JP5234606B2 - Active vibration suppression performance evaluation system and program - Google Patents

Active vibration suppression performance evaluation system and program Download PDF

Info

Publication number
JP5234606B2
JP5234606B2 JP2008206306A JP2008206306A JP5234606B2 JP 5234606 B2 JP5234606 B2 JP 5234606B2 JP 2008206306 A JP2008206306 A JP 2008206306A JP 2008206306 A JP2008206306 A JP 2008206306A JP 5234606 B2 JP5234606 B2 JP 5234606B2
Authority
JP
Japan
Prior art keywords
vibration
frequency
actuator
signal
vibration suppression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008206306A
Other languages
Japanese (ja)
Other versions
JP2010043875A (en
Inventor
立太 片村
裕 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2008206306A priority Critical patent/JP5234606B2/en
Publication of JP2010043875A publication Critical patent/JP2010043875A/en
Application granted granted Critical
Publication of JP5234606B2 publication Critical patent/JP5234606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明はアクティブ制振性能評価システム及びプログラムに関し、とくに制振対象の振動に応じて制振対象を能動的に加振して振動を抑制するアクティブ制振装置の制振性能を評価するシステム及びプログラムに関する。 The present invention relates to an active vibration suppression performance evaluation system and program, and in particular, a system for evaluating vibration suppression performance of an active vibration suppression device that actively vibrates a vibration suppression target in accordance with vibration of the vibration suppression target and suppresses the vibration, and Regarding the program.

従来から、地震・風力その他の振動外乱を受ける建築構造物や機械構造物等の振動を抑制するため、例えば図6(A)に示すようなアクティブ制振装置1が用いられている。図示例のアクティブ制振装置1は、振動対象9の振動を検出するセンサ(加速度計等)2と、制振対象9を加振するアクチュエータ(加振機等)3と、センサ2の検出信号に基づきアクチュエータ3の作動を制御する制振制御システム(コントローラ)5とを有し、センサ2の検出信号に応じてアクチュエータ3を能動的に駆動することで制振対象9の振動を抑制する。図示例は制振対象9上に相対的可動に取り付けた付加質量4をアクチュエータ3で加振する付加質量型のアクティブ動吸振機(Active Mass Damper;AMD)を示しているが、付加質量型の他にも、制振対象9の基部近傍に設置したアクチュエータ3(圧電変換素子等)で制振対象9を直接加振する直動型のもの(特許文献1参照)、制振対象9の梁部分に組み込んだピエゾアクチュエータ3の加振により梁の曲げモーメントを制御するもの(非特許文献1及び2参照)、制振対象9の梁に沿って配設した力伝達手段をアクチュエータ3で加振するもの(特許文献2参照)等、様々な形式のアクティブ制振装置1が開発されている。 Conventionally, for example, an active vibration damping device 1 as shown in FIG. 6A has been used to suppress vibrations of building structures, mechanical structures, and the like that are subject to earthquake, wind, and other vibration disturbances. The active vibration damping device 1 in the illustrated example includes a sensor (accelerometer or the like) 2 that detects vibration of the vibration target 9, an actuator (vibrator or the like) 3 that vibrates the vibration target 9, and a detection signal of the sensor 2. And a vibration suppression control system (controller) 5 that controls the operation of the actuator 3 based on the above, and actively drives the actuator 3 according to the detection signal of the sensor 2 to suppress the vibration of the vibration suppression target 9. The illustrated example shows an additional mass type active dynamic damper (AMD) that vibrates the additional mass 4 that is relatively movably mounted on the vibration control target 9 by the actuator 3. In addition, a direct acting type that directly vibrates the vibration suppression object 9 with an actuator 3 (piezoelectric conversion element or the like) installed near the base of the vibration suppression object 9 (see Patent Document 1), a beam of the vibration suppression object 9 The bending moment of the beam is controlled by the vibration of the piezoelectric actuator 3 incorporated in the part (see Non-Patent Documents 1 and 2), and the force transmission means arranged along the beam of the vibration control target 9 is excited by the actuator 3. Various types of active vibration control devices 1 have been developed, such as those to be performed (see Patent Document 2).

アクティブ制振装置1の制振制御システム5は一般的に、図6(A)に示すように、センサ2のアナログ検出信号を入力してデジタル変換するアナログ/デジタル変換器(AD変換器)6と、そのデジタル信号に基づきアクチュエータ3にデジタル制御信号(指令信号)を出力するコンピュータ等の制御系10と、そのデジタル制御信号をアナログ変換してアクチュエータ3に出力するデジタル/アナログ変換器(DA変換器)7とで構成されている。制振制御システム5の制御系10は、同図(B)に示すように、制振対象9の振動特性Gf(s)とアクチュエータ3の振動特性Ga(s)とセンサ2の振動特性Gs(s)とに応じて設計され、例えば制御パラメタを含むプログラムK(s)(以下、アクティブ制振制御手段又はプログラムということがある)としてコンピュータに実装される。上述したように様々な形式のアクティブ制振装置1が開発されているが、制振対象特性Gf(s)とアクチュエータ特性Ga(s)とセンタ特性Gs(s)とに応じて設計されるアクティブ制振制御手段K(s)の原理的な構成は何れも同様である。このようなアクティブ制振制御プログラムに適用するための様々な制御理論・アルゴリズムが提案されているが(特許文献3〜5参照)、例えば最適フィードバック制御理論(非特許文献3参照)、H∞制御理論等のロバスト制御手法(非特許文献4参照)等が一般的に使われている。 As shown in FIG. 6A, the vibration suppression control system 5 of the active vibration suppression device 1 is generally an analog / digital converter (AD converter) 6 that inputs an analog detection signal of the sensor 2 and converts it into a digital signal. And a control system 10 such as a computer that outputs a digital control signal (command signal) to the actuator 3 based on the digital signal, and a digital / analog converter (DA conversion) that converts the digital control signal into an analog signal and outputs it to the actuator 3 7). The control system 10 of the vibration suppression control system 5 includes a vibration characteristic Gf (s) of the vibration suppression target 9, a vibration characteristic Ga (s) of the actuator 3, and a vibration characteristic Gs ( s) and is implemented in a computer as a program K (s) including control parameters (hereinafter also referred to as active vibration suppression control means or a program). As described above, various types of active vibration damping devices 1 have been developed. Active active vibration damping devices 1 are designed according to the vibration damping target characteristics Gf (s), the actuator characteristics Ga (s), and the center characteristics Gs (s). The fundamental configuration of the vibration damping control means K (s) is the same. Various control theories and algorithms for application to such an active vibration suppression control program have been proposed (see Patent Documents 3 to 5). For example, optimal feedback control theory (see Non-Patent Document 3), H∞ control A robust control method such as a theory (see Non-Patent Document 4) is generally used.

安藤雅倫他「ピエゾアクチュエータによる鉄骨造建物の上下振動の制御」日本建築学会大会学術講演梗概集(北陸)、2002年8月、pp301−302Masanori Ando et al. “Control of vertical vibration of steel buildings using piezo actuators” Abstracts of Annual Conference of Architectural Institute of Japan (Hokuriku), August 2002, pp301-302 神永敏行他「ピエゾアクチュエータによる鉄骨造建物の上下振動の制御・その2」日本建築学会大会学術講演梗概集(東海)、2003年9月、pp289−290Toshiyuki Kaminaga et al. “Control of vertical vibration of steel buildings with piezo actuators, Part 2” Summary of the Annual Conference of the Architectural Institute of Japan (Tokai), September 2003, pp 289-290 増渕正美著「システム制御」コロナ社、1987年11月初版、p187−189Masami Masuna, “System Control” Corona, first published in November 1987, p187-189 システム制御情報学会編「制御系設計−H∞制御とその応用−」朝倉書店、1994年6月初版、p11−12System Control Information Society, “Control System Design-H∞ Control and its Applications”, Asakura Shoten, June 1994, first edition, p11-12 特開2003−221807号公報JP 2003-221807 A 特開平5−018136号公報JP-A-5-018136 特許第2732681号公報Japanese Patent No. 2732681 特開平09−049544号公報JP 09-049544 A 特開平06−106946号公報Japanese Patent Laid-Open No. 06-106946

図6(A)のようなアクティブ制振装置1の制振性能は、設計図等に示された制振対象9の振動特性Gf(s)に基づきコンピュータを用いて解析的・概略的に評価できるが、高次モードを含めた制振対象9の振動特性については実際の制振対象9に適用した現地計測結果に基づき評価する必要がある。一般にアクティブ制振装置1は制振対象9に減衰を付加することで振動伝達を低減して制振するものであり、アクティブ制振装置1の制振性能は制振対象9の振動伝達をどれだけ低減できたかを指標として評価することができる。従来、アクティブ制振装置1の制振性能を現地で計測する方法として、制振対象9にアクティブ制振装置1と共に他の加振機を設置し、他の加振機で制振対象9を加振しながらアクティブ制振装置1の停止時及び起動時における制振対象9の振動波形をそれぞれ測定し、停止時の振動波形と起動時の振動波形とを比較して評価する方法(他の加振機利用型)が実施されている。しかし、このようにアクティブ制振装置1の他に加振機を利用する評価方法は、他の加振機の設置にコスト及び手間がかかるという問題点がある。 The vibration damping performance of the active vibration damping device 1 as shown in FIG. 6A is analytically and roughly evaluated using a computer based on the vibration characteristic Gf (s) of the vibration damping object 9 shown in the design drawing or the like. However, it is necessary to evaluate the vibration characteristics of the vibration suppression target 9 including the higher-order mode based on the field measurement result applied to the actual vibration suppression target 9. In general, the active vibration control device 1 performs vibration control by reducing vibration transmission by adding damping to the vibration control object 9, and the vibration suppression performance of the active vibration control device 1 is the vibration transmission of the vibration control object 9. It can be evaluated as an index whether or not it has been reduced. Conventionally, as a method of measuring the vibration control performance of the active vibration control device 1 on site, another vibration exciter is installed on the vibration control target 9 together with the active vibration control device 1, and the vibration control target 9 is set with the other vibration control device. A method of measuring the vibration waveform of the vibration suppression target 9 at the time of stopping and starting the active vibration damping device 1 while vibrating, and comparing the vibration waveform at the time of stopping with the vibration waveform at the time of starting (other methods) Exciter use type) has been implemented. However, the evaluation method using the vibration exciter in addition to the active vibration damping device 1 as described above has a problem that it takes cost and trouble to install the other vibration exciter.

