JP5237231B2 - Brazing material, metal member joining structure, and metal member joining method - Google Patents

Brazing material, metal member joining structure, and metal member joining method Download PDF

Info

Publication number
JP5237231B2
JP5237231B2 JP2009218947A JP2009218947A JP5237231B2 JP 5237231 B2 JP5237231 B2 JP 5237231B2 JP 2009218947 A JP2009218947 A JP 2009218947A JP 2009218947 A JP2009218947 A JP 2009218947A JP 5237231 B2 JP5237231 B2 JP 5237231B2
Authority
JP
Japan
Prior art keywords
metal member
based metal
layer
brazing material
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009218947A
Other languages
Japanese (ja)
Other versions
JP2010099739A (en
Inventor
泰成 脇坂
徳二 奥村
孝典 鈴木
啓示 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009218947A priority Critical patent/JP5237231B2/en
Publication of JP2010099739A publication Critical patent/JP2010099739A/en
Application granted granted Critical
Publication of JP5237231B2 publication Critical patent/JP5237231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ろう材、金属部材の接合構造、および、金属部材の接合方法に係り、特に金属部材としてFe系金属部材とAl系金属部材を用いた異種金属部材の接合に適用されるろう材の改良に関する。   The present invention relates to a brazing material, a joining structure of metal members, and a joining method of metal members, and in particular, a brazing material applied to joining dissimilar metal members using Fe-based metal members and Al-based metal members as metal members. Regarding improvements.

各種継手等の金属部材の接合構造は、異種金属部材の接合により製造されている。異種金属部材の接合では、それら金属部材の間に介在させたろう材をレーザ照射で加熱することによりブレージング(ろう付)を行っている。これにより、異種金属部材の間に接合部を形成することにより、金属部材の接合構造を製造している。   The joining structure of metal members such as various joints is manufactured by joining dissimilar metal members. In joining dissimilar metal members, brazing is performed by heating a brazing material interposed between the metal members by laser irradiation. Thereby, the joining structure of a metal member is manufactured by forming a joined part between different metal members.

たとえば、異種金属部材として、Fe系材料からなるFe系金属部材およびAl系材料からなるAl系金属部材を用いる場合、ろう材としてZn−Al系ろう材が用いられている(たとえば特許文献1参照)。Znは化合物層を形成せず、広い範囲で、低融点母材であるAl系金属部材のAlと共晶組織を形成するからである。   For example, when using an Fe-based metal member made of an Fe-based material and an Al-based metal member made of an Al-based material as the dissimilar metal member, a Zn—Al-based brazing material is used as the brazing material (see, for example, Patent Document 1). ). This is because Zn does not form a compound layer but forms a eutectic structure with Al of the Al-based metal member which is a low melting point base material in a wide range.

特許第3740858号公報Japanese Patent No. 3740858

しかしながら、Fe系金属部材と接合部との境界部では、ろう付け金属部の組織が、共晶融解したAl系金属部材のAlを含むZn−Al系組織となっているため、そのろう付け部のAlとFe系金属部材とでFe−Al系の金属間化合物層を形成してしまい、そのFe−Al系の金属間化合物層が脆弱であるため、そこで破断が生じる虞があった。その結果、異種金属部材の接合構造の強度は、同種金属部材の接合構造のものより非常に低下していた。   However, at the boundary between the Fe-based metal member and the joint, the brazed metal part has a Zn-Al-based structure containing Al of the eutectic-melted Al-based metal member. The Fe—Al-based intermetallic compound layer was formed with the Al and Fe-based metal member, and the Fe—Al-based intermetallic compound layer was fragile, and there was a possibility that fracture would occur there. As a result, the strength of the joint structure of different metal members was much lower than that of the joint structure of the same metal members.

したがって、本発明は、同種金属部材の接合構造と略同程度の強度を有する異種金属部材の接合構造を得ることができるろう材およびそれを用いた金属部材の接合方法、ならびに、それにより得られる金属部材の接合構造を提供することを目的としている。   Therefore, the present invention provides a brazing material capable of obtaining a joining structure of dissimilar metal members having substantially the same strength as the joining structure of similar metal members, a method of joining metal members using the same, and a product obtained thereby. It aims at providing the joining structure of a metal member.

本発明者は、金属部材としてFe系金属部材とAl系金属部材を用いた異種金属接合に適用されるろう材について鋭意研究を重ねた。従来では、ZnにSiを添加した場合、図9(A)に示すように、その材料の融点が、Siの添加に従い上昇して600〜900℃程度と高くなるため、SiはZn系ろう材の添加元素として検討されていなかった。Zn系ろう材の添加元素として通常用いられているのは、図9(B)に示すように、Znとの共晶によりろう材の融点を低下させるAlである。なお、図9(A)はZnSiの2元平衡状態図、(B)はZnAlの2元平衡状態図である(出典: Binary Alloy Phase Diagrams、ASM International, Materials Park)。   The present inventor has intensively studied a brazing material applied to dissimilar metal joining using an Fe-based metal member and an Al-based metal member as metal members. Conventionally, when Si is added to Zn, as shown in FIG. 9A, the melting point of the material rises as Si is added and increases to about 600 to 900 ° C. Therefore, Si is a Zn-based brazing material. It has not been studied as an additive element. As an additive element of the Zn-based brazing filler metal, Al that lowers the melting point of the brazing filler metal by eutectic with Zn as shown in FIG. 9B is usually used. 9A is a binary equilibrium diagram of ZnSi, and FIG. 9B is a binary equilibrium diagram of ZnAl (Source: Binary Alloy Phase Diagrams, ASM International, Materials Park).

これに対して、本発明者は、添加元素としてSiを含有させたZn−Si系ろう材を用いることにより、Fe系金属部材と接合部との境界部にFe−Al系の金属間化合物層が形成されないことを見出した。すなわち、本発明のろう材は、Fe系材料からなるFe系金属部材とAl系材料からなるAl系金属部材との接合に用いられるろう材であって、Si:0.25〜2.5重量%を含有し、残部がZnおよび不可避不純物からなることを特徴としている。 On the other hand, the present inventor uses a Zn—Si based brazing material containing Si as an additive element, thereby providing an Fe—Al based intermetallic compound layer at the boundary between the Fe based metal member and the joint. Was found not formed. That is, the brazing material of the present invention is a brazing material used for joining an Fe-based metal member made of an Fe-based material and an Al-based metal member made of an Al-based material, and Si: 0.25 to 2.5 weight %, With the balance being Zn and inevitable impurities.

本発明のろう材では、添加元素としてSiを含有させたZn−Si系ろう材を用いることにより、Fe系材料からなるFe系金属部材とAl系材料からなるAl系金属部材との異種金属部材接合を行うので、Fe系金属部材と接合部との境界部にFe−Al系の金属間化合物層が形成されない。従来では、Fe系金属部材と接合部との境界部のFe−Al系の金属間化合物層が脆弱であるため、接合構造体の強度低下を招いていたが、本発明では、Fe系金属部材と接合部との境界部にSiを主成分として含有する層が形成され、その層によってAlのFe系金属部材への流入およびFeのろう材層への流入が防止されるから、従来技術の問題であったFe−Al系の金属間化合物層が形成されない。したがって、Fe系金属部材と接合部との境界部の強度を図ることができるので、同種金属部材接合と略同等の接合強度を得ることができる。   In the brazing material of the present invention, by using a Zn-Si based brazing material containing Si as an additive element, a dissimilar metal member of an Fe based metal member made of Fe based material and an Al based metal member composed of Al based material Since joining is performed, an Fe—Al based intermetallic compound layer is not formed at the boundary between the Fe based metal member and the joint. Conventionally, since the Fe-Al intermetallic compound layer at the boundary between the Fe-based metal member and the joint is fragile, the strength of the joint structure is reduced. In the present invention, the Fe-based metal member A layer containing Si as a main component is formed at the boundary between the metal and the joint, and this layer prevents the inflow of Al into the Fe-based metal member and the inflow of Fe into the brazing material layer. The problematic Fe-Al intermetallic compound layer is not formed. Therefore, since the strength of the boundary portion between the Fe-based metal member and the joint portion can be achieved, it is possible to obtain a joint strength substantially equivalent to that of the same-type metal member joint.

