop due to charge / discharge cycle - Google Patents

Metal outer case and non-aqueous secondary battery for non-aqueous secondary battery with little capacity drop due to charge / discharge cycle Download PDF

Info

Publication number
JP5245858B2
JP5245858B2 JP2009011144A JP2009011144A JP5245858B2 JP 5245858 B2 JP5245858 B2 JP 5245858B2 JP 2009011144 A JP2009011144 A JP 2009011144A JP 2009011144 A JP2009011144 A JP 2009011144A JP 5245858 B2 JP5245858 B2 JP 5245858B2
Authority
JP
Japan
Prior art keywords
layer
plating
alloy
outer case
metal outer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009011144A
Other languages
Japanese (ja)
Other versions
JP2010170795A (en
Inventor
眞人 仲澤
武寛 高橋
輝昭 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009011144A priority Critical patent/JP5245858B2/en
Publication of JP2010170795A publication Critical patent/JP2010170795A/en
Application granted granted Critical
Publication of JP5245858B2 publication Critical patent/JP5245858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明の金属外装ケースは、NiもしくはNi合金により少なくとも片面を被覆された鋼板を用い、被覆面を内面として成形されたリチウムイオン電池等の非水系二次電池用金属外装ケースであって、該ケースが負極接続されているものに関する。本発明の非水系二次電池は、前記の金属外装ケースを用いたリチウムイオン電池等の非水系二次電池であって、繰り返し充放電した際にケース内面に生成するLi化合物成物の生成量が抑制されており、この結果、充放電サイクル後の電池の容量低下が少ない点に特徴を有する。   The metal outer case of the present invention is a metal outer case for a non-aqueous secondary battery such as a lithium ion battery formed by using a steel plate coated at least on one side with Ni or Ni alloy and having the coated surface as an inner surface, It relates to the case where the case is negatively connected. The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery such as a lithium ion battery using the above metal outer case, and the amount of Li compound components produced on the inner surface of the case when repeatedly charged and discharged As a result, the battery is characterized in that there is little decrease in the capacity of the battery after the charge / discharge cycle.

近年、民生用モバイル機器の小型化、高機能化に伴い、その電源として小型・軽量かつ高エネルギー密度で、長期間充放電が可能な二次電池が求められてきた。この結果、従来のニッケル−カドミウム電池やニッケル−水素電池に変わって、より高いエネルギー密度、出力密度を有するリチウムイオン電池などの非水電解質二次電池が広く普及するようになった。また、最近ではリチウムイオン電池は車載用二次電池としてもすでに実用段階に入り、ハイブリッド自動車や電気自動車のモーター用電源として、普及しようとしている。   In recent years, with the miniaturization and high functionality of consumer mobile devices, there has been a demand for a secondary battery that can be charged and discharged for a long time with a small size, light weight and high energy density as its power source. As a result, in place of conventional nickel-cadmium batteries and nickel-hydrogen batteries, non-aqueous electrolyte secondary batteries such as lithium ion batteries having higher energy density and output density have come into widespread use. Recently, lithium ion batteries have already entered the practical stage as in-vehicle secondary batteries and are becoming popular as power sources for motors in hybrid and electric vehicles.

車載用途では民生用に比較して、さらなる高エネルギー密度、高出力密度が求められるのみならず、長いサイクル寿命とカンレンダー寿命、高い安全性と低コストなど、エネルギー密度や出力密度とは時として相反する要求もある。このうち寿命・耐久性については10年〜15年が求められ、これをハイブリッド自動車やプラグインハイブリッド車において満足するには、SOC(State of Charge:残容量)50%ないしはそれ以下の状態で、数千回にもおよぶ充放電サイクルを経た後に、如何に電池の容量低下を抑えるかが課題となってくる。   Compared to consumer use, automotive applications require not only higher energy density and higher output density, but also long cycle life and calendar life, high safety and low cost, etc. There are conflicting requirements. Of these, 10 to 15 years are required for life and durability, and in order to satisfy this in hybrid vehicles and plug-in hybrid vehicles, SOC (State of Charge) is 50% or less, After thousands of charge / discharge cycles, the issue is how to suppress battery capacity reduction.

この課題を解決するには、負極活物質、正極活物質、電解質の充放電による分解・劣化を極力抑制し、内部抵抗を増加させないことが重要になってくる。そのための手段として例えば特許文献1には、正極活物質であるリチウム複合酸化物を、複数の結合基を有するカップリング剤で処理して不活性化させる技術が開示されている。特許文献2には、正極結合剤層を二層とし、集電体に近い下層への導電助剤添加率を高くすることで入出力特性を向上させ、容量低下を抑制する技術が開示されている。   In order to solve this problem, it is important to suppress decomposition / deterioration due to charge / discharge of the negative electrode active material, the positive electrode active material, and the electrolyte as much as possible and not increase the internal resistance. For example, Patent Document 1 discloses a technique for inactivating a lithium composite oxide, which is a positive electrode active material, by treating it with a coupling agent having a plurality of bonding groups. Patent Document 2 discloses a technique in which the positive electrode binder layer is made into two layers, the input / output characteristics are improved by increasing the conductive additive addition rate to the lower layer close to the current collector, and the capacity reduction is suppressed. Yes.

特許文献3には、不飽和スルトン化合物を含有する非水電解液を用いることによって、負極に良質なSEI層(電極−電解質界面層)を形成させて、電池の容量低下およびガス発生を抑制して寿命を改善する技術が開示されている。また特許文献4には、極板に用いられる集電体からのアルミニウムの溶出による電極活物質の劣化を抑制するために、集電体表面をフッ化アルミニウムで被覆する技術が開示されている。非特許文献1には、LiMnO3などの正極活物質に対して、充電の際に段階的に上限電圧を増加させる電気化学的前処理を行うことにより、高容量を維持しつつ耐久性を向上させる技術が開示されている。 In Patent Document 3, a non-aqueous electrolytic solution containing an unsaturated sultone compound is used to form a high-quality SEI layer (electrode-electrolyte interface layer) on the negative electrode, thereby suppressing battery capacity reduction and gas generation. A technique for improving the service life is disclosed. Patent Document 4 discloses a technique for covering the surface of the current collector with aluminum fluoride in order to suppress deterioration of the electrode active material due to elution of aluminum from the current collector used for the electrode plate. Non-Patent Document 1 discloses that a positive electrode active material such as LiMnO 3 is subjected to electrochemical pretreatment that gradually increases the upper limit voltage during charging, thereby improving durability while maintaining high capacity. Techniques for making them disclosed are disclosed.

一方、電池特性を向上させるために金属外装ケースもしくは金属ケース素材そのものに工夫を凝らした電池に関する技術が開示されている。例えば特許文献5には、電池の内部抵抗を減少させるため、缶内面となる側に硬質なニッケル−コバルト合金めっきを被覆し、その上に銀めっきなどを被覆する方法が提案されている。特許文献6には、正極缶内面となる面にNi−Co合金めっきを施し、プレス成形の際にめっきに細かい割れを生じさせることにより正極物質との接触を改善し、接触抵抗を低減する技術が開示されている。   On the other hand, a technique relating to a battery in which a metal outer case or a metal case material itself has been devised to improve battery characteristics is disclosed. For example, Patent Document 5 proposes a method in which a hard nickel-cobalt alloy plating is coated on the inner surface of the can and a silver plating or the like is coated thereon in order to reduce the internal resistance of the battery. Patent Document 6 discloses a technique for improving contact with a positive electrode material and reducing contact resistance by applying Ni—Co alloy plating to the inner surface of the positive electrode can and causing fine cracks in the plating during press molding. Is disclosed.

特許文献7には、アルカリマンガン電池正極用のめっき鋼板として缶内面側にFe−Ni拡散めっき層を有し、最表層のFe露出率が10%以上であるNiめっき鋼板が開示されている。めっき表層と正極物質との密着性改善により内部抵抗が低減されている。特許文献8には、電池缶内面にNi−Fe合金層を有し、その表面に厚さ10〜50nmの鉄を含む酸化物層を有する電池缶が開示されている。酸化物層があるために内面の状態が変化しにくく、電極と安定かつ良好な接触状態が確保されるため、急速充放電特性に優れるとされる。   Patent Document 7 discloses a Ni-plated steel sheet having a Fe—Ni diffusion plating layer on the inner surface side of the can as a plated steel sheet for an alkaline manganese battery positive electrode, and an Fe exposure rate of 10% or more of the outermost layer. The internal resistance is reduced by improving the adhesion between the plating surface layer and the positive electrode material. Patent Document 8 discloses a battery can having a Ni—Fe alloy layer on the inner surface of the battery can and an oxide layer containing iron having a thickness of 10 to 50 nm on the surface thereof. Since the state of the inner surface hardly changes because of the oxide layer and a stable and good contact state with the electrode is ensured, it is said that the rapid charge / discharge characteristics are excellent.