これに対し、制振対象9にアクティブ制振装置1のみを設置し、先ずアクティブ制振装置1を駆動して制振対象9の振動がある程度成長したところで制振装置1を停止して制振対象9の振動波形を測定し、次に制振対象9の振動がある程度成長したところで制振装置1の制御系10を起動して制振対象9の振動波形を測定し、停止時(非制御時)の振動波形と起動時(制御時)の振動波形とを比較して評価する方法(他の加振機不要型)も実施されている。しかしこの評価方法は、他の加振機を必要としない利点があるものの、アクティブ制振装置1の停止時と起動時とで振動モード(周波数やモード形状)が相違するような制振対象9に対する制振性能を正確に評価できない問題点がある。 On the other hand, only the active vibration control device 1 is installed on the vibration control target 9, and the active vibration control device 1 is first driven to stop the vibration control device 1 when the vibration of the vibration control target 9 has grown to some extent. The vibration waveform of the object 9 is measured, and then when the vibration of the vibration suppression object 9 has grown to some extent, the control system 10 of the vibration suppression device 1 is activated to measure the vibration waveform of the vibration suppression object 9, and when stopped (not controlled) A vibration waveform at the time of start-up (control) and a method of evaluating by comparing the vibration waveform at the time of control (during control) (other shaker-free type) have also been implemented. However, although this evaluation method has the advantage of not requiring another vibration exciter, the vibration control object 9 whose vibration mode (frequency and mode shape) is different between when the active vibration control device 1 is stopped and when it is started. There is a problem that the vibration control performance cannot be accurately evaluated.

例えば制振対象9を4質点振動系とした場合に、図7に示すようにアクティブ制振装置1の停止時(非制御時)と起動時(制御時)とで振動モード形状(及び各質点の位相差)に相違が生じると、非制御時に単一モードで加振しても制御時から見ると複数の高次モードが存在することになり、非制御時の振動波形と制御時の振動波形とで比較条件が同一でなくなるため、正確な制振性能評価ができなくなる。また、他の加振機不要型の評価方法は、制振対象9の振動減衰波形の相違(例えば減衰比の相違)により制振性能を評価することになるので、制振性能の周波数特性の全体像を把握することが難しく、その点においても正確な制振性能評価が期待できない問題点がある。制振装置の停止時と起動時とで振動モード形状が相違するような制振対象9に対するアクティブ制振性能を、他に加振機を用いることなく正確に評価できる手法の開発が望まれている。 For example, when the vibration control target 9 is a four-mass point vibration system, as shown in FIG. 7, the vibration mode shape (and each mass point) is changed between when the active vibration control device 1 is stopped (during non-control) and when it is started (during control). If there is a difference in phase difference), there will be multiple higher-order modes from the time of control even if vibration is applied in a single mode during non-control. The vibration waveform during non-control and the vibration during control Since the comparison conditions are not the same for the waveform, it is not possible to accurately evaluate the damping performance. In addition, since the other vibration-exclusion-type evaluation method evaluates the damping performance based on the difference in the vibration damping waveform of the damping target 9 (for example, the difference in the damping ratio), the frequency characteristics of the damping performance are It is difficult to grasp the whole picture, and there is a problem that an accurate vibration damping performance evaluation cannot be expected. It is desired to develop a method that can accurately evaluate the active vibration suppression performance for the vibration suppression target 9 whose vibration mode shape is different between when the vibration suppression device is stopped and when it is started, without using any other vibration exciter. Yes.

そこで本発明の目的は、振動モードの相違の影響を受けずに制振対象の制振性能を正確に評価できるアクティブ制振性能評価システム及びプログラムを提供することにある。 Accordingly, an object of the present invention is to provide an active vibration suppression performance evaluation system and program capable of accurately evaluating the vibration suppression performance of a vibration suppression target without being affected by the difference in vibration modes.

図1の実施例を参照するに、本発明によるアクティブ制振性能評価システムは、制振対象9の振動を検出するセンサ2と制振対象を加振するアクチュエータ3とセンサ2の検出信号に応じて制振対象9の振動抑制用の加振信号をアクチュエータ3に出力するアクティブ制振制御手段11とを有する制振装置1の制振性能を評価するシステムにおいて、制御手段11とアクチュエータ3との間に接続して制御手段11の出力加振信号に外乱信号(例えば所定振幅の正弦波信号)Aifを周波数掃引しながら重畳する外乱信号重畳手段21、制御手段11とセンサ2との間に接続して外乱信号Aifに対するセンサ検出信号Aofの周波数別振幅比Arf(=Aof/Aif)を検出する振幅比検出手段23、検出した周波数別振幅比Arfとセンサ2の周波数別振動伝達特性Gsfとアクチュエータ3の周波数別振動伝達特性Gafとを記憶する記憶手段25、及び制御手段11に接続して制御手段11を停止又は起動させつつ外乱信号Aifに対するセンサ検出信号Aofの周波数別振幅比Arfとセンサ2及びアクチュエータ3の周波数別振動伝達特性Gsf、Gafとから制振対象9の周波数別振動伝達率Gff(=Arf/(Gsf・Gaf))を算出し且つ制御手段11の停止時の周波数別振動伝達率Gffnと起動時の周波数別振動伝達率Gffcとの相違(例えば両者のピーク比又は面積比)により制御手段11の制振性能を評価する評価手段22を備えてなるものである。 Referring to the embodiment of FIG. 1, the active vibration suppression performance evaluation system according to the present invention corresponds to a sensor 2 that detects vibration of a vibration suppression object 9, an actuator 3 that vibrates the vibration suppression object, and a detection signal of the sensor 2. In the system for evaluating the damping performance of the damping device 1 having the active damping control means 11 that outputs the vibration suppression signal of the vibration suppression target 9 to the actuator 3, the control means 11 and the actuator 3 Connected between the disturbance signal superimposing means 21 for superimposing the disturbance signal (for example, a sine wave signal of a predetermined amplitude) Aif on the output excitation signal of the control means 11 while sweeping the frequency, and connected between the control means 11 and the sensor 2 to disturbance signal Aif frequency-amplitude ratio of the sensor detection signal Aof for Arf (= Aof / Aif) amplitude ratio detecting means 23 for detecting a detected frequency-amplitude ratio Arf and Se Storage means 25 for storing a frequency-vibration transmission characteristics Gaf of frequency-vibration transmission Sa 2 Characteristics Gsf and the actuator 3, and stop control means 11 connected to the control unit 11 or activated so while the sensor detection to the disturbance signal Aif The frequency-specific vibration transmission rate Gff (= Arf / (Gsf · Gaf)) of the vibration control target 9 is calculated from the frequency-specific amplitude ratio Arf of the signal Aof and the frequency-dependent vibration transfer characteristics Gsf and Gaf of the sensor 2 and the actuator 3. Evaluation means 22 for evaluating the vibration control performance of the control means 11 based on the difference (for example, the peak ratio or area ratio) between the frequency-specific vibration transmissibility Gffn when the control means 11 is stopped and the frequency-specific vibration transmissibility Gffc at the time of activation. Is provided.

また図1のブロック図及び図2の流れ図を参照するに、本発明によるアクティブ制振性能評価プログラムは、制振対象9の振動を検出するセンサ2の検出信号に応じて制振対象9を加振するアクチュエータ3に制振対象9の振動抑制用の加振信号を出力するアクティブ制振制御手段11としてコンピュータ10を機能させるプログラムの制振性能を評価するため、そのコンピュータ10を、制御手段11の出力加振信号に外乱信号(例えば所定振幅の正弦波信号)Aifを周波数掃引しながら重畳する外乱信号重畳手段21、外乱信号Aifに対するセンサ検出信号Aofの周波数別振幅比Arf(=Aof/Aif)を検出する振幅比検出手段23、検出した周波数別振幅比Arfとセンサ2の周波数別振動伝達特性Gsfとアクチュエータ3の周波数別振動伝達特性Gafとを記憶する記憶手段25、及び制御手段11を停止又は起動させつつ外乱信号Aifに対するセンサ検出信号Aofの周波数別振幅比Arfとセンサ2及びアクチュエータ3の周波数別振動伝達特性Gsf、Gafとから制振対象9の周波数別振動伝達率Gff(=Arf/(Gsf・Gaf))を算出し且つ制御手段11の停止時の周波数別振動伝達率Gffnと起動時の周波数別振動伝達率Gffcとの相違(例えば両者のピーク比又は面積比)により制御手段11の制振性能を評価する評価手段22として機能させるものである。 Further, referring to the block diagram of FIG. 1 and the flowchart of FIG. 2, the active vibration suppression performance evaluation program according to the present invention adds the vibration suppression target 9 according to the detection signal of the sensor 2 that detects the vibration of the vibration suppression target 9. In order to evaluate the damping performance of the program that causes the computer 10 to function as the active damping control means 11 that outputs the vibration suppression signal of the damping target 9 to the actuator 3 to be shaken, the computer 10 is controlled by the control means 11. A disturbance signal superimposing means 21 for superimposing a disturbance signal (for example, a sine wave signal of a predetermined amplitude) Aif on the output excitation signal of frequency, and an amplitude ratio Arf (= Aof / Aif) of the sensor detection signal Aof with respect to the disturbance signal Aif amplitude ratio detecting device 23 for) for detecting a frequency-vibration transmission of the detected frequency-amplitude ratio Arf and sensor 2 characteristics Gsf and actuator Third storage means 25 for storing a frequency-vibration transmission characteristics Gaf, and control means 11 to stop or start the allowed while frequency-oscillation of the disturbance signal Aif sensor detection signal frequency-amplitude ratio of Aof Arf and sensor 2 and an actuator 3 for The frequency-dependent vibration transmissibility Gff (= Arf / (Gsf · Gaf)) of the vibration control target 9 is calculated from the transfer characteristics Gsf and Gaf, and the frequency-specific vibration transmissibility Gffn when the control means 11 is stopped and the frequency at the start-up. It is made to function as the evaluation means 22 for evaluating the vibration control performance of the control means 11 based on the difference (for example, the peak ratio or the area ratio between the two) from the separate vibration transmissibility Gffc .