本発明のろう材はSi:0.25〜2.5重量%を含有し、残部がZnおよび不可避不純物からなるので、接合強度(特にピール強度)をさらに向上させることができる。 Brazing material of the present invention, Si: 0.25 to 2.5 containing wt%, since the balance being Zn and unavoidable impurities, it is possible to further improve the bonding strength (in particular peel strength).

本発明の金属部材の接合方法は、本発明のろう材を用いる。すなわち、本発明の金属部材の接合方法は、Fe系材料からなるFe系金属部材とAl系材料からなるAl系金属部材との間にろう材を介在して、Fe系金属部材とAl系金属部材とを接合する接合方法であって、ろう材は、Si:0.25〜2.5重量%を含有し、残部がZnおよび不可避不純物からなることを特徴としている。本発明の金属部材の接合方法は、本発明のろう材を用いるので、本発明のろう材による効果と同様な効果を得ることができる。 The brazing material of the present invention is used in the method for joining metal members of the present invention. That is, the metal member joining method of the present invention includes a Fe-based metal member and an Al-based metal with a brazing material interposed between the Fe-based metal member made of Fe-based material and the Al-based metal member composed of Al-based material. A joining method for joining members, wherein the brazing material contains Si: 0.25 to 2.5% by weight, and the balance is made of Zn and inevitable impurities. Since the brazing material of the present invention is used in the method for joining metal members of the present invention, the same effects as those obtained by the brazing material of the present invention can be obtained.

本発明の金属部材の接合方法は種々の構成を用いることができる。たとえば、被接合部のFe系金属部材をFe系材料の融点以上の温度で加熱を行うことができる。この態様では、Fe系材料からなるFe系金属部材の被接合部をFe系材料の融点以上の温度で加熱するので、接合時にFe系金属部材の被接合部にキーホールを形成することができる。なお、キーホールとは、金属部材が溶融することにより形成される空洞部のことである。また、被接合部とは、Fe系金属部材とAl系金属部材との接合予定部のことを表し、接合部とは、接合後の接合予定部のことを表している。   The metal member joining method of the present invention can employ various configurations. For example, the Fe-based metal member of the bonded portion can be heated at a temperature equal to or higher than the melting point of the Fe-based material. In this aspect, since the bonded portion of the Fe-based metal member made of the Fe-based material is heated at a temperature equal to or higher than the melting point of the Fe-based material, a keyhole can be formed in the bonded portion of the Fe-based metal member during bonding. . The keyhole is a cavity formed by melting a metal member. Moreover, a to-be-joined part represents the joining plan part of an Fe-type metal member and an Al-type metal member, and a joining part represents the joining plan part after joining.

レーザ照射による加熱では、キーホール内でレーザビームが多重反射するから、キーホール内でエネルギー密度が高くなり、キーホール内の上側から下側までの全表面が略均一に加熱される。これにより、被溶接部の加熱後、キーホール内に入り込んだ溶融Zn−Si系ろう材は、キーホール内の全表面と一様に反応することができる。したがって、Fe系金属部材と接合部との境界部の強度をさらに高めることができるので、接合構造体の接合強度の向上をさらに図ることができる。   In the heating by laser irradiation, since the laser beam is multiply reflected in the keyhole, the energy density is increased in the keyhole, and the entire surface from the upper side to the lower side in the keyhole is heated substantially uniformly. As a result, the molten Zn—Si brazing material that has entered the keyhole after heating the welded portion can uniformly react with the entire surface of the keyhole. Therefore, since the strength of the boundary portion between the Fe-based metal member and the joint portion can be further increased, the joint strength of the joint structure can be further improved.

また、Zn系材料およびFe−Zn系材料は蒸気化する。これにより、GAメッキ、GIメッキなどのメッキの種類に関係なく、Fe系材料に施されたメッキ部分が蒸気化するから、メッキの種類に関係なく、良好な接合部を得ることができる。さらに、Fe系材料表面の酸化被膜を過熱による溶融および蒸気化の際の蒸気圧で除去するから、フラックスを用いなくても、異材金属部材接合を良好に行うことができる。   In addition, the Zn-based material and the Fe—Zn-based material are vaporized. Thereby, regardless of the type of plating such as GA plating or GI plating, the plated portion applied to the Fe-based material is vaporized, so that a good joint can be obtained regardless of the type of plating. Furthermore, since the oxide film on the surface of the Fe-based material is removed by the vapor pressure during melting and vaporization due to overheating, the dissimilar metal member can be satisfactorily bonded without using a flux.

本発明の金属部材の接合構造は、本発明の金属部材の接合方法により製造される接合構造である。すなわち、本発明の金属部材の接合構造は、Fe系材料からなるFe系金属部材とAl系材料からなるAl系金属部材とがSi:0.25〜2.5重量%を含有し、残部がZnおよび不可避不純物からなるろう材により接合されて形成される金属部材の接合構造であって、Fe系金属部材とAl系金属部材との間には接合部が形成され、接合部は、Al系金属部材に隣接するとともに、Znを主成分として含有し、残部にAlが含有される第1層と、Fe系金属部材に隣接するとともに、Feを主成分として含有し、残部にZnが含有される第2層と、第1層と第2層との間に形成されるとともに、Siを主成分として含有する第3層とを有していることを特徴としている。 The metal member bonding structure of the present invention is a bonding structure manufactured by the metal member bonding method of the present invention. That is, in the joining structure of the metal member of the present invention, the Fe-based metal member made of Fe-based material and the Al-based metal member made of Al-based material contain Si: 0.25 to 2.5% by weight, and the balance is A metal member bonding structure formed by bonding with a brazing material composed of Zn and inevitable impurities, wherein a bonding portion is formed between an Fe-based metal member and an Al-based metal member, and the bonding portion is formed of an Al-based material. Adjacent to the metal member and containing Zn as a main component and the balance containing Al, and adjacent to the Fe-based metal member and containing Fe as the main component and the remainder containing Zn And a third layer containing Si as a main component. The second layer is formed between the first layer and the second layer.

本発明の金属部材の接合構造では、接合部におけるFe系金属部材との境界部には、Siを主成分として含有し、上記のようにAlのFe系金属部材への流入およびFeの第1層(ろう材層)への流入を防止する第3層が形成されているので、Fe系材料(Fe系金属部材および第2層)と第1層との間に、従来技術の問題であったFe−Al系の金属間化合物層が形成されず、Fe系材料とろう材層は直接接合する。したがって、上記のように接合強度の向上を図ることができる。   In the joint structure of the metal member of the present invention, the boundary portion between the joint portion and the Fe-based metal member contains Si as a main component. As described above, the inflow of Al into the Fe-based metal member and the first Fe Since the third layer for preventing inflow into the layer (the brazing filler metal layer) is formed, there is a problem of the prior art between the Fe-based material (Fe-based metal member and the second layer) and the first layer. The Fe—Al-based intermetallic compound layer is not formed, and the Fe-based material and the brazing filler metal layer are directly joined. Therefore, it is possible to improve the bonding strength as described above.

本発明のろう材、金属部材の接合構造、あるいは、金属部材の接合方法によれば、Fe系金属部材と接合部との境界部に脆弱なFe−Al系の金属間化合物層が形成されないから、Fe系金属部材と接合部との境界部の強度を図ることができ、その結果、接合構造体は、同種金属部材接合と略同等の接合強度を得ることができる等の効果を得ることができる。   According to the brazing material, metal member joining structure, or metal member joining method of the present invention, a fragile Fe-Al based intermetallic compound layer is not formed at the boundary between the Fe based metal member and the joint. In addition, the strength of the boundary between the Fe-based metal member and the joint can be achieved, and as a result, the joint structure can obtain an effect such as being able to obtain substantially the same joint strength as the same kind of metal member joint. it can.

