JP5234679B2 - Sliding bearings for internal combustion engines - Google Patents

Sliding bearings for internal combustion engines Download PDF

Info

Publication number
JP5234679B2
JP5234679B2 JP2011148876A JP2011148876A JP5234679B2 JP 5234679 B2 JP5234679 B2 JP 5234679B2 JP 2011148876 A JP2011148876 A JP 2011148876A JP 2011148876 A JP2011148876 A JP 2011148876A JP 5234679 B2 JP5234679 B2 JP 5234679B2
Authority
JP
Japan
Prior art keywords
circumferential
bearing
groove
semi
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011148876A
Other languages
Japanese (ja)
Other versions
JP2011237036A (en
Inventor
晋也 米谷
修 石吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2011148876A priority Critical patent/JP5234679B2/en
Publication of JP2011237036A publication Critical patent/JP2011237036A/en
Application granted granted Critical
Publication of JP5234679B2 publication Critical patent/JP5234679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/022Sliding-contact bearings for exclusively rotary movement for radial load only with a pair of essentially semicircular bearing sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • F16C33/105Conditioning, e.g. metering, cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid

Description

本発明は、一対の半円筒形状軸受を円筒形に組み合わせてクランク軸を支承する内燃機関のすべり軸受に関するものである。   The present invention relates to a sliding bearing for an internal combustion engine that supports a crankshaft by combining a pair of semi-cylindrical bearings into a cylindrical shape.

従来のクランク軸用すべり軸受は、2つの半円筒形状軸受を組み合わせて円筒形にしたものを使用している。一対の半円筒形状軸受のうちの少なくとも一方の軸受内周面に、円周方向油溝が形成され、円周方向油溝を経てクランクピン外周面に対する給油が行なわれる。この円周方向油溝は、一定深さにするのが一般的である(特許文献1参照)。   A conventional plain bearing for a crankshaft uses a cylindrical shape obtained by combining two semi-cylindrical bearings. A circumferential oil groove is formed on the inner peripheral surface of at least one of the pair of semi-cylindrical bearings, and oil supply to the outer peripheral surface of the crank pin is performed via the circumferential oil groove. Generally, this circumferential oil groove has a constant depth (see Patent Document 1).

一方、近年になって、潤滑油供給用オイルポンプの小型化に対応して、軸受端部からの潤滑油の漏れ量を減少させるべく、軸受中央部から軸受の端部に向かって油溝断面積を減少させる絞り部を形成する提案がなされている(特許文献2、3参照)。   On the other hand, in recent years, in response to the downsizing of the oil pump for supplying lubricating oil, in order to reduce the amount of lubricating oil leakage from the bearing end, the oil groove is cut from the bearing center to the bearing end. Proposals have been made to form an aperture that reduces the area (see Patent Documents 2 and 3).

特開平8−277831号公報JP-A-8-277831 特開平4−219521号公報JP-A-4-219521 特開2005−69283号公報JP 2005-69283 A

内燃機関用すべり軸受に対する潤滑油の供給については、まず、クランク軸用すべり軸受の外部からクランク軸用すべり軸受の内面に形成された円周方向油溝内に供給され、その潤滑油がクランク軸用すべり軸受の摺動面、および、クランクピン用すべり軸受の摺動面に供給される。
内燃機関の最初の運転時には、クランク軸用すべり軸受の円周方向溝に供給される潤滑油中に、潤滑油路内に残留した異物が混入しがちである。異物とは、油路を切削加工した時の金属加工屑や鋳造時の鋳砂等を意味する。この異物は、クランク軸の回転によって潤滑油の流れに付随し、従来の内燃機関用すべり軸受では、軸受円周方向端部に形成されるクラッシュリリーフや面取等の隙間部を通じて潤滑油と共に排出される。しかしながら、近年の内燃機関は、クランク軸の高回転化により、潤滑油よりも比重の大きな異物に作用する慣性力(異物が円周方向に沿って前進しようとする慣性力)が大きくなって、すべり軸受の組み合わせ端面(一対の半円筒形状軸受の各組み合わせ端面)における隙間部分から異物が排出されずに、油溝を有しない側のすべり軸受(他方の半円筒形状軸受)の摺動面部分に進入し、異物による軸受摺動面の損傷が発生しやすくなっている。
Regarding the supply of lubricating oil to the internal combustion engine slide bearing, first, it is supplied from the outside of the crankshaft slide bearing into a circumferential oil groove formed on the inner surface of the crankshaft slide bearing, and the lubricant is supplied to the crankshaft. Supplied to the sliding surface of the sliding bearing and the sliding surface of the crankpin sliding bearing.
During the initial operation of the internal combustion engine, foreign matter remaining in the lubricating oil passage tends to be mixed in the lubricating oil supplied to the circumferential groove of the crankshaft slide bearing. The foreign material means metal scraps when the oil passage is cut, casting sand at the time of casting, or the like. This foreign matter accompanies the flow of the lubricating oil due to the rotation of the crankshaft, and in conventional sliding bearings for internal combustion engines, it is discharged together with the lubricating oil through gaps such as crush reliefs and chamfers formed at the circumferential end of the bearing. Is done. However, recent internal combustion engines have increased inertial force (inertia force that foreign matter tries to advance in the circumferential direction) acting on foreign matter having a specific gravity greater than that of lubricating oil due to higher rotation of the crankshaft. Sliding surface portion of the sliding bearing (the other semi-cylindrical bearing) on the side that does not have oil grooves without foreign matter being discharged from the gap portion on the sliding bearing combined end surface (each combined end surface of the pair of semi-cylindrical bearings) The bearing sliding surface is easily damaged by foreign matter.

一方、軸受円周方向端部からの潤滑油の漏れ量を減少させるために、半円筒形状軸受の円周方向端部における油溝内に絞り部分を形成したすべり軸受が提案されている(特許文献2、3参照)。これらのすべり軸受を、前記異物の観点で検討すると、潤滑油の流れ方向に対する絞り部分の下流側で潤滑油の流速が増大し、それに応じて潤滑油に付随する異物に作用する前記慣性力が更に大きくなり、軸受摺動面への異物混入の機会が更に増すという問題がある。
かくして、本発明の目的は、異物排出性に優れた内燃機関用すべり軸受を提供することである。
On the other hand, in order to reduce the amount of lubricating oil leaking from the circumferential end of the bearing, a slide bearing in which a throttle portion is formed in the oil groove at the circumferential end of the semi-cylindrical bearing has been proposed (patent) References 2 and 3). When these sliding bearings are examined from the viewpoint of the foreign matter, the flow velocity of the lubricating oil increases on the downstream side of the throttle portion with respect to the flow direction of the lubricating oil, and the inertial force acting on the foreign matter accompanying the lubricating oil is accordingly increased. There is a problem that the size of the bearing sliding surface further increases, and the chance of foreign matter mixing on the bearing sliding surface further increases.
Thus, an object of the present invention is to provide a slide bearing for an internal combustion engine that is excellent in foreign matter dischargeability.

前記目的に照らし、本発明の第一の観点によれば、以下のすべり軸受が提供される。
一対の半円筒形状軸受のうち、一方の半円筒形状軸受の内周面に円周方向に延在する油溝が形成されている前記一対の半円筒形状軸受を円筒形に組み合わせてクランク軸を支承する内燃機関のすべり軸受において、
前記油溝は、前記一方の半円筒形状軸受の円周方向長さの中央部を含み、
前記一方の半円筒形状軸受の円周方向両端面のうち、少なくとも、クランク軸の回転方向と同じ方向を向いた一方の前記円周方向端面の軸線方向全長に沿って、該円周方向端面と他方の半円筒形状軸受の対向する円周方向端面との間に軸線方向溝が存在しており、
前記円周方向油溝と前記軸線方向溝とが互いに連通し、該連通部における前記円周方向油溝と前記軸線方向溝の深さが異なり、前記一方の円周方向端面における前記円周方向油溝の溝底が、前記軸線方向溝の溝底よりも前記軸受内周面側に偏った位置にあり、
また、前記連通部における前記円周方向油溝の横断面積が前記軸線方向溝の横断面積よりも大きいことを特徴とする内燃機関のすべり軸受。
In light of the above object, according to the first aspect of the present invention, the following plain bearing is provided.
Of the pair of semi-cylindrical bearings, a crankshaft is formed by combining the pair of semi-cylindrical bearings in which an oil groove extending in the circumferential direction is formed on the inner peripheral surface of one semi-cylindrical bearing into a cylindrical shape. For sliding bearings of internal combustion engines to be supported,
The oil groove includes a central portion of a circumferential length of the one semi-cylindrical bearing,
Of the circumferential end faces of the one semi-cylindrical bearing, at least the circumferential end face along the entire axial direction length of one circumferential end face facing the same direction as the rotation direction of the crankshaft. There is an axial groove between the opposite circumferential end faces of the other semi-cylindrical bearing,
The circumferential oil groove and the axial groove communicate with each other, and the circumferential oil groove and the axial groove have different depths at the communicating portion, and the circumferential direction at the one circumferential end surface The groove bottom of the oil groove is in a position that is biased toward the bearing inner peripheral surface side than the groove bottom of the axial groove,
The sliding bearing for an internal combustion engine, wherein a cross-sectional area of the circumferential oil groove in the communication portion is larger than a cross-sectional area of the axial groove.