好ましくは、図1に示すように、アクチュエータ3に取り付ける加振力測定器32、及び評価手段25による制御手段11の停止時に外乱信号Aifに対する加振力測定器32の測定信号Amfを入力し且つ外乱信号Aifに対する測定信号Amfの周波数別振幅比Aqf(=Amf/Aif)からアクチュエータ3の周波数別振動伝達特性Gaf(=Aqf)を検出して記憶手段11に設定するアクチュエータ特性同定手段31を更に含める。 Preferably, as shown in FIG. 1, when the control unit 11 is stopped by the evaluation unit 25 and the excitation force measuring device 32 attached to the actuator 3, the measurement signal Amf of the excitation force measuring device 32 with respect to the disturbance signal Aif is input and Actuator characteristic identifying means 31 for detecting the frequency-specific vibration transfer characteristic Gaf (= Aqf) of the actuator 3 from the amplitude ratio Aqf (= Amf / Aif) of the measurement signal Amf with respect to the disturbance signal Aif and setting it in the storage means 11 include.

図6に示すように、アクチュエータ3を制振対象上に相対移動可能に取り付けた付加質量4を含むものとし、且つ、加振力測定器32をその付加質量4上に取り付ける加速度計とした場合は、記憶手段11に付加質量4の大きさmsと加速度計32のゲインkmsとを記憶し、アクチュエータ特性同定手段31により、外乱信号Aifに対する加速度計32の測定信号Amfの周波数別振幅比Aqf(=Amf/Aif)と付加質量4の大きさmsと加速度計32のゲインkmsとからアクチュエータ3の周波数別振動伝達特性Gaf(=(Aqf・ms)/kms)を検出することができる。 As shown in FIG. 6, when the actuator 3 includes the additional mass 4 attached to the object to be controlled so as to be relatively movable, and the excitation force measuring device 32 is an accelerometer attached on the additional mass 4. The storage means 11 stores the magnitude ms of the additional mass 4 and the gain kms of the accelerometer 32. The actuator characteristic identification means 31 stores the amplitude ratio Aqf for each frequency of the measurement signal Amf of the accelerometer 32 with respect to the disturbance signal Aif (= From the Amf / Aif), the size ms of the additional mass 4 and the gain kms of the accelerometer 32, the vibration transfer characteristic Gaf (= (Aqf · ms) / kms) of the actuator 3 can be detected.

本発明によるアクティブ制振性能評価システム及びプログラムは、アクティブ制振制御手段11を評価手段22により停止又は起動させながら、外乱信号重畳手段21により制御手段11の出力加振信号に外乱信号Aifを周波数掃引しながら重畳してアクチュエータ3に出力し、振幅比検出手段23により外乱信号Aifに対するセンサ検出信号Aofの周波数別振幅比Arf(=Aof/Aif)を検出して記憶手段25に記憶し、評価手段22により外乱信号Aifに対するセンサ検出信号Aofの周波数別振幅比Arfとセンサ2及びアクチュエータ3の周波数別振動伝達特性Gsf、Gafとから制振対象9の周波数別振動伝達率Gff(=Arf/(Gsf・Gaf))を算出し且つ制御手段11の停止時の周波数別振動伝達率Gffnと起動時の周波数別振動伝達率Gffcとの相違に基づき制御手段11の制振性能を評価するので、次の有利な効果を奏する。 The active vibration suppression performance evaluation system and program according to the present invention uses the disturbance signal superimposing means 21 to output the disturbance signal Aif to the output excitation signal of the control means 11 while the active vibration suppression control means 11 is stopped or activated by the evaluation means 22. Superimposing while sweeping and outputting to the actuator 3, the amplitude ratio detection means 23 detects the frequency ratio amplitude ratio Arf (= Aof / Aif) of the sensor detection signal Aof with respect to the disturbance signal Aif and stores it in the storage means 25 for evaluation. By means 22, the frequency-dependent vibration transmission rate Gff (= Arf / () of the object 9 to be controlled is calculated from the frequency-specific amplitude ratio Arf of the sensor detection signal Aof to the disturbance signal Aif and the frequency-dependent vibration transfer characteristics Gsf and Gaf of the sensor 2 and actuator 3. gsf · Gaf)) frequency-vibration transmissibility when stopping the calculation and controlling means 11 Since evaluating the damping performance of the control unit 11 based on the difference between the frequency-vibration transmissibility Gffc of ffn the startup offers the following advantageous effects.

(イ)アクティブ制振制御手段11からアクチュエータ3への加振信号に外乱信号Aifを重畳して制振対象9を加振するので、制御手段11の停止時(非制御時)の周波数別振幅比Arfnと起動時(制御時)の周波数別振幅比Arfcとを同じ加振条件(制振対象9の加振状態)で検出することができ、加振条件の相違に起因する制振性能評価の精度低下を避けることができる。
(ロ)制振手段11の起動時の周波数別振幅比Arfnを停止時の周波数別振幅比Arfcと同じアクチュエータ3で制振対象9を加振しながら検出するので、起動時・停止時の周波数別振幅比(周波数特性)を同じ条件で検出することができ、起動時・停止時の振動モードの相違の影響を受けずに制振性能を正確に評価することができる。
(ハ)また、外乱信号Aifの周波数を所望の範囲で掃引しながら周波数別振幅比Arfn、Arfcを検出し、任意の周波数範囲で周波数別振幅比Arfn、Arfcの相違(制振性能の周波数特性)を把握することができるので、広範囲な周波数特性に基づき制振性能を評価することができる。
(ニ)更に、センサ2の周波数別振動伝達特性Gsfとアクチュエータ3の周波数別振動伝達特性Gafと基づいて周波数別振幅比Arfを制振対象9の周波数別振動伝達率Gffに変換し、制御手段11の停止時の周波数別振動伝達率Gffnと起動時の周波数別振動伝達率Gffcとの相違により制御手段11の制振性能を評価することにより、制振対象9に対する一層正確な制振性能評価が可能となる。
(ホ)他の加振機を用いる必要がなく、しかもアクティブ制振装置1の制御系10にプログラムとして実装することで制振対象9に対する制振装置1の制振性能評価を簡単に且つ自動的に行うことができるので、性能評価に関わるコスト及び時間の大幅な削減に貢献できる。
(A) Since the vibration suppression target 9 is vibrated by superimposing the disturbance signal Aif on the vibration signal from the active vibration suppression control means 11 to the actuator 3, the amplitude for each frequency when the control means 11 is stopped (not controlled) The ratio Arfn and the frequency-specific amplitude ratio Arfc at the time of start (control) can be detected under the same vibration condition (vibration state of the vibration control object 9), and vibration suppression performance evaluation caused by the difference in vibration conditions Can be avoided.
(B) Since the frequency-dependent amplitude ratio Arfn at the time of activation of the vibration control means 11 is detected while the vibration target 9 is vibrated by the same actuator 3 as the frequency-specific amplitude ratio Arfc at the time of stop, the frequency at the time of activation / stop Different amplitude ratios (frequency characteristics) can be detected under the same conditions, and the damping performance can be accurately evaluated without being affected by the difference in the vibration mode at the time of start and stop.
(C) Further, the frequency-specific amplitude ratios Arfn and Arfc are detected while sweeping the frequency of the disturbance signal Aif in a desired range, and the difference between the frequency-specific amplitude ratios Arfn and Arfc (frequency characteristics of the damping performance) ), It is possible to evaluate the damping performance based on a wide range of frequency characteristics.
(D) Further, based on the frequency-specific vibration transfer characteristic Gsf of the sensor 2 and the frequency-specific vibration transfer characteristic Gaf of the actuator 3, the frequency-specific amplitude ratio Arf is converted into the frequency-specific vibration transfer rate Gff of the damping object 9, and control means By evaluating the vibration control performance of the control means 11 based on the difference between the vibration transmission rate Gffn for each frequency at the time of stopping 11 and the vibration transmission rate Gffc for each frequency at the time of startup, a more accurate vibration control performance evaluation for the vibration control target 9 is performed. Is possible.
(E) It is not necessary to use another vibration exciter, and the vibration control performance evaluation of the vibration control device 1 with respect to the vibration control target 9 can be performed easily and automatically by installing it as a program in the control system 10 of the active vibration control device 1. Therefore, it can contribute to a significant reduction in cost and time for performance evaluation.

図1は、本発明のアクティブ制振性能評価システム20を、アクティブ制振装置1の制振制御システム5の制御系10に組み込んだ実施例のブロック図を示す。図示例のアクティブ制振装置1は、制振対象9の振動を検出するセンサ2に接続するAD変換器6と、制振対象9を加振するアクチュエータ3に接続するDA変換器7と、アクティブ制振制御手段11が内蔵された制御系10とを有する。図示例では制御系10をコンピュータとし、アクティブ制振制御手段11をコンピュータ10の内蔵プログラムとしている。センサ2による制振対象9の振動検出信号(センサ信号)をAD変換器6経由でコンピュータ10に入力し、その検出信号をコンピュータ10のアクティブ制振制御プログラム11において加振信号(制御信号)に変換し、変換した加振信号をDA変換器7経由でアクチュエータ3へ出力することで制振対象9の振動を抑制する。 FIG. 1 shows a block diagram of an embodiment in which an active vibration suppression performance evaluation system 20 of the present invention is incorporated in a control system 10 of a vibration suppression control system 5 of an active vibration suppression device 1. The active damping device 1 in the illustrated example includes an AD converter 6 that is connected to a sensor 2 that detects vibration of a vibration suppression target 9, a DA converter 7 that is connected to an actuator 3 that vibrates the vibration suppression target 9, and an active And a control system 10 having a built-in vibration suppression control means 11. In the illustrated example, the control system 10 is a computer, and the active vibration suppression control means 11 is a built-in program of the computer 10. A vibration detection signal (sensor signal) of the vibration suppression target 9 by the sensor 2 is input to the computer 10 via the AD converter 6, and the detection signal is converted into an excitation signal (control signal) in the active vibration suppression control program 11 of the computer 10. The vibration of the vibration suppression target 9 is suppressed by converting and outputting the converted excitation signal to the actuator 3 via the DA converter 7.