本発明に係る一実施形態の金属部材の接合方法により接合構造体を製造する状態の概略構成を表し、(A)は斜視図、(B)は側面図である。BRIEF DESCRIPTION OF THE DRAWINGS The schematic structure of the state which manufactures a joining structure by the joining method of the metal member of one Embodiment concerning this invention is represented, (A) is a perspective view, (B) is a side view. 本発明に係る一実施形態の金属部材の接合時にキーホールが形成された被接合部の構成を表す断面図である。It is sectional drawing showing the structure of the to-be-joined part in which the keyhole was formed at the time of the joining of the metal member of one Embodiment which concerns on this invention. 本発明に係る一実施形態の金属部材の接合方法により得られた接合構造体の一例を表し、(A)は断面構成図、(B)は(A)の部分拡大図である。An example of the joining structure obtained by the joining method of the metal member of one embodiment concerning the present invention is expressed, (A) is a section lineblock diagram and (B) is the elements on larger scale of (A). (A)は、Zn−Si系ろう材(Si含有量1.0wt%)を用いて得られた接合構造体の接合部のSEM写真(左側写真)およびその写真におけるFe系金属部材と接合部との境界部の拡大SEM写真(右側写真)であり、(B)は、(A)の拡大写真で示された境界部のEPMAマップ分析写真である。(A) is a SEM photograph (left photograph) of a joint part of a joint structure obtained using a Zn—Si brazing material (Si content 1.0 wt%), and an Fe-based metal member and joint part in the photograph. (B) is an EPMA map analysis photograph of the boundary portion shown in the enlarged photograph of (A). Fe系金属部材と接合部との境界部のSEM写真であり、(A)は3000倍のSEM写真、(B)は15000倍のSEM写真である。It is a SEM photograph of the boundary part of a Fe-type metal member and a junction part, (A) is a 3000 times SEM photograph, (B) is a 15000 times SEM photograph. (A)は、Fe系金属部材と接合部との境界部の拡大SEM写真であり、(B)は、(A)の枠Xで示される部分の拡大SEM写真であり、(C)は、(B)の拡大SEM写真で示された部分のEPMAマップ分析写真である。(A) is an enlarged SEM photograph of the boundary portion between the Fe-based metal member and the joint, (B) is an enlarged SEM photograph of a portion indicated by a frame X in (A), and (C) is It is an EPMA map analysis photograph of the part shown by the enlarged SEM photograph of (B). (A)〜(E)は、図6(C)で示された部分の各元素のEPMAマップ分析写真であり、(A)はO、(B)はAl、(C)はSi、(D)はFe、(E)はZnのEPMAマップ分析写真である。(A)-(E) are EPMA map analysis photographs of each element in the portion shown in FIG. 6 (C), where (A) is O, (B) is Al, (C) is Si, (D ) Is an EPMA map analysis photograph of Fe and (E) is Zn. Zn−Si系ろう材(Si含有量1.0wt%)を用いて得られた接合構造体の接合部のSEM写真である。It is a SEM photograph of the junction part of the junction structure obtained using Zn-Si system brazing material (Si content 1.0wt%). 図8の枠Yで示される部分のTEM写真(倍率:30000倍)である。9 is a TEM photograph (magnification: 30000 times) of a portion indicated by a frame Y in FIG. 8. 図8の枠Yで示される部分の拡大TEM写真(倍率:150000倍)である。9 is an enlarged TEM photograph (magnification: 150,000 times) of a portion indicated by a frame Y in FIG. 8. (A),(B)は、フレア引張強度試験およびピール強度試験の手法を説明するための接合構造体の概略断面構成図である。(A), (B) is a schematic sectional block diagram of the joining structure body for demonstrating the method of a flare tensile strength test and a peel strength test. フレア引張強度試験で得られた各試料の強度を表すグラフである。It is a graph showing the intensity | strength of each sample obtained by the flare tensile strength test. ピール強度試験で得られた各試料の強度を表すグラフである。It is a graph showing the intensity | strength of each sample obtained by the peel strength test. (A)はZnSiの2元平衡状態図、(B)はZnAlの2元平衡状態図である。(A) is a binary equilibrium diagram of ZnSi, and (B) is a binary equilibrium diagram of ZnAl.

以下、本発明の一実施形態について図面を参照して説明する。図1は、本発明に係る一実施形態の金属部材の接合方法を用いて接合を行っている状態の概略構成を表し、(A)は概略斜視図、(B)は正面図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration in a state where bonding is performed using a metal member bonding method according to an embodiment of the present invention, (A) is a schematic perspective view, and (B) is a front view.

金属部材の接合方法は、たとえばフレア継手を製造する配置を用いている。金属部材として、Fe系材料からなるFe系金属部材1およびAl系材料からなるAl系金属部材2を用いている。Fe系金属部材1,Al系金属部材2は湾曲部11,12を有している。Fe系金属部材1およびAl系金属部材2の配置では、湾曲部11,12どうしが対向し、それら湾曲部11,12により開先形状13を形成している。この場合、Fe系金属部材1とAl系金属部材2との対向部に段差を設けている。   As a method for joining metal members, for example, an arrangement for producing a flare joint is used. As the metal member, an Fe-based metal member 1 made of Fe-based material and an Al-based metal member 2 made of Al-based material are used. The Fe-based metal member 1 and the Al-based metal member 2 have curved portions 11 and 12. In the arrangement of the Fe-based metal member 1 and the Al-based metal member 2, the curved portions 11, 12 face each other, and a groove shape 13 is formed by the curved portions 11, 12. In this case, a step is provided at the facing portion between the Fe-based metal member 1 and the Al-based metal member 2.

本実施形態の金属部材の接合方法では、開先形状13の中心部に、ワイヤガイド101を通じてワイヤ状のZn−Si系ろう材3を送出しながら、Zn−Si系ろう材3の先端部にレーザビーム102を照射する。Zn−Si系ろう材3はSiが0.25〜2.5重量%を含有し、残部がZnおよび不可避不純物からなるIn the metal member joining method of the present embodiment, the wire-shaped Zn—Si brazing material 3 is fed to the center of the groove shape 13 through the wire guide 101, and the tip of the Zn—Si based brazing material 3 is sent. Irradiation with a laser beam 102 is performed. Zn-Si based brazing material 3, Si is contained 0.25 to 2.5 wt%, the balance being Zn and unavoidable impurities.

レーザビーム102の照射では、Fe系金属部材1およびAl系金属部材2の被接合部をFe系材料の融点以上の温度で加熱することが好適である。図2は、Fe系金属部材1とAl系金属部材2との接合時にキーホール5が形成された被接合部の概略構成を表す断面図である。被接合部では、加熱により材料の溶融・蒸発が起こり、蒸発した材料による蒸発反力(図中の矢印)によってキーホール5が形成される。この場合、溶融しているZn−Si系ろう材は、レーザ照射部の周囲に存在している。このようなキーホール5内ではレーザビーム102が、図中の点線で示すように多重反射するから、キーホール5内ではエネルギー密度が高くなり、キーホール5内の上側から下側までの全表面が略均一に加熱される。これにより、レーザビーム102の通過後、キーホール5内に入り込む溶融Zn−Si系ろう材は、キーホール5内の全表面と一様に反応することができる。   In the irradiation with the laser beam 102, it is preferable to heat the bonded portions of the Fe-based metal member 1 and the Al-based metal member 2 at a temperature equal to or higher than the melting point of the Fe-based material. FIG. 2 is a cross-sectional view illustrating a schematic configuration of a bonded portion in which the keyhole 5 is formed when the Fe-based metal member 1 and the Al-based metal member 2 are bonded. In the bonded portion, the material is melted and evaporated by heating, and the keyhole 5 is formed by the evaporation reaction force (arrow in the figure) due to the evaporated material. In this case, the molten Zn—Si brazing material exists around the laser irradiation part. In such a keyhole 5, the laser beam 102 is multiply reflected as shown by dotted lines in the figure, so that the energy density is increased in the keyhole 5, and the entire surface from the upper side to the lower side in the keyhole 5. Is heated substantially uniformly. As a result, the molten Zn—Si brazing material that enters the keyhole 5 after passing through the laser beam 102 can uniformly react with the entire surface of the keyhole 5.

このようなレーザビーム102の照射による加熱を開先形状13の延在方向に沿って図1の手前側から奥側に行うことにより、図3(A),(B)に示すように、Fe系金属部材1とAl系金属部材2との接合構造体10を製造することができる。図3(A)は接合構造体10の断面構成図、(B)は(A)に示す接合部4におけるFe系金属部材1側の境界部40の部分拡大図である。   By performing heating by irradiation of such a laser beam 102 from the near side to the far side in FIG. 1 along the extending direction of the groove shape 13, as shown in FIGS. 3 (A) and 3 (B), Fe The joining structure 10 of the metal system member 1 and the Al system metal member 2 can be manufactured. 3A is a cross-sectional configuration diagram of the bonded structure 10, and FIG. 3B is a partial enlarged view of the boundary portion 40 on the Fe-based metal member 1 side in the bonded portion 4 shown in FIG.