特開2007−242303号公報JP 2007-242303 A 特開2008−59876号公報JP 2008-59876 A 特開2002−329528号公報JP 2002-329528 A 特開2006−344494号公報JP 2006-344494 A 特開平09−306439号公報JP 09-306439 A 特開平10−172521号公報JP-A-10-172521 特開2002−208382号公報JP 2002-208382 A 特開2007−5092号公報JP 2007-5092 A

A.Ito, D.Li, Y.Ohsawa, Y.Sato: J.Power Sources, 183(2008) 344A. Ito, D. Li, Y. Ohsawa, Y. Sato: J. Power Sources, 183 (2008) 344

車載用非水系二次電池において、エネルギー密度、出力密度、サイクル寿命、コスト、安全性などの複数の課題を同時に解決するためには、従来のような負極活物質、正極活物質、電解質、集電体の開発・改善だけではもはや限界に来ている。   In order to simultaneously solve multiple problems such as energy density, power density, cycle life, cost, safety, etc. in non-aqueous secondary batteries for vehicles, conventional negative electrode active materials, positive electrode active materials, electrolytes, The development and improvement of electrical objects alone are already reaching their limits.

金属外装ケースが正極物質と直接接触するアルカリマンガン電池などの一次電池においては、特許文献5〜8に示したように、金属ケース内面の状態を制御することで、電池特性を向上させる試みがなされてきた。これに対して非水系二次電池用の金属外装ケースに関しては、電池反応への関与がより薄いため、耐食性、漏液性、プレス成形性、溶接性、コストなどの観点から材料選択が進められているのが実情である。   In primary batteries such as alkaline manganese batteries in which the metal outer case is in direct contact with the positive electrode material, attempts are made to improve battery characteristics by controlling the state of the inner surface of the metal case as shown in Patent Documents 5-8. I came. On the other hand, regarding the metal outer case for non-aqueous secondary batteries, since the involvement in the battery reaction is thinner, material selection is promoted from the viewpoint of corrosion resistance, liquid leakage, press formability, weldability, cost, etc. It is the actual situation.

すなわち、非水系二次電池用の電池特性の向上、とりわけハイブリッド自動車やプラグインハイブリッド車に適用した際の充放電サイクルによる容量低下を効率的に抑制するために、金属外装ケースが果たす役割やケース内面のあるべき姿が明確でない。   In other words, in order to improve battery characteristics for non-aqueous secondary batteries, in particular, the role and case played by a metal outer case in order to efficiently suppress capacity reduction due to charge / discharge cycles when applied to hybrid vehicles and plug-in hybrid vehicles. The inside figure is not clear.

本発明者らは、上記の課題認識のもと、非水系二次電池のサイクル寿命と金属外装ケース内面状態との関係に着目して、鋭意、検討を重ねた。その結果、サイクル試験後にケース内面にLi化合物が生成する場合があること、その生成量がケース素材の種類により異なること、また同一素材でもプレス成形条件によっても生成量が異なることを見出した。Li化合物の生成量が少ないほうが、電池反応に寄与するLiイオンの残存量が多く、二次電池の容量低下が抑制されるため好ましい。   Based on the above-mentioned problem recognition, the present inventors have intensively and studied paying attention to the relationship between the cycle life of the non-aqueous secondary battery and the inner state of the metal outer case. As a result, the present inventors have found that Li compounds may be generated on the inner surface of the case after the cycle test, the amount of generation differs depending on the type of case material, and the amount of generation varies depending on press molding conditions even for the same material. It is preferable that the amount of Li compound produced is small because the remaining amount of Li ions contributing to the battery reaction is large and the capacity reduction of the secondary battery is suppressed.

さらに検討を重ねた結果、本来、イオン伝導は無いはずであるケース内面と負極板の間で、わずかながら電気化学反応が起こって、ケース内面にLi化合物が生成していること、その原因はケース壁部の電位に高さ方向の電位分布があるためであること、これを抑制するには電位分布をある範囲内で制御するのが有効であることを見出し、本発明を完成するに至った。   As a result of further investigation, a slight electrochemical reaction has occurred between the inner surface of the case and the negative electrode plate, which should have no ionic conduction, and a Li compound is formed on the inner surface of the case. This is because there is a potential distribution in the height direction in the potential, and it has been found effective to control the potential distribution within a certain range to suppress this, and the present invention has been completed.

本発明は以下の(1)〜(4)よりなる。
(1)リチウムを吸蔵可能な正極活物質が塗布された正極板と、リチウムを吸蔵可能な負極活物質が塗布された負極板とが、セパレータおよび非水電解液を介して形成される電極群と、前記電極群を収容する金属外装ケースとを有する非水系二次電池のための金属外装ケースにおいて、該金属外装ケースが負極板と電気的に接続されていて、
かつNiめっき層の単層、又は下層が純Niめっき層で上層が半光沢Niめっき層の複層、もしくはNi合金(Ni−Fe合金を含まない)めっき層の単層、又は下層がNi合金(Ni−Fe合金を含まない)めっき層で上層が半光沢Niめっき層の複層のめっき被覆層(以下「めっき被覆層」という。)により少なくとも片面を被覆され、前記めっき被覆層と鋼板との間にFe−Ni拡散層を有しない鋼板の被覆面側を内面として多段成形されており、
さらにケース内面の缶壁における電位V(V vs NHE)と缶壁のケース底面からの高さH(mm)との間に、H≦50(mm)において、式(I)の関係が満足されていることを特徴とする充放電サイクルによる容量低下の少ない非水系二次電池のための金属外装ケース。
V ≧ −0.26−0.0005×H (I)
(2)金属外装ケースの内面缶壁部に存在する前記めっき被覆層の厚みが0.5〜3μmであって、かつめっき被覆層と鋼板との間に、厚みが0.5μm以上1.0μm以下のFe−Ni拡散層を有し、このFe−Ni拡散層は、鋼板を700〜850℃で焼鈍することで得られたもので、めっき被覆層のうち純Niめっき層、Ni合金(Ni−Fe合金を含まない)めっき層の部分は上記焼鈍の700〜850℃で熱処理されたものであり、めっき被覆層のうち半光沢Niめっき層は上記熱処理後の純Niめっき層又はNi合金(Ni−Fe合金を含まない)めっき層にめっきされたものであることを特徴とする前項(1)記載の充放電サイクルによる容量低下の少ない非水系二次電池のための金属外装ケース。
(3)金属外装ケースの内面缶壁部に存在する前記めっき被覆層の表面に有機系潤滑皮膜が0.1g/m2以上2g/m2以下存在することを特徴とする前項(1)または(2)記載の充放電サイクルによる容量低下の少ない非水系二次電池のための金属外装ケース。
(4)リチウムを吸蔵可能な正極活物質が塗布された正極板と、リチウムを吸蔵可能な負極活物質が塗布された負極板とが、セパレータおよび非水電解液を介して形成される電極群と、前記電極群を収容する金属外装ケースとを有する非水系二次電池において、前項(1)〜(3)のいずれかに記載の金属外装ケースを用いた非水系二次電池。
The present invention comprises the following (1) to (4).
(1) Electrode group in which a positive electrode plate coated with a positive electrode active material capable of occluding lithium and a negative electrode plate coated with a negative electrode active material capable of occluding lithium are formed via a separator and a non-aqueous electrolyte. And in a metal outer case for a non-aqueous secondary battery having a metal outer case containing the electrode group, the metal outer case is electrically connected to the negative electrode plate,
And a single layer of a pure Ni plating layer, or a lower layer is a pure Ni plating layer and an upper layer is a semi-bright Ni plating layer, or a single layer of a Ni alloy (not including a Ni-Fe alloy) plating layer, or a lower layer is Ni An alloy (not including Ni—Fe alloy) plating layer is coated at least on one side with a multi-layer plating coating layer (hereinafter referred to as “plating coating layer”), the upper layer being a semi-bright Ni plating layer, and the plating coating layer and the steel plate Are formed in multiple stages with the coated surface side of the steel plate not having an Fe-Ni diffusion layer between the inner surface,
Furthermore, the relationship of the formula (I) is satisfied when H ≦ 50 (mm) between the potential V (V vs NHE) on the can wall on the inner surface of the case and the height H (mm) from the case bottom surface of the can wall. A metal outer case for a non-aqueous secondary battery with little capacity reduction due to a charge / discharge cycle.
V ≧ −0.26-0.0005 × H (I)
(2) The thickness of the plating coating layer existing on the inner can wall of the metal outer case is 0.5 to 3 μm , and the thickness is 0.5 μm or more and 1.0 μm between the plating coating layer and the steel plate. It has a following Fe-Ni diffusion layer, the Fe-Ni diffusion layer, which was obtained by annealing the steel sheet at 700-850 ° C., pure Ni plating layer of the plated coating layer, Ni alloy (Ni The portion of the plating layer (not including the Fe alloy) is heat-treated at 700 to 850 ° C. in the above annealing , and the semi-bright Ni plating layer of the plating coating layer is a pure Ni plating layer or Ni alloy ( The metal outer case for a non-aqueous secondary battery having a small capacity drop due to the charge / discharge cycle according to the item (1), which is plated on a plating layer (not including a Ni-Fe alloy) .
(3) In the preceding item (1), wherein an organic lubricating film is present in an amount of 0.1 g / m 2 or more and 2 g / m 2 or less on the surface of the plating coating layer existing on the inner can wall of the metal outer case. (2) A metal outer case for a non-aqueous secondary battery with little capacity reduction due to the charge / discharge cycle.
(4) An electrode group in which a positive electrode plate coated with a positive electrode active material capable of occluding lithium and a negative electrode plate coated with a negative electrode active material capable of occluding lithium are formed via a separator and a non-aqueous electrolyte. A nonaqueous secondary battery using the metal outer case according to any one of (1) to (3) above, wherein the nonaqueous secondary battery includes a metal outer case that houses the electrode group.