アクティブ制振装置1の制振制御手段11は、上述したように制振対象9の振動特性Gf(s)に応じて設計されているが、実際に適用する制振対象9の振動特性Gf(s)に応じて制振性能を評価して調整する必要がある。図示例のアクティブ制振性能評価システム20は、アクティブ制振装置1の制振制御手段11の制振性能を、適用する制振対象9の振動伝達率(アクチュエータ3の加振力に対するセンサ2の検出信号の比率)の低減を指標として評価するものであり、制振制御手段11に接続された評価手段22と、制御系10の制振制御手段11とアクチュエータ3との間の信号化合点13に接続された外乱信号重畳手段21と、制御手段11とセンサ2との間の信号分岐点12に接続された振幅比検出手段23と、記憶手段25とを有する。 The vibration suppression control means 11 of the active vibration suppression device 1 is designed according to the vibration characteristic Gf (s) of the vibration suppression object 9 as described above, but the vibration characteristic Gf ( It is necessary to evaluate and adjust the damping performance according to s). The active vibration suppression performance evaluation system 20 in the illustrated example uses the vibration transmission performance of the vibration suppression object 11 to be applied (the vibration transmission rate of the sensor 2 with respect to the vibration force of the actuator 3). The reduction of the detection signal ratio) is evaluated as an index. The evaluation unit 22 connected to the vibration suppression control unit 11 and the signal combination point 13 between the vibration suppression control unit 11 of the control system 10 and the actuator 3 are used. The disturbance signal superimposing means 21 connected to the signal, the amplitude ratio detecting means 23 connected to the signal branching point 12 between the control means 11 and the sensor 2, and the storage means 25.

図示例のアクティブ制振性能評価システム20は、評価手段22によりアクティブ制振装置1の制振制御手段11を停止及び起動させたうえで、外乱信号重畳手段21により周波数fを掃引しながら所定振幅の外乱信号Aif(例えば正弦波信号)を発生させ、制振制御手段11とアクチュエータ3との間の信号化合点13に外乱信号Aifを加える。制振制御手段11の停止時には外乱信号Aifがアクチュエータ3に出力されて制振対象9を加振するが、制振制御手段11の起動時には、その加振信号(制御信号)に外乱信号Aifが重畳されてアクチュエータ3に出力されて停止時と同様に制振対象9を加振しながら制振制御を行う。その後、センサ2による制振対象9の振動検出信号Aofを制振制御手段11とセンサ2との間の信号分岐点12から振幅比検出手段23に入力し、外乱信号Aifに対するセンサ検出信号Aofの振幅比Arf(=Aof/Aif)を周波数f別に検出し、検出した周波数f別の振幅比Arfを記憶手段25に記憶する。制振制御手段11の停止時及び起動時に外乱信号Aifの周波数fを掃引しながら振幅比Arfの検出を繰り返することにより、停止時における振幅比Arfの周波数特性(周波数f別の振幅比Arfn)と起動時における振幅比Arfの周波数特性(周波数f別の振幅比Arfc)とをそれぞれ検出することができる。 The active vibration suppression performance evaluation system 20 in the illustrated example stops and starts the vibration suppression control unit 11 of the active vibration suppression device 1 by the evaluation unit 22 and then sweeps the frequency f by the disturbance signal superimposing unit 21 while having a predetermined amplitude. The disturbance signal Aif (for example, a sine wave signal) is generated, and the disturbance signal Aif is added to the signal combination point 13 between the vibration suppression control means 11 and the actuator 3. When the vibration suppression control means 11 is stopped, a disturbance signal Aif is output to the actuator 3 to vibrate the vibration suppression object 9, but when the vibration suppression control means 11 is activated, the disturbance signal Aif is added to the vibration signal (control signal). The vibration suppression control is performed while exciting the vibration suppression target 9 in the same manner as when stopped, being superimposed and output to the actuator 3. After that, the vibration detection signal Aof of the vibration suppression target 9 by the sensor 2 is input to the amplitude ratio detection means 23 from the signal branch point 12 between the vibration suppression control means 11 and the sensor 2, and the sensor detection signal Aof with respect to the disturbance signal Aif The amplitude ratio Arf (= Aof / Aif) is detected for each frequency f, and the detected amplitude ratio Arf for each frequency f is stored in the storage means 25. By repeating the detection of the amplitude ratio Arf while sweeping the frequency f of the disturbance signal Aif when the vibration suppression control means 11 is stopped and started, the frequency characteristic of the amplitude ratio Arf at the time of stop (amplitude ratio Arfn for each frequency f) And frequency characteristics of the amplitude ratio Arf at the time of activation (amplitude ratio Arfc for each frequency f) can be detected.

外乱信号Aifに対するセンサ検出信号Aofの振幅比Arfには、(1)式に示すように、制振対象9の振動伝達率Gffだけでなく、センサ2の振動伝達特性Gsfとアクチュエータ3の振動伝達特性Gafとが反映されている。しかし、掃引周波数fの範囲内でセンサ2及びアクチュエータ3の振動伝達特性Gsf、Gafがほぼ一定(フラット)であれば、振幅比Arfから制振対象9の振動伝達率Gffの変化を把握できる。例えば図示例の評価手段22において記憶手段25に記憶された停止時の周波数別振幅比Arfnと起動時の周波数別振幅比Arfcとを対比し、所定周波数範囲における両者のピーク比又は面積比の相違を検出することにより、アクティブ制振装置1の適用によって制振対象9の振動伝達率がどれだけ低減できたかを評価する。
Arf=Aof/Aif=Gaf・Gff・Gsf …………………(1)
The amplitude ratio Arf of the sensor detection signal Aof to the disturbance signal Aif includes not only the vibration transmission rate Gff of the vibration suppression target 9 but also the vibration transmission characteristic Gsf of the sensor 2 and the vibration transmission of the actuator 3 as shown in the equation (1). The characteristic Gaf is reflected. However, if the vibration transfer characteristics Gsf and Gaf of the sensor 2 and the actuator 3 are substantially constant (flat) within the range of the sweep frequency f, a change in the vibration transfer rate Gff of the vibration control target 9 can be grasped from the amplitude ratio Arf. For example, the frequency-dependent amplitude ratio Arfn at the time of stop stored in the storage means 25 in the evaluation means 22 of the illustrated example is compared with the frequency-specific amplitude ratio Arfc at the time of startup, and the difference in the peak ratio or area ratio between the two in a predetermined frequency range. It is evaluated how much the vibration transmissibility of the vibration suppression target 9 can be reduced by applying the active vibration suppression device 1.
Arf = Aof / Aif = Gaf / Gff / Gsf (1)

好ましくは、アクティブ制振装置1のセンサ2の周波数f別の振動伝達特性Gsfとアクチュエータ3の周波数別の振動伝達特性Gafとを記憶手段25に記憶しておく。センサ2及びアクチュエータ3の振動伝達特性Gsf、Gafが予め把握されていれば、性能評価システム20の振幅比検出手段23において(1)式に基づき振幅比Arfn、Arfcから制振対象9の振動伝達率Gffn、Grfcを周波数f別に算出し、評価手段22において制振制御手段11の停止時の周波数別振動伝達率Gffnと起動時の周波数別振動伝達率Gffcとの相違により制御手段11の制振性能を正確に評価することができる。ただし、センサ2の振動伝達特性Gsfは掃引周波数fの範囲内でフラットであることが多く、その場合は振動伝達特性Gsfを一定値としてもよい。アクチュエータ3の周波数別振動伝達特性Gafは仕様書等に基づき設定してもよい。また、図示例のようにアクティブ制振性能評価システム20にアクチュエータ3の周波数別振動伝達特性Gafを同定するアクチュエータ特性同定手段31を含め、その特性同定手段31により周波数別振動伝達特性Gafを同定して記憶手段25に設定することも可能である。アクチュエータ特性同定手段31の一例もコンピュータ10の内蔵プログラムであり、その作用の詳細については後述する。 Preferably, the vibration transfer characteristic Gsf for each frequency f of the sensor 2 of the active vibration damping device 1 and the vibration transfer characteristic Gaf for each frequency of the actuator 3 are stored in the storage means 25. If the vibration transfer characteristics Gsf and Gaf of the sensor 2 and the actuator 3 are grasped in advance, the vibration transmission of the object 9 to be controlled from the amplitude ratios Arfn and Arfc based on the equation (1) in the amplitude ratio detection means 23 of the performance evaluation system 20. The ratios Gffn and Grfc are calculated for each frequency f, and the evaluation means 22 controls the vibration of the control means 11 according to the difference between the vibration transmission ratio Gffn for each frequency when the vibration suppression control means 11 is stopped and the vibration transmission ratio Gffc for each frequency at the time of start. Performance can be accurately evaluated. However, the vibration transfer characteristic Gsf of the sensor 2 is often flat within the range of the sweep frequency f, and in that case, the vibration transfer characteristic Gsf may be a constant value. The frequency-dependent vibration transfer characteristic Gaf of the actuator 3 may be set based on specifications or the like. Further, as shown in the illustrated example, the active vibration suppression performance evaluation system 20 includes an actuator characteristic identification unit 31 for identifying the vibration transfer characteristic Gaf for each frequency of the actuator 3, and the characteristic identification unit 31 identifies the vibration transfer characteristic Gaf for each frequency. It is also possible to set in the storage means 25. An example of the actuator characteristic identification unit 31 is also a built-in program of the computer 10, and details of its operation will be described later.