接合構造体10は、Fe系金属部材1とAl系金属部材2とを備え、Fe系金属部材1とAl系金属部材2の間には接合部4が形成されている。接合部4は、図3(B)に示すように、Al系金属部材2に隣接するろう材層41(第1層)、Fe系金属部材1に隣接する反応層42(第2層)、ろう材層41と反応層42との間に形成されたSi濃縮層43(第3層)を有する。ろう材層41は、Znを主成分として含有し、残部にAlを含有している。反応層42は、Feを主成分として含有し、残部にZnを含有している。Si濃縮層43は、Siを主成分として含有している。Si濃縮層43は、AlのFe系金属部材1への流入およびFeのろう材層41への流入を防止するので、Fe系材料(Fe系金属部材1および反応層42)とろう材層41との間には、従来技術の問題であったFe−Al系の金属間化合物層が形成されず、Fe系材料とろう材層41は直接接合する。   The joint structure 10 includes an Fe-based metal member 1 and an Al-based metal member 2, and a joint 4 is formed between the Fe-based metal member 1 and the Al-based metal member 2. As shown in FIG. 3B, the bonding portion 4 includes a brazing filler metal layer 41 (first layer) adjacent to the Al-based metal member 2, a reaction layer 42 (second layer) adjacent to the Fe-based metal member 1, An Si enriched layer 43 (third layer) formed between the brazing material layer 41 and the reaction layer 42 is provided. The brazing filler metal layer 41 contains Zn as a main component, and the remainder contains Al. The reaction layer 42 contains Fe as a main component, and the remainder contains Zn. The Si enriched layer 43 contains Si as a main component. Since the Si enriched layer 43 prevents the inflow of Al into the Fe-based metal member 1 and the inflow of Fe into the brazing filler metal layer 41, the Fe-based material (Fe-based metal member 1 and the reaction layer 42) and the brazing filler metal layer 41. The Fe—Al-based intermetallic compound layer, which has been a problem of the prior art, is not formed between the Fe-based material and the brazing material layer 41.

接合部4では、Si粒がマトリックス中に散在し、その粒径が小さい方が好適である。具体的には、Siの粒径は、Znの有する機械的伸びを阻害しないサイズ(たとえば10μm以下)が好適である。Si粒の微粒化は、ろう材の製造における押し出し工程時の結晶粒の切断により行われるものと推察される。   In the joint portion 4, it is preferable that Si grains are scattered in the matrix and the particle diameter is smaller. Specifically, the Si particle size is preferably a size that does not inhibit the mechanical elongation of Zn (for example, 10 μm or less). The atomization of Si grains is presumed to be performed by cutting the crystal grains during the extrusion process in the production of the brazing material.

本実施形態では、Zn−Si系ろう材3を用いて、Fe系金属部材1とAl系金属部材2との異種金属部材接合を行うので、Fe系金属部材と接合部との境界部にSiを主成分として含有する層が形成され、その層によってAlのFe系金属部材への拡散が防止されるから、従来技術の問題であったFe−Al系の金属間化合物層が形成されない。したがって、Fe系金属部材1と接合部4との境界部の強度向上を図ることができるので、接合構造体10は、同種金属部材接合と略同等の接合強度を得ることができる。特に、Zn−Si系ろう材3として、Si:0.25〜2.5重量%を含有し、残部がZnおよび不可避不純物からなるろう材を用いているので、接合強度(特にピール強度)をさらに向上させることができる。   In this embodiment, since the dissimilar metal member joining of the Fe-based metal member 1 and the Al-based metal member 2 is performed using the Zn—Si based brazing material 3, Si is formed at the boundary between the Fe-based metal member and the joint. Is formed as a main component, and the diffusion of Al into the Fe-based metal member is prevented by the layer, so that the Fe—Al-based intermetallic compound layer, which has been a problem of the prior art, is not formed. Therefore, since the strength of the boundary portion between the Fe-based metal member 1 and the joint portion 4 can be improved, the joint structure 10 can obtain substantially the same joint strength as that of the same-type metal member joint. In particular, as the Zn—Si-based brazing material 3, Si: 0.25 to 2.5 wt% is contained, and the remainder is made of a brazing material composed of Zn and inevitable impurities. Further improvement can be achieved.

また、Fe系金属部材1の被接合部に形成されたキーホール5内へ加熱後に入り込んだ溶融Zn−Si系ろう材は、キーホール5内の全表面と一様に反応することができるので、Fe系金属部材1と接合部4との境界部の強度をさらに高めることができる。その結果、接合構造体10の接合強度の向上をさらに図ることができる。   Moreover, since the molten Zn—Si brazing material that has entered the keyhole 5 formed in the bonded portion of the Fe-based metal member 1 after heating can react uniformly with the entire surface of the keyhole 5. Further, the strength of the boundary portion between the Fe-based metal member 1 and the joint portion 4 can be further increased. As a result, the joint strength of the joint structure 10 can be further improved.

また、Zn系材料およびFe−Zn系材料は蒸気化する。これにより、GAメッキ、GIメッキなどのメッキの種類に関係なく、Fe系材料に施されたメッキ部分が蒸気化するから、メッキの種類に関係なく、良好な接合部を得ることができる。さらに、Fe系材料表面の酸化被膜を過熱による溶融および蒸気化の際の蒸気圧で除去するから、フラックスを用いなくても、異材金属部材接合を良好に行うことができる。   In addition, the Zn-based material and the Fe—Zn-based material are vaporized. Thereby, regardless of the type of plating such as GA plating or GI plating, the plated portion applied to the Fe-based material is vaporized, so that a good joint can be obtained regardless of the type of plating. Furthermore, since the oxide film on the surface of the Fe-based material is removed by the vapor pressure during melting and vaporization due to overheating, the dissimilar metal member can be satisfactorily bonded without using a flux.

以下、具体的な実施例を参照して本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples.

実施例では、図1に示す配置形態と同様にFe系金属部材およびAl系金属部材を配置し、それら金属部材の湾曲部により開先形状を形成した。そして、その開先形状の中心部に、ワイヤ状のZn−Si系ろう材をワイヤガイドを通じて送出しながら、Zn−Si系ろう材の先端部にレーザビームを照射した。これによりフレア継手形状の金属部材の接合構造体を製造した。   In the example, an Fe-based metal member and an Al-based metal member were disposed in the same manner as in the arrangement form shown in FIG. 1, and a groove shape was formed by the curved portions of these metal members. And the laser beam was irradiated to the front-end | tip part of the Zn-Si type | system | group brazing material, sending the wire-like Zn-Si type brazing material through the wire guide to the center part of the groove shape. Thereby, a bonded structure of metal members having a flare joint shape was manufactured.

接合条件については、レーザビームの集光径を1.8mm、レーザ出力を1.4kW、接合速度を1m/min、ワイヤ速度を3.2m/minとした。Fe系金属部材として、鋼板(JAC270、板厚1.0mm、図1での縦方向長さ200mm、横方向長さ80mm)を用い、Al系金属部材として、Al板(A6022-T4、板厚が1.2mm、図1での縦方向長さを200mm、横方向長さを80mm)を用いた。   Regarding the bonding conditions, the focused diameter of the laser beam was 1.8 mm, the laser output was 1.4 kW, the bonding speed was 1 m / min, and the wire speed was 3.2 m / min. A steel plate (JAC270, plate thickness 1.0 mm, longitudinal length 200 mm, lateral length 80 mm in FIG. 1) was used as the Fe-based metal member, and Al plate (A6022-T4, plate thickness) as the Al-based metal member. 1.2 mm, the vertical length in FIG. 1 is 200 mm, and the horizontal length is 80 mm).

以上のような金属部材の接合では、Siの含有量の異なる(Si含有量が0.25wt%、1.0wt%、2.5wt%)Zn−Si系ろう材を用意し、各Zn−Si系ろう材を用いて金属部材の接合を行い、各Zn−Si系ろう材に対応する金属部材の接合構造体を得た。そして、接合方向に直交する方向で各接合構造体を短冊状に切断し、複数のテストピースを得た。なお、全てのZn−Si系ろう材のワイヤ径を1.2mmとした。以上のような接合構造体のテストピースを用いて、各種評価を行った。   In the joining of the metal members as described above, Zn—Si brazing materials having different Si contents (Si contents of 0.25 wt%, 1.0 wt%, 2.5 wt%) are prepared, and each Zn—Si is prepared. The metal member was joined using the brazing filler metal to obtain a metal member joining structure corresponding to each Zn-Si brazing filler metal. And each joining structure was cut | disconnected in strip shape in the direction orthogonal to a joining direction, and the several test piece was obtained. Note that the wire diameter of all the Zn—Si brazing materials was 1.2 mm. Various evaluations were performed using the test piece of the bonded structure as described above.

[Fe系金属部材と接合部との境界部の元素分析および観察]
(1)低倍率元素分析およびSEM観察
まず、Fe系金属部材と接合部との境界部について低倍率で元素分析および観察を行った。Si含有量が1.0wt%のZn−Si系ろう材を用いて得られた接合構造体のテストピースについて、電子線マイクロプローブアナライザ(EPMA)により低倍率で元素分析を行った。図4(A)は、接合構造体の接合部のSEM写真(左側写真)およびその写真におけるFe系金属部材と接合部との境界部の拡大SEM写真(右側写真)であり(B)は、(A)の拡大SEM写真で示された境界部のEPMAマップ分析写真(Zn、Al、Fe、Si)である。
[Elemental analysis and observation of boundary between Fe metal member and joint]
(1) Low-magnification elemental analysis and SEM observation First, elemental analysis and observation were performed at a low magnification at the boundary between the Fe-based metal member and the joint. About the test piece of the joined structure obtained using the Zn-Si type | system | group brazing material whose Si content is 1.0 wt%, the elemental analysis was performed by the electron beam microprobe analyzer (EPMA) at low magnification. FIG. 4A is an SEM photograph (left photograph) of the joint portion of the joint structure and an enlarged SEM photograph (right photograph) of the boundary between the Fe-based metal member and the joint portion in the photograph. It is the EPMA map analysis photograph (Zn, Al, Fe, Si) of the boundary part shown by the enlarged SEM photograph of (A).

また、同一の接合構造体のテストピースについて、走査型電子顕微鏡(SEM)によりFe系金属部材と接合部との境界部の観察を行った。その結果を図5に示す。図5は、Fe系金属部材と接合部との境界部のSEM写真であり、(A)は3000倍のSEM写真、(B)は15000倍のSEM写真である。   Moreover, about the test piece of the same joining structure body, the boundary part of a Fe-type metal member and a junction part was observed with the scanning electron microscope (SEM). The result is shown in FIG. FIG. 5 is an SEM photograph of the boundary between the Fe-based metal member and the joint, (A) is a 3000 times SEM photograph, and (B) is a 15000 times SEM photograph.

図4(A)に示すように、本実施例のFe系金属部材と接合部との境界部には、従来の接合構造体で形成されていたFe−Al系の金属間化合物層が観察されず、図4(B)に示すEPMA元素マップ分析では、Siが一様に散在するとともに、FeとZnの界面(すなわち、Fe系金属部材と接合部との界面)が明瞭に観察された。Alは、Al系金属部材のAlが溶接により接合部に固溶拡散したものである。また、図5(A)の3000倍のSEM写真、図5(B)の15000倍のSEM写真に示すように、SEM観察での倍率を高くしても、本実施例のFe系金属部材と接合部との境界部には、従来の接合構造体で形成されていたFe−Al系の金属間化合物層が観察されなかった。   As shown in FIG. 4A, an Fe—Al-based intermetallic compound layer formed of a conventional bonded structure is observed at the boundary between the Fe-based metal member and the bonded portion of this example. First, in the EPMA element map analysis shown in FIG. 4B, Si was uniformly dispersed, and the interface between Fe and Zn (that is, the interface between the Fe-based metal member and the joint) was clearly observed. Al is a solution in which Al of an Al-based metal member is dissolved and diffused into the joint by welding. In addition, as shown in the 3000 times SEM photograph of FIG. 5A and the 15000 times SEM photograph of FIG. 5B, the Fe-based metal member of this example The Fe—Al-based intermetallic compound layer formed in the conventional bonded structure was not observed at the boundary with the bonded portion.

以上のようなEPMA元素マップ分析およびSEM観察の結果、本発明の実施例のFe系金属部材と接合部との境界部には、従来の接合構造体(Zn−Al系ろう材により接合された接合構造体)で形成されていた脆弱なFe−Al系の金属間化合物層が存在しないことを確認した。   As a result of the above-mentioned EPMA element map analysis and SEM observation, the conventional bonded structure (Zn-Al brazing material was bonded to the boundary between the Fe-based metal member and the bonded portion of the example of the present invention. It was confirmed that there was no fragile Fe—Al-based intermetallic compound layer formed in the bonded structure.

(2)高倍率元素分析およびTEM観察
次に、Fe−Al系の金属間化合物層が存在しないFe系金属部材と接合部との境界部について詳細に調べるために、Fe系金属部材と接合部との境界部について高倍率で元素分析および観察を行った。Si含有量が1.0wt%のZn−Si系ろう材を用いて得られた接合構造体のテストピースについて、EPMAにより高倍率で元素分析を行った。図6(A)は、Fe系金属部材と接合部との境界部のSEM写真、図6(B)は、図6(A)の枠Xで示される部分の拡大SEM写真であり、図6(C)は、図6(B)の拡大SEM写真で示された部分のEPMAマップ分析写真である。図6(B)中の赤色部分はFe、緑色部分はZn、黄色部分はSi、水色部分はAlを示している。図7(A)〜(E)は、図6(C)で示された部分の各元素のEPMAマップ分析写真であり、(A)はO、(B)はAl、(C)はSi、(D)はFe、(E)はZnのEPMAマップ分析写真である。
(2) High-magnification elemental analysis and TEM observation Next, in order to investigate in detail the boundary part between the Fe-based metal member and the joint part without the Fe-Al-based intermetallic compound layer, the Fe-based metal member and the joint part Elemental analysis and observation were carried out at a high magnification at the boundary part. About the test piece of the joining structure obtained using the Zn-Si type | system | group brazing material whose Si content is 1.0 wt%, elemental analysis was performed by EPMA with high magnification. 6A is an SEM photograph of the boundary portion between the Fe-based metal member and the joint, and FIG. 6B is an enlarged SEM photograph of a portion indicated by a frame X in FIG. 6A. (C) is an EPMA map analysis photograph of the portion shown in the enlarged SEM photograph of FIG. 6 (B). In FIG. 6B, the red portion indicates Fe, the green portion indicates Zn, the yellow portion indicates Si, and the light blue portion indicates Al. 7 (A) to (E) are EPMA map analysis photographs of each element in the portion shown in FIG. 6 (C), where (A) is O, (B) is Al, (C) is Si, (D) is an EPMA map analysis photograph of Fe and (E) is Zn.

EPMA元素マップ分析から判るように、Al系金属部材側にはZnとAlを含有する層(ろう材層)が観察され、Fe系金属部材側にはFeとZnを含有する層(反応層)が観察され、ろう材層と反応層との間にはSiを含有する層(Si濃縮層)が観察された。Si濃縮層の幅は、50〜200nm程度であった。Si濃縮層は、図7(B),(C),(E)に示されるように、Zn,Alを含有せずに、Siを高濃度で含有していることを確認し、Alは、図7(B)に示されるように、Si濃縮層だけではなく、反応層にも含有されていないことを確認した。ろう材層について、図6(B)に示すポイントP11において透過型電子顕微鏡(TEM)により得られた各種データの解析により組成比、材質、結晶構造を表1に示すように得た。   As can be seen from the EPMA element map analysis, a layer containing Zn and Al (brazing material layer) is observed on the Al-based metal member side, and a layer containing Fe and Zn (reaction layer) on the Fe-based metal member side. Was observed, and a layer containing Si (Si enriched layer) was observed between the brazing filler metal layer and the reaction layer. The width of the Si enriched layer was about 50 to 200 nm. As shown in FIGS. 7B, 7C, and 7E, the Si enriched layer was confirmed to contain Si at a high concentration without containing Zn and Al. As shown in FIG. 7 (B), it was confirmed not to be contained not only in the Si enriched layer but also in the reaction layer. With respect to the brazing material layer, the composition ratio, material, and crystal structure were obtained as shown in Table 1 by analyzing various data obtained by a transmission electron microscope (TEM) at a point P11 shown in FIG.