本発明の第一の実施形態では、前記軸線方向溝の溝幅(L2)と溝深さ(L1)の関係が、L2<2×L1を満たす。
本発明の第二の実施形態では、前記軸線方向溝の溝幅(L2)と溝深さ(L1)の関係が、L2<L1を満たす。
本発明の第三の実施形態では、前記連通部における前記軸線方向溝の横断面積が、前記円周方向油溝の横断面積の1/2未満である。
本発明の第四の実施形態では、前記軸受内周面の円周方向長さ全体に亘って前記一方の半円筒形状軸受の前記内周面に形成され、前記円周方向油溝および前記軸線方向溝の形成形態が、前記すべり軸受の軸線、および、前記一方の半円筒形状軸受の円周方向長さを2等分する位置を通る仮想平面を基準として面対称的になされる。
本発明の第五の実施形態では、前記円周方向油溝の溝深さが、前記円周方向長さの中央部位置で最大であり、前記円周方向両端面に向かって次第に小さくなされ、もって前記円周方向油溝の横断面積が前記円周方向長さの中央部位置で最大であり、前記円周方向両端面に向かって次第に小さくなされる。
本発明の第六の実施形態では、前記軸線方向溝が、一対の半円筒形状軸受の各円周方向端面に隣接する軸受内周面に沿って付与されるクラッシュリリーフを包含する構成になされる。ここで、クラッシュリリーフとは、一対の半円筒形状軸受の円周方向端面に近い部分の軸受壁を内周面側で除去することによって形成された、軸受内周面の曲率中心とは異なる曲率中心を有する減厚領域(円周方向端面に向かって厚さを減じた領域を指し、SAE J506(項目3.26、項目6.4参照)、DIN1497、§3.2で規定されるとおりである)を意味する。「前記軸線方向溝がクラッシュリリーフを包含する」とは、クラッシュリリーフによる減厚量を超える、仮想軸受内周面からの溝深さで前記軸線方向溝が形成されることを意味する。
In the first embodiment of the present invention, the relationship between the groove width (L2) and the groove depth (L1) of the axial groove satisfies L2 <2 × L1.
In the second embodiment of the present invention, the relationship between the groove width (L2) and the groove depth (L1) of the axial groove satisfies L2 <L1.
In 3rd embodiment of this invention, the cross-sectional area of the said axial direction groove | channel in the said communication part is less than 1/2 of the cross-sectional area of the said circumferential direction oil groove.
In the fourth embodiment of the present invention, the circumferential oil groove and the axis are formed on the inner circumferential surface of the one semi-cylindrical bearing over the entire circumferential length of the bearing inner circumferential surface. The directional groove is formed symmetrically with respect to an imaginary plane passing through a position that bisects the axis of the plain bearing and the circumferential length of the one semicylindrical bearing.
In a fifth embodiment of the present invention, the groove depth of the circumferential oil groove is maximum at the center position of the circumferential length, and is gradually reduced toward both circumferential end faces, Therefore, the cross-sectional area of the circumferential oil groove is maximum at the center position of the circumferential length, and gradually decreases toward both circumferential end surfaces.
In the sixth embodiment of the present invention, the axial groove includes a crush relief provided along a bearing inner circumferential surface adjacent to each circumferential end surface of a pair of semi-cylindrical bearings. . Here, the crush relief is a curvature different from the center of curvature of the bearing inner peripheral surface formed by removing the bearing wall of the pair of semi-cylindrical bearings near the circumferential end surface on the inner peripheral surface side. Reduced area with center (refers to the area with reduced thickness towards the circumferential end face, as defined in SAE J506 (see item 3.26, item 6.4), DIN 1497, § 3.2. Mean). “The axial groove includes a crush relief” means that the axial groove is formed with a groove depth from the inner peripheral surface of the virtual bearing that exceeds the thickness reduction by the crush relief.

本発明の第二の観点によれば、前記すべり軸受の構成部品として用いられる半円筒形状軸受であって、前記円周方向油溝を有し、かつ、対をなして組み合わせ使用される相手方の半円筒形状軸受と協働して前記軸線方向溝を画成する半円筒形状軸受が提供される。   According to a second aspect of the present invention, there is provided a semi-cylindrical bearing used as a component of the sliding bearing, which has the circumferential oil groove and is used in combination in a pair. A semi-cylindrical bearing is provided that cooperates with the semi-cylindrical bearing to define the axial groove.

作用
(1)内燃機関の作動時、前記一方の半円筒形状軸受の円周方向略中央部で前記円周方向油溝内に供給された潤滑油は、クランク軸の回転に従って、主として円周方向油溝内に沿って、また、半円筒形状軸受の軸受内周面(すなわち、軸受摺動面)に沿って、軸受円周方向端部に向かって流れる。軸受円周方向端部に達した潤滑油は、円周方向油溝が形成されていない他方の半円筒形状軸受の軸受円周方向端面につき当たって、円周方向油溝と軸線方向溝との前記連通部にて直角方向に方向転換して軸線方向溝内を流れ、すべり軸受の軸線方向端部から軸受外部に流出する。
この間、潤滑油中に付随する異物も、潤滑油と共に円周方向油溝および軸線方向溝内を流れて、すべり軸受の軸線方向端部から軸受外部に排出される。潤滑油に比して比重の大きな異物は、円周方向油溝および軸線方向溝の溝底に沿って転動しながら移動する傾向がある。
ここで、連通部における円周方向油溝と一方の半円筒形状軸受の円周方向端面における軸線方向溝の深さが異なり、円周方向油溝の溝底が、軸線方向溝の溝底よりも軸受内周面側に偏った位置にある(すなわち、軸線方向溝の溝深さが円周方向油溝の溝深さに比して大きくなされている)ため、溝底に沿って移動する傾向のある異物は、連通部において軸線方向溝内に直接進入し、クランク軸の回転に従って軸受内周面に沿って円周方向に流れる潤滑油の流れの影響を受け難く、軸線方向溝内から異物が押出されて軸受内周面に移動することによりすべり軸受とクランク軸の摺動面間に進入する可能性が低減化される。すべり軸受とクランク軸の摺動面間に異物が進入すると、転動する異物によって、摺動面が傷つけられる惧れがあるので、前記のような本発明のすべり軸受における異物の挙動は有利である。仮に、連通部における軸線方向溝の溝底が、半円筒形状軸受の円周方向端面における円周方向油溝の溝底よりも軸受内周面側に偏った位置にある場合を想定すると、円周方向溝の開放部が、円周方向溝を形成した一方の半円筒形状軸受の円周方向端面で開放され、円周方向油溝の開放部(すなわち溝端)の一部(溝底側)が、円周方向油溝を形成しない他方の半円筒形状軸受の円周方向端面によって遮られるため、連通部に達した異物は、軸線方向溝内に直接進入することはできない。異物は、前記遮断部で形成される潤滑油の上昇流により軸受内周面側へ浮上した後に軸線方向溝内に進入することになるが、軸線方向溝への進入前に、クランク軸の回転に従って円周方向に流れる潤滑油の流れにより押し流されてすべり軸受とクランク軸の摺動面間に進入しやすい。また、連通部における円周方向油溝の横断面積が軸線方向溝の横断面積よりも大きくなされているため、円周方向油溝内の潤滑油の流速に比して、軸線方向溝内の潤滑油の流速が大きく、クランク軸の回転に従って軸受内周面に沿って円周方向に流れる潤滑油の流れの影響を異物が受け難く、軸線方向溝内から異物が押出されて軸受内周面に移動することによりすべり軸受とクランク軸の摺動面間に進入する可能性が低減化される(本発明の第三の実施形態も参照)。
(2)本発明の第一および第二の実施形態では、軸線方向溝の溝幅(L2)と溝深さ(L1)の関係がL2<2×L1、あるいは、L2<L1になされている。この構成によれば、軸線方向溝の溝底に沿って転動する異物が、クランク軸の回転に従って軸受内周面に沿って円周方向に流れる潤滑油の流れの影響を受け難く、軸線方向溝内から異物が押出されて軸受内周面に移動することによりすべり軸受とクランク軸の摺動面間に進入する可能性が低減化される。なお、L2≧2×L1の場合には、円周方向油溝の横断面積よりも軸線方向溝の横断面積を小さくして、軸線方向溝内の油流を増大させて異物排出効果を高めても、クランク軸の回転によるクランク軸表面近傍の円周方向への潤滑油の流れの影響を受け易く、軸線方向溝に沿って軸受外部に異物を排出させることが難しくなる。さらに、L2=3×L1程度にした場合には、異物排出効果をほとんど期待できない。また、L2≧3×L1の場合には、軸受内周面への異物の移動が促進されてしまう。
(3)本発明の第四の実施形態では、円周方向油溝が、軸受内周面の円周方向長さ全体に亘って前記一方の半円筒形状軸受の内周面に形成されており、円周方向油溝および軸線方向溝の形成形態が、すべり軸受の軸線、および、前記一方の半円筒形状軸受の円周方向長さを2等分する位置を通る仮想平面を基準として面対称的になされている。この構成を採用すれば、円周方向油溝および軸線方向溝の形成形態が非面対称的である実施形態の場合に生じる可能性のある前記一対の半円筒形状軸受の組み付け方を誤まって、クランクケースに組み付けるという不具合をなくすことができる。換言すれば、第四の実施形態を採用しない構成において、前記一対の半円筒形状軸受を組み合わせてクランク軸を支承する時に、前記一方の半円筒形状軸受の軸線方向溝を形成した円周方向端面が、クランク軸の回転方向とは反対側を向いた状態になるようにすると、本発明で期待する作用効果が得られないが、第四の実施形態におけるがごとく対称形状である前記一方の半円筒形状軸受を採用すれば、前記一対の半円筒形状軸受を組み付ける際に、過度の注意を払わずともよいので、作業能率を向上させることができる。
(4)本発明の第五の実施形態では、円周方向油溝の溝深さが、前記一方の半円筒形状軸受の円周方向長さの中央部位置で最大であり、円周方向両端面に向かって次第に小さくなされる。この構成を採用すれば、前記一方の半円筒形状軸受の円周方向油溝の開放部(すなわち、溝端)を、軸線方向溝内に位置づけし易く、相手側半円筒形状軸受の円周方向端面によって前記開放部の一部が遮られて潤滑油の流れが上昇流となり、異物が浮上してクランク軸の回転に従って円周方向に流れる潤滑油の流れにより押し流され軸受内周面に移動するといった不具合発生を防止できる。
Action (1) During operation of the internal combustion engine, the lubricating oil supplied into the circumferential oil groove at the substantially central portion in the circumferential direction of the one semi-cylindrical bearing is mainly in the circumferential direction according to the rotation of the crankshaft. It flows toward the bearing circumferential end along the oil groove and along the bearing inner circumferential surface (that is, the bearing sliding surface) of the semi-cylindrical bearing. The lubricating oil that has reached the bearing circumferential end hits the bearing circumferential end surface of the other semi-cylindrical bearing not formed with the circumferential oil groove, and the circumferential oil groove and the axial groove At the communication portion, the direction is changed to a right angle and flows in the axial groove, and flows out from the axial end of the slide bearing to the outside of the bearing.
During this time, foreign substances accompanying the lubricating oil also flow in the circumferential oil groove and the axial groove together with the lubricating oil, and are discharged from the axial end of the slide bearing to the outside of the bearing. Foreign matter having a larger specific gravity than lubricating oil tends to move while rolling along the groove bottoms of the circumferential oil groove and the axial groove.
Here, the circumferential oil groove at the communication portion and the axial groove depth at the circumferential end surface of one semi-cylindrical bearing are different, and the groove bottom of the circumferential oil groove is different from the groove bottom of the axial groove. Also moves along the groove bottom because the groove is offset toward the inner peripheral surface of the bearing (that is, the groove depth of the axial groove is larger than the groove depth of the circumferential oil groove). Tendency foreign matter enters directly into the axial groove at the communicating portion, and is less affected by the flow of lubricating oil flowing in the circumferential direction along the bearing inner peripheral surface as the crankshaft rotates. The possibility that the foreign matter is pushed out and moves to the inner peripheral surface of the bearing reduces the possibility of entering between the sliding surface of the slide bearing and the crankshaft. If foreign matter enters between the sliding surface of the slide bearing and the crankshaft, the sliding surface may be damaged by the rolling foreign matter. Therefore, the behavior of the foreign matter in the sliding bearing of the present invention is advantageous. is there. Assuming a case where the groove bottom of the axial groove in the communication portion is located at a position biased toward the bearing inner peripheral surface side than the groove bottom of the circumferential oil groove on the circumferential end surface of the semi-cylindrical bearing, The open part of the circumferential groove is opened at the circumferential end face of one of the semi-cylindrical bearings forming the circumferential groove, and a part of the open part (that is, the groove end) of the circumferential oil groove (the groove bottom side) However, since it is blocked by the circumferential end surface of the other semi-cylindrical bearing that does not form the circumferential oil groove, the foreign matter that has reached the communicating portion cannot directly enter the axial groove. The foreign matter floats to the bearing inner peripheral surface side due to the upward flow of the lubricating oil formed by the blocking portion, and then enters the axial groove. Before entering the axial groove, the crankshaft rotates. Accordingly, it is pushed by the flow of the lubricating oil flowing in the circumferential direction and easily enters between the sliding surface of the slide bearing and the crankshaft. In addition, since the cross-sectional area of the circumferential oil groove in the communicating portion is larger than the cross-sectional area of the axial groove, the lubrication in the axial groove is greater than the flow velocity of the lubricating oil in the circumferential oil groove. The oil flow rate is large, and it is difficult for foreign matter to be affected by the flow of lubricating oil flowing in the circumferential direction along the inner circumferential surface of the bearing as the crankshaft rotates, and the foreign matter is pushed out from the axial groove to the inner circumferential surface of the bearing. By moving, the possibility of entering between the sliding surfaces of the plain bearing and the crankshaft is reduced (see also the third embodiment of the present invention).
(2) In the first and second embodiments of the present invention, the relationship between the groove width (L2) and the groove depth (L1) of the axial groove is L2 <2 × L1 or L2 <L1. . According to this configuration, the foreign matter that rolls along the groove bottom of the axial groove is not easily affected by the flow of the lubricating oil flowing in the circumferential direction along the bearing inner peripheral surface according to the rotation of the crankshaft. The possibility that foreign matter is pushed out of the groove and moves to the inner peripheral surface of the bearing reduces the possibility of entering between the sliding surface of the slide bearing and the crankshaft. In the case of L2 ≧ 2 × L1, the cross-sectional area of the axial groove is made smaller than the cross-sectional area of the circumferential oil groove to increase the oil flow in the axial groove and enhance the foreign matter discharging effect. However, it is easily affected by the flow of the lubricating oil in the circumferential direction near the crankshaft surface due to the rotation of the crankshaft, and it is difficult to discharge foreign matter along the axial groove to the outside of the bearing. Furthermore, when L2 = 3 × L1, the foreign matter discharge effect is hardly expected. Further, in the case of L2 ≧ 3 × L1, the movement of foreign matter to the bearing inner peripheral surface is promoted.
(3) In the fourth embodiment of the present invention, the circumferential oil groove is formed on the inner circumferential surface of the one semi-cylindrical bearing over the entire circumferential length of the bearing inner circumferential surface. The circumferential oil groove and the axial groove form are symmetrical with respect to the axis of the plain bearing and a virtual plane passing through a position that bisects the circumferential length of the one semi-cylindrical bearing. Has been made. If this configuration is adopted, the method of assembling the pair of semi-cylindrical bearings that may occur in the case of the embodiment in which the circumferential oil grooves and the axial grooves are formed in a non-symmetrical manner is mistaken. The trouble of assembling to the crankcase can be eliminated. In other words, in a configuration that does not employ the fourth embodiment, when the crankshaft is supported by combining the pair of semicylindrical bearings, a circumferential end surface that forms an axial groove of the one semicylindrical bearing. However, if the crankshaft is turned to the opposite side of the direction of rotation, the expected effect of the present invention cannot be obtained, but the one half of the fourth embodiment is symmetrical as in the fourth embodiment. If cylindrical bearings are employed, it is not necessary to pay excessive attention when assembling the pair of semi-cylindrical bearings, so that work efficiency can be improved.
(4) In the fifth embodiment of the present invention, the groove depth of the circumferential oil groove is maximum at the center position of the circumferential length of the one semi-cylindrical bearing, and both circumferential ends It is made smaller gradually toward the surface. With this configuration, the circumferential oil groove opening of the one semi-cylindrical bearing can be easily positioned in the axial groove, and the circumferential end face of the mating semi-cylindrical bearing. As a result, a part of the opening is blocked and the flow of the lubricating oil becomes an upward flow, and the foreign matter floats up and is pushed by the flow of the lubricating oil flowing in the circumferential direction according to the rotation of the crankshaft and moves to the inner peripheral surface of the bearing. The occurrence of defects can be prevented.

本発明の実施例1に係わる一対の半円筒形状軸受から成る内燃機関のすべり軸受の正面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of a sliding bearing of an internal combustion engine including a pair of semicylindrical bearings according to Embodiment 1 of the present invention. 図1に示す一対の半円筒形状軸受のうちの一方の半円筒形状軸受の内表面図。The inner surface figure of one semi-cylindrical bearing of a pair of semi-cylindrical bearing shown in FIG. 図1に示す一対の半円筒形状軸受のうちの他方の半円筒形状軸受の内表面図。The inner surface figure of the other semi-cylindrical bearing of a pair of semi-cylindrical bearings shown in FIG. 本発明の実施例2に係わる一対の半円筒形状軸受から成る内燃機関のすべり軸受の正面図。The front view of the sliding bearing of the internal combustion engine which consists of a pair of semi-cylindrical bearing concerning Example 2 of this invention. 本発明の実施例3に係わる一対の半円筒形状軸受から成る内燃機関のすべり軸受の正面図。The front view of the sliding bearing of the internal combustion engine which consists of a pair of semi-cylindrical bearing concerning Example 3 of this invention. 本発明の実施例4に係わる一対の半円筒形状軸受から成る内燃機関のすべり軸受の正面図。The front view of the sliding bearing of the internal combustion engine which consists of a pair of semi-cylindrical bearing concerning Example 4 of this invention. 本発明すべり軸受の機能に関する補足説明図(軸受内周面の一部を示す)。The supplementary explanatory drawing regarding the function of this invention slide bearing (a part of bearing internal peripheral surface is shown). 本発明すべり軸受の機能に関する別の補足説明図。 以下、添付図面を見ながら本発明の実施例および比較例について説明する。Another supplemental explanatory drawing regarding the function of this invention slide bearing. Hereinafter, examples and comparative examples of the present invention will be described with reference to the accompanying drawings.

図1〜図3は、本発明の実施例1に係わるすべり軸受10を示す。すべり軸受10は、一対の半円筒形状軸受20、30から成る。
半円筒形状軸受20は、後記傾斜面26から円周方向端面24bまでの概ね円周方向全長に亘って、軸受幅方向中央位置に、軸受内周面20aに沿う円周方向油溝22が形成されている。円周方向油溝22の溝底と軸受内周面20aとの距離(すなわち、溝深さ)は、円周方向油溝22の全長に亘って一定である。
1 to 3 show a plain bearing 10 according to Embodiment 1 of the present invention. The plain bearing 10 includes a pair of semi-cylindrical bearings 20 and 30.
The semi-cylindrical bearing 20 is formed with a circumferential oil groove 22 along the bearing inner circumferential surface 20a at the center position in the bearing width direction over the entire length in the circumferential direction from the inclined surface 26 to the circumferential end surface 24b. Has been. The distance (that is, the groove depth) between the groove bottom of the circumferential oil groove 22 and the bearing inner circumferential surface 20 a is constant over the entire length of the circumferential oil groove 22.

また、半円筒形状軸受20の円周方向端面24a(図1において矢印Rで示されるクランク軸の回転方向Rと同じ方向を向いた半円筒形状軸受20の円周方向端面である)において、軸受内周面20a側の角隅部(すなわち、軸受内側端縁部)が、軸受幅(W)全体に亘る欠截により傾斜面26になされている。一方、円周方向端面24aに当接する、半円筒形状軸受30の円周方向端面30aには、傾斜面26のような傾斜面は形成されていない。かくして、傾斜面26と半円筒形状軸受30の円周方向端面30aとで断面V字形の溝すなわち軸線方向溝Aが画成されている。軸線方向溝Aは、軸受の全幅に亘って存在する。円周方向油溝22は、その開放部(すなわち、溝端)が半円筒形状軸受20の円周方向端面24aの傾斜面26に開放するように形成されており、円周方向油溝22と軸線方向溝Aとは、半円筒形状軸受20、30の円周方向端面24a,30aの近傍で互いに連通する。この連通部において、円周方向油溝22と軸線方向溝Aとの関係は、連通部における円周方向油溝22の溝底が半円筒形状軸受20,30の円周方向端面24a,30aにおける軸線方向溝Aの溝底よりも軸受内周面20a側に偏位した位置にあり(すなわち、円周方向油溝22の溝深さが、軸線方向溝Aの溝深さよりも小さい)、かつ、円周方向油溝22の横断面積が、軸線方向溝Aの横断面積よりも大きくなされている。   Further, in the circumferential end surface 24a of the semi-cylindrical bearing 20 (the circumferential end surface of the semi-cylindrical bearing 20 facing the same direction as the rotation direction R of the crankshaft indicated by the arrow R in FIG. 1), the bearing The corners on the inner peripheral surface 20a side (that is, the bearing inner edge) are formed into the inclined surfaces 26 by notches extending over the entire bearing width (W). On the other hand, an inclined surface like the inclined surface 26 is not formed on the circumferential end surface 30a of the semi-cylindrical bearing 30 that contacts the circumferential end surface 24a. Thus, the inclined surface 26 and the circumferential end surface 30 a of the semi-cylindrical bearing 30 define a V-shaped groove, that is, an axial groove A. The axial groove A exists over the entire width of the bearing. The circumferential oil groove 22 is formed so that the open portion (that is, the groove end) is open to the inclined surface 26 of the circumferential end face 24a of the semi-cylindrical bearing 20, and the circumferential oil groove 22 and the axis line The directional groove A communicates with each other in the vicinity of the circumferential end faces 24a, 30a of the semi-cylindrical bearings 20, 30. In this communication portion, the relationship between the circumferential oil groove 22 and the axial groove A is such that the groove bottom of the circumferential oil groove 22 in the communication portion is on the circumferential end surfaces 24a, 30a of the semi-cylindrical bearings 20, 30. In a position deviated from the groove bottom of the axial groove A toward the bearing inner peripheral surface 20a (that is, the groove depth of the circumferential oil groove 22 is smaller than the groove depth of the axial groove A), and The cross-sectional area of the circumferential oil groove 22 is larger than the cross-sectional area of the axial groove A.

かかる構成において、内燃機関作動時に、すべり軸受10によって支承されるクランク軸が回転すると、クランク軸の回転(図1中の回転方向を示す矢印R参照)に伴って半円筒形状軸受20の円周方向油溝22内を前記矢印方向に潤滑油が流れる。この潤滑油は、前記連通部で、方向転換して軸線方向溝A内を流れて、軸線方向溝Aの両端開放部から軸受外部に放出される。この潤滑油の流れは、円周方向油溝22の横断面積が、軸線方向溝Aの横断面積よりも大きくなされているために、連通部で方向転換した後、流速が増す。故に、潤滑油の流れに付随して、円周方向油溝22内を移動して軸線方向溝A内に進入した異物粒子の移動が促進され、速やかに軸受外部に排出される。しかも、前記連通部において、円周方向油溝22の溝深さが、半円筒形状軸受20、30の円周方向端面24a,30aにおける軸線方向溝Aの溝深さよりも小さくなされており、潤滑油の流れに付随する異物粒子が直接軸線方向溝A内に進入するので、軸受外部への異物粒子の排出が促進され、軸受内周面(軸受摺動面)20aとクランク軸との間に進入して、両部材の摺動面を傷つける機会が低減化される。
なお、本実施例では、半円筒形状軸受20の円周方向端面24aにおける傾斜面26と半円筒形状軸受30の通常形状の円周方向端面30aとで軸線方向溝Aを画成したが、半円筒形状軸受30の円周方向端面30aにも傾斜面26と同様な傾斜面を対称的に形成して、両傾斜面によって軸線方向溝Aを画成してもよい。
In such a configuration, when the crankshaft supported by the slide bearing 10 rotates during operation of the internal combustion engine, the circumference of the semi-cylindrical bearing 20 is accompanied with the rotation of the crankshaft (see the arrow R indicating the rotation direction in FIG. 1). The lubricating oil flows in the direction oil groove 22 in the direction of the arrow. The lubricating oil changes its direction at the communicating portion, flows in the axial groove A, and is discharged from the open ends of the axial groove A to the outside of the bearing. Since the cross-sectional area of the circumferential oil groove 22 is greater than the cross-sectional area of the axial groove A, the flow rate of the lubricating oil increases after the flow is changed at the communicating portion. Therefore, accompanying the flow of the lubricating oil, the movement of the foreign particles moving in the circumferential oil groove 22 and entering the axial groove A is promoted and quickly discharged to the outside of the bearing. Moreover, in the communication portion, the groove depth of the circumferential oil groove 22 is smaller than the groove depth of the axial groove A on the circumferential end faces 24a and 30a of the semi-cylindrical bearings 20 and 30, and lubrication is performed. Since the foreign particles accompanying the oil flow directly enter the axial groove A, the discharge of the foreign particles to the outside of the bearing is promoted, and the bearing inner peripheral surface (bearing sliding surface) 20a and the crankshaft are The opportunity to enter and damage the sliding surfaces of both members is reduced.
In this embodiment, the axial groove A is defined by the inclined surface 26 in the circumferential end surface 24a of the semicylindrical bearing 20 and the normal circumferential end surface 30a of the semicylindrical bearing 30. An inclined surface similar to the inclined surface 26 may be formed symmetrically on the circumferential end surface 30a of the cylindrical bearing 30, and the axial groove A may be defined by both inclined surfaces.

図4は、本発明の実施例2に係わるすべり軸受10Aを示す。すべり軸受10Aは、一対の半円筒形状軸受20A、30Aから成る。
半円筒形状軸受20Aは、後記傾斜面26から円周方向端面24bまでの概ね円周方向全長に亘って、軸受幅方向中央位置に、軸受内周面20aに沿う円周方向油溝22Aが形成されている。円周方向油溝22Aの溝底と軸受内周面20aとの距離(すなわち、溝深さ)は、半円筒形状軸受20Aの円周方向長さの中央部で最大であり、円周方向端面24a、24bに向かって、それぞれ、次第に小さくなっている。
FIG. 4 shows a plain bearing 10A according to Embodiment 2 of the present invention. The slide bearing 10A includes a pair of semi-cylindrical bearings 20A and 30A.
In the semi-cylindrical bearing 20A, a circumferential oil groove 22A along the bearing inner circumferential surface 20a is formed at the center position in the bearing width direction over substantially the entire length in the circumferential direction from the inclined surface 26 to the circumferential end surface 24b. Has been. The distance (that is, the groove depth) between the groove bottom of the circumferential oil groove 22A and the bearing inner circumferential surface 20a is the maximum at the center of the circumferential length of the semi-cylindrical bearing 20A, and the circumferential end surface Each of them gradually decreases toward 24a and 24b.

また、半円筒形状軸受20Aの円周方向端面24aにおいて、軸受内周面20a側の角隅部(すなわち、軸受内側端縁部)が、軸受の全幅に亘る欠截により傾斜面26になされている。一方、円周方向端面24aに当接する、半円筒形状軸受30Aの円周方向端面30aにおいても、前記半円筒形状軸受20Aの傾斜面と対称的に同様な傾斜面36が形成されている。   Further, in the circumferential end surface 24a of the semi-cylindrical bearing 20A, the corners on the bearing inner peripheral surface 20a side (that is, the bearing inner end edge portion) are formed on the inclined surface 26 by notches extending over the entire width of the bearing. Yes. On the other hand, an inclined surface 36 similar to the inclined surface of the semi-cylindrical bearing 20A is also formed on the circumferential end surface 30a of the semi-cylindrical bearing 30A that contacts the circumferential end surface 24a.

傾斜面26と36は互いに対面位置にあって、断面V字形の溝すなわち軸線方向溝Aを画成している。軸線方向溝Aは、軸受の全幅に亘って存在する。円周方向油溝22Aと軸線方向溝Aとは、円周方向油溝22の開放部(すなわち、溝端)が半円筒形状軸受20Aの円周方向端面24aの傾斜面26に開放するように形成され、半円筒形状軸受20A、30Aの円周方向端面24a,30aの近傍で互いに連通する。この連通部において、円周方向油溝22Aと軸線方向溝Aとの関係は、連通部における円周方向油溝22Aの溝底が半円筒形状軸受20A,30Aの円周方向端面24a,30aにおける軸線方向溝Aの溝底よりも軸受内周面20a側に偏位した位置にあり(すなわち、円周方向油溝22Aの溝深さが、軸線方向溝Aの溝深さよりも小さい)、かつ、円周方向油溝22Aの横断面積が、軸線方向溝Aの横断面積よりも大きくなされている。
傾斜面26,36のような傾斜面は、半円筒形状軸受20A、30Aの反対側の円周方向端面には存在しない。
The inclined surfaces 26 and 36 face each other and define a groove having a V-shaped cross section, that is, an axial groove A. The axial groove A exists over the entire width of the bearing. The circumferential oil groove 22A and the axial groove A are formed such that the open portion (that is, the groove end) of the circumferential oil groove 22 opens to the inclined surface 26 of the circumferential end surface 24a of the semi-cylindrical bearing 20A. The semi-cylindrical bearings 20A and 30A communicate with each other in the vicinity of the circumferential end faces 24a and 30a. In this communication portion, the relationship between the circumferential oil groove 22A and the axial groove A is such that the groove bottom of the circumferential oil groove 22A in the communication portion is on the circumferential end surfaces 24a, 30a of the semi-cylindrical bearings 20A, 30A. In a position displaced toward the bearing inner peripheral surface 20a side from the groove bottom of the axial groove A (that is, the groove depth of the circumferential oil groove 22A is smaller than the groove depth of the axial groove A), and The cross-sectional area of the circumferential oil groove 22A is larger than the cross-sectional area of the axial groove A.
The inclined surfaces such as the inclined surfaces 26 and 36 do not exist on the circumferential end surface on the opposite side of the semi-cylindrical bearings 20A and 30A.

半円筒形状軸受20Aの円周方向長さの中央部には、軸受外部から軸受内部の円周方向油溝22A内に潤滑油を供給するための図示しない油穴(貫通穴)が形成されており、この油穴が存在する箇所で円周方向油溝22Aの溝深さが最大であるため、油穴を通じて円周方向油溝22A内に供給された潤滑油に付随する異物粒子が円周方向油溝22Aの外部に逸脱移動し難い。また、円周方向油溝22Aの溝深さが円周方向長さの中央部から円周方向端面24a、24bに向かって、それぞれ、次第に小さくなされているため、円周方向油溝22A内の潤滑油の流速は、円周方向端面24aに近い位置で大きく、潤滑油に付随する異物粒子の円周方向慣性力も大きいが、円周方向油溝22Aと軸線方向溝Aとの連通部において、連通部における軸線方向溝Aの溝深さが、半円筒形状軸受20A,30Aの円周方向端面24a,30aにおける円周方向油溝22Aの溝深さよりも大きいため、異物粒子が軸線方向溝A内に直接進入し、円周方向油溝22Aと軸線方向溝Aの横断面積差によって、潤滑油流速の大きな軸線方向溝A内での異物粒子の移動速度が大きく、異物粒子が迅速に軸受外部に排出される。なお、実施例では傾斜面26,36は、同一形状とする場合を図示したが、傾斜面26,36は必ずしも同一形状とする必要はない。   An oil hole (through hole) (not shown) for supplying lubricating oil from the outside of the bearing into the circumferential oil groove 22A inside the bearing is formed at the center of the circumferential length of the semi-cylindrical bearing 20A. Since the groove depth of the circumferential oil groove 22A is the maximum at the location where the oil hole exists, the foreign particles accompanying the lubricating oil supplied into the circumferential oil groove 22A through the oil hole are Difficult to move out of the directional oil groove 22A. Further, since the groove depth of the circumferential oil groove 22A is gradually reduced from the central portion of the circumferential length toward the circumferential end faces 24a and 24b, respectively, The flow rate of the lubricating oil is large at a position close to the circumferential end surface 24a, and the circumferential inertia force of the foreign particles accompanying the lubricating oil is also large, but in the communicating portion between the circumferential oil groove 22A and the axial groove A, Since the groove depth of the axial groove A in the communicating portion is larger than the groove depth of the circumferential oil groove 22A on the circumferential end faces 24a, 30a of the semi-cylindrical bearings 20A, 30A, the foreign particles are in the axial groove A. Due to the difference in the cross-sectional area between the circumferential oil groove 22A and the axial groove A, the moving speed of the foreign particles in the axial groove A where the lubricating oil flow rate is large is large, and the foreign particles are quickly transferred to the outside of the bearing. To be discharged. In the embodiment, the inclined surfaces 26 and 36 have the same shape, but the inclined surfaces 26 and 36 do not necessarily have the same shape.

図5は、本発明の実施例3に係わるすべり軸受10Bを示す。すべり軸受10Bは、一対の半円筒形状軸受20B、30Aから成る。
半円筒形状軸受20Bは、後記傾斜面26から、他方の円周方向端面24bに近い位置まで、軸受幅方向中央位置に、軸受内周面20aに沿う円周方向油溝22Bが形成されている。円周方向油溝22Bは、その溝深さが半円筒形状軸受20Bの概ね円周方向長さの中央部から円周方向端面24a、24bに向かって、それぞれ、次第に小さくなされている。しかしながら、円周方向油溝22Bは、円周方向端面24aまで延在しているものの、円周方向端面24bまで達していない。これは、軸受外部から軸受内部の円周方向油溝22B内に潤滑油を供給するための図示しない油穴(貫通穴)が、半円筒形状軸受20Bの円周方向長さの中央部に形成されており、円周方向油溝22B内に供給された潤滑油が異物粒子を伴ない、図5に矢印で示されるクランク軸の回転方向Rと同方向に位置する円周方向端面24aに向かって流れるからである。
FIG. 5 shows a plain bearing 10B according to Embodiment 3 of the present invention. The plain bearing 10B includes a pair of semi-cylindrical bearings 20B and 30A.
In the semi-cylindrical bearing 20B, a circumferential oil groove 22B along the bearing inner circumferential surface 20a is formed at the center position in the bearing width direction from the inclined surface 26 described later to a position close to the other circumferential end surface 24b. . The circumferential oil groove 22B has a groove depth that gradually decreases from the central portion of the semi-cylindrical bearing 20B to the circumferential end faces 24a and 24b. However, the circumferential oil groove 22B extends to the circumferential end surface 24a, but does not reach the circumferential end surface 24b. This is because an oil hole (through hole) (not shown) for supplying lubricating oil from the outside of the bearing into the circumferential oil groove 22B inside the bearing is formed at the center of the circumferential length of the semi-cylindrical bearing 20B. The lubricating oil supplied into the circumferential oil groove 22B is directed toward the circumferential end surface 24a located in the same direction as the rotation direction R of the crankshaft indicated by an arrow in FIG. Because it flows.

また、半円筒形状軸受20Bの円周方向端面24aにおいて、軸受内周面20a側の角隅部(すなわち、軸受内側端縁部)が、軸受の全幅に亘る欠截により傾斜面26になされている。一方、円周方向端面24aに当接する、半円筒形状軸受30Aの円周方向端面30aにおいても、前記半円筒形状軸受20Bの傾斜面と対称的に同様な傾斜面36が形成されている。   In addition, in the circumferential end surface 24a of the semi-cylindrical bearing 20B, the corner portion on the bearing inner peripheral surface 20a side (that is, the bearing inner end edge portion) is formed on the inclined surface 26 by a notch extending over the entire width of the bearing. Yes. On the other hand, an inclined surface 36 similar to the inclined surface of the semi-cylindrical bearing 20B is also formed on the circumferential end surface 30a of the semi-cylindrical bearing 30A that is in contact with the circumferential end surface 24a.

傾斜面26と36は互いに対面位置にあって、断面V字形の溝すなわち軸線方向溝Aを画成している。軸線方向溝Aは、軸受の全幅に亘って存在する。円周方向油溝22Bと軸線方向溝Aとは、円周方向油溝22の開放部(すなわち、溝端)が半円筒形状軸受20Bの円周方向端面24aの傾斜面26で開放するように形成され、半円筒形状軸受20B、30Aの円周方向端面24a,30aの近傍で互いに連通する。この連通部において、円周方向油溝22Bと軸線方向溝Aとの関係は、連通部における円周方向油溝22Bの溝底が半円筒形状軸受20B,30Aの円周方向端面24a,30aにおける軸線方向溝Aの溝底よりも軸受内周面20a側に偏位した位置にあり(すなわち、円周方向油溝22Bの溝深さが、軸線方向溝Aの溝深さよりも小さい)、かつ、円周方向油溝22Bの横断面積が、軸線方向溝Aの横断面積よりも大きくなされている。
傾斜面26,36のような傾斜面は、半円筒形状軸受20B、30Aの反対側の円周方向端面には存在しない。
The inclined surfaces 26 and 36 face each other and define a groove having a V-shaped cross section, that is, an axial groove A. The axial groove A exists over the entire width of the bearing. The circumferential oil groove 22B and the axial groove A are formed so that the open portion (that is, the groove end) of the circumferential oil groove 22 is opened at the inclined surface 26 of the circumferential end surface 24a of the semi-cylindrical bearing 20B. The semi-cylindrical bearings 20B and 30A communicate with each other in the vicinity of the circumferential end faces 24a and 30a. In this communication portion, the relationship between the circumferential oil groove 22B and the axial groove A is such that the groove bottom of the circumferential oil groove 22B in the communication portion is on the circumferential end faces 24a, 30a of the semi-cylindrical bearings 20B, 30A. In a position displaced toward the bearing inner peripheral surface 20a side from the groove bottom of the axial groove A (that is, the groove depth of the circumferential oil groove 22B is smaller than the groove depth of the axial groove A), and The cross-sectional area of the circumferential oil groove 22B is larger than the cross-sectional area of the axial groove A.
The inclined surfaces such as the inclined surfaces 26 and 36 do not exist on the circumferential end surface on the opposite side of the semi-cylindrical bearings 20B and 30A.

円周方向油溝22B、軸線方向溝Aを有する半円筒形状軸受20Bの作用効果は、実施例2の半円筒形状軸受20Bの作用効果と同等である。   The effect of the semi-cylindrical bearing 20B having the circumferential oil groove 22B and the axial groove A is equivalent to the effect of the semi-cylindrical bearing 20B of the second embodiment.

図6は、本発明の実施例4に係わるすべり軸受10Cを示す。すべり軸受10Cは、一対の半円筒形状軸受20C、30Bから成る。
半円筒形状軸受20Cは、後記傾斜面26から28までの概ね円周方向全長に亘って、軸受幅方向中央位置に、軸受内周面20aに沿う円周方向油溝22Cが形成されている。円周方向油溝22Cは、実施例2における円周方向油溝22Aと同様に、その溝深さが円周方向長さの中央部から円周方向端面24a、24bに向かって、それぞれ、次第に小さくなされている。
FIG. 6 shows a plain bearing 10C according to the fourth embodiment of the present invention. The plain bearing 10C includes a pair of semi-cylindrical bearings 20C and 30B.
The semi-cylindrical bearing 20C is formed with a circumferential oil groove 22C along the bearing inner peripheral surface 20a at the center position in the bearing width direction over the entire length in the circumferential direction from the inclined surfaces 26 to 28 described later. Similar to the circumferential oil groove 22A in the second embodiment, the circumferential oil groove 22C gradually increases in depth from the central portion of the circumferential length toward the circumferential end faces 24a and 24b. Has been made small.

また、半円筒形状軸受20Cの円周方向端面24aにおいて、軸受内周面20a側の角隅部(すなわち、軸受内側端縁部)が、軸受の全幅に亘る欠截により傾斜面26になされている。一方、円周方向端面24aに当接する、半円筒形状軸受30Bの円周方向端面30aにおいても、半円筒形状軸受20Cの傾斜面26と対称的に同様な傾斜面36が形成されている。かくして、傾斜面26と36とで断面V字形の溝すなわち軸線方向溝Aが画成される。軸線方向溝Aは、軸受の全幅に亘って存在する。   Further, in the circumferential end face 24a of the semi-cylindrical bearing 20C, the corners on the bearing inner peripheral face 20a side (that is, the bearing inner end edge part) are formed on the inclined face 26 by notches extending over the entire width of the bearing. Yes. On the other hand, an inclined surface 36 similar to the inclined surface 26 of the semi-cylindrical bearing 20C is also formed on the circumferential end surface 30a of the semi-cylindrical bearing 30B that contacts the circumferential end surface 24a. Thus, the inclined surfaces 26 and 36 define a V-shaped groove, that is, an axial groove A. The axial groove A exists over the entire width of the bearing.

半円筒形状軸受20Cの軸受内周面に沿う各溝の形成形態は、図6において、左右対称であり、円周方向端面24a、30aとは反対側に位置する円周方向端面24b、30bにも傾斜面26、36と同様な傾斜面28、38が形成され、軸線方向溝Aと同様なV字形状の軸線方向溝Bが形成されている。   The formation form of each groove along the bearing inner peripheral surface of the semi-cylindrical bearing 20C is bilaterally symmetric in FIG. 6, and is formed on the circumferential end surfaces 24b and 30b located on the opposite side to the circumferential end surfaces 24a and 30a. Also, inclined surfaces 28 and 38 similar to the inclined surfaces 26 and 36 are formed, and a V-shaped axial groove B similar to the axial groove A is formed.

すべり軸受10Cの意図する作用効果も前記実施例2、3の作用効果と同等である。半円筒形状軸受20C、30Bが図6において左右対称形状になされているのは、クランク軸に対する半円筒形状軸受20C、30Bの組み付け関係を間違えた場合、実施例2、3におけるすべり軸受10A,10Bのように、単一の軸線方向溝Aを設けた非対称構造であれば、潤滑油に付随する異物の軸受外部への排除という意図する作用効果が得られないからである。すなわち、軸線方向溝Bは、クランク軸の回転方向(図6における矢印R参照)とは逆方向を向いた半円筒形状軸受20Cの円周方向端面24bに沿って形成されているので、本発明で意図する作用効果は得られない。   The intended effects of the sliding bearing 10C are also the same as the effects of the second and third embodiments. The semi-cylindrical bearings 20C and 30B are formed in a symmetrical shape in FIG. 6 when the assembling relationship of the semi-cylindrical bearings 20C and 30B with respect to the crankshaft is wrong. This is because, if the asymmetric structure is provided with a single axial groove A as described above, the intended effect of eliminating foreign matters accompanying the lubricating oil to the outside of the bearing cannot be obtained. That is, the axial groove B is formed along the circumferential end face 24b of the semi-cylindrical bearing 20C facing the direction opposite to the rotation direction of the crankshaft (see arrow R in FIG. 6). The intended effect cannot be obtained.

[本発明すべり軸受の機能に関する補足説明]
図7により説明する。図7は、例えば、図4に示すすべり軸受10Aの軸線方向溝A を軸受内面側から見た図面である。
図中、矢印Iは、半円筒形状軸受20Aの円周方向中央部に位置する油穴を通じて円周方向油溝22A内に供給された潤滑油が、クランク軸の回転に伴なって円周方向端面24aに向かって流れる方向を示す。潤滑油は、その全てが円周方向油溝22A内を流れるわけではなく、円周方向油溝22Aの外部である軸受内周面にも進入して、矢印Iで示すように流れる。矢印IIは、異物粒子Fの移動方向を示す。
[Supplementary explanation regarding the function of the plain bearing of the present invention]
This will be described with reference to FIG. FIG. 7 shows, for example, the axial groove A 1 of the plain bearing 10A shown in FIG. 4 viewed from the bearing inner surface side.
In the drawing, the arrow I indicates that the lubricating oil supplied into the circumferential oil groove 22A through the oil hole located at the circumferential center of the semi-cylindrical bearing 20A is in the circumferential direction as the crankshaft rotates. The direction which flows toward the end surface 24a is shown. Not all of the lubricating oil flows in the circumferential oil groove 22A, but also enters the bearing inner peripheral surface, which is outside the circumferential oil groove 22A, and flows as indicated by an arrow I. An arrow II indicates the moving direction of the foreign particle F.

潤滑油に付随する異物粒子Fは、円周方向油溝22Aの溝底に沿って転動しながら、潤滑油と共に円周方向端面24aに向かって移動し、円周方向油溝22Aと軸線方向溝Aの連通部に至る。この連通部では、連通部における円周方向油溝22Aの溝深さに比して、半円筒形状軸受20の円周方向端面24aにおける軸線方向溝Aの溝深さが大きくなされており、円周方向油溝22の開放部(溝端)は傾斜面26にあるので、円周方向油溝を形成しない半円筒形状軸受30の円周方向端面30aによって、円周方向油溝の開放部(溝端)の一部(溝底側)が遮られるといった不具合がない。このため連通部に到達した異物は、軸受の内周面側に浮き上がることなく、直接軸線方向溝A内に進入する。また、連通部では、軸線方向溝Aの横断面積が、円周方向油溝22Aの横断面積よりも小さくなされているために、円周方向油溝22Aから軸線方向溝A内に方向転換して流れる潤滑油の流速が軸線方向溝A内で増大する。したがって、連通部に到達した異物粒子は、軸線方向溝A内で増大した潤滑油の流れに乗って速やかに軸受外部に排出される。斯様に軸線方向溝A内での異物粒子の移動速度が大きいため、矢印Iで示される軸受内周面20aに沿う潤滑油流の影響を受け難く、異物粒子が軸線方向溝Aから押出されて潤滑油流と共に半円筒形状軸受30側に移動するといった現象を抑制することができる。また、連通部において、軸線方向溝Aの溝深さを大きくし、および/または、軸線方向溝Aの溝幅を小さくすれば、それに応じて、異物粒子に対する潤滑油流Iの影響を低減化できる。
この状態を図8に示す。図中、Cはクランク軸であり、軸線方向溝Aの溝深さをL1、溝幅をL2として示した。L1とL2の関係を、2×L1>L2にして軸線方向溝の溝幅を小さく、かつ、軸線方向溝Aの溝深さを大きく設定すれば、軸線方向溝A内の異物粒子に対する潤滑油流Iの影響を十分に低減化でき、L1>L2に設定すれば、更に望ましい効果を得ることができる。なお、軸線方向溝の溝深さL1は0.15mm以上、溝幅L2は1mm以下の範囲で、前記L1とL2の関係を設定することが望ましい。
The foreign particle F accompanying the lubricating oil moves along the circumferential bottom surface 24a together with the lubricating oil while rolling along the groove bottom of the circumferential oil groove 22A. The communication part of the groove A is reached. In this communication portion, the groove depth of the axial groove A in the circumferential end surface 24a of the semi-cylindrical bearing 20 is made larger than the groove depth of the circumferential oil groove 22A in the communication portion. Since the open portion (groove end) of the circumferential oil groove 22 is on the inclined surface 26, the open portion (groove end) of the circumferential oil groove is formed by the circumferential end surface 30a of the semi-cylindrical bearing 30 that does not form the circumferential oil groove. ) Part (groove bottom side) is not blocked. For this reason, the foreign matter that has reached the communication portion directly enters the axial groove A without floating on the inner peripheral surface side of the bearing. Further, in the communication portion, since the cross-sectional area of the axial groove A is smaller than the cross-sectional area of the circumferential oil groove 22A, the direction is changed from the circumferential oil groove 22A into the axial groove A. The flow rate of the flowing lubricating oil increases in the axial groove A. Accordingly, the foreign particles that have reached the communicating portion are quickly discharged outside the bearing along the increased lubricant flow in the axial groove A. Thus, since the moving speed of the foreign particles in the axial groove A is high, the foreign particles are not pushed by the lubricating oil flow along the bearing inner peripheral surface 20a indicated by the arrow I, and the foreign particles are pushed out from the axial groove A. Thus, the phenomenon of moving toward the semi-cylindrical bearing 30 with the lubricating oil flow can be suppressed. Further, if the groove depth of the axial groove A is increased and / or the groove width of the axial groove A is decreased in the communication portion, the influence of the lubricating oil flow I on the foreign particles is reduced accordingly. it can.
This state is shown in FIG. In the figure, C is a crankshaft, and the groove depth of the axial groove A is indicated as L1, and the groove width is indicated as L2. If the relationship between L1 and L2 is 2 × L1> L2 and the groove width of the axial groove is set small and the groove depth of the axial groove A is set large, lubricating oil for foreign particles in the axial groove A is set. If the influence of the flow I can be sufficiently reduced and L1> L2 is set, a more desirable effect can be obtained. In addition, it is desirable to set the relationship between L1 and L2 so that the groove depth L1 of the axial groove is 0.15 mm or more and the groove width L2 is 1 mm or less.

10,10A,10B,10C すべり軸受
20,20A,20B,20C 半円筒形状軸受
20a 軸受内周面
22,22A,22B,22C 円周方向油溝
24a,24b 円周方向端面
28 傾斜面
26,26a 傾斜面
30,30A,30B 半円筒形状軸受
30a 円周方向端面
36,36a 傾斜面
38 傾斜面
A 軸線方向溝
C クランク軸
R クランク軸の回転方向
W 軸受幅
L1 軸線方向溝の溝深さ
L2 軸線方向溝の溝幅
10, 10A, 10B, 10C Slide bearing 20, 20A, 20B, 20C Semi-cylindrical bearing 20a Bearing inner peripheral surface 22, 22A, 22B, 22C Circumferential oil groove 24a, 24b Circumferential end surface 28 Inclined surface 26, 26a Inclined surface 30, 30A, 30B Semi-cylindrical bearing 30a Circumferential end surface 36, 36a Inclined surface 38 Inclined surface A Axial groove C Crank shaft R Rotating direction of crank shaft W Bearing width L1 Depth of axial groove L2 Axis Groove width of direction groove

Claims (6)

一対の半円筒形状軸受のうち、一方の半円筒形状軸受の内周面に円周方向に延在する円周方向油溝が形成されている前記一対の半円筒形状軸受を円筒形に組み合わせてクランク軸を支承する内燃機関のすべり軸受において、
前記円周方向油溝は、前記一方の半円筒形状軸受の円周方向長さの中央部を含み、
前記一方の半円筒形状軸受の円周方向両端面のうち、少なくとも、クランク軸の回転方向と同じ方向を向いた一方の前記円周方向端面の軸線方向全長に沿って、該円周方向端面と他方の半円筒形状軸受の対向する円周方向端面との間に軸線方向溝が存在しており、
該軸線方向溝は、前記一対の半円筒形状軸受のうち、少なくとも前記一方の半円筒形状軸受の内周面および前記一方の円周方向端面に沿って、前記すべり軸受の軸線方向幅全体に亘って形成された傾斜面で規定されており、
前記円周方向油溝と前記軸線方向溝とが互いに連通し、該連通部における前記円周方向油溝と前記一方の円周方向端面における前記軸線方向溝の深さが異なり、前記円周方向油溝の溝底が、前記軸線方向溝の溝底よりも前記軸受内周面側に偏った位置にあり、
また、前記連通部における前記円周方向油溝の横断面積が前記軸線方向溝の横断面積よりも大きいことを特徴とする内燃機関のすべり軸受。
Of the pair of semi-cylindrical bearings, the pair of semi-cylindrical bearings in which circumferential oil grooves extending in the circumferential direction are formed on the inner circumferential surface of one semi-cylindrical bearing are combined into a cylindrical shape. In a sliding bearing for an internal combustion engine that supports a crankshaft,
The circumferential oil groove includes a central portion of the circumferential length of the one semi-cylindrical bearing,
Of the circumferential end faces of the one semi-cylindrical bearing, at least the circumferential end face along the entire axial direction length of one circumferential end face facing the same direction as the rotation direction of the crankshaft. There is an axial groove between the opposite circumferential end faces of the other semi-cylindrical bearing,
The axial groove extends across the entire axial width of the slide bearing along at least the inner circumferential surface of the one semi-cylindrical bearing and the one circumferential end surface of the pair of semi-cylindrical bearings. Is defined by an inclined surface formed by
The circumferential oil groove and the axial groove communicate with each other, and the circumferential oil groove at the communicating portion and the depth of the axial groove at the one circumferential end surface are different, and the circumferential direction The groove bottom of the oil groove is in a position that is biased toward the bearing inner peripheral surface side than the groove bottom of the axial groove,
The sliding bearing for an internal combustion engine, wherein a cross-sectional area of the circumferential oil groove in the communication portion is larger than a cross-sectional area of the axial groove.
前記連通部における前記軸線方向溝の横断面積が、前記円周方向油溝の横断面積の1/2未満であることを特徴とする請求項1に記載された内燃機関のすべり軸受。 The cross-sectional area of the axial groove in the communicating portion, the circumferential oil groove sliding bearing for an internal combustion engine according to claim 1, characterized in that less than half of the cross-sectional area of the. 前記円周方向油溝が、前記軸受内周面の円周方向長さ全体に亘って前記一方の半円筒形状軸受の前記軸受内周面に形成されており、
前記円周方向油溝および前記軸線方向溝の形成形態が、前記すべり軸受の軸線、および、前記一方の半円筒形状軸受の円周方向長さを2等分する位置を通る仮想平面を基準として面対称的になされていることを特徴とする請求項1または請求項2に記載された内燃機関のすべり軸受。
The circumferential oil groove is formed in the bearing inner circumferential surface of the one semi-cylindrical bearing over the entire circumferential length of the bearing inner circumferential surface,
The formation form of the circumferential oil groove and the axial groove is based on an imaginary plane passing through a position that bisects the axial line of the sliding bearing and the circumferential length of the one semi-cylindrical bearing. 3. A plain bearing for an internal combustion engine according to claim 1 or 2, wherein the bearing is symmetrical.
前記円周方向油溝の溝深さが、前記円周方向長さの中央部位置で最大であり、前記円周方向両端面に向かって次第に小さくなされ、もって前記円周方向油溝の横断面積が前記円周方向長さの中央部位置で最大であり、前記円周方向両端面に向かって次第に小さくなっていることを特徴とする請求項1から請求項までのいずれか一項に記載された内燃機関のすべり軸受。 The groove depth of the circumferential oil groove is the maximum at the center position of the circumferential length, and is gradually reduced toward both circumferential end faces, thereby having a transverse area of the circumferential oil groove. There is a maximum at the center position of the circumferential length, according to any one of claims 1, characterized in that said has circumferentially opposite end faces gradually smaller toward the up claims 3 A plain bearing for an internal combustion engine. 前記軸線方向溝が、一対の半円筒形状軸受の各円周方向端面に隣接する軸受内周面に沿って付与されるクラッシュリリーフを包含することを特徴とする請求項1から請求項までのいずれか一項に記載された内燃機関のすべり軸受。 It said axial groove, from claim 1, characterized in that it comprises the crush relief to be applied along the inner circumferential bearing surface adjacent to the circumferential end surfaces of the pair of semi-cylindrical bearing to claim 4 A plain bearing for an internal combustion engine according to any one of the preceding claims. 請求項1から請求項までのいずれか一項に記載された内燃機関のすべり軸受の構成部品として用いられる半円筒形状軸受であり、
前記円周方向油溝を有し、かつ、対をなして組み合わせ使用される相手方の半円筒形状軸受と協働して前記軸線方向溝を画成する半円筒形状軸受。
A semi-cylindrical bearing used as a component of a sliding bearing of an internal combustion engine according to any one of claims 1 to 5 ,
A semi-cylindrical bearing having the circumferential oil groove and defining the axial groove in cooperation with a mating semi-cylindrical bearing used in combination.
JP2011148876A 2011-07-05 2011-07-05 Sliding bearings for internal combustion engines Active JP5234679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148876A JP5234679B2 (en) 2011-07-05 2011-07-05 Sliding bearings for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148876A JP5234679B2 (en) 2011-07-05 2011-07-05 Sliding bearings for internal combustion engines

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009142195A Division JP4913179B2 (en) 2009-06-15 2009-06-15 Sliding bearings for internal combustion engines

Publications (2)

Publication Number Publication Date
JP2011237036A JP2011237036A (en) 2011-11-24
JP5234679B2 true JP5234679B2 (en) 2013-07-10

Family

ID=45325223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148876A Active JP5234679B2 (en) 2011-07-05 2011-07-05 Sliding bearings for internal combustion engines

Country Status (1)

Country Link
JP (1) JP5234679B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6876766B2 (en) * 2019-09-30 2021-05-26 大同メタル工業株式会社 Half bearings and plain bearings

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102523U (en) * 1983-12-19 1985-07-12 トヨタ自動車株式会社 Plain bearing device
JP2008082355A (en) * 2006-09-26 2008-04-10 Daido Metal Co Ltd Slide bearing

Also Published As

Publication number Publication date
JP2011237036A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4913179B2 (en) Sliding bearings for internal combustion engines
KR101152855B1 (en) Sliding bearing for internal combustion engine
US8905639B2 (en) Main bearing for crankshaft of internal combustion engine
US8317402B2 (en) Connecting rod bearing for internal combustion engines and connecting rod bearing device
US8672551B2 (en) Sliding bearing for internal combustion engines
JP2011058567A (en) Connecting rod bearing for internal combustion engine
KR101407654B1 (en) Main bearing for crankshaft of internal combustion engine
JP2010196871A (en) Connecting rod bearing for internal combustion engine
JP5234679B2 (en) Sliding bearings for internal combustion engines
KR101278644B1 (en) Slide bearing for crankshaft of internal combustion engine
JP5597173B2 (en) Connecting rod bearing for internal combustion engine
JP5038445B2 (en) Sliding bearings for internal combustion engines
JP2011208740A (en) Slide bearing
JP2012127384A (en) Slide bearing for crankshaft of internal combustion engine
JP5043798B2 (en) Slide bearing and bearing device
JP6862318B2 (en) Main bearing for crankshaft of internal combustion engine
JP5044684B2 (en) Sliding bearing for crankshaft of internal combustion engine
JP2018151037A (en) Main bearing for crank shaft of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250