図示例では、アクティブ制振性能評価システム20の重畳手段21、評価手段22、検出手段23をそれぞれコンピュータ10の内蔵プログラムとし、記憶手段25をコンピュータ10のメモリ等の一次又は二次記憶装置としている。性能評価システム20をアクティブ制振装置1の制御系10に制振制御手段11と共に組み込むことにより、アクティブ制振装置1を制振対象9に設置するだけで、その制振対象9に対する制振制御手段11の制振性能を自動的に評価することが可能となる。ただし、本発明の制振性能評価システム20は制振制御装置1の制御系10に組み込むことを必須の条件とするものではなく、制振制御装置1の制御系10と接続可能であるが独立したシステムとすることも可能である。 In the illustrated example, the superimposing means 21, the evaluating means 22, and the detecting means 23 of the active vibration suppression performance evaluation system 20 are each a built-in program of the computer 10, and the storage means 25 is a primary or secondary storage device such as a memory of the computer 10. . By incorporating the performance evaluation system 20 into the control system 10 of the active vibration damping device 1 together with the vibration damping control means 11, the vibration damping control for the vibration damping target 9 can be performed simply by installing the active vibration damping device 1 on the vibration damping target 9. It becomes possible to automatically evaluate the damping performance of the means 11. However, the vibration damping performance evaluation system 20 of the present invention is not an indispensable condition for being incorporated in the control system 10 of the vibration damping control device 1, and can be connected to the control system 10 of the vibration damping control device 1 but independently. It is also possible to use a system that has

図2は、図1のようにコンピュータ10のプログラムとして実装されたアクティブ制振性能評価システム20による評価処理の流れ図を示す。先ずステップS101において、性能評価システム20の評価手段22によりアクティブ制振装置1の制振制御手段11を例えば停止させたのち、ステップS102において外乱信号Aifの周波数fを初期値fi(例えば0.1Hz)に設定する。このような初期値fiは、予め定めて記憶手段25に記憶しておくことができる。ステップS103において、評価手段22から外乱信号重畳手段21に周波数fを入力して所定振幅の正弦波外乱信号Aifを発生させ、制振制御手段11の出力加振信号(この場合は加振信号=0)に外乱信号Aifを重畳してアクチュエータ3に出力する。ステップS104〜S105において、出力した外乱信号Aifにより生じる制振対象9の振動(センサ2からの振動検出信号)が定常状態になるまで待機したのち、性能評価システム20の振幅比検出手段23にセンサ2の振動検出信号Aofを入力して外乱信号Aifに対する検出信号Aofの振幅比Arf(=Aof/Aif)を検出する。例えばステップS104において、振幅比検出手段23を予め定めた時間(例えば外乱信号Aiの周期のn倍等)だけ待機させるか、センサ2の検出信号Aofの振幅の変動がある一定値になるまで待機させる方法が考えられる。 FIG. 2 shows a flowchart of the evaluation process by the active vibration suppression performance evaluation system 20 implemented as a program of the computer 10 as shown in FIG. First, in step S101, the vibration damping control unit 11 of the active vibration damping device 1 is stopped, for example, by the evaluation unit 22 of the performance evaluation system 20, and then in step S102, the frequency f of the disturbance signal Aif is set to the initial value fi (for example, 0.1 Hz). ). Such an initial value fi can be determined in advance and stored in the storage means 25. In step S103, the frequency f is input from the evaluation unit 22 to the disturbance signal superimposing unit 21 to generate a sine wave disturbance signal Aif having a predetermined amplitude, and an output excitation signal (in this case, excitation signal = The disturbance signal Aif is superimposed on 0) and output to the actuator 3. In steps S104 to S105, after waiting for the vibration of the vibration suppression target 9 (vibration detection signal from the sensor 2) generated by the output disturbance signal Aif to reach a steady state, the amplitude ratio detection means 23 of the performance evaluation system 20 receives the sensor. The vibration detection signal Aof of 2 is input and the amplitude ratio Arf (= Aof / Aif) of the detection signal Aof with respect to the disturbance signal Aif is detected. For example, in step S104, the amplitude ratio detecting means 23 is kept on standby for a predetermined time (eg, n times the period of the disturbance signal Ai) or until the amplitude fluctuation of the detection signal Aof of the sensor 2 becomes a certain value. It is possible to make it

振幅比検出手段23は、ステップS107において検出した振幅比Arfを記憶手段25に記憶したのち、評価手段22に対して周波数fの振幅比Arfが記録されたことを通知する。評価手段22は、ステップS108において設定範囲の周波数fの振幅比Arfが全て記憶されたか否かを確認し、全て終了していない場合はステップS109において外乱信号Aifの周波数fを所定刻み値Δf(例えば0.001Hzの刻み値)だけ変化させたうえでステップS103へ戻り、上述したステップS103〜S107のサイクルを繰り返す。このような刻み値Δfも、予め定めて記憶手段25に記憶しておくことができる。例えば外乱信号Aifの周波数fを所定刻み値Δfで上昇させながら設定周波数fmaxになるまで振幅比Arfの検出を繰り返すことにより、ステップS110において制振制御手段11の停止時における周波数別振幅比Arfnを検出する。 The amplitude ratio detection means 23 stores the amplitude ratio Arf detected in step S107 in the storage means 25 and then notifies the evaluation means 22 that the amplitude ratio Arf of the frequency f has been recorded. In step S108, the evaluation means 22 checks whether or not all the amplitude ratios Arf of the frequency f in the set range have been stored. If all have not been completed, the evaluation means 22 sets the frequency f of the disturbance signal Aif to a predetermined step value Δf (step S109). For example, after changing by a step value of 0.001 Hz, the process returns to step S103, and the above-described cycle of steps S103 to S107 is repeated. Such a step value Δf can also be determined and stored in the storage means 25 in advance. For example, by repeating the detection of the amplitude ratio Arf until the set frequency fmax is reached while increasing the frequency f of the disturbance signal Aif by a predetermined increment Δf, the amplitude-specific amplitude ratio Arfn when the vibration suppression control means 11 is stopped in step S110. To detect.

好ましくは、(例えばステップS101又はそれ以前において)センサ2の周波数f別の振動伝達特性Gsf及びアクチュエータ3の周波数f別の振動伝達特性Gafを予め記憶手段25に記憶しておき、ステップS106において記憶手段25に記憶した周波数別振動伝達特性Gsf及びGafを振幅比検出手段23に読み込み、(1)式に基づき振幅比Arfを制振対象9の振動伝達率Gff(=Arf/(Gsf・Gaf))に変換し、変換した振動伝達率Gffを記憶手段25に記憶する(ステップS107)。周波数f毎に振動伝達率Gffを記憶しながら上述したステップS103〜S107のサイクルを繰り返すことにより、ステップS110において制振制御手段11の停止時における制振対象9の周波数別振動伝達率Gffnを検出することができる(図5参照)。 Preferably, the vibration transfer characteristic Gsf for each frequency f of the sensor 2 and the vibration transfer characteristic Gaf for each frequency f of the actuator 3 are stored in advance in the storage means 25 (for example, in step S101 or earlier) and stored in step S106. The frequency-specific vibration transfer characteristics Gsf and Gaf stored in the means 25 are read into the amplitude ratio detecting means 23, and the amplitude ratio Arf is calculated based on the equation (1) as the vibration transfer rate Gff (= Arf / (Gsf · Gaf) of the object 9 to be controlled. ), And the converted vibration transmissibility Gff is stored in the storage means 25 (step S107). By storing the vibration transfer rate Gff for each frequency f and repeating the above-described cycle of steps S103 to S107, the vibration transfer rate Gffn for each frequency of the vibration suppression target 9 when the vibration suppression control unit 11 is stopped is detected in step S110. (See FIG. 5).

次いでアクティブ制振性能評価システム20は、ステップS101においてアクティブ制振装置1の制振制御手段11を起動したうえで図2の流れ図を実行することにより、制振制御手段11の起動時における周波数別振幅比Arfc(及び制振対象9の周波数別振動伝達率Gffc)を検出する(図5参照)。この場合は制振制御手段11から加振信号が出力されているが、ステップS103において正弦波外乱信号Aifを加振信号に重畳してアクチュエータ3へ出力することにより、制振制御を行いながらも停止時と同様に制振対象9を定常加振する状態を作り出すことができ、外乱信号Aifの周波数fを所定刻み値Δfで変化させながらステップS105の振幅比Arfの検出(及びステップS106の振動伝達率Gffの算出)を繰り返すことにより、停止時と同様に起動時の周波数振幅比Arfc(及び制振対象9の周波数別振動伝達率Gffc)を検出することができる。 Next, the active vibration suppression performance evaluation system 20 activates the vibration suppression control unit 11 of the active vibration suppression device 1 in step S101 and executes the flowchart of FIG. The amplitude ratio Arfc (and the frequency-specific vibration transmission rate Gffc of the vibration suppression target 9) is detected (see FIG. 5). In this case, the vibration control signal is output from the vibration suppression control means 11. In step S103, the sine wave disturbance signal Aif is superimposed on the vibration signal and output to the actuator 3, thereby performing vibration control. As in the case of the stop, it is possible to create a state in which the vibration suppression target 9 is constantly vibrated, and the detection of the amplitude ratio Arf in step S105 (and the vibration in step S106) while changing the frequency f of the disturbance signal Aif by a predetermined step value Δf. By repeating (calculation of transmission rate Gff), it is possible to detect the frequency amplitude ratio Arfc at startup (and the vibration transmission rate Gffc for each frequency of the vibration suppression target 9) as in the case of the stop.