Figure 0005237231
Figure 0005237231

以上のようにSi濃縮層が形成されているFe系金属部材と接合部との境界部について詳細に調べるために、Si含有量が1.0wt%のZn−Si系ろう材を用いて得られた接合構造体のテストピースについて、TEMによりFe系金属部材と接合部との境界部の観察を行った。図8は、接合構造体の接合部のSEM写真、図9は、図8の枠Yで示される部分のTEM写真(倍率:30000倍)、図10は、図9の接合部の拡大TEM写真(倍率:150000倍)である。   In order to investigate in detail the boundary between the Fe-based metal member on which the Si-enriched layer is formed and the joint as described above, it is obtained by using a Zn-Si-based brazing material having a Si content of 1.0 wt%. About the test piece of the joined structure, the boundary part between the Fe-based metal member and the joined part was observed by TEM. 8 is an SEM photograph of a joint portion of the joint structure, FIG. 9 is a TEM photograph (magnification: 30000 times) of a portion indicated by a frame Y in FIG. 8, and FIG. 10 is an enlarged TEM photograph of the joint portion of FIG. (Magnification: 150,000 times).

図9のTEM写真(倍率:30000倍)におけるポイントP21〜25で示す部分において、TEMで得られた各種データの解析により組成比、材質、結晶構造を得た。その結果を表2に示す。   In the part indicated by points P21 to 25 in the TEM photograph (magnification: 30000 times) in FIG. 9, the composition ratio, material, and crystal structure were obtained by analyzing various data obtained by TEM. The results are shown in Table 2.

Figure 0005237231
Figure 0005237231

ろう材層におけるポイントP21の部分はhcp構造のZnであった。ろう材層におけるポイントP22の部分はfcc構造のZn−Alであった。反応層におけるポイントP23の部分はbcc構造のαFe(固溶体)、ポイントP24の部分はbcc構造のFeZn10(Znめっき)であった。反応層は、従来の問題点であった脆弱なFe−Al系の金属間化合物層(たとえば斜方晶格子のFeAlからなる層)とは異なり、Fe(固溶体)とZnめっきとの微細混合層であり、全て金属格子結合で形成されている層であることが判った。反応層の幅は、1μm程度であった。Fe系金属部材におけるポイントP25の部分はbcc構造のFeであった。この場合、Feは、圧延組織ではなく、結晶が微細化されたものであることが判った。 The portion of the point P21 in the brazing material layer was Zn having an hcp structure. The part of the point P22 in the brazing material layer was Zn-Al having an fcc structure. The part of the point P23 in the reaction layer was αFe (solid solution) having a bcc structure, and the part of the point P24 was Fe 3 Zn 10 (Zn plating) having a bcc structure. Unlike the brittle Fe—Al intermetallic compound layer (for example, a layer made of orthorhombic Fe 2 Al 5 ), which is a conventional problem, the reaction layer is made of Fe (solid solution) and Zn plating. It was found to be a fine mixed layer, which is a layer formed entirely by metal lattice bonding. The width of the reaction layer was about 1 μm. The point P25 portion in the Fe-based metal member was Fe having a bcc structure. In this case, it was found that Fe was not a rolled structure but a crystal refined.

以上のような30000倍のTEM解析では、Siの存在を確認することができなかったから、Siの存在を調べるために、150000倍の倍率でTEM写真(図10)を得た。図10のTEM写真におけるポイントP31〜33で示す部分において、TEM解析により得られた組成比を表3に示す。なお、ポイントP33については、重量濃度(wt%)に加えて、原子濃度(at%)を併記している。   In the above 30,000 times TEM analysis, the presence of Si could not be confirmed, so in order to investigate the presence of Si, a TEM photograph (FIG. 10) was obtained at a magnification of 150,000 times. Table 3 shows the composition ratios obtained by TEM analysis in the portions indicated by points P31 to P33 in the TEM photograph of FIG. Regarding the point P33, in addition to the weight concentration (wt%), the atomic concentration (at%) is also shown.

Figure 0005237231
Figure 0005237231

ろう材層におけるポイントP31の部分はhcp構造のZnであった。反応層におけるポイントP32の部分はbcc構造のαFe(固溶体)であった。Si濃縮層におけるポイントP33の部分では、Siが濃縮されて存在していることが判った。Si濃縮層の幅は50nm程度であった。Si濃縮層は、Fe系材料(Fe系金属部材および反応層)とろう材層との間に形成されていることから、それら材料に対する反応障壁としての作用(=AlのFe系金属部材への流入およびFeのろう材層への流入を防止する作用)を有していると推察され、これによりFe系材料とろう材層との間に、従来技術の問題であったFe−Al系の金属間化合物層が形成されず、Fe系材料とろう材層が直接接合したと考えられる。なお、表3に示すように、ポイントP33の部分で示されるSi濃縮層には、図7(B),(C),(E)に示したEPMAマップ分析とは異なり、Alが多く含有されているが、これは次の理由による。すなわち、TEM解析による各部分の化学組成分析では、テストピースを切断しているが、層の幅が狭いSi濃縮層の部分については、それに隣接するろう材層の部分を含んで解析したため、Si濃縮層の化学組成分析において、Alが多く検出されたものと考えられる。   The portion of the point P31 in the brazing material layer was Zn having an hcp structure. The portion of point P32 in the reaction layer was αFe (solid solution) having a bcc structure. It was found that Si was concentrated and present at the point P33 in the Si concentrated layer. The width of the Si enriched layer was about 50 nm. Since the Si enriched layer is formed between the Fe-based material (Fe-based metal member and reaction layer) and the brazing filler metal layer, it acts as a reaction barrier for those materials (= Al to the Fe-based metal member) Inflow and the action of preventing the inflow of Fe into the brazing filler metal layer). It is considered that the intermetallic compound layer was not formed and the Fe-based material and the brazing material layer were directly joined. As shown in Table 3, the Si enriched layer indicated by the point P33 is rich in Al, unlike the EPMA map analysis shown in FIGS. 7B, 7C, and 7E. This is due to the following reasons. That is, in the chemical composition analysis of each part by TEM analysis, the test piece is cut, but the Si-enriched layer part having a narrow layer width was analyzed including the part of the brazing filler metal layer adjacent thereto. It is considered that a large amount of Al was detected in the chemical composition analysis of the concentrated layer.

[金属接合構造体の接合強度評価]
Si含有量が0.25wt%、1.0wt%、2.5wt%のZn−Si系ろう材を用いて得られた各接合構造体のテストピースについて、フレア引張強度試験およびピール強度試験を行った。テストピースとしては、接合構造体の中央部側の2ピースおよび両端部側の4ピースを用い、それらを各強度試験用に配分し、フレア引張強度試験およびピール強度試験のそれぞれで中央部側の1ピースおよび両端部側の2ピース(計3ピース)を用いた。
[Joint strength evaluation of metal joint structure]
Flare tensile strength test and peel strength test were performed on test pieces of each joint structure obtained using Zn-Si brazing filler metals having Si content of 0.25 wt%, 1.0 wt%, and 2.5 wt%. It was. As the test piece, two pieces on the center side of the joint structure and four pieces on both end sides are allocated for each strength test. 1 piece and 2 pieces (total 3 pieces) on both ends were used.

フレア引張強度試験では、図11(A)に示すように、接合部23が形成された面側でT字状をなすFe系金属部材21およびAl系金属部材22の横方向延在部に対して、互いに反対方向の力を加えた。フレア引張強度試験では、矢印A,Bが指示する部分で応力が最もかけられる。   In the flare tensile strength test, as shown in FIG. 11 (A), with respect to the laterally extending portions of the Fe-based metal member 21 and the Al-based metal member 22 that are T-shaped on the surface side where the joint 23 is formed. Applied forces in opposite directions. In the flare tensile strength test, stress is most applied at the portions indicated by arrows A and B.