本発明により、リチウムイオン電池等の非水系二次電池において、繰り返し充放電によりケース内面に生成するLi化合物の生成量が抑制され、充放電サイクル後の電池の容量低下が少ない非水系二次電池を提供できる。この結果、ハイブリッド自動車やプラグインハイブリッド車に適用した場合の非水系二次電池のサイクル寿命を延長することができる。   According to the present invention, in a non-aqueous secondary battery such as a lithium ion battery, the amount of Li compound produced on the inner surface of the case by repeated charge / discharge is suppressed, and the capacity decrease of the battery after the charge / discharge cycle is small. Can provide. As a result, the cycle life of the nonaqueous secondary battery when applied to a hybrid vehicle or a plug-in hybrid vehicle can be extended.

非水系二次電池の内部構造Internal structure of non-aqueous secondary battery 缶底からの高さによる缶壁の電位分布Potential distribution on the can wall depending on the height from the bottom of the can 放電時における金属外装ケースへのLi析出Li deposition on metal outer case during discharge 多段成形された缶壁の電位分布Potential distribution of multi-stage can wall 多段成形された缶壁の電位分布Potential distribution of multi-stage can wall 絞り加工用金型の構成Drawing mold configuration

以下、本発明について、まずは技術思想から説明する。図1は非水系二次電池の内部構造を模式的に表わしたものである。1が正極板、2が負極板、3がセパレータ、4が金属外装ケースの缶壁である。金属外装ケースはセパレータ3を介して負極板2と対向しており、かつ、両者は缶底面で電気的に接続されている。したがって、本来ならば、ケース/セパレータ/負極板の間でのイオン伝導は無く、電気化学反応は進行しないはずである。ところが実際には、Li化合物がケースの缶壁に生成する。これは、缶壁の電位が缶底からの高さによって異なるためと考えられる。   Hereinafter, the present invention will be described first from the technical idea. FIG. 1 schematically shows the internal structure of a non-aqueous secondary battery. 1 is a positive electrode plate, 2 is a negative electrode plate, 3 is a separator, and 4 is a can wall of a metal exterior case. The metal outer case faces the negative electrode plate 2 with the separator 3 interposed therebetween, and both are electrically connected at the bottom of the can. Therefore, originally, there is no ion conduction between the case / separator / negative electrode plate, and the electrochemical reaction should not proceed. In reality, however, Li compounds are formed on the can walls of the case. This is considered because the electric potential of the can wall differs depending on the height from the can bottom.

図2は、缶底からの高さによる缶壁の電位分布の例を示す概念図である。例えば、缶壁の電位が図2の(a)や(b)のように分布していたとすると、缶壁は缶底からの高さHが大きいほど卑に分極している。また図3は、放電時における金属外装ケースへのLi析出状況を示す概念図である。図3に示すように、電位が卑な部位ほど、放電の際に、イオン伝導によりLiイオンが缶壁に析出してLi化合物となりやすい。ただしそれが缶底からあまり遠い位置、具体的には缶底から約50mm以上離れた位置であると、今度はケースから負極への電子伝導が起こりにくくなるため、結局、イオン伝導も制限される。図2の(a)は、缶底からの高さ50mm以内での缶壁の分極が小さかったため、Li化合物が缶壁に生成しなかった例である。逆に図2の(b)は、缶底からの高さ50mm以内で缶壁が大きく卑に分極していたため、図に「(b)の分解生成物付着範囲」と示す範囲内にLi化合物が生成した。缶壁の電位が図2の(c)のように分布していたとすると、缶壁は缶底近くでも卑に分極しており、高さHが大きいほど分極は小さくなる。この結果、図2に「(c)の分解生成物付着範囲」と示すように(a)〜(c)の中では最も広い範囲内にLi化合物が生成する。   FIG. 2 is a conceptual diagram showing an example of the potential distribution on the can wall according to the height from the bottom of the can. For example, if the potential of the can wall is distributed as shown in FIGS. 2A and 2B, the can wall is polarized more as the height H from the can bottom is larger. Moreover, FIG. 3 is a conceptual diagram which shows the Li deposition condition to the metal exterior case at the time of discharge. As shown in FIG. 3, the lower the potential, the easier it is for Li ions to precipitate on the can wall due to ionic conduction and to form a Li compound during discharge. However, if it is too far from the bottom of the can, specifically about 50 mm or more away from the bottom of the can, electron conduction from the case to the negative electrode is less likely to occur. . FIG. 2A shows an example in which the Li compound was not generated on the can wall because the can wall had a small polarization within a height of 50 mm from the can bottom. On the contrary, in FIG. 2B, since the can wall was largely and polarized within a height of 50 mm from the bottom of the can, the Li compound was within the range indicated by “the decomposition product adhesion range of (b)” in the figure. Generated. If the potential of the can wall is distributed as shown in FIG. 2C, the can wall is polarized even near the bottom of the can, and the polarization becomes smaller as the height H is larger. As a result, as shown in FIG. 2 as “(c) decomposition product adhesion range”, the Li compound is generated within the widest range among (a) to (c).

缶壁に図2(a)(b)のような電位分布が生じるのは、缶の成形加工によりNiもしくはNi合金に割れなどの損傷が生じて、下地の鋼板もしくはFe−Ni拡散層が部分的に露出するためである。式(I)を満足するためには、缶底からの高さ50mmでのFeの露出面積率については15%未満であることが必要である。好ましくは10%未満、より好ましくは5%未満である。缶底からの高さがより低い部位については、Feの露出面積率がそれぞれさらに低い必要がある。缶壁に図2(c)のような電位分布が生じるのは、鋼板をケースに成形したのちにNiめっきを施す、後Niめっき方式の場合に多く見られる。これは、缶内面ほどNiめっきが付着しにくく、Feが露出しやすいためである。   The potential distribution shown in FIGS. 2 (a) and 2 (b) occurs on the can wall because the Ni or Ni alloy is damaged by cracking due to the molding process of the can, and the underlying steel plate or Fe-Ni diffusion layer is partially Because it is exposed. In order to satisfy the formula (I), the exposed area ratio of Fe at a height of 50 mm from the bottom of the can needs to be less than 15%. Preferably it is less than 10%, more preferably less than 5%. About the site | part where the height from a can bottom is lower, the exposed area ratio of Fe needs to be still lower respectively. The potential distribution as shown in FIG. 2C is often generated in the can wall in the case of the post-Ni plating method in which Ni plating is performed after forming a steel plate into a case. This is because Ni plating is less likely to adhere to the inner surface of the can and Fe is easily exposed.

以上のように、缶壁にLi化合物が生成しないためには、缶底近くの缶壁電位が図2(c)のように卑になりすぎておらず、かつ高さ方向の電位分布が図2(a)のようになだらかであることが好適である。そのためには、アルカリマンガン電池などの一次電池に関する特許文献6や7において缶壁のFe露出率を積極的に増やしているのとは正反対に、缶底近くの缶壁におけるFe露出率を特定範囲内に制限しなければならない。しかも、電子伝導が起こりやすい缶底近くの缶壁のほうが、缶底からより遠い缶壁に比べて、電位が貴であることが必要である。   As described above, in order not to generate Li compounds on the can wall, the can wall potential near the bottom of the can is not too low as shown in FIG. 2C, and the potential distribution in the height direction is shown. 2 (a) is preferable. For that purpose, the Fe exposure rate on the can wall near the bottom of the can is in a specific range, contrary to the positive increase in the Fe exposure rate on the can wall in Patent Documents 6 and 7 relating to primary batteries such as alkaline manganese batteries. Must be restricted within. Moreover, it is necessary that the potential of the can wall near the bottom of the can where electron conduction is likely to be higher than that of the can wall farther from the bottom of the can.

次に、前項(1)にかかる本発明の構成について説明する。本発明に使用可能な非水系二次電池はいわゆるリチウムイオン電池と総称されるものである。すなわち、正極活物質、負極活物質にリチウムを吸蔵可能な化合物が用いられ、これらを芯材であるAl箔、Cu箔に塗布したのち、セパレータを挟んで捲回もしくは積層された電極群と、セパレータに保持された非水電解質と、電極群に接合された集電板とを備えている。これを金属外装ケースに収納したものである。金属外装ケースの形状は円筒形、角型、角のとれた角型(楕円もしくは陸上競技場のトラック型)、コイン型、ボタン型、シート型など、現在、実用化されている形状のいずれを選んでも良い。本発明の効果がより発現されやすい形状は、これらの形状で缶壁高さが高いものである。   Next, the configuration of the present invention according to item (1) will be described. Non-aqueous secondary batteries that can be used in the present invention are collectively referred to as so-called lithium ion batteries. That is, a positive electrode active material, a compound capable of occluding lithium in the negative electrode active material is used, and after applying these to the core Al foil and Cu foil, an electrode group wound or laminated with a separator interposed therebetween, and A non-aqueous electrolyte held by the separator; and a current collector plate joined to the electrode group. This is housed in a metal exterior case. The shape of the metal outer case can be any of the shapes that are currently in practical use, such as cylindrical, square, angular (ellipse or track stadium), coin, button, seat, etc. You may choose. The shapes in which the effects of the present invention are more easily manifested are those shapes having a high can wall height.