図5は、本発明のアクティブ制振性能評価システム20により検出した制振制御手段11の停止時及び起動時における周波数別振動伝達率Gffn、Gffcの一例を示す。図示例のグラフは、図4に示すようにデジタル信号処理装置(DSP)に実装した制振対象(床モデル)9の周波数別振動特性(Gf)41とセンサの周波数別特性(Gsf)42とアクチュエータの周波数別特性(Gaf)43とからなる仮想モデル40を用い、その仮想モデル(DSP)40にアクティブ制振性能評価システム20が実装された図1の制振制御システム5を接続し、性能評価システム20で検出した制振対象9の周波数別振動伝達率Gffn、Gffcをデシベル値(dB値=20×log10(Gff))で示したものである。 FIG. 5 shows an example of frequency-based vibration transmissibility Gffn and Gffc when the vibration suppression control means 11 detected by the active vibration suppression performance evaluation system 20 of the present invention is stopped and started. As shown in FIG. 4, the graph of the illustrated example shows the frequency-dependent vibration characteristics (Gf) 41 of the vibration suppression target (floor model) 9 mounted on the digital signal processing device (DSP), and the frequency-specific characteristics (Gsf) 42 of the sensor. The vibration suppression control system 5 of FIG. 1 in which the active vibration suppression performance evaluation system 20 is mounted is connected to the virtual model (DSP) 40 using the virtual model 40 composed of the frequency-specific characteristics (Gaf) 43 of the actuator. The vibration transmissibility Gffn and Gffc for each frequency of the vibration suppression target 9 detected by the evaluation system 20 is shown in decibel values (dB value = 20 × log 10 (Gff)).

例えば図5のグラフにおいて、1次モードの固有振動数fnの0.8〜2.0倍の範囲内(0.8fn〜2.0fn)におけるGffn及びGffcのピーク値の比率(振動伝達率比=Gffc/Gffn)を指標とすることにより、アクティブ制振性能評価システム20の評価手段22により制振制御手段11の1次モードにおける制振性能を評価することができる。或いは振動伝達率比(=Gffc/Gffn)に代えて、例えば0.8fn〜2.0fnの範囲内におけるGffnの面積(ΣGffn)及びGffcの面積(ΣGffc)を求め、その両者の面積の比率(面積比=ΣGffc/ΣGffn)により、アクティブ制振制御手段11の1次モードにおける制振性能を評価手段22において評価することも可能である。 For example, in the graph of FIG. 5, the ratio of the peak values of Gffn and Gffc within the range of 0.8 to 2.0 times the natural frequency fn of the first-order mode (0.8 fn to 2.0 fn) (vibration transmissibility ratio). = Gffc / Gffn) as an index, the vibration damping performance in the primary mode of the vibration damping control means 11 can be evaluated by the evaluation means 22 of the active vibration damping performance evaluation system 20. Alternatively, instead of the vibration transmissibility ratio (= Gffc / Gffn), for example, an area of Gffn (ΣGffn) and an area of Gffc (ΣGffc) within a range of 0.8 fn to 2.0 fn are obtained, and a ratio of the areas ( Based on the area ratio = ΣGffc / ΣGffn), the evaluation means 22 can also evaluate the vibration suppression performance in the primary mode of the active vibration suppression control means 11.

例えば図5のグラフにおいて1次モードの固有振動数fn(6.5Hz付近)におけるデシベル値のピーク値の差(=20×log10(Gffc)−20×log10(Gffn))は約−15dBであるから、アクティブ制振性能評価システム20の評価手段22により、振動伝達率比(=Gffc/Gffn)が約0.177(=10(−15/20)=10−0.75)であると評価することができる。この1次モードの振動伝達率比は、図4のデジタル信号処理装置(DSP)に実装した制振対象特性41、センサ特性42、アクチュエータ特性43、及び制振制御システム5の制振制御手段11のパラメタに基づき解析的に算出した振動伝達率比とほぼ一致していた。本発明者は、図4の制振対象特性41、センサ特性42、アクチュエータ特性43を変化させながら上述した1次モードの振動伝達率比の評価を繰り返し、解析的な結果とほぼ一致する振動伝達率比が得られることを確認できた。この結果から、本発明のアクティブ制振性能評価システム20がアクティブ制振制御手段11の制振性能の評価に有効であることを確認することができた。 For example, in the graph of FIG. 5, the peak value difference (= 20 × log 10 (Gffc) −20 × log 10 (Gffn)) of the decibel value at the natural frequency fn (near 6.5 Hz) of the first-order mode is about −15 dB. Therefore, the vibration transmissibility ratio (= Gffc / Gffn) is about 0.177 (= 10 (−15/20) = 10 −0.75 ) by the evaluation means 22 of the active vibration suppression performance evaluation system 20. Can be evaluated. The vibration transmissibility ratio of the primary mode is determined by the vibration suppression target characteristic 41, the sensor characteristic 42, the actuator characteristic 43, and the vibration suppression control unit 11 of the vibration suppression control system 5 mounted on the digital signal processing device (DSP) in FIG. The vibration transmissibility ratio calculated analytically based on these parameters was almost the same. The inventor repeatedly evaluates the vibration transmissibility ratio in the first-order mode described above while changing the vibration suppression target characteristic 41, the sensor characteristic 42, and the actuator characteristic 43 in FIG. It was confirmed that a rate ratio was obtained. From this result, it was confirmed that the active vibration suppression performance evaluation system 20 of the present invention is effective for evaluating the vibration suppression performance of the active vibration suppression control means 11.

本発明のアクティブ制振性能評価システム20によれば、アクティブ制振制御手段11の停止時(非制御時)・起動時(制御時)の周波数別振幅比を同じ条件で検出することができ、起動時・停止時の振動モードの相違の影響を受けずにアクティブ制振制御手段11の制振性能を正確に評価することができる。また、外乱信号Aifの周波数を所望の範囲で掃引しながら任意の範囲でアクティブ制振制御手段11の制振性能を評価することができ、広範囲な周波数特性に基づく制振性能評価の高精度化を図ることができる。更に、アクティブ制振装置1の制御系10にプログラムとして実装することにより、制振対象9に対する制振装置1の制振性能評価を簡単に且つ自動的に行うことができ、性能評価に関わるコスト及び時間の大幅な削減に貢献できる。 According to the active vibration suppression performance evaluation system 20 of the present invention, it is possible to detect the amplitude ratio by frequency at the same time when the active vibration suppression control means 11 is stopped (during non-control) and started (control). The vibration damping performance of the active vibration damping control means 11 can be accurately evaluated without being affected by the difference in vibration mode between starting and stopping. Further, it is possible to evaluate the damping performance of the active damping control means 11 in an arbitrary range while sweeping the frequency of the disturbance signal Aif in a desired range, and to improve the accuracy of damping performance evaluation based on a wide range of frequency characteristics. Can be achieved. Further, by implementing the control system 10 of the active vibration damping device 1 as a program, the vibration damping performance evaluation of the vibration damping device 1 with respect to the vibration damping target 9 can be performed easily and automatically. And can contribute to a significant reduction in time.

こうして本発明の目的である「振動モードの相違の影響を受けずに制振対象の制振性能を正確に評価できるアクティブ制振性能評価システム及びプログラム」の提供を達成することができる。 Thus, it is possible to achieve the “active vibration suppression performance evaluation system and program capable of accurately evaluating the vibration suppression performance of the vibration suppression target without being affected by the difference in vibration mode”, which is an object of the present invention.

図1のアクティブ制振装置1の制振制御システム5は、アクチュエータ3の周波数別振動伝達特性Gafを同定するアクチュエータ特性同定手段31を有し、同定手段31によりアクチュエータ3の周波数別振動伝達特性Gafを同定して記憶手段25に設定している。アクチュエータ特性同定手段31を設けることにより、例えば振動伝達特性Gafが不明のアクチュエータ3を制振制御システム5に接続して用いた場合でも、制振制御システム5の制振性能を正確に評価することが可能となる。また、同じ構成のアクチュエータ3であっても多少の個体差が考えられるが、アクチュエータ特性同定手段31で振動伝達特性Gafを同定することにより、アクチュエータ3の個体差等に影響されない制振性能評価が可能となる。 The vibration damping control system 5 of the active vibration damping device 1 of FIG. 1 has actuator characteristic identification means 31 for identifying the vibration transmission characteristic Gaf for each frequency of the actuator 3, and the vibration transmission characteristic Gaf for each frequency of the actuator 3 by the identification means 31. Is set in the storage means 25. By providing the actuator characteristic identification means 31, for example, even when the actuator 3 whose vibration transfer characteristic Gaf is unknown is connected to the vibration suppression control system 5, the vibration suppression performance of the vibration suppression control system 5 can be accurately evaluated. Is possible. Even if the actuator 3 has the same configuration, there may be some individual differences. However, by identifying the vibration transfer characteristic Gaf by the actuator characteristic identification means 31, it is possible to evaluate the damping performance that is not affected by the individual difference of the actuator 3 or the like. It becomes possible.

図3は、図1のアクチュエータ特性同定手段31によるアクチュエータ3の周波数別振動伝達特性Gafの同定の流れ図を示す。先ずステップS201において、アクティブ制振性能評価システム20により制振制御手段11を停止したうえで、アクチュエータ3に加振力測定器(例えば加速度計)32を取り付ける。例えばアクチュエータ3を図6のようなアクティブ動吸振機(AMD)とした場合は、制振対象9を加振する付加質量4上に加振力測定器32を取り付ける。そして上述した図2の流れ図と同様に、ステップS202において外乱信号Aifの周波数fを初期値fiに設定し、ステップS203において外乱信号重畳手段21に周波数fに応じた所定振幅の正弦波外乱信号Aiを発生させてアクチュエータ3に出力する。ステップS204〜S205において、外乱信号Aifによるアクチュエータ3(付加質量4)の振動が定常状態になるまで待機したのち加振力測定器32の測定信号Amをアクチュエータ特性同定手段31に入力し、外乱信号Aifに対する加振力測定器32の測定信号Amの振幅比Aqf(=Amf/Aif)を検出する。 FIG. 3 shows a flowchart of identification of the vibration transfer characteristic Gaf for each frequency of the actuator 3 by the actuator characteristic identification means 31 of FIG. First, in step S <b> 201, the vibration suppression control unit 11 is stopped by the active vibration suppression performance evaluation system 20, and then an excitation force measuring device (for example, an accelerometer) 32 is attached to the actuator 3. For example, when the actuator 3 is an active dynamic vibration absorber (AMD) as shown in FIG. 6, the excitation force measuring device 32 is attached on the additional mass 4 for exciting the vibration suppression target 9. Similarly to the flowchart of FIG. 2 described above, the frequency f of the disturbance signal Aif is set to the initial value fi in step S202, and the sine wave disturbance signal Ai having a predetermined amplitude corresponding to the frequency f is set in the disturbance signal superimposing means 21 in step S203. Is output to the actuator 3. In steps S204 to S205, after waiting for the vibration of the actuator 3 (additional mass 4) by the disturbance signal Aif to reach a steady state, the measurement signal Am of the excitation force measuring device 32 is input to the actuator characteristic identification means 31, and the disturbance signal The amplitude ratio Aqf (= Amf / Aif) of the measurement signal Am of the excitation force measuring device 32 with respect to Aif is detected.

