JP5245227B2 - Separation by hydrophobic foaming of hydrophobic compounds - Google Patents

Separation by hydrophobic foaming of hydrophobic compounds Download PDF

Info

Publication number
JP5245227B2
JP5245227B2 JP2006226780A JP2006226780A JP5245227B2 JP 5245227 B2 JP5245227 B2 JP 5245227B2 JP 2006226780 A JP2006226780 A JP 2006226780A JP 2006226780 A JP2006226780 A JP 2006226780A JP 5245227 B2 JP5245227 B2 JP 5245227B2
Authority
JP
Japan
Prior art keywords
paclitaxel
bubbles
aqueous medium
separation
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006226780A
Other languages
Japanese (ja)
Other versions
JP2008049243A (en
Inventor
新太郎 古崎
進二郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006226780A priority Critical patent/JP5245227B2/en
Publication of JP2008049243A publication Critical patent/JP2008049243A/en
Application granted granted Critical
Publication of JP5245227B2 publication Critical patent/JP5245227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、水性媒体中で生体反応を利用して産生させた疎水性化合物を、気泡を用いる事によって該水性媒体から分離する方法に関するもので、従来のバイオ生産プロセスを簡略化するために好適に用いる事が出来る。   The present invention relates to a method for separating a hydrophobic compound produced by utilizing a biological reaction in an aqueous medium from the aqueous medium by using bubbles, and is suitable for simplifying a conventional bioproduction process. Can be used for

従来から、泡の持つ溶解または分散物質を濃縮する性質を活かして、一般的な起泡、即ち気泡を発生させる事による浮遊選別法(例えば、特許文献1参照)、泡沫分離法(例えば、特許文献2参照)、または加圧浮上法(例えば、非特許文献1参照)等が開発され、パルプやその他の汚濁液中の懸濁物質や浮遊物質を除去する廃水処理、トナーの分離、鉱山に於ける金属精錬や微粉炭の分離等を目的として実施されている。この様な泡の界面近傍に疎水性物質が濃縮される性質は、原理的には、疎水性相互作用、即ち、疎水性物質が水溶液の持つ電気的な相互作用を嫌い、親水基から遠ざかろうとして水媒体と気泡の気液界面に集まる性質に基づくものである(例えば、非特許文献2、非特許文献3参照)。   Conventionally, utilizing the property of concentrating dissolved or dispersed substances possessed by bubbles, a general foaming, that is, a floating sorting method by generating bubbles (for example, see Patent Document 1), a foam separation method (for example, a patent) Ref. 2), or a pressurized flotation method (for example, see Non-Patent Document 1), etc. was developed to treat wastewater, remove toner, and mine in pulp and other pollutants. It is carried out for the purpose of metal refining and separation of pulverized coal. The nature of the concentration of a hydrophobic substance near the interface of such a bubble is, in principle, dislikes the hydrophobic interaction, that is, the electrical interaction that the hydrophobic substance has in the aqueous solution, and moves away from the hydrophilic group. This is based on the property of gathering at the gas-liquid interface between the aqueous medium and the bubbles (see, for example, Non-Patent Document 2 and Non-Patent Document 3).

近年、バイオ生産技術の重要性が認識されて久しいが、バイオ工業に於いて目的生産物の回収分離に気泡を利用した生産プロセスは殆ど見あたらないのが実状である。強いて挙げれば、アミノ酸回収に於けるイオン交換樹脂の替わりに気泡を利用する試み(例えば、非特許文献4参照)等が僅かに見られるだけである。   In recent years, the importance of bio-production technology has been recognized for a long time, but in the bio-industry, there is almost no production process using bubbles for recovery and separation of target products. For example, attempts to use bubbles instead of ion exchange resins in amino acid recovery (for example, see Non-patent Document 4) are only slightly observed.

従来、疎水性物質を含むバイオ的な有用物質の生産では、目的物質を培養液から分離する際には、有機溶媒を利用する抽出法が一般的に用いられている。例えば、イチイ(Taxus cuspidata)細胞によるパクリタキセルの生産では、有機溶媒を用いてパクリタキセルを抽出し、さらに精製を行う必要がある。しかし、有機溶媒を大量に使用するため、その回収コストは無視出来るものでは無い。また、抽出または逆抽出等の手間によるプロセスの煩雑化や有機溶媒が環境へ漏出した場合の汚染も懸念される。   Conventionally, in the production of biologically useful substances including a hydrophobic substance, an extraction method using an organic solvent is generally used when separating a target substance from a culture solution. For example, in the production of paclitaxel by yew (Taxus cuspidata) cells, it is necessary to extract the paclitaxel using an organic solvent and further purify it. However, since a large amount of organic solvent is used, the recovery cost is not negligible. In addition, there is a concern that the process becomes complicated due to troubles such as extraction or back-extraction, or contamination when the organic solvent leaks into the environment.

特開昭51−96702号公報JP 51-96702 A 特開2001−170617号公報JP 2001-170617 A 「造水技術ハンドブック」、(財)造水促進センター(1993年5月10日発行)"Freshing Technology Handbook", Water Recycling Promotion Center (issued on May 10, 1993) 化学工学便覧 第6版 611頁(丸善(株)発行)Chemical Engineering Handbook 6th edition, page 611 (issued by Maruzen Co., Ltd.) ながれ 23(2004)7−15.Flow 23 (2004) 7-15. 化学工学会第30回秋季大会要旨集(1997年、L113)Abstracts of the 30th Autumn Meeting of the Chemical Society of Japan (1997, L113)

本発明の目的は、微生物を含む生体細胞が産生する有用な代謝産物の生産プロセスまたは酵素を用いる反応プロセスに於いて、培養液や酵素反応液等の水性媒体、即ち、水または水を含む媒体中に溶解または分散している有用な疎水性代謝産生物等を、有機溶媒による抽出操作を行う事なく或いは抽出の負荷を大きく低減し、簡単に分離できる方法の確立、並びに従来の有機溶媒を用いた分離法で必要な抽出・逆抽出の工程を省略或いは最小限に抑えプロセス及び装置の複雑化を避け、廃液処理等の環境負荷が小さい簡便な製造手段を提供する事にある。   It is an object of the present invention to produce a useful metabolite produced by a living cell containing a microorganism or a reaction process using an enzyme in an aqueous medium such as a culture solution or an enzyme reaction solution, that is, a medium containing water or water. Establishing a method that can easily separate the useful hydrophobic metabolites dissolved or dispersed in the organic solvent without performing an extraction operation with an organic solvent or greatly reducing the load of extraction, as well as conventional organic solvents It is an object of the present invention to provide a simple manufacturing means with a small environmental load such as waste liquid treatment, by omitting or minimizing the steps of extraction and back-extraction necessary in the separation method used, avoiding complicated processes and equipment.

本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、イチイの細胞培養により生産される微量のパクリタキセルを含む培養液から、気泡との疎水性相互作用を利用して当該培養液外に分離出来る事を知った。これによって、有機溶媒による抽出および従来技術では不可欠であった溶媒の回収工程や後段の煩雑な複数の精製工程が不要或いは精製工程が最小限で済むために生産プロセスの大きな簡略化が出来る事、また有機溶媒を使用しない或いは最小限の使用で済むため、生産コストおよび生産に伴う環境負荷を低減できる事を知った。   As a result of intensive studies in order to solve the above problems, the present inventors, from a culture solution containing a small amount of paclitaxel produced by yew cell culture, the culture using the hydrophobic interaction with bubbles I learned that it can be separated out of the liquid. This eliminates the need for organic solvent extraction and solvent recovery steps, which are indispensable in the prior art, and a number of complicated subsequent purification steps. I also learned that production costs and the environmental burden associated with production can be reduced because organic solvents are not used or can be used at a minimum.

さらには、微生物、動物細胞、植物細胞の培養液や酵素反応液等の水性媒体に溶解または分散している有機化合物の分離に広く応用可能な事、特に、生産装置を培養系または酵素反応系と起泡系に分けた上、両者を組合せる事で培養時の生産物阻害を防ぎ得る事、酵素反応の平衡をずらす事が出来るので平衡反応率以上の収率が期待出来る事、また、イチイ細胞によるパクリタキセルの生産のみならず、例えば、クズ(Pueraria lobata)細胞によって産生されたイソフラボン、微生物または酵素によって産生された、ステロイド化合物やピロロキノリンキノン(PQQ)の様な補酵素類等の多種多様なバイオ生産物の分離に応用可能である事を知り、本発明に到達した。   Furthermore, it can be widely applied to the separation of organic compounds dissolved or dispersed in an aqueous medium such as a culture solution or enzyme reaction solution of microorganisms, animal cells, or plant cells. It is possible to prevent product inhibition during cultivation by combining the two, and the foaming system, and the equilibrium of the enzyme reaction can be shifted so that a yield higher than the equilibrium reaction rate can be expected. Not only the production of paclitaxel by yew cells, but also various coenzymes such as steroidal compounds and pyrroloquinoline quinone (PQQ) produced by isoflavones, microorganisms or enzymes produced by Kueru (Pueraria lobata) cells Knowing that it can be applied to the separation of various bioproducts, the present invention has been achieved.

即ち、本発明は、以下の(1)から(6)に示す、気泡を利用した水性媒体から疎水性物質を分離する方法に関するものである。
(1)水性媒体中で行う生体反応によって産生する疎水性化合物を分離する方法に於いて、気泡と水性媒体を接触させて水性媒体中に含まれる疎水性化合物を気泡界面に捕集した後、該気泡を水性媒体から分離する事を特徴とする疎水性化合物の分離方法。
(2)生体反応が、微生物、動物細胞、植物細胞、または酵素を利用したものである、(1)に記載の疎水性化合物の分離方法。
(3)水性媒体中に気体を吹き込む事によって発生させた気泡を用いるものである、(1)または(2)に記載の疎水性化合物の分離方法。
(4)気泡が水性媒体外で発生させたものであり、かつ気泡と水性媒体との接触を生体反応系外で行う(1)または(2)に記載の疎水性化合物の分離方法。
(5)気泡として、ミリバブル、マイクロバブルまたはナノバブルを用いる(1)から(4)の何れか一項に記載の疎水性化合物の分離方法。
(6)疎水性化合物がイチイ(Taxus cuspidata)の植物細胞培養によって産生されるパクリタキセルである、(1)から(5)の何れか一項に記載の疎水性化合物の分離方法。
That is, the present invention relates to a method for separating a hydrophobic substance from an aqueous medium using bubbles, as shown in the following (1) to (6).
(1) In a method of separating a hydrophobic compound produced by a biological reaction performed in an aqueous medium, after contacting the bubble and the aqueous medium to collect the hydrophobic compound contained in the aqueous medium at the bubble interface, A method for separating a hydrophobic compound, wherein the bubbles are separated from an aqueous medium.
(2) The method for separating a hydrophobic compound according to (1), wherein the biological reaction utilizes microorganisms, animal cells, plant cells, or enzymes.
(3) The method for separating a hydrophobic compound according to (1) or (2), wherein bubbles generated by blowing gas into an aqueous medium are used.
(4) The method for separating a hydrophobic compound according to (1) or (2), wherein bubbles are generated outside the aqueous medium, and the bubbles and the aqueous medium are contacted outside the biological reaction system.
(5) The method for separating a hydrophobic compound according to any one of (1) to (4), wherein millibubbles, microbubbles, or nanobubbles are used as the bubbles.
(6) The method for separating a hydrophobic compound according to any one of (1) to (5), wherein the hydrophobic compound is paclitaxel produced by plant cell culture of Taxus cuspidata.

本発明により、多様なバイオ生産プロセスに於いて有機溶媒を用いる事無く空気等の安価かつ使用も容易な気体を用いて起泡させ、得られた気泡と接触させることによって有用な疎水性バイオ生産物を培養液または酵素反応液から分離出来る。また、分離プロセスの簡略化、有機溶媒による環境汚染のリスク回避が期待でき、さらに、生産物が系外に移行するため生産物阻害や反応平衡に基づく限界を超えて反応を進行させる効果も期待出来る。   In accordance with the present invention, hydrophobic bioproduction useful in various bioproduction processes by foaming with low-cost and easy-to-use gas such as air without using an organic solvent and contacting with the resulting bubbles. The product can be separated from the culture solution or the enzyme reaction solution. In addition, the separation process can be simplified, the risk of environmental pollution caused by organic solvents can be avoided, and the product can be expected to have an effect of proceeding beyond the limits based on product inhibition and reaction equilibrium because the product moves out of the system. I can do it.

本発明は、水性媒体を用いる微生物培養や動植物の細胞培養、または酵素反応に於いて、
水性媒体中に溶解、分散する生産物、特に目的生産物が疎水性物質である場合に好適である。気泡に対する当該疎水性物質の捕集量は、気泡表面積の大きさに依存する事から、水性媒体中に少量含まれる希少価値の高い疎水性物質の分離生産に適用すれば、有機溶媒による多段の精製工程を省略して効率的な生産プロセスを構築する事が出来る。
The present invention relates to microorganism culture using an aqueous medium, cell culture of animals and plants, or enzyme reaction.
It is suitable when the product dissolved and dispersed in an aqueous medium, particularly when the target product is a hydrophobic substance. Since the amount of the hydrophobic substance collected with respect to the bubbles depends on the size of the bubble surface area, if applied to the separation and production of a hydrophobic substance with a high rare value contained in a small amount in an aqueous medium, it is possible to obtain a multi-stage by organic solvent. Efficient production process can be constructed by omitting the purification process.

本発明は、水性媒体を用いる発酵培養、細胞培養、酵素反応に於いて広く適用出来るため、対象となる目的物は多岐にわたる。例えば、タンパク質、多糖類、複合多糖類、アラキドン酸やDHA等の脂肪酸、カロチノイドやアスタキサンチン等のカロチン類、ヒノキチオール等のテルペン類、エピガロカテキンやテオフラビン等のポリフェノール類、アシタバ由来のカルコンやイソフラボン等のフラボノイド類、ステロイド配糖体やトリテルペン配糖体等のサポニン類、パクリタキセル(タキソール)等の抗ガン剤、ピロロキノリンキノン(PQQ)等のビタミン類、またはその他生薬成分等が挙げられ、その中でも特に細胞外に産生される疎水性物質が好ましい例として挙げられる。   Since the present invention can be widely applied in fermentation culture, cell culture, and enzyme reaction using an aqueous medium, the target objects are various. For example, proteins, polysaccharides, complex polysaccharides, fatty acids such as arachidonic acid and DHA, carotenes such as carotenoids and astaxanthin, terpenes such as hinokitiol, polyphenols such as epigallocatechin and theoflavin, chalcone and isoflavone derived from Ashitaba Flavonoids, saponins such as steroid glycosides and triterpene glycosides, anticancer agents such as paclitaxel (taxol), vitamins such as pyrroloquinoline quinone (PQQ), and other herbal medicine components, among others Particularly preferred examples include hydrophobic substances produced extracellularly.

当該目的物質を生産する手段としては、微生物による発酵生産系や動植物細胞を用いた組織培養系、または酵素触媒を用いる水性媒体での加水分解反応、エステル交換反応、エステル化反応系等である。前記した当該生産系は、通常、微生物発酵槽や細胞培養槽、培地調整槽、菌体分離器、イオン交換塔、乾燥器等からなる典型的なバイオリアクターシステムで行う事が出来る。   Means for producing the target substance include a fermentation production system using microorganisms, a tissue culture system using animal and plant cells, or a hydrolysis reaction, transesterification reaction, and esterification reaction system in an aqueous medium using an enzyme catalyst. The production system described above can be usually carried out in a typical bioreactor system comprising a microbial fermentation tank, a cell culture tank, a medium adjustment tank, a cell separator, an ion exchange tower, a dryer and the like.

発酵生産の場合、種々のミネラルや添加物を含む、いわゆる液体培地や有機化合物を含む事のある水溶液中で当該物質の生産を行う事が一般的である。当該生産時の反応条件を一概に規定する事は多岐に渡るため困難であるが、一般的な培養手順に従う。より具体的には、炭素源としてグルコース、フルクトース等の単糖類、シュークロース等の二糖類、デンプン、コーンスターチ等の多糖類、廃糖蜜やパルプ廃液、オリーブ油やパラフィン等の油脂類、メタノールやエタノール等のアルコール類、酢酸等の有機酸類、アセトン等のケトン類の様な微生物や動植物細胞が資化できるものであればよい。窒素源として尿素、塩化アンモニウム、硝酸アンモニウム、硫酸アンモニウム、トリプトン、酵母エキス、肉エキス、ペプトン、麦芽エキス等の無機または有機体窒素源を、また燐酸カリウム、硫酸マグネシウム、塩化ナトリウム等の無機塩類を用いる。
培養条件は、対象とする生物種によっても異なるが、培養液の初期pHは3から10、温度は10から50℃で、必要に応じ通気撹拌しつつバッチまたは連続下に培養を行う。
In the case of fermentation production, the substance is generally produced in an aqueous solution containing various minerals and additives, which may contain so-called liquid culture media or organic compounds. Although it is difficult to prescribe the reaction conditions during production in a wide range, it is difficult to follow, but general culture procedures are followed. More specifically, as a carbon source, monosaccharides such as glucose and fructose, disaccharides such as sucrose, polysaccharides such as starch and corn starch, waste molasses and pulp waste liquid, oils and fats such as olive oil and paraffin, methanol and ethanol, etc. As long as it can assimilate microorganisms and animal and plant cells, such as alcohols, organic acids such as acetic acid, and ketones such as acetone. As the nitrogen source, inorganic or organic nitrogen sources such as urea, ammonium chloride, ammonium nitrate, ammonium sulfate, tryptone, yeast extract, meat extract, peptone, and malt extract are used, and inorganic salts such as potassium phosphate, magnesium sulfate, and sodium chloride are used.
The culture conditions vary depending on the target species, but the initial pH of the culture solution is 3 to 10, the temperature is 10 to 50 ° C., and the culture is performed in batch or continuously with aeration and stirring as necessary.

酵素反応の場合も、発酵生産の場合と同様な装置を用いて実施する事が出来る。当該反応における水性媒体は水または水を含む媒体が好ましく、反応の種類に応じ至適な組成の緩衝液を選択して使用すればよい。また、連続的に酵素反応を行う様な場合は、酵素と水性媒体の分離をし易くするため、ビーズ等の担体に担持させた固定化酵素を利用するのが好ましい。なお、酵素の反応速度を上げるため、Zn、Mn、Fe、Cu等の金属イオンや界面活性剤、有機溶媒等を用いてもよい。   In the case of an enzyme reaction, it can be carried out using the same apparatus as in the case of fermentation production. The aqueous medium in the reaction is preferably water or a medium containing water, and a buffer solution having an optimal composition may be selected and used depending on the type of reaction. In the case where the enzyme reaction is continuously performed, it is preferable to use an immobilized enzyme supported on a carrier such as a bead to facilitate separation of the enzyme and the aqueous medium. In order to increase the reaction rate of the enzyme, metal ions such as Zn, Mn, Fe, and Cu, surfactants, organic solvents, and the like may be used.

本発明では、細胞培養または酵素反応終了後、目的産物を分離するため、同一培養槽(反応槽)に空気を吹き込む事が最も簡便な手段である。なお、通気撹拌しながら好気的に培養する系では、通気によって生じた気泡を目的産物の分離に併用する事も出来る。
気泡のサイズは、その気液接触面積の大きさが目的生産物の捕集量を左右する事からサイズは小さい方が好ましく、例えば最近その安定的な発生が可能となったミリサイズ、マイクロサイズまたはナノサイズの気泡を用いる事が出来る。気泡への捕集効率を上げるために界面活性剤を系に添加しても良く、当然ながら必要に応じて空気以外の窒素等の気体を導入しても良い。なお、上記した通気量、気泡サイズ、温度等の条件は一概に規定する事は難しく、最適な条件を予め決定した上でそれに従い実施する必要がある。
In the present invention, the simplest means is to blow air into the same culture tank (reaction tank) in order to separate the target product after completion of cell culture or enzyme reaction. In a system in which aerobic culture is performed with aeration and agitation, bubbles generated by aeration can be used together for separation of the target product.
The size of the bubble is preferably smaller because the size of the gas-liquid contact area affects the amount of collected target product. For example, the millimeter-size and micro-size that have recently made stable generation possible. Alternatively, nano-sized bubbles can be used. A surfactant may be added to the system in order to increase the efficiency of trapping in bubbles, and naturally a gas such as nitrogen other than air may be introduced as necessary. In addition, it is difficult to prescribe | regulate unconditionally conditions, such as above-mentioned ventilation | gas_flowing amount, bubble size, and temperature, It is necessary to carry out according to it, after determining optimal conditions beforehand.

細胞培養または酵素反応を同一培養槽(反応槽)内で続けると生産物による反応物阻害(プロダクトインヒビション)を生じる事がある。この様な場合、起泡を別装置で行い、培養槽(反応槽)より抜き出した液を当該装置に移送し、発生した気泡と接触させる事が好ましい。気泡に捕集された生産物は、堰を溢れさせる等の手段によって系外に分離すれば生産阻害や平衡反応率以上に反応を進行させる事が出来る。   If cell culture or enzyme reaction is continued in the same culture tank (reaction tank), reaction product inhibition (product inhibition) may occur. In such a case, it is preferable that foaming is performed in a separate apparatus, and the liquid extracted from the culture tank (reaction tank) is transferred to the apparatus and brought into contact with the generated bubbles. If the product collected in the bubbles is separated out of the system by means such as overflowing the weir, the reaction can proceed more than the production inhibition and the equilibrium reaction rate.

本発明を、植物細胞培養によるイチイ(Taxus cuspidata)カルスからのパクリタキセルの生産に適用した場合についてさらに説明する。通常、パクリタキセルの生産はバッチまたは連続によるカルス培養工程、カルス細胞を培養液から分ける分離工程、分離培養細胞の破砕工程、有機溶剤による抽出工程、廃細胞の分離工程、溶剤濃縮工程、精製工程、および分離工程で得られた培養液からパクリタキセルを抽出し濃縮する工程等からなり、かなり複雑なプロセスとなる(図1参照)。
本発明では、基本的に、培養、気泡分離、洗浄、および乾燥工程のみで良く、従来のパクリタキセル生産工程で使用される溶剤抽出、濃縮、および分離に係わる煩雑な工程操作が不要となりプロセスの大幅な簡略化が可能となる(図2,3参照)。またこの様にして得られたパクリタキセルは、通常、充分な化学純度を有するが、必要に応じさらに精製を行い医薬用途に使用可能な高純度なものとする事が好ましい。
The case where the present invention is applied to the production of paclitaxel from yew (Taxus cuspidata) callus by plant cell culture will be further described. Usually, paclitaxel is produced in a batch or continuous callus culture process, a separation process that separates callus cells from the culture solution, a crushing process for separated culture cells, an extraction process using organic solvents, a waste cell separation process, a solvent concentration process, a purification process And a step of extracting and concentrating paclitaxel from the culture solution obtained in the separation step, which is a considerably complicated process (see FIG. 1).
In the present invention, basically, only the culture, bubble separation, washing, and drying steps are required, and complicated process operations related to solvent extraction, concentration, and separation used in the conventional paclitaxel production step are not required, and the process is greatly increased. Can be simplified (see FIGS. 2 and 3). The paclitaxel thus obtained usually has a sufficient chemical purity, but it is preferable that the paclitaxel be purified to a high purity that can be used for pharmaceutical purposes if necessary.

本発明を、さらに詳細に実施例および比較例をもって説明する。当然ながら本発明は、これらの例のみに限定されるものではない。   The present invention will be described in more detail with reference to examples and comparative examples. Of course, the present invention is not limited to only these examples.

実施例1
パクリタキセルの気泡による分離(無細胞系)
図4に示すように、外部ガラス容器(容量650mL)の中に、内部ガラス容器(容量150mL)を設置し、さらにこの内部ガラス容器の中に、気泡を発生させるためのガラス製ボールフィルターと細胞を保持するためのセルロース製多孔質バッグを設置した。
内部ガラス容器にパクリタキセルを0.4mg/Lの濃度で溶解させたB5培地(カサミノ酸3g/L,α−ナフタレン酢酸2mg/Lを含む)120mLを入れ、25℃の温度条件下で除菌フィルターを通過させた空気を毎分0から500mLの範囲で6時間通気し内部ガラス容器から溢流する泡沫を採取することによってパクリタキセルを系外に分離し、ジクロロメタンで抽出することによりパクリタキセルを回収した。その際、外部容器の壁、ゴム栓、内部容器の外壁などをジクロロメタンで洗浄し回収パクリタキセルに加えた。また、内部ガラス容器中のB5培地中に残存するパクリタキセルもジクロロメタンを用いて抽出回収した。このようにして、通気量および通気時間とパクリタキセルの回収率との関係を求めたところ、B5培地中の残存パクリタキセル量は時間と共に減少し、2時間の通気で初期のパクリタキセル量の50%以上が、6時間で74%以上が気泡によって除去分離された(表1)。
なお、B5培地中のパクリタキセルは、サンプリングした培地にジクロロメタンを1対1の割合で添加し攪拌した後、氷冷下で静置し分離したジクロロメタン相を採取する方法を取った。この操作を3回繰り返し、得られた全量のジクロロメタンを遠心エバポレーターで濃縮した後、メタノール125μLで溶解し、HPLCで分析した。また、HPLCの移動相はメタノール:水:アセトニトリル=20:56:24、固定相はシアノプロピル基を有するシリカゲルを用いた。
Example 1
Separation of paclitaxel by bubbles (cell-free system)
As shown in FIG. 4, an internal glass container (capacity 150 mL) is installed in an external glass container (capacity 650 mL), and further, a glass ball filter and cells for generating bubbles in the internal glass container A cellulosic porous bag was installed to hold the bag.
Place 120 mL of B5 medium (containing 3 g / L of casamino acid and 2 mg / L of α-naphthalene acetic acid) in which paclitaxel is dissolved at a concentration of 0.4 mg / L in an internal glass container, and disinfect the filter at 25 ° C. The paclitaxel was separated out of the system by collecting the foam overflowing from the internal glass container by aeration for 6 hours in the range of 0 to 500 mL per minute, and collecting the foam overflowing from the system, and the paclitaxel was recovered by extraction with dichloromethane. At that time, the wall of the outer container, the rubber stopper, the outer wall of the inner container, and the like were washed with dichloromethane and added to the recovered paclitaxel. In addition, paclitaxel remaining in the B5 medium in the inner glass container was also extracted and recovered using dichloromethane. Thus, when the relationship between the aeration amount and the aeration time and the recovery rate of paclitaxel was determined, the amount of remaining paclitaxel in the B5 medium decreased with time, and 50% or more of the initial amount of paclitaxel decreased with the passage of 2 hours. In 6 hours, 74% or more was removed and separated by bubbles (Table 1).
For paclitaxel in B5 medium, dichloromethane was added to the sampled medium at a ratio of 1: 1, stirred, and then allowed to stand under ice cooling to collect a separated dichloromethane phase. This operation was repeated three times, and the total amount of dichloromethane obtained was concentrated with a centrifugal evaporator, dissolved in 125 μL of methanol, and analyzed by HPLC. The HPLC mobile phase was methanol: water: acetonitrile = 20: 56: 24, and the stationary phase was silica gel having a cyanopropyl group.

比較例1
通気しない場合(無細胞系)
培地に対する空気の吹き込みを行わなかった事以外は実施例1と同様に操作した。培地中に含まれていたパクリタキセル濃度に変化は見られず、パクリタキセルの分離に気泡を用いた方法が非常に有効である事が示された(表1)。
Comparative Example 1
When not venting (cell-free)
The same operation as in Example 1 was performed except that air was not blown into the medium. There was no change in the concentration of paclitaxel contained in the medium, indicating that the method using air bubbles for the separation of paclitaxel was very effective (Table 1).

表1.培地中のパクリタキセル残存率(%)および6時間後の回収率(%)
通気 空気吹き込み量(mL/分)
時間 (0) (50) (100) (200) (400) (500)
0時間 100 100 100 100 100 100
1時間 100 50 50 35 33 25
2時間 100 40 44 20 32 23
4時間 100 32 31 23 26 15
6時間 100 26 24 20 12 10
回収率 0 74 76 80 88 90
Table 1. Residual rate of paclitaxel in medium (%) and recovery rate after 6 hours (%)
Ventilation air blowing rate (mL / min)
Time (0) (50) (100) (200) (400) (500)
0 hours 100 100 100 100 100 100 100
1 hour 100 50 50 35 33 25
2 hours 100 40 44 20 32 23
4 hours 100 32 31 23 26 15
6 hours 100 26 24 20 12 10
Recovery rate 0 74 76 80 88 90

実施例2
気泡分離しながら培養した場合のパクリタキセル生産量
図5に示す装置を用い、内部ガラス容器(容量650mL)内に設置したセルロース製多孔質バッグにB5培地(120mL)とイチイ(Taxus cuspidata)の細胞1.2gを入れ、25℃で通気量を毎分50mlとして14日間培養した。通気することによって溢流した泡沫中のパクリタキセル濃度および培地(0.25mL)を経時的にサンプリングしてパクリタキセル量を測定した(表2)。
Example 2
Production volume of paclitaxel when culturing with air bubbles separation Using the apparatus shown in Fig. 5, B5 medium (120 mL) and yew (Taxus cuspidata) cells 1 in a porous cellulosic bag placed in an internal glass container (capacity 650 mL) 0.2 g was added and cultured at 25 ° C. with an aeration rate of 50 ml per minute for 14 days. The paclitaxel concentration in the foam overflowed by aeration and the medium (0.25 mL) were sampled over time to measure the amount of paclitaxel (Table 2).

表2.気泡分離しながら培養した場合のパクリタキセル生産量の経日変化
培養日数 0 3 7 10 14
生産量(μg) 0 3 4 5 9
Table 2. Changes in paclitaxel production over time when cultivated while separating bubbles 0 3 7 10 14
Production (μg) 0 3 4 5 9

比較例3
気泡分離しないで培養した場合のパクリタキセル生産量
起泡分離操作に替えて振とう培養した場合以外は実施例2と同様にして培養しパクリタキセルの生産量を経日的に測定した。気泡分離しなかった場合のパクリタキセルの生産量は著しく低く気泡分離による生産物の系外への移動によって生産量を著増できる事が示された(表3)。
Comparative Example 3
The amount of paclitaxel produced when culturing without bubble separation The culture was carried out in the same manner as in Example 2 except that the shaking culture was performed instead of the foaming separation operation, and the production amount of paclitaxel was measured over time. It was shown that the production amount of paclitaxel in the case where the bubbles were not separated was remarkably low, and the production amount could be significantly increased by moving the product out of the system by the bubble separation (Table 3).

表3.気泡分離しないで培養した場合のパクリタキセル生産量の経日変化
培養日数 0 3 7 10 14
生産量(μg) 0 2.4 2.3 4 4
Table 3. Changes in paclitaxel production over time when cultured without bubbles separation Days of culture 0 3 7 10 14
Production (μg) 0 2.4 2.3 4 4

本発明は、バイオ生産物の効果的な分離法およびバイオ生産プロセスの簡略化に広く適用出来る。   The present invention can be widely applied to an effective method for separating bioproducts and simplification of bioproduction processes.

有機溶媒抽出分離法による従来のバイオ生産プロセスを示す。The conventional bioproduction process by the organic solvent extraction separation method is shown. 起泡分離によるバイオ生産プロセス(培養、分離は同一槽)を示す。The bio-production process by foaming separation (culture and separation are the same tank) is shown. 起泡分離によるバイオ生産プロセス(培養、分離は別装置)を示す。The bio-production process by foaming separation (culture and separation are separate devices) is shown. 無細胞系に於ける起泡分離Foam separation in cell-free systems 細胞培養系に於ける起泡分離Foam separation in cell culture systems

Claims (5)

水性媒体中で行う植物細胞を利用した生体反応によって産生するパクリタキセルを分離する方法に於いて、セルロース製多孔質バッグを用いて前記植物細胞を保持して培養し、気泡と水性媒体を接触させて水性媒体中に含まれるパクリタキセルを気泡界面に捕集した後、該気泡を水性媒体から分離する事を特徴とするパクリタキセルの分離方法。 In a method for separating paclitaxel produced by a biological reaction using plant cells in an aqueous medium, the plant cells are held and cultured using a porous cellulose bag, and bubbles and an aqueous medium are brought into contact with each other. A method for separating paclitaxel , comprising collecting paclitaxel contained in an aqueous medium at a bubble interface and then separating the bubbles from the aqueous medium. 水性媒体中に気体を吹き込む事によって発生させた気泡を用いるものである、請求項1に記載のパクリタキセルの分離方法。 The method for separating paclitaxel according to claim 1, wherein bubbles generated by blowing a gas into the aqueous medium are used. 気泡が水性媒体外で発生させたものであり、かつ気泡と水性媒体との接触を生体反応系外で行う請求項1または2に記載のパクリタキセルの分離方法。 The method for separating paclitaxel according to claim 1 or 2, wherein bubbles are generated outside the aqueous medium, and contact between the bubbles and the aqueous medium is performed outside the biological reaction system. 気泡として、ミリバブル、マイクロバブルまたはナノバブルを用いる請求項1から3の何れか一項に記載のパクリタキセルの分離方法。 The method for separating paclitaxel according to any one of claims 1 to 3, wherein millibubbles, microbubbles, or nanobubbles are used as the bubbles. パクリタキセルがイチイ(Taxus cuspidata)の植物細胞培養によって産生される、請求項1から4の何れか一項に記載のパクリタキセルの分離方法。 The method for separating paclitaxel according to any one of claims 1 to 4, wherein the paclitaxel is produced by plant cell culture of yew (Taxus cuspidata).
JP2006226780A 2006-08-23 2006-08-23 Separation by hydrophobic foaming of hydrophobic compounds Active JP5245227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006226780A JP5245227B2 (en) 2006-08-23 2006-08-23 Separation by hydrophobic foaming of hydrophobic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226780A JP5245227B2 (en) 2006-08-23 2006-08-23 Separation by hydrophobic foaming of hydrophobic compounds

Publications (2)

Publication Number Publication Date
JP2008049243A JP2008049243A (en) 2008-03-06
JP5245227B2 true JP5245227B2 (en) 2013-07-24

Family

ID=39233776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226780A Active JP5245227B2 (en) 2006-08-23 2006-08-23 Separation by hydrophobic foaming of hydrophobic compounds

Country Status (1)

Country Link
JP (1) JP5245227B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343246B2 (en) * 2008-08-11 2013-11-13 株式会社オ−ラテック Floating separation device for particles in liquid
JP2012010606A (en) * 2010-06-29 2012-01-19 Ihi Corp Method for recovering component and device for recovering component
WO2013062054A1 (en) * 2011-10-28 2013-05-02 サンスター技研株式会社 Composition and method for producing same
JP2013179891A (en) * 2012-03-02 2013-09-12 Ihi Corp Load applying method
KR102372632B1 (en) * 2020-07-29 2022-03-08 공주대학교 산학협력단 Adsorption method of paclitaxel using ultrasonic cavitation bubbles or gas bubbles

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409488A3 (en) * 1989-07-17 1991-08-07 Takeda Chemical Industries, Ltd. Method for producing a heat-gelable beta-1,3-glucan
JP3434892B2 (en) * 1994-06-28 2003-08-11 三井化学株式会社 Method for producing taxane-type diterpene
JPH07255495A (en) * 1994-03-28 1995-10-09 Ishikawajima Harima Heavy Ind Co Ltd Production of taxol
JPH0833494A (en) * 1994-07-25 1996-02-06 Bio Polymer Res:Kk Method for circulating continuous production and separation of bacterial cellulose
JPH08149984A (en) * 1994-11-30 1996-06-11 Mitsui Petrochem Ind Ltd Production of taxane type diterpene
JP3019736B2 (en) * 1994-12-07 2000-03-13 三井化学株式会社 Method for producing taxane-type diterpene
AU1234400A (en) * 1998-10-27 2000-05-15 Cargill Incorporated Method for purifying a polyol product stream
DK1163260T3 (en) * 1999-03-25 2009-08-17 Valtion Teknillinen Method of separating proteins
JP4814794B2 (en) * 2003-05-06 2011-11-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Purification of biologically produced 1,3-propanediol
JP2006109784A (en) * 2004-10-15 2006-04-27 Mitsubishi Gas Chem Co Inc Method for producing paclitaxel

Also Published As

Publication number Publication date
JP2008049243A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
Jiang et al. Recent progress towards industrial rhamnolipids fermentation: process optimization and foam control
Anic et al. Production of rhamnolipids by integrated foam adsorption in a bioreactor system
Sankaran et al. Integration process of fermentation and liquid biphasic flotation for lipase separation from Burkholderia cepacia
JP5245227B2 (en) Separation by hydrophobic foaming of hydrophobic compounds
Mathiazakan et al. Pilot-scale aqueous two-phase floatation for direct recovery of lipase derived from Burkholderia cepacia strain ST8
CN101665446B (en) Extract method of capsaicine and capsanthin
Chunhua et al. Enzyme-catalyzed synthesis of vitamin E succinate using a chemically modified Novozym-435
Li et al. Simultaneously concentrating and pretreating of microalgae Chlorella spp. by three-phase partitioning
CN103725719A (en) Methods of producing carboxylic acids and/or alcohols
CN101012151B (en) Double aqueous phase extraction method for separating 1,3-dihydroxypropane from fermentation liquor
Jin et al. Improvement of resveratrol production from waste residue of grape seed by biotransformation of edible immobilized Aspergillus oryzae cells and negative pressure cavitation bioreactor using biphasic ionic liquid aqueous system pretreatment
CN107709567A (en) Reduced coenzyme Q10Manufacture method
CN107265809B (en) Method for degrading polycyclic aromatic hydrocarbon in sludge through anaerobic co-metabolism
CA3071627A1 (en) Enhanced production of rhamnolipids using at least two carbon sources
CN104846025B (en) A kind of method for preparing (2S, 3R) -2- benzoyl aminomethyls -3-hydroxybutyrate methyl esters
CN101168758B (en) Method for purifying trichodermisin
CN109266699B (en) Method for preparing isooctyl palmitate by transesterification
CN103663720B (en) Phanerochaete chrysosporium thalline is utilized to remove gallic acid Technology in waste water
CN111534553A (en) Method for biotransformation of dihydrodeoxyartemisinin B by artemisia annua cells and application of dihydrodeoxyartemisinin B
CN102286069B (en) Method for primarily purifying glutathione fermentation liquid by precipitation and separation with organic solvent
JP2009050250A (en) Method for producing glyceric acid
Tang et al. Investigation and screening of mixed microalgae species for lipase production and recovery using liquid biphasic flotation approach
CN104386890A (en) Method for removing grit from chicken dung
Baptista et al. Biocatalysis in biphasic systems based on ionic liquids
CN216274047U (en) Micro-fluidic device based on ergothioneine high-yield strain process preliminary screening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3