本発明における正極活物質は特に限定されず、コバルト酸無水物(LiCoO2)、ニッケル酸リチウム(LiNiO2)などの層状化合物、マンガン酸リチウム(LiMn24)などのスピネル化合物、オリビン構造を有するりん酸鉄リチウム(LiFePO4)、あるいはこれらの金属元素の一部を他の遷移金属元素で置き換えたものや典型金属元素を添加したもの、例えば、LiNiO2,LiNi0.8Co0.22,LiMn0.5Ni0.52,LiNiCoAlO2およびこれらの元素構成で量比の異なるものなどがあげられる。 The positive electrode active material in the present invention is not particularly limited, and has a layered compound such as cobalt acid anhydride (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), a spinel compound such as lithium manganate (LiMn 2 O 4 ), and an olivine structure. Lithium iron phosphate (LiFePO 4 ), or a part of these metal elements replaced with other transition metal elements or a typical metal element added, for example, LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn Examples include 0.5 Ni 0.5 O 2 , LiNiCoAlO 2, and those having different elemental ratios.

本発明における負極活物質も特に限定されないが、充放電に伴うリチウムイオンの挿入−脱離が可逆的に行われる点では炭素系材料が好ましい。例えば、難黒鉛化炭素や易黒鉛化炭素等の非晶質材料、黒鉛などの結晶性炭素材料が用いられる。また、錫酸化物、ケイ素酸化物、りん、ホウ素、フッ素等を用いて、炭素材料を改質したものも適用できる。また、あらかじめ電気化学的に還元することによりリチウムが挿入された材料を用いることもできる。   The negative electrode active material in the present invention is not particularly limited, but a carbon-based material is preferable in that insertion / extraction of lithium ions accompanying charge / discharge is reversibly performed. For example, amorphous materials such as non-graphitizable carbon and graphitizable carbon, and crystalline carbon materials such as graphite are used. In addition, a modified carbon material using tin oxide, silicon oxide, phosphorus, boron, fluorine, or the like can also be applied. Alternatively, a material in which lithium is inserted by electrochemical reduction in advance can be used.

本発明における電解質には非水溶媒系として通常に用いられる環状カーボネート、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなど、あるいは鎖状カーボネート、例えばジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどを用いることができる。特に、両者を混合して用いることが好適である。   For the electrolyte in the present invention, cyclic carbonates usually used as a nonaqueous solvent system, such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, etc., or chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, etc. are used. be able to. It is particularly preferable to use a mixture of both.

溶質となるリチウム塩には、LiPF6,LiBF4,LiClO4などが好適に用いられる。これらを混合しても良い。 As the solute lithium salt, LiPF 6 , LiBF 4 , LiClO 4 or the like is preferably used. These may be mixed.

本発明におけるセパレータとしては、織布、不織布、合成樹脂微多孔膜などを用いることができる。特に、ポリエチレン、ポリプロピレン製微多孔膜が好適である。   As the separator in the present invention, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, or the like can be used. In particular, polyethylene and polypropylene microporous membranes are suitable.

本発明には二次電池の外装に金属ケースを用いる。これは安全性に優れるためである。ラミネート方式の外装は簡易に包装できる利点は有するものの、組電池にしたのち、内容物保護の観点から周囲を金属で覆う必要がある。また、外装に樹脂を用いる場合、成形自由度や軽量である利点はあるものの、コストや安全性、冷却効率の点で金属ケースに劣る。   In the present invention, a metal case is used for the exterior of the secondary battery. This is because it is excellent in safety. Although the laminate-type exterior has the advantage that it can be easily packaged, it is necessary to cover the periphery with metal from the viewpoint of protecting the contents after forming an assembled battery. Moreover, when resin is used for the exterior, although there are advantages of freedom in molding and light weight, it is inferior to a metal case in terms of cost, safety, and cooling efficiency.

本発明では、金属外装ケースを負極接続する。これは、組電池の構成を簡素化するためである。負極接続とすれば、正極端子のみを設ければよいが、中立接続にすると、正極端子、負極端子を設ける必要があり、電池を直列接続するために組電池が嵩高くなる。   In the present invention, the metal outer case is connected to the negative electrode. This is to simplify the configuration of the assembled battery. If it is a negative connection, it is sufficient to provide only the positive terminal, but if it is a neutral connection, it is necessary to provide a positive terminal and a negative terminal, and the battery pack becomes bulky because the batteries are connected in series.

本発明では、外装ケース用金属として、NiもしくはNi合金により少なくとも片面を被覆された鋼板を用いる。これは、他の金属材料、例えばステンレスやアルミニウムに比べてコストパフォーマンスが優れるためである。すなわち、Feは安価であり、これに少量のNiをめっきして被覆することにより、二次電池の有機溶媒中でのFe溶出を防ぐことができ、耐食性が担保される。Ni−Fe合金を用いるとFeの溶出を抑制できない。合金元素としてはFeよりも溶出しにくい金属もしくは非金属を用いる必要がある。また、前述したように、鋼板をケースに成形したのちにNiめっきを施す後Niめっき方式では、本発明の電位分布が得られにくい。   In the present invention, a steel plate having at least one surface coated with Ni or a Ni alloy is used as the outer case metal. This is because cost performance is superior to other metal materials such as stainless steel and aluminum. That is, Fe is inexpensive, and by coating a small amount of Ni on the Fe, it is possible to prevent Fe elution in the organic solvent of the secondary battery, thereby ensuring corrosion resistance. When Ni—Fe alloy is used, elution of Fe cannot be suppressed. As an alloy element, it is necessary to use a metal or a nonmetal that is less leached than Fe. Further, as described above, the potential distribution of the present invention is difficult to obtain in the Ni plating method after the Ni plating is performed after the steel sheet is formed into a case.

次に、本発明の要点であるケース内面の電位について述べる。まず、前項(1)においてケース内面の缶壁における電位Vとは、缶壁をφ10mmで打ち抜き、これを5%NaCl水溶液中で測定した浸漬電位を、標準水素電極(NHE)を基準としてV単位で表わした値である。これは実際にケースが非水電解液中で負極接続されたときの電位、すなわち充放電により変化する缶壁の実電位と一定の相関を持つ値である。また、缶壁のケース底面からの高さHとは、打ち抜いたφ10mmの中心のケース底面からの高さをmm単位で表わしたものである。   Next, the potential on the inner surface of the case, which is the main point of the present invention, will be described. First, the potential V at the can wall on the inner surface of the case in the preceding item (1) is a unit of V with respect to the standard hydrogen electrode (NHE), the immersion potential measured by punching the can wall at φ10 mm and measuring it in a 5% NaCl aqueous solution. It is a value expressed by. This is a value having a certain correlation with the potential when the case is actually connected to the negative electrode in the non-aqueous electrolyte, that is, the actual potential of the can wall that changes due to charging and discharging. Further, the height H of the can wall from the bottom of the case represents the height from the bottom of the case at the center of the punched φ10 mm in mm.

缶底からの高さHが50mm以内において、缶壁における電位Vが、式(I)の右辺の値よりも卑であると、その部位にはLi化合物が生成しやすい。式(I)の不等号は、Vが右辺と同じか、より貴であることを示す。Li化合物の生成を抑制するには、電子伝導が起こりやすい缶底近くの缶壁のほうが、缶底からより遠い缶壁に比べて、電位が貴であることが必要である。ただし缶底からの高さHが50mm超の範囲では、電位分布がLi化合物生成に与える影響が小さいため考慮しなくて良い。なお式(I)は、材質や板厚、めっきの種類と厚み、潤滑皮膜の有無や種類と厚みの異なるさまざまな素材を用いて、色々な成形条件で電池缶を成形した上で、缶壁の電位分布と缶壁へのLi化合物の生成量を調べた結果、実験的に得られた式である。   When the height H from the bottom of the can is within 50 mm and the potential V at the can wall is lower than the value on the right side of the formula (I), a Li compound is likely to be generated at that site. The inequality sign in formula (I) indicates that V is the same as the right side or more noble. In order to suppress the formation of the Li compound, it is necessary that the potential of the can wall near the bottom of the can where electron conduction is likely to be higher than that of the can wall farther from the can bottom. However, in the range where the height H from the bottom of the can exceeds 50 mm, the potential distribution has little influence on the formation of the Li compound, so that it is not necessary to consider. It should be noted that the formula (I) is obtained by molding a battery can under various molding conditions using various materials having different materials and plate thicknesses, types and thicknesses of plating, and presence / absence of lubricant coatings, and types and thicknesses. As a result of investigating the potential distribution of Li and the amount of Li compound produced on the can wall, the equation was obtained experimentally.

次に、前項(2)にかかる本発明の構成について説明する。金属外装ケースの内面缶壁部に存在するNiもしくはNi合金の厚みは0.5〜3μmであることが好適である。0.5μm未満では、缶壁の電位が卑になりすぎて、Li化合物の生成を抑制できない。3μmを越えると効果が飽和して経済的でない。   Next, the configuration of the present invention according to item (2) will be described. The thickness of the Ni or Ni alloy present in the inner can wall of the metal outer case is preferably 0.5 to 3 μm. If it is less than 0.5 μm, the potential of the can wall becomes too low, and the production of the Li compound cannot be suppressed. If it exceeds 3 μm, the effect is saturated and it is not economical.

なお、ここで言うNiもしくはNi合金の厚みとは、成形後に缶壁部に残存したものの平均厚みであって、成形により欠落した部分は含まない。例えば、缶壁の底から高さ10mm、30mm,50mmの3点におけるNiもしくはNi合金の厚みの平均値を採用することができる。   In addition, the thickness of Ni or Ni alloy mentioned here is an average thickness of what remains in the can wall portion after molding, and does not include a missing portion due to molding. For example, an average value of the thickness of Ni or Ni alloy at three points of 10 mm, 30 mm, and 50 mm in height from the bottom of the can wall can be employed.

Ni合金としては、NiとP,B,Cr,Co,Mo等との合金が適用可能である。合金比率は10%以下とすることで、Niの優れた耐食性や均一被覆性を維持しつつ、合金元素の特性、たとえば耐摩耗性等を発現できるため好適である。NiまたはNi合金中には光沢添加剤などを含有させても良い。   As the Ni alloy, an alloy of Ni and P, B, Cr, Co, Mo or the like is applicable. An alloy ratio of 10% or less is preferable because characteristics of the alloy element such as wear resistance can be exhibited while maintaining excellent corrosion resistance and uniform coverage of Ni. The Ni or Ni alloy may contain a gloss additive or the like.

また、NiもしくはNi合金と鋼板との間にFe−Ni拡散層を有することが好適である。外装ケースの成形加工時にNiもしくはNi合金層と鋼板との密着性を確保し、厚さ0.5μm以上を残存させるのに有効である。   Further, it is preferable to have a Fe—Ni diffusion layer between Ni or Ni alloy and the steel plate. It is effective to ensure the adhesion between the Ni or Ni alloy layer and the steel sheet during the forming of the outer case, and to leave a thickness of 0.5 μm or more.

次に、前項(3)にかかる本発明の構成について説明する。NiもしくはNi合金の表面に有機系潤滑皮膜が0.1g/m2以上2g/m2以下存在することが好適である。ここで、存在するとは、あらかじめNiもしくはNi合金の表面に所定厚みの有機系潤滑皮膜を形成させたのちに缶成形を行い、缶成形時の摺動や曲げ・曲げ戻し、絞りの結果、当初の面積あたり付着量より減少した状態を指す。有機系潤滑皮膜は、缶成形時の摺動によるめっき損傷を軽減し、Fe露出率を抑制するために有効である。残存厚さが0.1g/m2未満ではめっき損傷の軽減効果が十分でない。2g/m2超では効果が飽和する。なお、有機系潤滑皮膜は、NiもしくはNi合金の表面に連続的に残存している必要はなく、部分的にNiもしくはNi合金、Fe−Ni拡散層、地鉄が露出していても良い。有機系潤滑皮膜の残存量は、缶壁の質量と、有機皮膜除去後の缶壁の質量との差より質量法で求めることができる。 Next, the configuration of the present invention according to item (3) will be described. It is preferable that an organic lubricant film is present on the surface of Ni or Ni alloy in an amount of 0.1 g / m 2 to 2 g / m 2 . Here, “exist” means that after forming an organic lubricating film of a predetermined thickness on the surface of Ni or Ni alloy in advance, can molding is performed, and as a result of sliding, bending / bending back and drawing, This refers to the state of being less than the amount deposited per area. The organic lubricant film is effective in reducing plating damage due to sliding during can molding and suppressing the Fe exposure rate. If the remaining thickness is less than 0.1 g / m 2 , the effect of reducing plating damage is not sufficient. If it exceeds 2 g / m 2 , the effect is saturated. Note that the organic lubricant film does not need to remain continuously on the surface of Ni or Ni alloy, and Ni or Ni alloy, Fe—Ni diffusion layer, and ground iron may be partially exposed. The residual amount of the organic lubricating film can be determined by a mass method from the difference between the mass of the can wall and the mass of the can wall after the organic film is removed.

本発明に適用可能な有機系潤滑皮膜は、公知のものから選択できる。例えば、アクリル系樹脂、ウレタン系樹脂、アイオノマー系樹脂などにポリエチレン系、フッ素系などのワックスを質量%で1〜10%添加したものが典型例である。   The organic lubricating film applicable to the present invention can be selected from known ones. For example, a typical example is one obtained by adding 1 to 10% by mass of a wax such as polyethylene or fluorine to an acrylic resin, urethane resin, or ionomer resin.

本発明のケース用素材の製造方法について述べる。鋼板の成分としては、低炭アルミキルド鋼、極低炭素鋼(sulc)などが好適に用いられる。板厚は通常0.1〜1mmである。   The manufacturing method of the case material of the present invention will be described. As a component of the steel plate, low-carbon aluminum killed steel, ultra-low carbon steel (sulc), or the like is preferably used. The plate thickness is usually 0.1 to 1 mm.

NiもしくはNi合金は電気めっき法により鋼板表面にめっきするのが良い。めっき浴組成としてはWatt浴を基本に添加剤や合金金属塩を加えたものが良い。缶成形工程にもよるが、一般にNiもしくはNi合金は缶内面側に1〜6μm程度付着させると、缶成形後0.5〜3μm残存させることができる。缶外面にもNiもしくはNi合金を1〜6μm程度付着させても良い。めっきは単層めっきでも良いが、複層でも良い。NiもしくはNi合金と鋼板との界面のFe−Ni拡散層は、めっき後の鋼板を700〜850℃程度で焼鈍することで得られる。ここにおいて、被覆表面はNiもしくはNi合金(Ni−Fe合金を含まない)であることが必要なので、焼鈍条件の選択において、Fe−Ni拡散層が表面に露出しない条件を選択する。 Ni or Ni alloy is preferably plated on the surface of the steel sheet by electroplating. The plating bath composition is preferably a Watt bath with additives and alloy metal salts added. Although it depends on the can molding process, generally, when Ni or Ni alloy is deposited on the inner surface of the can at about 1 to 6 μm, 0.5 to 3 μm can be left after the can molding. About 1 to 6 μm of Ni or Ni alloy may be adhered to the outer surface of the can. Plating may be a single layer plating, but may be multi-layer. The Fe—Ni diffusion layer at the interface between Ni or Ni alloy and the steel sheet can be obtained by annealing the steel sheet after plating at about 700 to 850 ° C. Here, since the coated surface needs to be Ni or Ni alloy (not including Ni—Fe alloy), in the selection of the annealing condition, the condition that the Fe—Ni diffusion layer is not exposed on the surface is selected.

有機系潤滑皮膜はめっき・焼鈍後にロールコーティング方式などで塗布し、乾燥する。缶内面側のみならず、缶外面側に塗布しても良い。缶成形工程にもよるが、一般に有機系潤滑皮膜を缶成形後0.1g/m2以上2g/m2以下残存させるためには、めっき・焼鈍後に1〜4μm塗布すればよい。ただし、缶底にはほぼ塗布ままの厚みで残存するため、缶底に集電体などの溶接を行う場合には、薄膜にする、およびまたは導電フィラーを添加する、あるいはアルカリ脱脂等の洗浄工程で除去可能なものとすればよい。 The organic lubricating film is applied by a roll coating method after plating / annealing and dried. It may be applied not only to the inner surface of the can but also to the outer surface of the can. Although it depends on the can molding process, in general, in order to leave the organic lubricant film at 0.1 g / m 2 or more and 2 g / m 2 or less after can molding, it is sufficient to apply 1 to 4 μm after plating and annealing. However, since it remains in the bottom of the can with almost the same thickness as applied, a cleaning process such as thinning and / or adding a conductive filler, or alkaline degreasing, etc. when welding a current collector to the bottom of the can It should just be removable.

前項(4)にかかる本発明は、前項(1)〜(3)にかかる金属外装ケースを有する非水系二次電池である。すなわち、リチウムを吸蔵可能な正極活物質が塗布された正極板と、リチウムを吸蔵可能な負極活物質が塗布された負極板とが、セパレータおよび非水電解液を介して形成される電極群と、前記電極群を収容する金属外装ケースとを有する非水系二次電池において、NiもしくはNi合金により少なくとも片面を被覆された鋼板の被覆面側を内面として成形されていて、缶壁の電位分布が式(I)を満足する金属外装ケースに収納されたリチウムイオン電池である。   The present invention according to item (4) is a non-aqueous secondary battery having the metal outer case according to items (1) to (3). That is, an electrode group in which a positive electrode plate coated with a positive electrode active material capable of occluding lithium and a negative electrode plate coated with a negative electrode active material capable of occluding lithium are formed through a separator and a non-aqueous electrolyte; In the non-aqueous secondary battery having a metal outer case that accommodates the electrode group, the coated surface side of the steel plate coated with at least one surface by Ni or Ni alloy is formed as the inner surface, and the potential distribution of the can wall is It is a lithium ion battery housed in a metal outer case that satisfies the formula (I).

次に、本発明において、缶壁の電位分布を制御する方法について述べる。缶壁の電位分布は概念的には図2のように示されるが、電池缶は一般に多段成形されるため、実際の電位分布は図4に示すように階段状になる。電池缶の成形工程は、絞り加工、しごき加工、絞りしごき加工(DI加工)などからなる。電位分布は、缶底からの高さ方向に対して連続的に変化する絞りによる変化分と、工程が変化した部位で階段状に変化する曲げ・曲げ戻しやしごきによる変化分の和として表される。絞りによる変化分は、缶底付近では小さく、缶底から離れるに従って大きくなる傾向にある。缶底から離れるほど、絞りによるめっき厚みの減少率が増加してゆく。この結果、曲げ・曲げ戻しやしごきによる変化分も、缶底から離れるにしたがって大きくなる。めっきが薄いほど、損傷を受けやすいためである。   Next, a method for controlling the potential distribution of the can wall in the present invention will be described. The potential distribution of the can wall is conceptually shown as in FIG. 2, but since the battery can is generally formed in multiple stages, the actual potential distribution is stepped as shown in FIG. The battery can molding process includes drawing, ironing, drawing ironing (DI processing), and the like. The potential distribution is expressed as the sum of the change due to the diaphragm that continuously changes in the height direction from the bottom of the can and the change due to bending, unbending or ironing that changes stepwise at the site where the process has changed. The The amount of change due to the squeezing tends to be small near the bottom of the can and increases as the distance from the can bottom increases. As the distance from the bottom of the can increases, the reduction rate of the plating thickness due to the drawing increases. As a result, the amount of change due to bending / unbending and ironing increases as the distance from the bottom of the can increases. This is because the thinner the plating, the more susceptible to damage.

図4(a)は式(I)を満足しない例である。これを、式(I)を満足するように変更する方法としては3通りが考えられる。まず、図4(b)に示すように、工程数を減らして、階段状変化分の和を少なくする方法である。これは、最終の数工程において、一工程での成形高さを高くすることを意味しており、鋼板の破断が起こらない範囲で実施する必要がある。次に、図4(c)に示すように、工程数は維持したまま、階段状部分の変化を小さくする方法である。これは、鋼板表面に潤滑皮膜を適用することで、摺動によるめっき損傷を軽減した場合に相当する。もうひとつは、図4(d)に示すように、成形高さ50mmまでの絞りによる変形分を小さくする方法である。これは前段の工程での成形高さを高くすることを意味しており、図4(b)と同様、鋼板の破断が起こらない範囲で実施する必要がある。   FIG. 4A is an example not satisfying the formula (I). There are three possible methods for changing this to satisfy the formula (I). First, as shown in FIG. 4B, the number of steps is reduced to reduce the sum of steps. This means that in the final several steps, the forming height in one step is increased, and it is necessary to carry out within a range in which the steel sheet does not break. Next, as shown in FIG. 4C, the change in the stepped portion is reduced while maintaining the number of steps. This corresponds to the case where plating damage due to sliding is reduced by applying a lubricating film to the steel plate surface. The other is a method of reducing the deformation due to the drawing up to a molding height of 50 mm, as shown in FIG. This means that the forming height in the previous step is increased, and as in FIG. 4B, it is necessary to carry out in a range where the steel sheet does not break.

絞り工程におけるめっき損傷を軽減する方法を図5に具体的に例示する。図は絞り金型のうち、ポンチおよび右側半分のダイスとしわ押さえを示す。この工程で発生するめっき損傷には3つある。1つ目は、しわが発生したまま絞りが行われることによるめっき損傷で、これはしわ押さえ圧を上げることで軽減できる。2つ目はダイの肩で摺動されることによるめっき損傷で、これはRdを大きくすること、しわ押さえ圧を下げることで軽減できる。3つ目は絞りによるめっきの薄膜化に起因する損傷で、これは絞り比R1/R2を小さくすることで軽減できる。   A method for reducing plating damage in the drawing process is specifically illustrated in FIG. The figure shows the punch and the right half die and wrinkle retainer of the drawing die. There are three plating damages that occur in this process. The first is plating damage caused by drawing while wrinkles are generated, and this can be reduced by increasing the wrinkle pressure. The second is plating damage caused by sliding on the shoulder of the die, and this can be reduced by increasing Rd and decreasing the wrinkle pressure. The third is damage due to thinning of the plating by drawing, which can be reduced by reducing the drawing ratio R1 / R2.

次に、実施例を用いて本発明を非限定的に説明する。まず、ケース素材は以下のようにして製造した。
(1)供試鋼板
表1に成分を示す低炭アルミキルド鋼とNb−Ti−sulc鋼の冷延板を用いた。Fe−Ni拡散層を有しない水準については、これらを下記(3)の条件であらかじめ焼鈍したものを用いた。
(2)めっき条件
電気めっき法により、表2に示す水準のNiもしくはNi合金めっきを行った。
(3)焼鈍条件
2%H2−N2雰囲気中で、最高到達板温が、低炭アルミキルド鋼は740℃、Nb−Ti−sulc鋼は800℃となるように焼鈍した。炉内滞在時間80secとした。
(4)上層めっき条件
一部の水準については、焼鈍後、さらに表3に示す条件で半光沢Niめっきを行った。
(5)潤滑皮膜処理条件
一部の水準について、めっき、焼鈍、もしくは上層めっきの終了後に、潤滑皮膜処理を行った。潤滑皮膜の組成を表4に示す。
Next, the present invention will be described in a non-limiting manner using examples. First, the case material was manufactured as follows.
(1) Test steel sheet Cold-rolled steel sheets of low-carbon aluminum killed steel and Nb-Ti-sulc steel, whose components are shown in Table 1, were used. About the level which does not have a Fe-Ni diffused layer, what annealed these on condition of the following (3) beforehand was used.
(2) Plating conditions Ni or Ni alloy plating at the levels shown in Table 2 was performed by electroplating.
(3) Annealing conditions In a 2% H 2 -N 2 atmosphere, annealing was performed so that the maximum plate temperature was 740 ° C. for low-carbon aluminum killed steel and 800 ° C. for Nb—Ti-sulc steel. The residence time in the furnace was 80 sec.
(4) Upper layer plating conditions For some levels, after annealing, semi-gloss Ni plating was performed under the conditions shown in Table 3.
(5) Lubricant film treatment conditions Lubricant film treatment was performed on some levels after the plating, annealing, or upper layer plating. Table 4 shows the composition of the lubricating film.

Figure 0005245858
Figure 0005245858

Figure 0005245858
Figure 0005245858

Figure 0005245858
Figure 0005245858

Figure 0005245858
Figure 0005245858

前記のケース素材を用い、以下の方法で直径32mm、高さ122mmの長円筒型の電池缶に成形し、缶壁の電位分布を測定した。
(1)前工程の条件
低炭アルミキルド鋼は全7工程、Nb−Ti−sulc鋼は全5工程で成形した。最終3工程を除く前工程の絞り比は、低炭アルミキルド鋼では2.45、Nb−Ti−sulc鋼では1.98とした。
(2)最終3工程の条件
缶壁の高さ50mm以内での電位分布は、最終3工程の成形条件に依存する。表5に最終3工程の絞り比とダイR(mm)を示した。
(3)缶壁の電位分布測定
缶壁の底から高さ10mm,20mm,30mm,40mm,50mmの点を中心とするφ10mmのサンプルを打ち抜き、端面と裏面をテープシールしたのち、5%NaCl水溶液中で浸漬電位を測定し、標準水素電極(NHE)を基準としてV単位で、小数第3位まで表わした。表5の「式(I)」において、缶壁の底から高さ10mm,20mm,30mm,40mm,50mmのいずれにおいても式(I)を満足する場合は「○」とし、いずれか1箇所でも式(I)を満足しない場合は「×」とした。また、表5の「電位H=50mm」には、底からの高さ50mmのサンプルにおける電位評価結果を示す。
(4)缶壁Ni付着量、潤滑皮膜量測定
缶壁の底から高さ10mm、30mm,50mmの点を中心とするφ10mmのサンプルを打ち抜き、蛍光X線測定によりNi付着量(g/m2)を求め、比重から膜厚(μm)に換算した。また、潤滑皮膜があるものは溶剤で溶解することにより質量法で付着量(g/m2)を求めた。いずれも缶壁の底から高さ10mm、30mm,50mmの3点の平均値を採用した。評価結果を表5に示す。
Using the case material, the battery was molded into a long cylindrical battery can having a diameter of 32 mm and a height of 122 mm by the following method, and the potential distribution on the can wall was measured.
(1) Pre-process conditions Low-carbon aluminum killed steel was formed in 7 steps, and Nb-Ti-sulc steel was formed in 5 steps. The drawing ratio of the previous process excluding the final three processes was 2.45 for low-carbon aluminum killed steel and 1.98 for Nb-Ti-sulc steel.
(2) Conditions for the final three steps The potential distribution within the height of the can wall within 50 mm depends on the molding conditions for the final three steps. Table 5 shows the drawing ratio and die R (mm) in the final three steps.
(3) Measurement of potential distribution on can wall After punching out a sample of φ10mm centering on 10mm, 20mm, 30mm, 40mm and 50mm height from the bottom of the can wall, and sealing the end face and back face with tape, 5% NaCl aqueous solution The immersion potential was measured in and expressed to the third decimal place in V units with reference to a standard hydrogen electrode (NHE). In “Formula (I)” in Table 5, when the formula (I) is satisfied at any of 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm from the bottom of the can wall, “○” is given. When the formula (I) was not satisfied, “x” was given. In Table 5, “potential H = 50 mm” shows the potential evaluation results of a sample having a height of 50 mm from the bottom.
(4) Can wall Ni adhesion amount and lubrication film amount measurement From the bottom of the can wall, a sample with a diameter of 10 mm centered on a point of 10 mm, 30 mm and 50 mm is punched, and the amount of Ni adhesion (g / m 2) is measured by fluorescent X-ray measurement. ) And converted from specific gravity to film thickness (μm). Moreover, the amount of adhesion (g / m 2 ) was determined by a mass method by dissolving a solvent film with a solvent. In each case, an average value of three points of 10 mm, 30 mm, and 50 mm from the bottom of the can wall was adopted. The evaluation results are shown in Table 5.

前記の電池缶を外装ケースとするリチウムイオン電池を以下の方法で作成した。
(1)正極板
正極活物質としてコバルト酸リチウムを用いた。これにアセチレンブラックとポリフッ化ビニリデン(PVDF)を質量比で10:10:1となるよう混合したのち水性ディスパージョンとしてAl箔に塗布し、乾燥した。これを所定の厚みとなるよう圧延し、所定の大きさに切り出したものを正極板とした。
(2)負極板
負極活物質には非晶質カーボンを用いた。これを導電材であるアセチレンブラックと乾式混合し、さらにポリフッ化ビニリデンを溶解させたN−メチルー2−ピロリドン(NMP)を混合物に均一に分散させて、カーボン:アセチレンブラック:PVDF=88:5:8となるペーストを作成した。これをCu箔に塗布し、乾燥したのち、所定厚みとなるよう圧延してから、所定の大きさに切り出したものを負極板とした。
(3)セパレータおよび電解質
セパレータにはポリエチレン微多孔膜を用いた。電解質には、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネートを体積比で25:35:40の割合で混合したものに、LiPF6を1mol/L添加した溶液を用いた。
(4)電池
正極板と負極板がセパレータを挟んで捲回された電極群と、非水電解質と、電極群に接合された集電板を、前記の金属外装ケースに収納し、負極リード板によりケースを負極接続して、直径32mm、高さ122mmの長円筒型電池を作成した。初期放電容量は7Ahであった。
A lithium ion battery having the battery can as an outer case was prepared by the following method.
(1) Positive electrode plate Lithium cobaltate was used as a positive electrode active material. This was mixed with acetylene black and polyvinylidene fluoride (PVDF) at a mass ratio of 10: 10: 1, and then applied to an Al foil as an aqueous dispersion and dried. This was rolled to a predetermined thickness and cut into a predetermined size to obtain a positive electrode plate.
(2) Negative electrode plate Amorphous carbon was used for the negative electrode active material. This was dry-mixed with acetylene black as a conductive material, and N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride was dissolved was uniformly dispersed in the mixture to obtain carbon: acetylene black: PVDF = 88: 5: A paste of 8 was created. This was applied to a Cu foil, dried, rolled to a predetermined thickness, and cut into a predetermined size to obtain a negative electrode plate.
(3) Separator and electrolyte A polyethylene microporous membrane was used for the separator. As the electrolyte, a solution obtained by adding 1 mol / L of LiPF 6 to a mixture of ethylene carbonate: dimethyl carbonate: ethyl methyl carbonate in a volume ratio of 25:35:40 was used.
(4) Battery The electrode group in which the positive electrode plate and the negative electrode plate are wound with the separator interposed therebetween, the nonaqueous electrolyte, and the current collector plate joined to the electrode group are accommodated in the metal outer case, and the negative electrode lead plate The case was connected to the negative electrode to prepare a long cylindrical battery having a diameter of 32 mm and a height of 122 mm. The initial discharge capacity was 7 Ah.

前記のリチウムイオン電池の充放電サイクル試験を以下の条件で500サイクル実施した。
充電:1C、4.2V、CV−CC (25℃)
放電:5C、2.5V (25℃)
サイクル終了後の放電容量を測定し、初期放電容量との比から容量保持率を求めた。電池を分解して、缶壁に付着した生成物の面積率を測定した。生成物がLi化合物であることをEDXにより確認した。性能評価結果を表5に示す。
The charge / discharge cycle test of the lithium ion battery was performed 500 cycles under the following conditions.
Charging: 1C, 4.2V, CV-CC (25 ° C)
Discharge: 5C, 2.5V (25 ° C)
The discharge capacity after the end of the cycle was measured, and the capacity retention rate was determined from the ratio with the initial discharge capacity. The battery was disassembled and the area ratio of the product adhering to the can wall was measured. It was confirmed by EDX that the product was a Li compound. Table 5 shows the performance evaluation results.

Figure 0005245858
Figure 0005245858

本発明品はいずれも、缶壁の底から高さ10mm,20mm,30mm,40mm,50mmのいずれにおいても缶壁の電位が式(I)を満足し、サイクル試験後のLi化合物の生成量が少なく、この結果、容量保持率が高い。特に、めっき厚みを厚くすること、上層に半光沢Niめっきを行うこと、潤滑皮膜処理を行うことで、缶壁の電位がより貴にシフトし、容量保持率が向上する。   In all of the products of the present invention, the potential of the can wall satisfies the formula (I) at any height of 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm from the bottom of the can wall, and the amount of Li compound produced after the cycle test is As a result, the capacity retention is high. In particular, by increasing the plating thickness, performing semi-gloss Ni plating on the upper layer, and performing a lubricating film treatment, the potential of the can wall is shifted more preciously, and the capacity retention rate is improved.

これに対して、3の比較例は、ここに示す缶成形条件においては、めっき厚みが不足している。14の比較例は、素材仕様は2の実施例と同じであるが、鋼材成分のr値が低く、Fe−Ni拡散層や潤滑皮膜が無いなど成形に不利な素材を用いているにもかかわらず、最終3工程での絞り比が大きくダイRが小さい。缶成形は可能であったが、本発明の目的から考えると缶成形条件は不適当であり、この結果、缶壁のめっき損傷が大きく、電位が卑にシフトしている。   On the other hand, in the comparative example of 3, the plating thickness is insufficient under the can molding conditions shown here. The comparative example of 14 has the same material specification as that of the example of 2, but despite using a material which is disadvantageous for molding such as a low r value of the steel material component and no Fe-Ni diffusion layer or lubricating film. In addition, the drawing ratio is large in the last three steps, and the die R is small. Although can molding was possible, in view of the object of the present invention, the can molding conditions were inappropriate. As a result, plating damage on the can wall was large, and the potential was shifted to the base.

19,20の比較例は、冷延鋼板を缶に成形したのちに、バレルめっきにより後めっきを行ったものである。Niめっき厚みは部位によって大きく異なり、その結果、缶壁の電位が式(I)を満足せず、サイクル試験後に缶壁に多量のLi化合物が付着した。容量保持率は著しく低い。   In Comparative Examples 19 and 20, after cold-rolled steel sheets were formed into cans, post-plating was performed by barrel plating. The Ni plating thickness varied greatly depending on the site. As a result, the potential of the can wall did not satisfy the formula (I), and a large amount of Li compound adhered to the can wall after the cycle test. Capacity retention is extremely low.

本発明により、HEVやプラグインHEV用のリチウムイオン電池の容量保持率を向上させることができ、電池の寿命が伸びる。この結果、自動車の安定走行、ユーザーの経済的負担の低減につながり、ハイブリッド自動車の普及に寄与することとなり、地球環境の保全にもつながる。したがって産業上の利用価値は極めて大きい。   According to the present invention, the capacity retention of a lithium ion battery for HEV or plug-in HEV can be improved, and the life of the battery is extended. As a result, stable driving of the automobile and reduction of the economic burden on the user are contributed, and it contributes to the popularization of hybrid cars, which also leads to the preservation of the global environment. Therefore, the industrial utility value is extremely large.

1:正極板
2:負極板
3:セパレータ
4:金属外装ケースの缶壁
1: Positive electrode plate 2: Negative electrode plate 3: Separator 4: Can wall of metal outer case

Claims (4)

リチウムを吸蔵可能な正極活物質が塗布された正極板と、リチウムを吸蔵可能な負極活物質が塗布された負極板とが、セパレータおよび非水電解液を介して形成される電極群と、前記電極群を収容する金属外装ケースとを有する非水系二次電池のための金属外装ケースにおいて、該金属外装ケースが負極板と電気的に接続されていて、
かつNiめっき層の単層、又は下層が純Niめっき層で上層が半光沢Niめっき層の複層、もしくはNi合金(Ni−Fe合金を含まない)めっき層の単層、又は下層がNi合金(Ni−Fe合金を含まない)めっき層で上層が半光沢Niめっき層の複層のめっき被覆層(以下「めっき被覆層」という。)により少なくとも片面を被覆され、前記めっき被覆層と鋼板との間にFe−Ni拡散層を有しない鋼板の被覆面側を内面として多段成形されており、
さらにケース内面の缶壁における電位V(V vs NHE)と缶壁のケース底面からの高さH(mm)との間に、H≦50(mm)において、式(I)の関係が満足されていることを特徴とする充放電サイクルによる容量低下の少ない非水系二次電池のための金属外装ケース。
V ≧ −0.26−0.0005×H (I)
A positive electrode plate coated with a positive electrode active material capable of occluding lithium and a negative electrode plate coated with a negative electrode active material capable of occluding lithium; an electrode group formed through a separator and a non-aqueous electrolyte; In a metal outer case for a non-aqueous secondary battery having a metal outer case containing an electrode group, the metal outer case is electrically connected to the negative electrode plate,
And a single layer of a pure Ni plating layer, or a lower layer is a pure Ni plating layer and an upper layer is a semi-bright Ni plating layer, or a single layer of a Ni alloy (not including a Ni-Fe alloy) plating layer, or a lower layer is Ni An alloy (not including Ni—Fe alloy) plating layer is coated at least on one side with a multi-layer plating coating layer (hereinafter referred to as “plating coating layer”), the upper layer being a semi-bright Ni plating layer, and the plating coating layer and the steel plate Are formed in multiple stages with the coated surface side of the steel plate not having an Fe-Ni diffusion layer between the inner surface,
Furthermore, the relationship of the formula (I) is satisfied when H ≦ 50 (mm) between the potential V (V vs NHE) on the can wall on the inner surface of the case and the height H (mm) from the case bottom surface of the can wall. A metal outer case for a non-aqueous secondary battery with little capacity reduction due to a charge / discharge cycle.
V ≧ −0.26-0.0005 × H (I)
金属外装ケースの内面缶壁部に存在する前記めっき被覆層の厚みが0.5〜3μmであって、かつめっき被覆層と鋼板との間に、厚みが0.5μm以上1.0μm以下のFe−Ni拡散層を有し、このFe−Ni拡散層は、鋼板を700〜850℃で焼鈍することで得られたもので、めっき被覆層のうち純Niめっき層、Ni合金(Ni−Fe合金を含まない)めっき層の部分は上記焼鈍の700〜850℃で熱処理されたものであり、めっき被覆層のうち半光沢Niめっき層は上記熱処理後の純Niめっき層又はNi合金(Ni−Fe合金を含まない)めっき層にめっきされたものであることを特徴とする請求項1記載の充放電サイクルによる容量低下の少ない非水系二次電池のための金属外装ケース。 Fe plating having a thickness of 0.5 to 3 μm and a thickness of 0.5 μm or more and 1.0 μm or less between the plating coating layer and the steel plate between the plating coating layer existing on the inner can wall portion of the metal outer case. have a -Ni diffusion layer, the Fe-Ni diffusion layer, which was obtained by annealing the steel sheet at 700-850 ° C., pure Ni plating layer of the plated coating layer, Ni alloy (Ni-Fe alloy The plating layer portion is heat-treated at 700 to 850 ° C. in the above annealing, and the semi-bright Ni plating layer of the plating coating layer is a pure Ni plating layer or Ni alloy (Ni—Fe after the heat treatment). 2. A metal outer case for a non-aqueous secondary battery having a small capacity drop due to a charge / discharge cycle according to claim 1, wherein the metal layer is plated on a plating layer (not containing an alloy) . 金属外装ケースの内面缶壁部に存在する前記めっき被覆層の表面に有機系潤滑皮膜が0.1g/m2以上2g/m2以下存在することを特徴とする請求項1または2記載の充放電サイクルによる容量低下の少ない非水系二次電池のための金属外装ケース。 3. The filling according to claim 1, wherein an organic lubricant film is present in an amount of 0.1 g / m 2 or more and 2 g / m 2 or less on the surface of the plating coating layer existing on the inner can wall portion of the metal outer case. Metal outer case for non-aqueous secondary batteries with little capacity loss due to discharge cycle. リチウムを吸蔵可能な正極活物質が塗布された正極板と、リチウムを吸蔵可能な負極活物質が塗布された負極板とが、セパレータおよび非水電解液を介して形成される電極群と、前記電極群を収容する金属外装ケースとを有する非水系二次電池において、請求項1〜3のいずれかに記載の金属外装ケースを用いた非水系二次電池。   A positive electrode plate coated with a positive electrode active material capable of occluding lithium and a negative electrode plate coated with a negative electrode active material capable of occluding lithium; an electrode group formed through a separator and a non-aqueous electrolyte; The non-aqueous secondary battery which has a metal exterior case which accommodates an electrode group, The non-aqueous secondary battery using the metal exterior case in any one of Claims 1-3.
JP2009011144A 2009-01-21 2009-01-21 Metal outer case and non-aqueous secondary battery for non-aqueous secondary battery with little capacity drop due to charge / discharge cycle Active JP5245858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011144A JP5245858B2 (en) 2009-01-21 2009-01-21 Metal outer case and non-aqueous secondary battery for non-aqueous secondary battery with little capacity drop due to charge / discharge cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009011144A JP5245858B2 (en) 2009-01-21 2009-01-21 Metal outer case and non-aqueous secondary battery for non-aqueous secondary battery with little capacity drop due to charge / discharge cycle

Publications (2)

Publication Number Publication Date
JP2010170795A JP2010170795A (en) 2010-08-05
JP5245858B2 true JP5245858B2 (en) 2013-07-24

Family

ID=42702747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011144A Active JP5245858B2 (en) 2009-01-21 2009-01-21 Metal outer case and non-aqueous secondary battery for non-aqueous secondary battery with little capacity drop due to charge / discharge cycle

Country Status (1)

Country Link
JP (1) JP5245858B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117896B (en) * 2011-01-28 2012-12-05 福建南平南孚电池有限公司 Line rolling method of cylindrical battery
CN112946490B (en) * 2021-03-04 2023-05-30 芜湖天弋能源科技有限公司 FA analysis method for capacity attenuation of lithium ion battery core

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026992A (en) * 1989-08-31 2000-01-25 Katayama Tokushu Kogyo Kk Ni-PLATED STEEL SHEET
TW430698B (en) * 1996-05-09 2001-04-21 Toyo Kohan Co Ltd Surface-Treatment Steel plate for battery case, its manufacture, battery case and battery
JP4875868B2 (en) * 2005-08-29 2012-02-15 日立ビークルエナジー株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2010170795A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
CN103477490B (en) With active material with the winding-typed electrode assembly of pattern application and the secondary cell comprising it
CN102035028B (en) Nonaqueous electrolyte battery, battery pack and vehicle
RU2508579C2 (en) Active material of negative electrode based on silicone alloy for electric device
JP7216869B2 (en) SECONDARY BATTERY AND BATTERY MODULE, BATTERY PACK, DEVICE INCLUDING SAME
JP5267873B2 (en) Secondary battery and manufacturing method thereof
CN104241613B (en) Charge storage element and battery module
CN104979524A (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20140170452A1 (en) Nonaqueous electrolytic solution secondary battery, current collector and vehicle
JP2010103086A (en) Positive electrode for lithium-ion batteries
US10804568B2 (en) Lithium ion secondary battery and method of producing the same
CN112864546B (en) Non-aqueous electrolyte secondary battery
US20140302366A1 (en) Nonaqueous electrolyte secondary cell
US20230361367A1 (en) Charge and discharge method for nonaqueous electrolyte secondary battery, and charge and discharge system for nonaqueous electrolyte secondary battery
US20180123186A1 (en) Method of manufacturing lithium secondary battery and lithium secondary battery manufactured by the same
JP5620499B2 (en) Non-aqueous electrolyte battery
JP2014120404A (en) Secondary battery
JP5245858B2 (en) Metal outer case and non-aqueous secondary battery for non-aqueous secondary battery with little capacity drop due to charge / discharge cycle
JP2010238423A (en) Charging method of lithium ion battery, lithium ion battery, battery pack, battery system, charge control device, and vehicle
KR101636115B1 (en) Electrode assembly for lithium secondary battery and lithium secondary battery
TWI546999B (en) Top cap for cylindrical secondary battery and secondary battery comprising the same
JP4819148B2 (en) Material for metal outer case and metal outer case of lithium ion battery with little voltage drop due to metal elution and lithium ion battery
US20230105792A1 (en) Charging method and charging system for non-aqueous electrolyte secondary battery
US20210020925A1 (en) Nonaqueous electrolyte secondary battery
WO2014199781A1 (en) Negative-electrode active material for use in electrical device and electrical device using same
JP5320854B2 (en) Method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R151 Written notification of patent or utility model registration

Ref document number: 5245858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350