例えばアクチュエータ3をアクティブ動吸振機(AMD)とした場合に、外乱信号Aifに対する加振力測定器32の測定信号Amの振幅比Aqfには、(2)式に示すように、アクチュエータ3の振動伝達特性Gafと共に、付加質量4の大きさ(質量)ms及び加振力測定器32のゲインkmsが反映されている。しかし、付加質量4の大きさmsは一定値であり、加振力測定器32のゲインkmsも一般に掃引周波数fの範囲内でフラットであると考えることができるので、制振性能を評価する限りにおいては振幅比Aqfをアクチュエータ3の振動伝達特性Gafとみなしても大きな問題は生じない。物理的に意味のある振動伝達特性Gafを求める必要がある場合は、図3のステップS206に示すように、制振制御システム5の記憶手段11に付加質量4の大きさmsと加速度計32のゲインkmsとを予め求めて記憶しておき、アクチュエータ特性同定手段31において(2)式に基づき振幅比Aqfからアクチュエータ3の周波数別振動伝達特性Gaf(=(Aqf・ms)/kms)を周波数f別に算出することができる。
Aqf=Amf/Aif=Gaf・kms/ms ……………………(2)
For example, when the actuator 3 is an active dynamic vibration absorber (AMD), the amplitude ratio Aqf of the measurement signal Am of the excitation force measuring device 32 with respect to the disturbance signal Aif is the vibration of the actuator 3 as shown in the equation (2). Along with the transfer characteristic Gaf, the magnitude (mass) ms of the additional mass 4 and the gain kms of the excitation force measuring device 32 are reflected. However, since the magnitude ms of the additional mass 4 is a constant value and the gain kms of the excitation force measuring device 32 can be generally considered to be flat within the range of the sweep frequency f, as long as the damping performance is evaluated. In this case, even if the amplitude ratio Aqf is regarded as the vibration transfer characteristic Gaf of the actuator 3, no significant problem occurs. When it is necessary to obtain a physically meaningful vibration transfer characteristic Gaf, as shown in step S206 of FIG. 3, the storage means 11 of the vibration suppression control system 5 stores the magnitude ms of the additional mass 4 and the accelerometer 32. The gain kms is obtained and stored in advance, and the actuator characteristic identification means 31 calculates the vibration transfer characteristic Gaf (= (Aqf · ms) / kms) of the actuator 3 from the amplitude ratio Aqf based on the equation (2) at the frequency f. It can be calculated separately.
Aqf = Amf / Aif = Gaf · kms / ms (2)

図3のステップS207において検出した振幅比Aqf(及び振動伝達特性Gaf)を記憶手段25に記憶したのち、ステップS208において設定範囲の周波数fの振幅比Aqf(又はGaf)が全て記憶されたか否かを確認し、全て終了していない場合はステップS209において外乱信号Aifの周波数fを所定刻み値Δfだけ変化させたうえでステップS203へ戻り、上述したステップS203〜S207のサイクルを繰り返す。上述した図2の流れ図と同様に、外乱信号Aifの周波数fが設定周波数fmaxになるまで振幅比Aqf(及び振動伝達特性Gaf)の検出を繰り返すことにより、ステップS210においてアクチュエータ3の特性である周波数別振幅比Aqf(及び振動伝達特性Gaf)を同定できる。 After storing the amplitude ratio Aqf (and vibration transfer characteristic Gaf) detected in step S207 in FIG. 3 in the storage means 25, whether or not all the amplitude ratios Aqf (or Gaf) of the frequency f in the set range are stored in step S208. In step S209, the frequency f of the disturbance signal Aif is changed by a predetermined step value Δf, and the process returns to step S203, and the above-described steps S203 to S207 are repeated. Similar to the flowchart of FIG. 2 described above, by repeating detection of the amplitude ratio Aqf (and vibration transfer characteristic Gaf) until the frequency f of the disturbance signal Aif reaches the set frequency fmax, the frequency which is the characteristic of the actuator 3 in step S210. Another amplitude ratio Aqf (and vibration transfer characteristic Gaf) can be identified.

本発明システムの一実施例の構成を示す説明図である。It is explanatory drawing which shows the structure of one Example of this invention system. 図1のシステムにおける性能評価プログラムの流れ図の一例である。It is an example of the flowchart of the performance evaluation program in the system of FIG. 図1のシステムにおけるアクチュエータの特性同定方法の流れ図の一例である。It is an example of the flowchart of the characteristic identification method of the actuator in the system of FIG. 図1のシステムの性能確認実験装置の説明図である。It is explanatory drawing of the performance confirmation experiment apparatus of the system of FIG. 本発明システムによる制振性能評価の結果を示すグラフの一例である。It is an example of the graph which shows the result of the damping performance evaluation by this invention system. 従来のアクティブ制振装置の一例の説明図である。It is explanatory drawing of an example of the conventional active damping device. アクティブ制振装置の停止時(非制御時)と起動時(制御時)とにおける制振対象の振動モード形状の相違を示す説明図である。It is explanatory drawing which shows the difference in the vibration mode shape of the vibration suppression object at the time of stop (at the time of non-control) of an active vibration suppression device, and the time of activation (at the time of control).

符号の説明Explanation of symbols

1…アクティブ制振装置 2…振動センサ
3…アクチュエータ 4…付加質量
5…アクティブ制振制御システム 6…AD(アナログ/デジタル)変換器
7…DA(デジタル/アナログ)変換器 9…制振対象(構造物)
10…制御系(コンピュータ) 11…制御手段
12…信号分岐点 13…信号加合点
14…スイッチ
20…制振性能評価手段 21…外乱信号重畳手段(信号発生手段)
22…振幅比検出手段 23…評価手段
25…記憶手段
31…アクチュエータ特性同定手段 32…加振力測定器(加速度計)
33…AD(アナログ/デジタル)変換器
40…仮想モデル 41…制振対象振動特性
42…センサ特性 43…アクチュエータ特性
44…加速度ゲイン 45…加速度ゲイン
46…AD(アナログ/デジタル)変換器 47…DA(デジタル/アナログ)変換器
48…周波数特性分析器
DESCRIPTION OF SYMBOLS 1 ... Active damping device 2 ... Vibration sensor 3 ... Actuator 4 ... Additional mass 5 ... Active damping control system 6 ... AD (analog / digital) converter 7 ... DA (digital / analog) converter 9 ... Damping object ( Structure)
DESCRIPTION OF SYMBOLS 10 ... Control system (computer) 11 ... Control means 12 ... Signal branch point 13 ... Signal addition point 14 ... Switch 20 ... Damping performance evaluation means 21 ... Disturbance signal superimposition means (signal generation means)
22 ... Amplitude ratio detection means 23 ... Evaluation means 25 ... Storage means 31 ... Actuator characteristic identification means 32 ... Excitation force measuring instrument (accelerometer)
33 ... AD (analog / digital) converter 40 ... virtual model 41 ... vibration target vibration characteristic 42 ... sensor characteristic 43 ... actor characteristic 44 ... acceleration gain 45 ... acceleration gain 46 ... AD (analog / digital) converter 47 ... DA (Digital / analog) converter 48 ... frequency characteristic analyzer

Claims (6)