その結果(フレア引張強度値および破断箇所)を表4および図12に示す。表4では、Si含有量が0.25wt%、1.0wt%、2.5wt%のZn−Si系ろう材に対応する接合構造体のテストピースの試験結果を試料11〜13としている。表4には比較試料11,12の結果を併記している。比較試料11は、ろう材として、Alの添加量が6wt%のZn−Al系ろう材を用いて得られたFe系金属部材とAl系金属部材との接合構造体のテストピースである。比較試料12は、ろう材として、市販のろう材を用いて得られたAl系金属部材どうしの接合構造体のテストピースである。比較試料11,12のテストピースは、得られた接合構造体を試料11〜13と同様に短冊状に切断したものである。図12では、各試料のフレア引張強度の平均値および破断箇所を併記している。   The results (flare tensile strength value and fracture location) are shown in Table 4 and FIG. In Table 4, the test results of the test pieces of the joint structure corresponding to the Zn—Si brazing material having the Si content of 0.25 wt%, 1.0 wt%, and 2.5 wt% are shown as Samples 11 to 13. Table 4 also shows the results of Comparative Samples 11 and 12. The comparative sample 11 is a test piece of a joined structure of an Fe-based metal member and an Al-based metal member obtained using a Zn—Al-based brazing material having an Al addition amount of 6 wt% as a brazing material. The comparative sample 12 is a test piece of a joined structure of Al-based metal members obtained using a commercially available brazing material as the brazing material. The test pieces of the comparative samples 11 and 12 are obtained by cutting the obtained bonded structure into strips like the samples 11 to 13. In FIG. 12, the average value of the flare tensile strength of each sample and the fracture location are also shown.

フレア引張強度試験の強度基準値(図12の一点鎖線)は、次のように設定している。スポット溶接の1打点と等価の連続溶接の継手長を20mmに設定し、JIS Z3140のなかのAlどうしのスポット溶接を基準とした。これにより、Alの板厚が1.2mmであるスポット溶接の引張強度基準は1.86kN/20mmとなる。   The strength reference value (the one-dot chain line in FIG. 12) of the flare tensile strength test is set as follows. The joint length of continuous welding equivalent to one spot welding spot was set to 20 mm, and the spot welding of Al in JIS Z3140 was used as a standard. Thereby, the tensile strength standard of spot welding in which the plate thickness of Al is 1.2 mm is 1.86 kN / 20 mm.

Figure 0005237231
Figure 0005237231

表4および図12に示すように、異種金属部材の接合構造体である本発明の試料11〜13の引張強度が、その強度基準値を上回った。しかも、本発明の試料11〜13の引張強度は、異種金属部材の接合構造体である比較試料11の引張強度よりも高いのはもちろんのこと、同種金属部材の接合構造体である比較試料12の引張強度よりも高かった。そして、少量のSi含有量(0.25wt%)で引張強度が大幅に向上したことを確認した。また、本発明の試料11〜13では、Fe系金属部材と接合部の境界部で破断した比較試料11と異なり、Al系金属部材で破断したことを確認した。   As shown in Table 4 and FIG. 12, the tensile strength of Samples 11 to 13 of the present invention, which is a joined structure of dissimilar metal members, exceeded the strength reference value. In addition, the tensile strength of the samples 11 to 13 of the present invention is higher than the tensile strength of the comparative sample 11 which is a bonded structure of different metal members, and the comparative sample 12 which is a bonded structure of the same metal members. It was higher than the tensile strength. Then, it was confirmed that the tensile strength was greatly improved with a small amount of Si content (0.25 wt%). Moreover, in the samples 11-13 of this invention, it confirmed that it fractured | ruptured with the Al type metal member unlike the comparative sample 11 fractured | ruptured in the boundary part of a Fe-type metal member and a junction part.

ピール強度試験では、図11(B)に示すように、接合部23が形成された面とは反対側の面でT字状をなすFe系金属部材21およびAl系金属部材22の横方向延在部に対して互いに反対方向の力を加えた。このようなピール強度試験では、接合境界部(矢印Cで指示される箇所)に高い応力を集中させることにより、接合境界部の強度を測定することができる。   In the peel strength test, as shown in FIG. 11B, the lateral extension of the Fe-based metal member 21 and the Al-based metal member 22 having a T-shape on the surface opposite to the surface on which the joint 23 is formed. Forces in opposite directions were applied to the existing part. In such a peel strength test, the strength of the joint boundary can be measured by concentrating high stress on the joint boundary (location indicated by arrow C).

その結果(ピール引張強度値および破断形態)を表5および図13に示す。表5では、Si含有量が0.25wt%、1.0wt%、2.5wt%のZn−Si系ろう材に対応する接合構造体のテストピースの試験結果を試料21〜23としている。表5には比較試料21,22の結果を併記している。比較試料21は、ろう材としてAlの含有量が6wt%のZn−Al系ろう材を用いて得られたFe系金属部材とAl系金属部材との接合構造体のテストピースである。比較試料22は、ろう材として市販のろう材を用いて得られたAl系金属部材どうしの接合構造体のテストピースである。比較試料21,22のテストピースは、得られた接合構造体を試料21〜23と同様に短冊状に切断したものである。図13では、各試料のピール強度の平均値および破断箇所を併記している。   The results (peel tensile strength value and fracture mode) are shown in Table 5 and FIG. In Table 5, the test results of the test pieces of the joint structure corresponding to the Zn—Si brazing material having the Si content of 0.25 wt%, 1.0 wt%, and 2.5 wt% are shown as Samples 21 to 23. Table 5 also shows the results of Comparative Samples 21 and 22. The comparative sample 21 is a test piece of a joined structure of an Fe-based metal member and an Al-based metal member obtained by using a Zn—Al-based brazing material having an Al content of 6 wt% as a brazing material. The comparative sample 22 is a test piece of a joined structure of Al-based metal members obtained by using a commercially available brazing material as a brazing material. The test pieces of Comparative Samples 21 and 22 are obtained by cutting the obtained bonded structure into strips like Samples 21 to 23. In FIG. 13, the average value of the peel strength of each sample and the broken part are shown.

ピール強度試験の強度基準値(図13の一点鎖線)は、市販のろう材を用いて得られた同種金属部材の接合構造体である比較試料22(Al系金属部材の接合構造体)のテストピースのピール強度値の8割としている。   The strength reference value of the peel strength test (the one-dot chain line in FIG. 13) is a test of comparative sample 22 (joint structure of Al-based metal member) which is a joint structure of the same kind of metal member obtained using a commercially available brazing material. 80% of the peel strength value of the piece.

Figure 0005237231
Figure 0005237231

表5および図13に示すように、異種金属部材の接合構造体である本発明の試料21〜23では、ピール強度が強度基準を上回った。しかも、本発明の試料21〜23のピール強度は、異種金属部材の接合構造体である比較試料11との比較により、少量のSi含有量(0.25wt%)でピール強度が大幅に向上したことを確認した。また、本発明の試料21,22では、Fe系金属部材と接合部の境界部で破断した比較試料21と異なり、同種金属部材の接合構造体である比較試料22と同様、Al系金属部材で破断したことを確認した。なお、本発明の試料23では、ぬれ性に低下による接合境界部幅の減少のため、本発明の試料21,22と比較してピール強度が若干低下し、Fe系金属部材と接合部の境界部で破断したものと推察される。   As shown in Table 5 and FIG. 13, in the samples 21 to 23 of the present invention, which are joined structures of different metal members, the peel strength exceeded the strength standard. In addition, the peel strength of the samples 21 to 23 of the present invention was significantly improved with a small amount of Si content (0.25 wt%) as compared with the comparative sample 11 which is a bonded structure of dissimilar metal members. It was confirmed. Also, in the samples 21 and 22 of the present invention, unlike the comparative sample 21 fractured at the boundary between the Fe-based metal member and the joint, the Al-based metal member is similar to the comparative sample 22 that is a joint structure of the same kind of metal member. It was confirmed that it broke. Note that in the sample 23 of the present invention, the peel boundary width is reduced due to the decrease in wettability, so that the peel strength is slightly reduced as compared with the samples 21 and 22 of the present invention, and the boundary between the Fe-based metal member and the joint portion. It is presumed that the part broke.

以上のようにSi含有量が0.25wt%〜2.5wt%のZn−Si系ろう材を用いた異種金属部材の接合構造体である本発明の試料では、その強度が強度基準値を上回った。しかも、本発明の試料の強度は、同じ異種金属部材の接合構造体である比較試料との比較により、少量のSi含有量(0.25wt%)で強度が大幅に向上することが判った。特に、Si含有量が0.25wt%〜1.0wt%のZn−Si系ろう材を用いた異種金属部材の接合構造体である本発明の試料では、Fe系金属部材と接合部の境界部で破断せず、Al系金属部材で破断したことから、同種金属部材の接合構造体のような強固な接合構造体を得ることができることが判った。   As described above, the strength of the sample of the present invention, which is a joined structure of dissimilar metal members using a Zn-Si brazing material having a Si content of 0.25 wt% to 2.5 wt%, exceeds the strength reference value. It was. In addition, the strength of the sample of the present invention was found to be significantly improved with a small amount of Si content (0.25 wt%) by comparison with a comparative sample that is a joint structure of the same dissimilar metal member. In particular, in the sample of the present invention which is a joined structure of dissimilar metal members using a Zn-Si brazing material having a Si content of 0.25 wt% to 1.0 wt%, the boundary portion between the Fe metal member and the joint portion It was found that a strong joint structure such as a joint structure of the same kind of metal member can be obtained.

1…Fe系金属部材、2…Al系金属部材、3…Zn−Si系ろう材、4…接合部、5…キーホール、40…境界部(接合部におけるFe系金属部材側の境界部)、41…ろう材層(第1層)、42…反応層(第2層)、43…Si濃縮層(第3層)   DESCRIPTION OF SYMBOLS 1 ... Fe type | system | group metal member, 2 ... Al type | system | group metal member, 3 ... Zn-Si type | system | group brazing material, 4 ... Junction part, 5 ... Keyhole, 40 ... Boundary part (Boundary part by the side of the Fe type metal member in a junction part) 41 ... brazing material layer (first layer), 42 ... reaction layer (second layer), 43 ... Si enriched layer (third layer)

Claims (4)

Fe系材料からなるFe系金属部材とAl系材料からなるAl系金属部材との接合に用いられるろう材において、
Si:0.25〜2.5重量%を含有し、残部がZnおよび不可避不純物からなることを特徴とするろう材。
In a brazing material used for joining an Fe-based metal member made of an Fe-based material and an Al-based metal member made of an Al-based material,
A brazing material characterized by containing Si: 0.25 to 2.5% by weight, the balance being Zn and inevitable impurities.
Fe系材料からなるFe系金属部材とAl系材料からなるAl系金属部材とがSi:0.25〜2.5重量%を含有し、残部がZnおよび不可避不純物からなるろう材により接合されて形成される金属部材の接合構造において、
前記Fe系金属部材とAl系金属部材との間には接合部が形成され、
前記接合部は、
前記Al系金属部材に隣接するとともに、Znを主成分として含有し、残部にAlが含有される第1層と、
前記Fe系金属部材に隣接するとともに、Feを主成分として含有し、残部にZnが含有される第2層と、
前記第1層と前記第2層との間に形成されるとともに、Siを主成分として含有する第3層とを有していることを特徴とする金属部材の接合構造。
An Fe-based metal member made of Fe-based material and an Al-based metal member made of Al-based material contain Si: 0.25 to 2.5% by weight, and the balance is joined by a brazing material made of Zn and inevitable impurities. In the joining structure of the formed metal member,
A joint is formed between the Fe-based metal member and the Al-based metal member,
The joint is
A first layer that is adjacent to the Al-based metal member, contains Zn as a main component, and contains Al in the balance;
A second layer that is adjacent to the Fe-based metal member, contains Fe as a main component, and contains Zn in the balance;
A metal member bonding structure characterized by comprising a third layer formed between the first layer and the second layer and containing Si as a main component.
Fe系材料からなるFe系金属部材とAl系材料からなるAl系金属部材との間にろう材を介在して、前記Fe系金属部材と前記Al系金属部材とを接合する接合方法において、
前記ろう材は、Si:0.25〜2.5重量%を含有し、残部がZnおよび不可避不純物からなることを特徴とする金属部材の接合方法。
In a joining method for joining the Fe-based metal member and the Al-based metal member by interposing a brazing material between an Fe-based metal member made of Fe-based material and an Al-based metal member composed of an Al-based material,
The brazing material contains Si: 0.25 to 2.5% by weight, and the balance is made of Zn and inevitable impurities.
前記Fe系金属部材の被接合部を前記Fe系材料の融点以上の温度で加熱を行うことを特徴とする請求項に記載の金属部材の接合方法。 The method for joining metal members according to claim 3 , wherein the portion to be joined of the Fe-based metal member is heated at a temperature equal to or higher than the melting point of the Fe-based material.
JP2009218947A 2008-09-29 2009-09-24 Brazing material, metal member joining structure, and metal member joining method Active JP5237231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009218947A JP5237231B2 (en) 2008-09-29 2009-09-24 Brazing material, metal member joining structure, and metal member joining method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008250376 2008-09-29
JP2008250376 2008-09-29
JP2009218947A JP5237231B2 (en) 2008-09-29 2009-09-24 Brazing material, metal member joining structure, and metal member joining method

Publications (2)

Publication Number Publication Date
JP2010099739A JP2010099739A (en) 2010-05-06
JP5237231B2 true JP5237231B2 (en) 2013-07-17

Family

ID=42290848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009218947A Active JP5237231B2 (en) 2008-09-29 2009-09-24 Brazing material, metal member joining structure, and metal member joining method

Country Status (1)

Country Link
JP (1) JP5237231B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5800677B2 (en) * 2011-10-27 2015-10-28 本田技研工業株式会社 Method for joining metal members
WO2014168183A1 (en) 2013-04-12 2014-10-16 本田技研工業株式会社 Method for producing zinc alloy
JP6091304B2 (en) * 2013-04-15 2017-03-08 本田技研工業株式会社 Resistance welding method and joining member obtained thereby
JP5847209B2 (en) * 2014-01-21 2016-01-20 株式会社神戸製鋼所 Dissimilar metal joined body and manufacturing method of dissimilar metal joined body
WO2020021612A1 (en) 2018-07-24 2020-01-30 三菱電機株式会社 Metal joined structure and method for manufacturing metal joined structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729202B2 (en) * 1990-03-30 1995-04-05 昭和アルミニウム株式会社 Brazing method of iron material and aluminum material
DE9101303U1 (en) * 1991-02-06 1991-04-25 Mueller, Ernst
JPH1043886A (en) * 1996-07-31 1998-02-17 Ngk Spark Plug Co Ltd Manufacture of brazing filler metal
JP2001090655A (en) * 1999-09-22 2001-04-03 Toyota Autom Loom Works Ltd Swash plate for swash plate type compressor, and manufacture thereof
JP2008137034A (en) * 2006-11-30 2008-06-19 Honda Motor Co Ltd Brazing filler metal and brazing method
JP5378812B2 (en) * 2008-04-21 2013-12-25 本田技研工業株式会社 Method and structure for joining metal members

Also Published As

Publication number Publication date
JP2010099739A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
WO2009131124A1 (en) Joining method for and jointed structure of metal members, and brazing filler metal
Agudo et al. Intermetallic Fe x Al y-phases in a steel/Al-alloy fusion weld
Li et al. Influence of Zn coating on interfacial reactions and mechanical properties during laser welding-brazing of Mg to steel
JP5237231B2 (en) Brazing material, metal member joining structure, and metal member joining method
JP6681543B2 (en) Weld metal member and battery having the weld metal member
Yang et al. Influence of alloy elements on microstructure and mechanical properties of Al/steel dissimilar joint by laser welding/brazing
WO2014148348A1 (en) Welding filler material for bonding different kind materials, and method for producing different kind material welded structure
RU2596509C2 (en) Aluminium alloy
KR20060125584A (en) Steel sheet for dissimilar materials weldbonding to aluminum material and dissimilar materials bonded body
Wang et al. TIG welding-brazing of Ti6Al4V and Al5052 in overlap configuration with assistance of zinc foil
EP3587614B1 (en) Laser brazing method and production method for lap joint member
Nasiri et al. Interfacial microstructure of laser brazed AZ31B magnesium to Snplated steel sheet
JP5124434B2 (en) Method for joining metal members
JP2010247200A (en) Joining method for metal members
JP5378812B2 (en) Method and structure for joining metal members
US10807177B2 (en) Method for MIG brazing, method for manufacturing lap joint member, and lap joint member
JP7003806B2 (en) Joined structure and its manufacturing method
JP2006150439A (en) Steel material-aluminum material welded joint, and welding method therefor
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
JP7440325B2 (en) Aluminum brazing sheet for flux-free brazing
CN110958928A (en) Method for manufacturing welded structure of metal member, and welded structure of metal member
JP2019177405A (en) Welded structure and method for manufacturing the same
JP2009148772A (en) Brazed and joined structure of stainless steel and aluminum alloy, and brazing method therefor
Engelbrecht et al. Laser beam brazing of steel-aluminium tailored hybrid blanks
JP2007275981A (en) Joined structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3