JP5244730B2 - Low vacuum scanning electron microscope - Google Patents

Low vacuum scanning electron microscope Download PDF

Info

Publication number
JP5244730B2
JP5244730B2 JP2009178574A JP2009178574A JP5244730B2 JP 5244730 B2 JP5244730 B2 JP 5244730B2 JP 2009178574 A JP2009178574 A JP 2009178574A JP 2009178574 A JP2009178574 A JP 2009178574A JP 5244730 B2 JP5244730 B2 JP 5244730B2
Authority
JP
Japan
Prior art keywords
chamber
vacuum
sample
sample chamber
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009178574A
Other languages
Japanese (ja)
Other versions
JP2011034744A (en
Inventor
光男 赤津
祐博 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009178574A priority Critical patent/JP5244730B2/en
Publication of JP2011034744A publication Critical patent/JP2011034744A/en
Application granted granted Critical
Publication of JP5244730B2 publication Critical patent/JP5244730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は走査電子顕微鏡に関し、特に試料近傍を低真空雰囲気にして観察する低真空走査電子顕微鏡に関するものである。   The present invention relates to a scanning electron microscope, and more particularly to a low vacuum scanning electron microscope that observes the vicinity of a sample in a low vacuum atmosphere.

従来の低真空走査電子顕微鏡では、特許文献1や特許文献2に説明されているような真空排気系構成としたものがある。図3は従来の排気系構成について概略的に示したものである。この図を参照し、従来の低真空電子顕微鏡の真空排気系構成について説明する。   Some conventional low-vacuum scanning electron microscopes have a vacuum exhaust system configuration as described in Patent Document 1 and Patent Document 2. FIG. 3 schematically shows a conventional exhaust system configuration. With reference to this figure, the configuration of a vacuum exhaust system of a conventional low vacuum electron microscope will be described.

図3において、電子銃を収容する電子銃室1と、電子光学系を収容する中間室23と、電子線を細く絞って試料に照射する対物レンズ5と、試料を収容する試料室7を備え、電子銃室1および中間室23は真空排気管8及び真空排気管9にて、複合ターボ分子ポンプ10の主吸気口21に接続され高真空排気される。   In FIG. 3, an electron gun chamber 1 for accommodating an electron gun, an intermediate chamber 23 for accommodating an electron optical system, an objective lens 5 for narrowing an electron beam to irradiate a sample, and a sample chamber 7 for accommodating a sample are provided. The electron gun chamber 1 and the intermediate chamber 23 are connected to the main intake port 21 of the composite turbo molecular pump 10 through the vacuum exhaust pipe 8 and the vacuum exhaust pipe 9 and are evacuated to a high vacuum.

真空排気管8には真空計12aが配置され、電子銃室1の真空度を監視する。対物レンズ5にはオリフィス6が配置され、試料室7と中間室23より上流側で差動排気されている。複合ターボ分子ポンプ10の排気口と試料室7は補助真空ポンプ11に接続され、複合ターボ分子ポンプ10の背圧排気と試料室7の低真空排気を合わせて行う。試料室7の真空度は真空計12bにより監視され、試料室7の低真空度を可変するために試料室7に導入するガス量を調整するための可変流量バルブ13が配置されている。   A vacuum gauge 12 a is disposed in the vacuum exhaust pipe 8 and monitors the degree of vacuum in the electron gun chamber 1. An orifice 6 is disposed in the objective lens 5, and differential exhaust is performed upstream of the sample chamber 7 and the intermediate chamber 23. The exhaust port of the composite turbo molecular pump 10 and the sample chamber 7 are connected to the auxiliary vacuum pump 11, and the back pressure exhaust of the composite turbo molecular pump 10 and the low vacuum exhaust of the sample chamber 7 are performed together. The degree of vacuum in the sample chamber 7 is monitored by a vacuum gauge 12b, and a variable flow valve 13 for adjusting the amount of gas introduced into the sample chamber 7 in order to vary the low degree of vacuum in the sample chamber 7 is disposed.

特開2007−141633号公報JP 2007-141633 A 特開2008−226521号公報JP 2008-226521 A

上述した従来の低真空走査電子顕微鏡では、試料交換時は試料室と中間室および電子銃室は大気開放されるのが一般的であった。この場合、補助真空ポンプにて予備排気後バルブを切り替え、複合ターボ分子ポンプにて電子銃室および中間室の高真空排気を行うため、必要となる真空度を得るには数分程度の時間を要した。一方、電子銃室の真空を保持したまま試料交換を行うには、別途試料交換装置等の予備排気室を必要とした。この場合、予備排気室を数十秒程度で排気できることからスループットは向上するが、試料室との真空仕切りのためのゲートバルブ機構や試料を交換,搬送するための機構等が必要となり、装置のコストアップは避けられない。   In the conventional low-vacuum scanning electron microscope described above, the sample chamber, the intermediate chamber, and the electron gun chamber are generally opened to the atmosphere when the sample is exchanged. In this case, the valve is switched after preliminary evacuation with the auxiliary vacuum pump, and high vacuum evacuation of the electron gun chamber and the intermediate chamber is performed with the composite turbo molecular pump, so it takes several minutes to obtain the required degree of vacuum. It cost. On the other hand, in order to change the sample while maintaining the vacuum of the electron gun chamber, a separate exhaust chamber such as a sample changer is required. In this case, the preliminary exhaust chamber can be evacuated in about several tens of seconds, so that the throughput is improved. Cost increases are inevitable.

また電子銃室と中間室はターボ分子ポンプの主吸気口に接続されているため、低真空時に試料室からオリフィスを介して吹き上がるガス量を増加させた場合、即ちオリフィス径を拡大した場合や、試料室の真空度をより低真空とした場合では、電子銃室の真空度は低下してしまう。このためオリフィス径と試料室の真空度は電子銃室の真空度に実用上影響を与えない程度に制限されていた。これにより例えばX線分析時などで、特に多くのプローブ電流を必要とする場合などでは、オリフィスによりプローブ電流量が制限されてしまうため、オリフィスを取外す必要があった。   Since the electron gun chamber and the intermediate chamber are connected to the main inlet of the turbo molecular pump, when the amount of gas blown from the sample chamber through the orifice is increased during low vacuum, i.e., when the orifice diameter is increased, When the degree of vacuum in the sample chamber is set to a lower vacuum, the degree of vacuum in the electron gun chamber is lowered. For this reason, the orifice diameter and the degree of vacuum in the sample chamber are limited to such an extent that they do not affect the degree of vacuum in the electron gun chamber in practice. As a result, for example, in the case of X-ray analysis and the like, particularly when a large amount of probe current is required, the amount of probe current is limited by the orifice, so it is necessary to remove the orifice.

上記問題を考慮し、本発明の目的は、試料交換から観察までのスループット向上を図ると共に、電子ビーム照射時には、必要なプローブ電流量が得られるようオリフィス径を従来より拡大することができる排気システムを備えた低真空電子顕微鏡を提供することにある。   In view of the above problems, an object of the present invention is to improve the throughput from sample exchange to observation, and at the time of electron beam irradiation, an exhaust system capable of expanding the orifice diameter so as to obtain a necessary probe current amount. It is providing the low vacuum electron microscope provided with.

上記目標を達成するために本発明は、電子銃と、当該電子銃から放出された電子線が照射される試料が配置される試料室と、前記電子銃を含む電子銃室、及び前記試料室を真空排気する排気システムを備えた電子顕微鏡において、電子銃室と試料室の間に電子線が通過する複数の中間室を有し、当該複数の中間室の間の開口部にバルブを有し、前記バルブより試料室側の中間室及び試料室の圧力が、前記バルブより電子源側の中間室及び電子銃室の圧力より高くなるように排気する排気システムを有することを特徴とする電子顕微鏡を提供する。   To achieve the above object, the present invention provides an electron gun, a sample chamber in which a sample irradiated with an electron beam emitted from the electron gun is disposed, an electron gun chamber including the electron gun, and the sample chamber In an electron microscope equipped with an exhaust system for evacuating a vacuum chamber, the electron microscope has a plurality of intermediate chambers through which an electron beam passes between the electron gun chamber and the sample chamber, and a valve at an opening between the plurality of intermediate chambers. An electron microscope comprising: an exhaust system for exhausting so that the pressure in the intermediate chamber and the sample chamber on the sample chamber side from the valve is higher than the pressure in the intermediate chamber and the electron gun chamber on the electron source side from the valve. I will provide a.

また、電子銃と、当該電子銃から放出された電子線が照射される試料が配置される試料室と、前記電子銃を含む電子銃室、及び前記試料室を真空排気する排気システムを備えた電子顕微鏡において、電子銃室と試料室の間に電子線が通過する中間室を有し、当該中間室と前記電子銃室との間の開口部にバルブを有し、前記中間室及び試料室の圧力が、前記電子銃室の圧力より高くなるように排気する排気システムを有することを特徴とする電子顕微鏡であってもよい。   In addition, an electron gun, a sample chamber in which a sample irradiated with an electron beam emitted from the electron gun is arranged, an electron gun chamber including the electron gun, and an exhaust system for evacuating the sample chamber are provided. The electron microscope has an intermediate chamber through which an electron beam passes between an electron gun chamber and a sample chamber, and has a valve at an opening between the intermediate chamber and the electron gun chamber, and the intermediate chamber and the sample chamber It may be an electron microscope characterized by having an exhaust system that exhausts the air so that the pressure becomes higher than the pressure of the electron gun chamber.

本発明によれば、バルブにより、電子銃室及びバルブより上流側(電子銃側)の真空度を高真空に保つことにより、試料交換から観察までのスループット向上を図ることができる。また、バルブより下流側(試料室側)の真空度をバルブより上流側の真空度より低くすることで、試料室から吹き上がるガス量を抑えることができ、オリフィス径を従来より拡大することができる。   According to the present invention, it is possible to improve throughput from sample exchange to observation by maintaining the vacuum degree upstream of the electron gun chamber and the valve (on the electron gun side) at a high vacuum. In addition, by making the degree of vacuum downstream of the valve (sample chamber side) lower than the degree of vacuum upstream of the valve, the amount of gas blown up from the sample chamber can be suppressed, and the orifice diameter can be increased compared to the conventional case. it can.

本発明である低真空走査電子顕微鏡の一実施形態を示す図。The figure which shows one Embodiment of the low vacuum scanning electron microscope which is this invention. 本発明である低真空走査電子顕微鏡の試料交換時における排気シーケンスの流れを示した図。The figure which showed the flow of the exhaustion sequence at the time of sample replacement | exchange of the low vacuum scanning electron microscope which is this invention. 従来の低真空走査電子顕微鏡の真空排気システムを示す図。The figure which shows the vacuum exhaust system of the conventional low vacuum scanning electron microscope. 本発明である低真空走査電子顕微鏡の一実施形態を示す図。The figure which shows one Embodiment of the low vacuum scanning electron microscope which is this invention. 本発明である低真空走査電子顕微鏡の一実施形態を示す図。The figure which shows one Embodiment of the low vacuum scanning electron microscope which is this invention.

本発明についての原理を説明する。   The principle of the present invention will be described.

本発明では、エアロックバルブを境に、電子源側を複合ターボ分子ポンプの主吸気口に、試料室側を複合ターボ分子ポンプの中間吸気口に接続し、排気を行う。これにより、試料交換時にエアロックバルブを閉じれば、エアロックバルブより上流(電子源側)を高真空に保つことができ、試料交換から観察までのスループット向上を図ることができる。   In the present invention, with the air lock valve as a boundary, the electron source side is connected to the main intake port of the composite turbo molecular pump, and the sample chamber side is connected to the intermediate intake port of the composite turbo molecular pump to perform exhaust. Accordingly, if the air lock valve is closed at the time of sample exchange, the upstream (electron source side) from the air lock valve can be maintained at a high vacuum, and throughput from sample exchange to observation can be improved.

また、エアロックバルブより下流(試料室側)は、中間吸気口に接続されているので、従来の主吸気口に接続されている場合に比べ、オリフィス径を拡大しても試料室から吹き上がるガス量を抑えることができる。これにより、電子銃室は高真空を維持しつつオリフィス径を拡大することができる。   Further, since the downstream side of the air lock valve (sample chamber side) is connected to the intermediate intake port, it blows up from the sample chamber even if the orifice diameter is enlarged compared to the case where it is connected to the conventional main intake port. The amount of gas can be suppressed. Thereby, the electron gun chamber can expand the orifice diameter while maintaining a high vacuum.

さらに、中間室が複数ある場合には、差動排気により、電子銃室の高真空をよりよく保つことができる。   Furthermore, when there are a plurality of intermediate chambers, the high vacuum of the electron gun chamber can be better maintained by differential exhaust.

以下、本発明の実施例を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の低真空走査電子顕微鏡の一実施形態を示す図である。   FIG. 1 is a diagram showing an embodiment of a low vacuum scanning electron microscope of the present invention.

本発明の低真空走査電子顕微鏡は、電子銃を収容する電子銃室1と、電子光学系を収容する中間室と、電子線を細く絞って試料に照射する対物レンズ5と、試料を収容する試料室7とを備える。中間室はエアロックバルブ3により、第一中間室2と第二中間室4とに真空的に分離される。   The low-vacuum scanning electron microscope of the present invention houses an electron gun chamber 1 that houses an electron gun, an intermediate chamber that houses an electron optical system, an objective lens 5 that narrows the electron beam and irradiates the sample, and a sample. A sample chamber 7 is provided. The intermediate chamber is vacuum-separated into a first intermediate chamber 2 and a second intermediate chamber 4 by an air lock valve 3.

対物レンズ5には、試料室7と第二中間室4との差動排気を行うために、試料室7から吹き上がるガス量を制限するためのオリフィス6を備える。電子銃室1と第一中間室2は、真空排気管8にて複合ターボ分子ポンプ10の主吸気口21に接続され高真空排気される。真空排気管8には真空計12aが配置され、電子銃室1の真空度を監視する。第二中間室4は真空排気管9にて複合ターボ分子ポンプ10の中間吸気口22に接続されオリフィス6を介して試料室7から吹き上がるガスを排気する。複合ターボ分子ポンプ10の排気口および試料室7は補助真空ポンプ11に接続され、補助真空ポンプ11は試料室7の低真空排気と複合ターボ分子ポンプ10の背圧排気を合わせて行う。試料室7の真空度は真空計12bにより監視され、試料室7の真空度を可変するには可変流量バルブ13により試料室7に導入するガス量を調節する。   The objective lens 5 includes an orifice 6 for limiting the amount of gas blown from the sample chamber 7 in order to perform differential exhaust between the sample chamber 7 and the second intermediate chamber 4. The electron gun chamber 1 and the first intermediate chamber 2 are connected to the main intake port 21 of the composite turbo molecular pump 10 through a vacuum exhaust pipe 8 and are evacuated to a high vacuum. A vacuum gauge 12 a is disposed in the vacuum exhaust pipe 8 and monitors the degree of vacuum in the electron gun chamber 1. The second intermediate chamber 4 is connected to the intermediate intake port 22 of the composite turbo molecular pump 10 through the vacuum exhaust pipe 9 and exhausts the gas blown up from the sample chamber 7 through the orifice 6. The exhaust port of the composite turbo molecular pump 10 and the sample chamber 7 are connected to an auxiliary vacuum pump 11, and the auxiliary vacuum pump 11 performs low vacuum exhaust of the sample chamber 7 and back pressure exhaust of the composite turbo molecular pump 10. The degree of vacuum in the sample chamber 7 is monitored by a vacuum gauge 12b, and the amount of gas introduced into the sample chamber 7 is adjusted by a variable flow valve 13 in order to vary the degree of vacuum in the sample chamber 7.

試料室は、1〜3000Paの圧力を有し、圧力を調整することができる。   The sample chamber has a pressure of 1 to 3000 Pa, and the pressure can be adjusted.

図2は本発明である低真空走査電子顕微鏡において試料室7を大気開放し、低真空観察に至るまでの排気系シーケンス制御の流れを示す。大気開放モードでは、まずエアロックバルブ3を閉じ、電子銃室1と第一中間室2を真空封止する。次にAV2,AV3,AV5,AV7のバルブを閉じ、リークバルブであるLV2を開き、試料室7および第二中間室4を大気開放する。   FIG. 2 shows the flow of the exhaust system sequence control from the opening of the sample chamber 7 to the atmosphere in the low vacuum scanning electron microscope according to the present invention until the low vacuum observation. In the air release mode, the air lock valve 3 is first closed, and the electron gun chamber 1 and the first intermediate chamber 2 are vacuum-sealed. Next, the valves AV2, AV3, AV5 and AV7 are closed, the leak valve LV2 is opened, and the sample chamber 7 and the second intermediate chamber 4 are opened to the atmosphere.

試料交換後は低真空排気モードを開始し、LV2,AV1のバルブを閉じAV2,AV6のバルブを開き、試料室7と第二中間室4を排気する。真空計12bが設定真空度の下限、例えば500Paに到達した時点でAV6のバルブを閉じる。次にAV1,AV5のバルブを開き、第二中間室4を複合ターボ分子ポンプ10の中間吸気口22で真空排気する。次にAV7のバルブを開き可変流量バルブ13の制御を開始し試料室7の真空度を調整する。なお、本例では図示しないが、真空計12bの値を常時読み取り、可変流量バルブ13の流量調整を自動で制御するようにしてもよい。   After the sample exchange, the low vacuum evacuation mode is started, the valves LV2 and AV1 are closed, the valves AV2 and AV6 are opened, and the sample chamber 7 and the second intermediate chamber 4 are evacuated. When the vacuum gauge 12b reaches the lower limit of the set vacuum level, for example, 500 Pa, the AV6 valve is closed. Next, the valves AV 1 and AV 5 are opened, and the second intermediate chamber 4 is evacuated at the intermediate intake port 22 of the composite turbo molecular pump 10. Next, the valve of AV7 is opened and control of the variable flow valve 13 is started to adjust the degree of vacuum in the sample chamber 7. Although not shown in the present example, the value of the vacuum gauge 12b may always be read and the flow rate adjustment of the variable flow valve 13 may be automatically controlled.

最後にエアロックバルブ3を開き低真空観察を開始する。   Finally, the air lock valve 3 is opened and low vacuum observation is started.

以上のように構成すれば、エアロックバルブ3により電子銃室1と第一中間室2の真空を保持し試料交換が行えることで、補助真空ポンプ11により試料室7と第二中間室4を予備排気すればよいので排気時間が短縮でき、試料交換から低真空観察に至るスループット向上が図れる。   With the above configuration, the sample can be exchanged by holding the vacuum in the electron gun chamber 1 and the first intermediate chamber 2 by the air lock valve 3, and the sample chamber 7 and the second intermediate chamber 4 can be connected by the auxiliary vacuum pump 11. Since preliminary evacuation is sufficient, the evacuation time can be shortened, and throughput can be improved from sample exchange to low vacuum observation.

図4は本発明の低真空走査電子顕微鏡の一実施形態を示す図である。   FIG. 4 is a diagram showing an embodiment of the low vacuum scanning electron microscope of the present invention.

本実施例では、中間室は1つであるが、エアロックバルブ3を境に、電子銃室1と中間室24の間にエアロックバルブを設け、電子銃室は、複合ターボ分子ポンプの主吸気口に接続され、中間室は、複合ターボ分子ポンプの中間吸気口22に接続されている。本実施例においても、本願の効果を達成することができる。中間室が1つなので、構造が容易で安価に作成することができる。   In this embodiment, there is one intermediate chamber, but an air lock valve is provided between the electron gun chamber 1 and the intermediate chamber 24 with the air lock valve 3 as a boundary, and the electron gun chamber is the main of the composite turbo molecular pump. The intermediate chamber is connected to the intake port, and the intermediate chamber is connected to the intermediate intake port 22 of the composite turbomolecular pump. Also in the present embodiment, the effect of the present application can be achieved. Since there is only one intermediate chamber, the structure is easy and can be produced at low cost.

図5は本発明の低真空走査電子顕微鏡の一実施形態を示す図である。   FIG. 5 is a diagram showing an embodiment of the low vacuum scanning electron microscope of the present invention.

本実施例では、中間室は第1,第2,第3真空室の3つに分離されている。第2中間室26と第3中間室27の間にはエアロックバルブ3が設けられている。電子銃室1には、別途イオンポンプ28等の超高真空用のポンプが別途取り付けられている。従前の実施例のように、電子銃室1を複合ターボ分子ポンプの主吸気口から排気しても差し支えない。   In this embodiment, the intermediate chamber is separated into three chambers, a first, a second and a third vacuum chamber. An air lock valve 3 is provided between the second intermediate chamber 26 and the third intermediate chamber 27. In the electron gun chamber 1, an extra high vacuum pump such as an ion pump 28 is separately attached. As in the previous embodiment, the electron gun chamber 1 may be exhausted from the main intake port of the composite turbomolecular pump.

本実施例ではさらに、オリフィス6の直上を複合ターボ分子ポンプの中間吸気口につないで排気を行っている。これにより、試料室から上がってきたガス分子を効果的に排気することができる。エアロックバルブ3より下流側は、複合ターボ分子ポンプの中間吸気口22に接続されている。中間吸気口でも主吸気口に近いほど高い真空度にすることができるので、試料室に近い側を主吸気口から遠い中間吸気口に接続する。   Further, in the present embodiment, exhaust is performed by connecting the orifice 6 directly above the intermediate intake port of the composite turbo molecular pump. Thereby, the gas molecules rising from the sample chamber can be effectively exhausted. The downstream side of the air lock valve 3 is connected to the intermediate intake port 22 of the composite turbo molecular pump. The closer to the main intake port, the higher the degree of vacuum can be achieved at the intermediate intake port, so the side closer to the sample chamber is connected to the intermediate intake port far from the main intake port.

なお、上記の実施例において、エアロックバルブより上流側を高真空で排気することのできるポンプに接続し、下流側をそれより真空度の低いポンプに接続することでも本発明の効果は得ることができる。複合ターボ分子ポンプの主吸気口と中間吸気口を用いることで、1台のポンプで本発明の効果を達成することができる。   In the above embodiment, the effect of the present invention can be obtained by connecting the upstream side of the air lock valve to a pump capable of exhausting with high vacuum and connecting the downstream side to a pump having a lower degree of vacuum. Can do. By using the main intake port and the intermediate intake port of the composite turbo molecular pump, the effect of the present invention can be achieved with a single pump.

本発明によれば、試料交換時にバルブより上流側を真空保持し、バルブより下流側を大気開放する。試料交換後は補助真空ポンプにより、試料室を設定可能な下限の真空度である数百Paまで予備排気することで予備排気室を設けることなく予備排気時間が短縮できる。また電子銃部は高真空に保たれていることで、予備排気後は比較的短時間で電子ビームを照射することが可能であることから試料交換から観察に至るまでのスループット向上が図れる。   According to the present invention, when the sample is exchanged, the upstream side of the valve is kept in vacuum, and the downstream side of the valve is opened to the atmosphere. After exchanging the sample, the pre-evacuation time can be shortened without providing a pre-exhaust chamber by pre-exhausting the sample chamber to several hundreds Pa, which is the lower limit of vacuum that can be set for the sample chamber. In addition, since the electron gun section is maintained at a high vacuum, it is possible to irradiate an electron beam in a relatively short time after preliminary evacuation, thereby improving throughput from sample exchange to observation.

またバルブより上流側を主吸気口で真空排気し、対物レンズに配置されたオリフィスを介してガスが吹き上がる中間室は、主吸気口より低い真空度範囲での真空排気が可能な中間吸気口から真空排気することで、オリフィスから吹き上がるガスの影響による電子銃室の真空度低下を抑制できる。よって第二中間室に吹き上がるガス量の低減が図れることから、電子銃室は高真空を維持しつつオリフィス径を拡大することができる。その結果、試料に照射するプローブ電流量を増加することが可能となる。これにより、比較的大きなプローブ電流を必要とするようなX線分析時において、従来ではオリフィスを取外すという操作が介在したが、オリフィスを取外すことなく必要とするプローブ電流を得ることができるため、この作業の煩わしさが解消される。またオリフィス径を従来と同じとした場合では、試料室をより低い真空度とすることができることから、真空による収縮や乾燥等のダメージを受けやすい試料を観察する場合、そのダメージ低減が図れる。   In addition, the intermediate chamber where the upstream side of the valve is evacuated from the main intake port and the gas blows up through the orifice arranged in the objective lens is an intermediate intake port that can be evacuated in a lower vacuum range than the main intake port By evacuating from the bottom, it is possible to suppress a decrease in the degree of vacuum in the electron gun chamber due to the effect of the gas blowing up from the orifice. Therefore, since the amount of gas blown up to the second intermediate chamber can be reduced, the electron gun chamber can expand the orifice diameter while maintaining a high vacuum. As a result, it is possible to increase the amount of probe current applied to the sample. As a result, during X-ray analysis that requires a relatively large probe current, the conventional operation of removing the orifice is involved, but the necessary probe current can be obtained without removing the orifice. The troublesome work is eliminated. Further, when the orifice diameter is the same as that of the prior art, the sample chamber can be set to a lower degree of vacuum. Therefore, when observing a sample that is susceptible to damage such as shrinkage or drying due to vacuum, the damage can be reduced.

さらに1台の複合ターボ分子ポンプと1台の補助真空ポンプという構成でも本発明を達成できるので、真空ポンプを追加することなく、差動排気機能を追加できる。このことから排気システムに要する装置内スペースの増加を最小限に抑え排気システムの機能向上が図れると共に、真空ポンプに要するメンテナンスコストも抑えることができる。   Furthermore, since the present invention can be achieved by the configuration of one composite turbo molecular pump and one auxiliary vacuum pump, a differential pumping function can be added without adding a vacuum pump. Accordingly, the increase in the space in the apparatus required for the exhaust system can be minimized and the function of the exhaust system can be improved, and the maintenance cost required for the vacuum pump can be suppressed.

1 電子銃室
2 第一中間室
3 エアロックバルブ
4 第二中間室
5 対物レンズ
6 オリフィス
7 試料室
8,9 真空排気管
10 複合ターボ分子ポンプ
11 補助真空ポンプ
12a,12b 真空計
13 可変流量バルブ
21 主吸気口
22,22a,22b 中間吸気口
23,24 中間室
25 第1中間室
26 第2中間室
27 第3中間室
28 イオンポンプ
DESCRIPTION OF SYMBOLS 1 Electron gun chamber 2 First intermediate chamber 3 Air lock valve 4 Second intermediate chamber 5 Objective lens 6 Orifice 7 Sample chamber 8, 9 Vacuum exhaust pipe 10 Composite turbo molecular pump 11 Auxiliary vacuum pump 12a, 12b Vacuum gauge 13 Variable flow valve 21 Main intake ports 22, 22a, 22b Intermediate intake ports 23, 24 Intermediate chamber 25 First intermediate chamber 26 Second intermediate chamber 27 Third intermediate chamber 28 Ion pump

Claims (3)

電子銃と、当該電子銃から放出された電子線が照射される試料が配置される試料室と、
前記電子銃を含む電子銃室、及び前記試料室を真空排気する排気システムを備えた電子顕微鏡において、
電子銃室と試料室の間に電子線が通過する複数の中間室を有し、当該複数の中間室の間の開口部にバルブを有し、
前記バルブより試料室側の中間室と前記試料室の間にオリフィスを有し、
前記バルブより試料室側の中間室及び試料室の圧力が、前記バルブより電子源側の中間室及び電子銃室の圧力より高くなるように排気する排気システムを有し、
当該排気システムは、複合ターボ分子ポンプで構成され、前記バルブより試料室側の中間室及び試料室は、前記複合ターボ分子ポンプの中間吸気口に接続され、前記バルブより電子源側の中間室及び電子銃室は、前記複合ターボ分子ポンプの主吸気口に接続されることを特徴とする電子顕微鏡。
An electron gun, and a sample chamber in which a sample irradiated with an electron beam emitted from the electron gun is disposed;
In an electron microscope including an electron gun chamber including the electron gun and an exhaust system for evacuating the sample chamber,
It has a plurality of intermediate chambers through which electron beams pass between the electron gun chamber and the sample chamber, and has a valve at the opening between the plurality of intermediate chambers,
Having an orifice between the sample chamber side intermediate chamber and the sample chamber from the valve;
The pressure in the intermediate chamber and the sample chamber of the sample chamber side of the valve, have a exhaust system for exhausting to be higher than the intermediate chamber and the pressure of the electron gun chamber of the electron source side of the valve,
The exhaust system is composed of a composite turbo molecular pump, the intermediate chamber and the sample chamber on the sample chamber side from the valve are connected to the intermediate intake port of the composite turbo molecular pump, and the intermediate chamber on the electron source side from the valve and An electron microscope characterized in that an electron gun chamber is connected to a main inlet of the composite turbo molecular pump .
請求項において、
前記バルブより試料室側の中間室及び試料室は、試料室から遠い順に、前記中間吸気口の前記主吸気口に近い側に接続されることを特徴とする電子顕微鏡。
In claim 1 ,
An electron microscope characterized in that an intermediate chamber and a sample chamber closer to the sample chamber than the valve are connected to a side closer to the main intake port of the intermediate intake port in order from the sample chamber.
請求項1において、
前記試料室は、1〜3000Paであり、試料室の圧力を調整するバルブを有することを特徴とする電子顕微鏡。
Oite to claim 1,
The sample chamber is 1 to 3000 Pa, and has a valve for adjusting the pressure of the sample chamber.
JP2009178574A 2009-07-31 2009-07-31 Low vacuum scanning electron microscope Active JP5244730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178574A JP5244730B2 (en) 2009-07-31 2009-07-31 Low vacuum scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178574A JP5244730B2 (en) 2009-07-31 2009-07-31 Low vacuum scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2011034744A JP2011034744A (en) 2011-02-17
JP5244730B2 true JP5244730B2 (en) 2013-07-24

Family

ID=43763640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178574A Active JP5244730B2 (en) 2009-07-31 2009-07-31 Low vacuum scanning electron microscope

Country Status (1)

Country Link
JP (1) JP5244730B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101216961B1 (en) 2011-10-17 2013-01-02 (주)엠크래프츠 Electronic microscope system
JP5875500B2 (en) * 2012-10-31 2016-03-02 株式会社日立ハイテクノロジーズ Electron beam microscope
JP6407411B2 (en) * 2015-04-15 2018-10-17 株式会社日立ハイテクノロジーズ Charged particle beam device and vacuum exhaust method thereof
JP7422349B2 (en) 2020-03-26 2024-01-26 国立研究開発法人物質・材料研究機構 Electron gun chamber for scanning electron microscope, electron gun including the same, and scanning electron microscope

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828064A (en) * 1995-08-11 1998-10-27 Philips Electronics North America Corporation Field emission environmental scanning electron microscope
DE10032607B4 (en) * 2000-07-07 2004-08-12 Leo Elektronenmikroskopie Gmbh Particle beam device with a particle source to be operated in ultra-high vacuum and a cascade-shaped pump arrangement for such a particle beam device
GB0414316D0 (en) * 2004-06-25 2004-07-28 Boc Group Plc Vacuum pump
JP4319636B2 (en) * 2005-03-16 2009-08-26 株式会社日立ハイテクノロジーズ Low vacuum scanning electron microscope

Also Published As

Publication number Publication date
JP2011034744A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5244730B2 (en) Low vacuum scanning electron microscope
US6872956B2 (en) Particle beam device with a particle source to be operated in high vacuum and cascade-type pump arrangement for such a particle beam device
JP4319636B2 (en) Low vacuum scanning electron microscope
JP2007207758A (en) Particle optical device having predetermined final vacuum pressure
JP5853122B2 (en) Charged particle beam equipment
JP6407411B2 (en) Charged particle beam device and vacuum exhaust method thereof
JP4930754B2 (en) Charged particle beam equipment
TW201818421A (en) High-heat-load vacuum device and method for manufacturing the same
Hotz et al. Ultra-high vacuum aberration-corrected STEM for in-situ studies
JP2001332204A (en) Pumping unit for electron microscope
WO2012014362A1 (en) Charged particle beam device
JP4847900B2 (en) Scanning electron microscope
JP6879663B2 (en) Charged particle beam device
WO2016051441A1 (en) Ion beam device and sample observation method
JPH06215716A (en) Scanning electron microscope
JPH03157585A (en) Vacuum device and usage thereof
CN105908146A (en) Rotary magnetron target and horizontal magnetron sputtering coating equipment
KR101713983B1 (en) Plasma generating device having differential pumping structure
EP2760042A2 (en) Charged particle beam instrument with a specimen pre-evacuation chamber
JP2006100118A (en) Electron microscope analyzer
WO2022215212A1 (en) Charged particle beam device, and sample analysis method
JPH1140094A (en) Exhaust system and exhaust method of vacuum device
JP2001070781A (en) Vacuum treatment device
JP2009158527A (en) Vacuum chamber device having load lock chamber
JP7422349B2 (en) Electron gun chamber for scanning electron microscope, electron gun including the same, and scanning electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5244730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350