制振対象の振動を検出するセンサと制振対象を加振するアクチュエータと前記センサの検出信号に応じて制振対象の振動抑制用の加振信号を前記アクチュエータに出力するアクティブ制振制御手段とを有する制振装置の制振性能を評価するシステムにおいて、前記制御手段とアクチュエータとの間に接続して前記制御手段の出力加振信号に外乱信号を周波数掃引しながら重畳する外乱信号重畳手段、前記制御手段とセンサとの間に接続して前記外乱信号に対するセンサ検出信号の周波数別振幅比を検出する振幅比検出手段、前記検出した周波数別振幅比と前記センサ及びアクチュエータの周波数別振動伝達特性とを記憶する記憶手段、及び前記制御手段に接続して制御手段を停止又は起動させつつ前記外乱信号に対するセンサ検出信号の周波数別振幅比と前記センサ及びアクチュエータの周波数別振動伝達特性とから制振対象の周波数別振動伝達率を算出し且つ制御手段の停止時の周波数別振動伝達率と起動時の周波数別振動伝達率との相違により制御手段の制振性能を評価する評価手段を備えてなるアクティブ制振性能評価システム。 A sensor for detecting vibration of the vibration suppression target, an actuator for exciting the vibration suppression target, and an active vibration suppression control means for outputting an excitation signal for suppressing vibration of the vibration suppression target to the actuator according to a detection signal of the sensor; A disturbance signal superimposing unit that is connected between the control unit and an actuator and superimposes a disturbance signal on the output excitation signal of the control unit while performing frequency sweeping, Amplitude ratio detection means connected between the control means and a sensor to detect an amplitude ratio by frequency of the sensor detection signal with respect to the disturbance signal, the detected amplitude ratio by frequency and the vibration transfer characteristics by frequency of the sensor and actuator storage means, and frequency of the sensor detection signal with respect to the disturbance signal while stopping or starting the control means connected to said control means for storing the bets Another amplitude ratio and the frequency-vibration transmissibility at startup and frequency-vibration transmissibility when stopping the sensor and calculating and controlling means for frequency-vibration transmissibility of the vibration damping target and a frequency-vibration transmission characteristics of the actuator An active vibration suppression performance evaluation system comprising evaluation means for evaluating the vibration suppression performance of the control means based on the difference between the two. 請求項のシステムにおいて、前記アクチュエータに取り付ける加振力測定器、及び前記評価手段による制御手段の停止時に前記外乱信号に対する加振力測定器の測定信号を入力し且つ前記外乱信号に対する測定信号の周波数別振幅比からアクチュエータの周波数別振動伝達特性を検出して前記記憶手段に設定するアクチュエータ特性同定手段を更に含めてなるアクティブ制振性能評価システム。 2. The system according to claim 1 , wherein a measurement signal of the excitation force measuring device for the disturbance signal is input when the excitation force measuring device attached to the actuator and the control means by the evaluation means are stopped, and the measurement signal for the disturbance signal is inputted. An active vibration suppression performance evaluation system further comprising an actuator characteristic identification means for detecting a vibration transmission characteristic for each frequency of an actuator from an amplitude ratio for each frequency and setting it in the storage means. 請求項のシステムにおいて、前記アクチュエータを制振対象上に相対移動可能に取り付けた付加質量を含むものとし、前記加振力測定器を付加質量上に取り付ける加速度計とし、前記記憶手段に付加質量の大きさと加速度計のゲインとを記憶し、前記アクチュエータ特性同定手段を、前記外乱信号に対する加速度計の測定信号の周波数別振幅比と前記付加質量の大きさ及び加速度計のゲインとからアクチュエータの周波数別振動伝達特性を検出するものとしてなるアクティブ制振性能評価システム。 3. The system according to claim 2 , wherein the actuator includes an additional mass attached to the object to be controlled so as to be relatively movable, and the excitation force measuring device is an accelerometer attached on the additional mass. Storing the magnitude and accelerometer gain, and determining the actuator characteristic identification means according to the frequency of the actuator from the amplitude ratio of the measurement signal of the accelerometer to the disturbance signal by frequency, the magnitude of the additional mass, and the gain of the accelerometer. An active vibration suppression performance evaluation system that detects vibration transfer characteristics. 制振対象の振動を検出するセンサの検出信号に応じて制振対象を加振するアクチュエータに制振対象の振動抑制用の加振信号を出力するアクティブ制振制御手段としてコンピュータを機能させるプログラムの制振性能を評価するため、当該コンピュータを、前記制御手段の出力加振信号に外乱信号を周波数掃引しながら重畳する外乱信号重畳手段、前記外乱信号に対するセンサ検出信号の周波数別振幅比を検出する振幅比検出手段、前記検出した周波数別振幅比と前記センサ及びアクチュエータの周波数別振動伝達特性とを記憶する記憶手段、及び前記制御手段を停止又は起動させつつ前記外乱信号に対するセンサ検出信号の周波数別振幅比と前記センサ及びアクチュエータの周波数別振動伝達特性とから制振対象の周波数別振動伝達率を算出し且つ制御手段の停止時の周波数別振動伝達率と起動時の周波数別振動伝達率との相違により制御手段の制振性能を評価する評価手段として機能させるアクティブ制振性能評価プログラム。 A program for causing a computer to function as an active vibration suppression control means for outputting a vibration suppression signal for a vibration suppression target to an actuator for exciting the vibration suppression target according to a detection signal of a sensor for detecting the vibration of the vibration suppression target In order to evaluate the damping performance, the computer detects disturbance signal superimposing means for superimposing the disturbance signal on the output excitation signal of the control means while sweeping the frequency, and detects the amplitude ratio for each frequency of the sensor detection signal with respect to the disturbance signal. Amplitude ratio detection means, storage means for storing the detected amplitude ratio for each frequency and vibration transmission characteristics for each frequency of the sensor and actuator, and for each frequency of the sensor detection signal with respect to the disturbance signal while stopping or starting the control means Calculate the vibration transmission rate for each frequency of the vibration suppression target from the amplitude ratio and the vibration transmission characteristics for each frequency of the sensor and actuator. Active damping performance evaluation program that was and function as evaluation means for evaluating the damping performance of the control unit due to the difference in the frequency-vibration transmissibility and frequency-vibration transmissibility of startup when the stop control means. 請求項のプログラムにおいて、前記評価手段による制御手段の停止時に前記アクチュエータに取り付けた加振力測定器の前記外乱信号に対する測定信号を入力し且つ前記外乱信号に対する測定信号の周波数別振幅比からアクチュエータの周波数別振動伝達特性を検出して前記記憶手段に設定するアクチュエータ特性同定手段を更に含めてなるアクティブ制振性能評価プログラム。 5. The program according to claim 4 , wherein a measurement signal for the disturbance signal of the excitation force measuring device attached to the actuator is inputted when the control means by the evaluation means is stopped, and the actuator is obtained from the amplitude ratio by frequency of the measurement signal for the disturbance signal. An active vibration suppression performance evaluation program further comprising actuator characteristic identification means for detecting the vibration transfer characteristic for each frequency and setting it in the storage means. 請求項のプログラムにおいて、前記アクチュエータを制振対象上に相対移動可能に取り付ける付加質量を含むものとし、且つ、前記加振力測定器を付加質量上に取り付ける加速度計とした場合に、前記記憶手段に付加質量の大きさと加速度計のゲインとを記憶し、前記アクチュエータ特性同定手段を、前記外乱信号に対する加速度計の測定信号の周波数別振幅比と前記付加質量の大きさ及び加速度計のゲインとからアクチュエータの周波数別振動伝達特性を検出するものとしてなるアクティブ制振性能評価プログラム。 6. The program according to claim 5 , wherein the storage means includes an additional mass attached to the actuator so as to be relatively movable on the object to be damped, and the acceleration measuring device is an accelerometer attached to the additional mass. Is stored with the magnitude of the additional mass and the gain of the accelerometer, and the actuator characteristic identification means is configured to determine the frequency ratio of the measurement signal of the accelerometer with respect to the disturbance signal and the magnitude of the additional mass and the gain of the accelerometer. An active vibration suppression performance evaluation program for detecting vibration transfer characteristics of actuators by frequency.
JP2008206306A 2008-08-08 2008-08-08 Active vibration suppression performance evaluation system and program Expired - Fee Related JP5234606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206306A JP5234606B2 (en) 2008-08-08 2008-08-08 Active vibration suppression performance evaluation system and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206306A JP5234606B2 (en) 2008-08-08 2008-08-08 Active vibration suppression performance evaluation system and program

Publications (2)

Publication Number Publication Date
JP2010043875A JP2010043875A (en) 2010-02-25
JP5234606B2 true JP5234606B2 (en) 2013-07-10

Family

ID=42015376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206306A Expired - Fee Related JP5234606B2 (en) 2008-08-08 2008-08-08 Active vibration suppression performance evaluation system and program

Country Status (1)

Country Link
JP (1) JP5234606B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213751B1 (en) * 2012-09-07 2012-12-18 (주)대우건설 Active mass damper system for controlling vibration of torsional direction
KR101213752B1 (en) * 2012-09-07 2012-12-18 (주)대우건설 Active mass damper system for controlling vibration of vertical direction
DE102013215157B3 (en) * 2013-08-01 2014-10-30 Siemens Aktiengesellschaft Method for active or passive vibration damping
CN109798976A (en) * 2019-04-09 2019-05-24 深圳鳍源科技有限公司 A kind of vibration interference processing unit, method and the terminal device being applicable in
CN111256927B (en) * 2019-12-31 2022-03-25 杭州亿恒科技有限公司 Self-adaptive double-closed-loop time adjustment sinusoidal vibration control method
CN113740013B (en) * 2021-09-06 2022-06-24 青海大学 High-temperature resistant device for powder metallurgy damping experiment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280930A (en) * 1993-03-26 1994-10-07 Showa Electric Wire & Cable Co Ltd Active type vibration resisting device
JP2514577B2 (en) * 1993-06-22 1996-07-10 川崎重工業株式会社 Structure damping method and device
JPH116328A (en) * 1997-06-16 1999-01-12 Mitsubishi Heavy Ind Ltd Vibration control and vibration excitation device
JP2000274481A (en) * 1999-03-24 2000-10-03 Hitachi Ltd Active vibration resistant device
JP2005215881A (en) * 2004-01-28 2005-08-11 Fujikura Rubber Ltd Vibration removing system, tuning method therefor, and computer-readable recording medium with program recorded thereon for executing tuning method

Also Published As

Publication number Publication date
JP2010043875A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP5234606B2 (en) Active vibration suppression performance evaluation system and program
KR101841134B1 (en) Dynamometer control device and method for estimating moment of inertia using same
US9897518B2 (en) Method and apparatus for measuring damping in a workpiece
US8671758B2 (en) System and method for measuring the frequency of a vibrating object
JP2009192363A (en) Vibration tester
JP2011027669A (en) Device and method for testing vibration
Murphy et al. Grazing instabilities and post-bifurcation behavior in an impacting string
JP2009180628A (en) Building diagnostic device
JP5004619B2 (en) Active vibration control system and program
JP2019128209A (en) Vibration device and vibration test device with the vibration device
JP5404830B2 (en) Vibration generator
JP6499832B2 (en) Structure safety verification system, structure safety verification method and program
JP6992606B2 (en) Performance evaluation method for active mass damper
JP3087774B2 (en) Damping device
Griffin et al. The application of smart structures toward feedback suppression in amplified acoustic guitars
JP3860724B2 (en) Structural vibration test method
JP4705653B2 (en) Vibration control device
Wilmshurst et al. Nonlinear identification of proof-mass actuators accounting for stroke saturation
Balasubramanian et al. A Tool to Identify Damping During Large Amplitude Vibrations of Viscoelastic Structures
JP3983560B2 (en) Vibration control device
JP2007120711A (en) Design method of active vibration control system
JP5137440B2 (en) Vibration generator
Raebel et al. Response of Meso-Scale Energy Harvesters Coupled with Dynamic Floor Systems
Sahu et al. Experimental and numerical investigations on the dynamic response of a power transformer
JP2021117042A (en) Performance evaluation method for tuned mass damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

R150 Certificate of patent or registration of utility model

Ref document number: 5234606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees