JP5234452B2 - Alkali resistant glutaminase - Google Patents

Alkali resistant glutaminase Download PDF

Info

Publication number
JP5234452B2
JP5234452B2 JP2008025824A JP2008025824A JP5234452B2 JP 5234452 B2 JP5234452 B2 JP 5234452B2 JP 2008025824 A JP2008025824 A JP 2008025824A JP 2008025824 A JP2008025824 A JP 2008025824A JP 5234452 B2 JP5234452 B2 JP 5234452B2
Authority
JP
Japan
Prior art keywords
glutaminase
porous silica
alkali
resistant
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008025824A
Other languages
Japanese (ja)
Other versions
JP2009183195A (en
Inventor
卓司 横山
幸一 北畑
宏暢 南部
義樹 山崎
徹二 伊藤
亮 石井
聡 濱川
達朗 角田
隆昌 花岡
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Taiyo Kagaku KK
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Taiyo Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Taiyo Kagaku KK filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008025824A priority Critical patent/JP5234452B2/en
Publication of JP2009183195A publication Critical patent/JP2009183195A/en
Application granted granted Critical
Publication of JP5234452B2 publication Critical patent/JP5234452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

本発明は、耐アルカリ性グルタミナーゼに関する。   The present invention relates to an alkali-resistant glutaminase.

グルタミナーゼは、食品工業、特に蛋白質を酵素的に分解して調味食品を製造する場合に、重要な役割を果たすものとして知られている。このグルタミナーゼは、生化学的、医学的分野においても、近年特に注目されているものであり、安定な酵素剤の製造が期待されている。例えば、グルタミナーゼをグルタミンとエチルアミン誘導体の混合物に作用させることにより、L−テアニンを高い収率で得ることができる。アルカリ条件下において蛋白質を酵素的に分解できれば、食品分野などの種々の分野への応用が期待される。グルタミナーゼに耐アルカリ性を持たさせる技術開発が行われているが、そのような技術は十分に発達しているとは言い難い。   Glutaminase is known to play an important role in the food industry, particularly in the production of seasoned foods by enzymatically degrading proteins. This glutaminase has attracted particular attention in recent years also in the biochemical and medical fields, and the production of a stable enzyme agent is expected. For example, L-theanine can be obtained in high yield by allowing glutaminase to act on a mixture of glutamine and an ethylamine derivative. If the protein can be enzymatically degraded under alkaline conditions, application to various fields such as the food field is expected. Although development of technology for imparting alkali resistance to glutaminase has been carried out, it is difficult to say that such technology is sufficiently developed.

一方、細孔径が2〜20nm程度の規則性細孔を有する多孔質シリカは、特にメソポーラスシリカと呼ばれ、1990年代にその合成が報告されて以降、吸着剤や触媒、各種担体としての利用方法が数多く提案されている(非特許文献1)。メソポーラスシリカの細孔径は、各種酵素のサイズと対応していることから、その細孔の内部に酵素を固定させるための酵素担体としての利用が期待されている。これまで、多孔質シリカの細孔内に酵素を担持させることにより、酵素に対して耐酸性、耐熱性、または異性化反応の基質特異性向上などの効果を付与する技術が開発されている(特許文献1,2)。一般に多孔質シリカは、pH8以上のアルカリ条件下の溶液中では構成成分であるシリカが溶解しやすく、細孔構造を保持できないという欠点があった。また、アルカリ条件下では、酵素が溶液中に溶解してしまい、安定的な反応を得ることができないという欠点もあった。
そのため、多孔質シリカをアルカリ条件下における反応を触媒する酵素担体として利用することは困難であった。
特開2001−128672号公報 特開2002−95471号公報 福嶋喜章、セラミックス、34巻、pp722−725、1999年
On the other hand, porous silica having regular pores having a pore diameter of about 2 to 20 nm is particularly called mesoporous silica, and since its synthesis was reported in the 1990s, it has been used as an adsorbent, catalyst, and various carriers. Have been proposed (Non-Patent Document 1). Since the pore diameter of mesoporous silica corresponds to the sizes of various enzymes, it is expected to be used as an enzyme carrier for immobilizing enzymes inside the pores. Up to now, a technology has been developed to impart an effect such as acid resistance, heat resistance, or substrate specificity improvement of isomerization reaction to the enzyme by supporting the enzyme in the pores of the porous silica ( Patent Documents 1 and 2). In general, porous silica has a drawback that silica as a constituent component is easily dissolved in a solution under an alkaline condition of pH 8 or higher and the pore structure cannot be maintained. Further, under alkaline conditions, the enzyme is dissolved in the solution, and there is a disadvantage that a stable reaction cannot be obtained.
Therefore, it has been difficult to use porous silica as an enzyme carrier that catalyzes a reaction under alkaline conditions.
JP 2001-128672 A JP 2002-95471 A Yoshiaki Fukushima, Ceramics, 34, pp722-725, 1999

本発明は、上記事情に鑑みてなされたものであり、その目的は、シリカ多孔体の細孔内にグルタミナーゼを吸着させることにより、従来にない優れた耐アルカリ性を有するグルタミナーゼを得ることにある。   This invention is made | formed in view of the said situation, The objective is to obtain the glutaminase which has the outstanding alkali resistance which is not before by making glutaminase adsorb | suck in the pore of a silica porous body.

上記課題を達成するための本発明は、次の通りである。
(1)平均細孔径が3nmより大きい細孔径を備え、シリカ多孔体中の金属の含有量が1〜20質量%であるシリカ多孔体と、グルタミナーゼとから構成される耐アルカリ性グルタミナーゼ。
(2)シリカ多孔体のX線回折におけるd間隔が2nmより大きい位置に少なくとも1つのピークを持つ(1)記載の耐アルカリ性グルタミナーゼ。
(3)前記金属がジルコニウムである(1)または(2)に記載の耐アルカリ性グルタミナーゼ。
(4)耐アルカリ性グルタミナーゼ中のグルタミナーゼの含有量が2〜20質量%である(1)〜(3)のいずれか一つに記載の耐アルカリ性グルタミナーゼ。
The present invention for achieving the above object is as follows.
(1) An alkali-resistant glutaminase comprising a porous silica having an average pore size of more than 3 nm and a metal content in the porous silica of 1 to 20% by mass, and glutaminase.
(2) The alkali-resistant glutaminase according to (1) having at least one peak at a position where the d interval in the X-ray diffraction of the porous silica material is larger than 2 nm.
(3) The alkali-resistant glutaminase according to (1) or (2), wherein the metal is zirconium.
(4) The alkali-resistant glutaminase according to any one of (1) to (3), wherein the content of glutaminase in the alkali-resistant glutaminase is 2 to 20% by mass.

本発明によれば、従来のグルタミナーゼの耐アルカリ性を著しく向上させることが可能となり、調味食品等を製造する目的の上で極めて効率的にグルタミナーゼを作用させることができる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to improve the alkali resistance of the conventional glutaminase remarkably, and can make glutaminase act very efficiently on the objective of manufacturing a seasoning food etc.

次に、本発明の実施形態について、図面を参照しつつ説明するが、本発明の技術的範囲は、これらの実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶものである。
本発明におけるシリカ多孔体とは、多孔質構造を持つケイ素酸化物を主成分とする物質を意味する。
シリカ多孔体における細孔の平均細孔径が3nm未満であると、シリカ多孔体内部へのグルタミナーゼの吸着が十分でないので好ましくない。また、平均細孔径が20nmを超えるものは、製造するのが実質的に困難である。従って、上記観点からすると、本発明における細孔の平均細孔径は、3〜20nmであり、好ましくは3〜14nmである。
本発明の平均細孔直径は、公知の窒素吸脱着により算出した。すなわち、平均細孔直径は公知のBJH法により算出した。
本発明におけるシリカ多孔体のシリカ多孔体中の金属の含有量は、1〜20質量%が好ましい。本発明のシリカ多孔体の金属含有量は、ICP発光分析装置により算出した。
また、本発明におけるシリカ多孔体は、金属としてジルコニウムを含有していることが好ましい。シリカ多孔体のシリカ多孔体中のジルコニウム含有量は、耐アルカリ性の観点から1〜20質量%が好ましく、3〜15質量%がより好ましく、5〜10質量%が最も好ましい。
Next, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited by these embodiments, and various forms are possible without changing the gist of the invention. Can be implemented. Further, the technical scope of the present invention extends to an equivalent range.
The porous silica in the present invention means a substance mainly composed of a silicon oxide having a porous structure.
If the average pore diameter of the pores in the porous silica material is less than 3 nm, it is not preferable because the glutaminase is not sufficiently adsorbed inside the porous silica material. In addition, those having an average pore diameter exceeding 20 nm are substantially difficult to produce. Therefore, from the above viewpoint, the average pore diameter of the pores in the present invention is 3 to 20 nm, preferably 3 to 14 nm.
The average pore diameter of the present invention was calculated by known nitrogen adsorption / desorption. That is, the average pore diameter was calculated by a known BJH method.
As for content of the metal in the silica porous body of the silica porous body in this invention, 1-20 mass% is preferable. The metal content of the porous silica material of the present invention was calculated using an ICP emission spectrometer.
Moreover, it is preferable that the porous silica in the present invention contains zirconium as a metal. The zirconium content in the porous silica is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and most preferably 5 to 10% by mass from the viewpoint of alkali resistance.

シリカ多孔体へのジルコニウムの導入方法としては、特に限定されるものではないが、例えばシリカ多孔体を50倍量の0.2M硝酸ジルコニア溶液に浸漬、撹拌後濾過し、乾燥後580℃で焼成することにより行うことができる
本発明におけるシリカ多孔体は、X線回折のd間隔が2nmより大きい位置に少なくとも1つのピークを持つことが好ましい。本発明のX線回折パターンは、既存のX線回折装置であるRINT ULTIMA II、理学電機株式会社製により測定した。
本発明におけるシリカ多孔体の比表面積が100m/g未満であると、シリカ多孔体へのグルタミナーゼ担持の吸着が十分でない場合がある。また、比表面積が2000m/gより大きいものは、製造するのが実質的に困難である。従って、上記観点から、本発明におけるシリカ多孔体の比表面積は、好ましくは100m/g〜1500m/g、より好ましくは300m/g〜1500m/g、最も好ましくは500m/g〜1500m/gである。本発明の多孔体の比表面積は、公知の窒素脱吸着により算出できる。
The method of introducing zirconium into the porous silica material is not particularly limited. For example, the porous silica material is immersed in 50-fold 0.2 M zirconia nitrate solution, stirred, filtered, dried, and fired at 580 ° C. The porous silica in the present invention that can be performed preferably has at least one peak at a position where the d interval of X-ray diffraction is larger than 2 nm. The X-ray diffraction pattern of the present invention was measured by RINT ULTIMA II, which is an existing X-ray diffractometer, manufactured by Rigaku Corporation.
When the specific surface area of the porous silica material in the present invention is less than 100 m 2 / g, adsorption of glutaminase supported on the porous silica material may not be sufficient. Moreover, it is substantially difficult to manufacture a specific surface area larger than 2000 m < 2 > / g. Therefore, from the above viewpoint, the specific surface area of the porous silica material in the present invention is preferably 100m 2 / g~1500m 2 / g, more preferably 300m 2 / g~1500m 2 / g, most preferably 500 meters 2 / g to 1500 m 2 / g. The specific surface area of the porous body of the present invention can be calculated by known nitrogen desorption.

本発明におけるシリカ多孔体の製造方法としては、特に限定されるものではないが、例えば次のようにして製造できる。まず、無機原料と有機原料とを混合し、反応させることにより、有機物を鋳型としてそのまわりに無機物の骨格が形成された有機物と無機物の複合体を形成させる。次いで、得られた複合体から、有機物を除去することにより、シリカ多孔体を製造する。
無機原料は、例えば珪素含有無機物を用いることができる。そのような原料としては、例えば、層状珪酸塩、非層状珪酸塩等の珪酸塩を含む物質及び珪酸塩以外の珪素を含有する物質が挙げられる。層状珪酸塩としては、カネマイト(NaHSi・3HO)、ジ珪酸ナトリウム結晶(NaSi)、マカタイト(NaHSi・5HO)、アイラアイト(NaHSi17・XHO)、マガディアイト(NaHSi1429・XHO)、ケニヤアイト(NaHSi2041・XHO)等が挙げられ、非層状珪酸塩としては、水ガラス(珪酸ソーダ)、ガラス、無定形珪酸ナトリウム、テトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)、テトラメチルアンモニウム(TMA)シリケート、テトラエチルオルトシリケート等のシリコンアルコキシド等が挙げられる。また、珪酸塩以外の珪素を含有する物質としては、シリカ、シリカ酸化物、シリカ−金属複合酸化物などが挙げられる。これらは、単独で又は2種以上を混合して用いることができる。
Although it does not specifically limit as a manufacturing method of the silica porous body in this invention, For example, it can manufacture as follows. First, an inorganic raw material and an organic raw material are mixed and reacted to form an organic matter-inorganic matter composite in which an inorganic matter skeleton is formed around the organic matter as a template. Next, a porous silica material is produced by removing organic substances from the obtained composite.
As the inorganic material, for example, a silicon-containing inorganic material can be used. Examples of such raw materials include substances containing silicates such as layered silicates and non-layered silicates, and substances containing silicon other than silicates. Examples of layered silicates include kanemite (NaHSi 2 O 5 · 3H 2 O), sodium disilicate crystal (Na 2 Si 2 O 5 ), macatite (NaHSi 4 O 9 · 5H 2 O), and Iraite (NaHSi 8 O 17 · XH 2 O), magadiite (Na 2 HSi 14 O 29 · XH 2 O), Kenyaite (Na 2 HSi 20 O 41 · XH 2 O) and the like. Non-layered silicates include water glass (sodium silicate). ), Glass, amorphous sodium silicate, tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetramethylammonium (TMA) silicate, silicon alkoxide such as tetraethylorthosilicate, and the like. Examples of the substance containing silicon other than silicate include silica, silica oxide, and silica-metal composite oxide. These can be used alone or in admixture of two or more.

鋳型となる有機原料としては、特に限定されるものではないが、例えば界面活性剤が挙げられる。界面活性剤としては、特に限定されるものではないが、非イオン型界面活性剤が好ましい。非イオン型界面活性剤としては、特に限定されるものではないが、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン2級アルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン酸誘導体、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリプロピレングリコール、ポリエチレングリコール等のエーテル型のものや、ポリオキシエチレンアルキルアミン等の含窒素型のものを使用することができるが、ポリグリセリンに脂肪酸をエステル化したポリグリセリン脂肪酸エステルが好ましく使用できる。これらは単独で又は2種以上を混合して用いてもよい。   Although it does not specifically limit as an organic raw material used as a casting_mold | template, For example, surfactant is mentioned. The surfactant is not particularly limited, but a nonionic surfactant is preferable. The nonionic surfactant is not particularly limited. For example, polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene alkylphenyl ether, polyoxyethylene sterol ether, polyoxyethylene Lanolinic acid derivatives, polyoxyethylene polyoxypropylene alkyl ethers, ether type compounds such as polypropylene glycol and polyethylene glycol, and nitrogen-containing compounds such as polyoxyethylene alkylamine can be used. Polyglycerin fatty acid ester obtained by esterifying can be preferably used. You may use these individually or in mixture of 2 or more types.

ポリグリセリン脂肪酸エステルはグルタミナーゼ吸着の観点から、HLBが14.0〜18.0であることが好ましい。ここで、HLBは分子中の親水基と親油基のバランスを表し、分子中の親水基が0%の時を0とし、100%の時を20として等分したものである。
無機原料と有機原料とを混合する場合、適当な溶媒を用いることができる。そのような溶媒としては、特に限定されるものではないが、水、アルコール等が挙げられる。
無機原料と有機原料の混合方法は、特に限定されるものではないが、界面活性剤を酸性溶液に溶解させた後、この溶液に塩基性物質と無機原料を添加し、20℃〜60℃で3時間〜24時間混合することが好ましい。無機原料と界面活性剤の混合比(重量比)は特に限定されるものではないが、無機原料:界面活性剤=1:0.5〜1:2が好ましい。無機原料と塩基性物質の混合比(質量比)は、特に限定されるものではないが、無機原料:塩基性物質=100:0.1〜100:10が好ましい。
The polyglycerol fatty acid ester preferably has an HLB of 14.0 to 18.0 from the viewpoint of glutaminase adsorption. Here, HLB represents the balance between the hydrophilic group and the lipophilic group in the molecule, and is equally divided into 0 when the hydrophilic group in the molecule is 0% and 20 when the hydrophilic group is 100%.
When mixing an inorganic raw material and an organic raw material, a suitable solvent can be used. Such a solvent is not particularly limited, and examples thereof include water and alcohol.
The mixing method of the inorganic raw material and the organic raw material is not particularly limited, but after dissolving the surfactant in the acidic solution, the basic substance and the inorganic raw material are added to the solution, and the temperature is from 20 ° C to 60 ° C. It is preferable to mix for 3 hours to 24 hours. The mixing ratio (weight ratio) between the inorganic raw material and the surfactant is not particularly limited, but inorganic raw material: surfactant = 1: 0.5 to 1: 2 is preferable. The mixing ratio (mass ratio) of the inorganic raw material and the basic substance is not particularly limited, but is preferably inorganic raw material: basic substance = 100: 0.1 to 100: 10.

酸性溶液を調製するための酸性物質は特に限定されるものではなく、無機酸または有機酸を用いることができる。例えば、塩酸、臭化水素、ヨウ化水素、蟻酸、酢酸、硝酸、硫酸、燐酸等が例示できる。
無機原料と有機原料を撹拌し反応させる際のpH条件は、酸性条件であれば特に限定されるものではないが、pH3以下が好ましい。
有機物と無機物の複合体から有機物を除去する方法としては、複合体を濾取し、水等により洗浄、乾燥した後、400℃〜600℃で焼成する方法、有機溶媒等により抽出する方法などが挙げられる。
The acidic substance for preparing the acidic solution is not particularly limited, and an inorganic acid or an organic acid can be used. For example, hydrochloric acid, hydrogen bromide, hydrogen iodide, formic acid, acetic acid, nitric acid, sulfuric acid, phosphoric acid and the like can be exemplified.
The pH condition when the inorganic raw material and the organic raw material are stirred and reacted is not particularly limited as long as it is acidic, but is preferably pH 3 or less.
Examples of the method for removing the organic substance from the complex of the organic substance and the inorganic substance include a method in which the complex is filtered, washed with water and dried, then baked at 400 ° C. to 600 ° C., and extracted with an organic solvent. Can be mentioned.

本発明の耐アルカリ性グルタミナーゼは、シリカ多孔体とグルタミナーゼとから構成される。シリカ多孔体中のグルタミナーゼは、2質量%〜20質量%が好ましく、3質量%〜20質量%がより好ましく、5質量%〜10質量%が最も好ましい。
シリカ多孔体に対するグルタミナーゼの吸着は、グルタミナーゼ溶液(1mg/ml)4mlを20mgのシリカ多孔体に添加後、4℃で1日混合攪拌することにより行うことができる。
調製されたシリカ多孔体=グルタミナーゼ複合体は、遠心分離により未吸着のグルタミナーゼと分離される。
グルタミナーゼ吸着率は、下記式1に示すように、添加グルタミナーゼ量とシリカ多孔体に吸着したグルタミナーゼから算出することができる。
The alkali-resistant glutaminase of the present invention is composed of a porous silica and glutaminase. The glutaminase in the porous silica is preferably 2% by mass to 20% by mass, more preferably 3% by mass to 20% by mass, and most preferably 5% by mass to 10% by mass.
Adsorption of glutaminase to the porous silica can be carried out by adding 4 ml of glutaminase solution (1 mg / ml) to 20 mg of porous silica and mixing and stirring at 4 ° C. for 1 day.
The prepared porous silica = glutaminase complex is separated from unadsorbed glutaminase by centrifugation.
The glutaminase adsorption rate can be calculated from the amount of added glutaminase and the glutaminase adsorbed on the porous silica as shown in the following formula 1.

Figure 0005234452
Figure 0005234452

本発明の耐アルカリ性グルタミナーゼのグルタミナーゼ活性は、既存のキット(例えば、ヤマサL−グルタミン酸測定キット(ヤマサ醤油株式会社))によって測定できる。すなわち、耐アルカリ性グルタミナーゼを37±0.2℃の恒温水槽に5分間放置した後、あらかじめ37±0.2℃に保持した2%グルタミン酸10mlを添加し、試験管ミキサーで激しく攪拌する。37±0.2℃の恒温水槽で正確に10分間放置した後、0.75mol/L過塩素酸10mlを加え、試験管ミキサーで激しく攪拌してから、直ちに氷水につける。5分間放置した後、氷水から取り出し、0.75mol/L水酸化ナトリウム10mlを加え、試験管ミキサーで激しく攪拌する(反応側の試験液)。   The glutaminase activity of the alkali-resistant glutaminase of the present invention can be measured with an existing kit (for example, Yamasa L-glutamic acid measurement kit (Yamasa Shoyu Co., Ltd.)). That is, after leaving the alkali-resistant glutaminase in a constant temperature water bath at 37 ± 0.2 ° C. for 5 minutes, 10 ml of 2% glutamic acid previously maintained at 37 ± 0.2 ° C. is added and vigorously stirred with a test tube mixer. After leaving in a constant temperature water bath at 37 ± 0.2 ° C. for exactly 10 minutes, add 10 ml of 0.75 mol / L perchloric acid, vigorously stir with a test tube mixer, and immediately put on ice water. After leaving it for 5 minutes, it is taken out from the ice water, 10 ml of 0.75 mol / L sodium hydroxide is added, and vigorously stirred with a test tube mixer (test solution on the reaction side).

別に50ml容のプラチューブ(ファルコンチューブ)に0.75mol/L過塩素酸10mlを加え、試験管ミキサーで激しく攪拌する。37±0.2℃の恒温水槽中に5分間放置した後、2%グルタミン溶液10mlを加えて、試験管ミキサーで激しく攪拌してから、氷水につける。5分間放置した後、氷水中から取り出し、0.75mol/L水酸化ナトリウム10mlを加え、試験管ミキサーで激しく攪拌する(ブランク側の試験液)。
ヤマサL−グルタミン酸測定キット(ヤマサ醤油株式会社)の発色液3mlを分注した試験管(反応側)、試験液(ブランク側)、グルタミン酸標準液(100μg/ml)及び水を200μLずつ別々に加えて振り混ぜ、25〜30分間放置した後、波長600nmにおける吸光度を測定する。
Separately, 10 ml of 0.75 mol / L perchloric acid is added to a 50 ml plastic tube (Falcon tube), and vigorously stirred with a test tube mixer. After leaving in a constant temperature water bath at 37 ± 0.2 ° C. for 5 minutes, add 10 ml of 2% glutamine solution, vigorously stir with a test tube mixer, and then put on ice water. After leaving it for 5 minutes, it is taken out from ice water, added with 10 ml of 0.75 mol / L sodium hydroxide, and vigorously stirred with a test tube mixer (blank side test solution).
A test tube (reaction side), a test solution (blank side), a glutamic acid standard solution (100 μg / ml), and water (200 μL) separately added with 3 ml of the coloring solution of Yamasa L-glutamic acid measurement kit (Yamasa Shoyu Co., Ltd.) were added separately. The mixture is allowed to stand for 25 to 30 minutes, and then the absorbance at a wavelength of 600 nm is measured.

以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
製造例1
HLB15.0のポリグリセリン脂肪酸エステル及び1N塩酸200mlを混合し、完全にポリグリセリン脂肪酸エステルを溶解させた後、TEOS(テトラエトキシシラン)9g及びデカン20mlを添加した。密封系にてこの溶液(pH3以下)を25℃で12時間攪拌後、生じた沈殿物を濾過にて回収した。その後、イオン交換水にて水洗・濾過を3回繰り返し、エタノールにて洗浄・濾過後、この固形物を50℃で2時間乾燥させ、さらに550℃で6時間焼成を行って、シリカ多孔体1.8gを得た。
このシリカ多孔体1gを50倍量の0.2M硝酸ジルコニア溶液0.05Lに1時間浸漬し、室温で2時間撹拌後濾過した。得られた固形物を乾燥後、580℃で6時間焼成し、ジルコニウムを含有するシリカ多孔体Aを0.9g得た。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to a following example.
Production Example 1
After mixing HLB 15.0 polyglycerol fatty acid ester and 200 ml of 1N hydrochloric acid to completely dissolve the polyglycerol fatty acid ester, 9 g of TEOS (tetraethoxysilane) and 20 ml of decane were added. This solution (pH 3 or lower) was stirred at 25 ° C. for 12 hours in a sealed system, and the resulting precipitate was collected by filtration. Thereafter, washing and filtering with ion-exchanged water were repeated three times, and after washing and filtering with ethanol, the solid was dried at 50 ° C. for 2 hours, and further calcined at 550 ° C. for 6 hours. 0.8 g was obtained.
1 g of this porous silica was immersed in 0.05 L of a 0.2 M zirconia nitrate solution in an amount of 50 times for 1 hour, stirred at room temperature for 2 hours and filtered. The obtained solid was dried and then calcined at 580 ° C. for 6 hours to obtain 0.9 g of porous silica A containing zirconium.

得られたシリカ多孔体Aの細孔径分布をBEL社窒素吸着装置(BELsorp II)で測定し、BJH法により平均細孔径を求めたところ、平均細孔径は10.6nmであった。また、得られたシリカ多孔体Aのジルコニウム含有量をICP発光分析装置にて測定したところ、ジルコニウム金属での含有量は3.0%であった。
得られたシリカ多孔体Aは、X線回折のd間隔が2nmより大きい位置に1つのピークを有した。
得られたシリカ多孔体Aの比表面積を窒素脱吸着により算出したところ523m/gであった。
When the pore diameter distribution of the obtained porous silica A was measured with a nitrogen adsorption device (BELsorb II) manufactured by BEL and the average pore diameter was determined by the BJH method, the average pore diameter was 10.6 nm. Moreover, when the zirconium content of the obtained porous silica A was measured with an ICP emission spectrometer, the content with zirconium metal was 3.0%.
The obtained porous silica A had one peak at a position where the d interval of X-ray diffraction was larger than 2 nm.
It was 523 m < 2 > / g when the specific surface area of the obtained silica porous body A was computed by nitrogen desorption.

比較品の製造例1
製造例1で得られたシリカ多孔体Aの0.5gを50倍量の0.2M硝酸アルミニウム溶液0.025Lに1時間浸漬し、室温で2時間撹拌後濾過した。得られた固形物を乾燥後、580℃で6時間焼成し、アルミを含有するシリカ多孔体Bを0.4g得た。
得られたシリカ多孔体Bの細孔径分布をBEL社窒素吸着装置(BELsorp II)で測定し、BJH法により平均細孔径を求めたところ、平均細孔経は10.6nmであった。
Comparative product production example 1
0.5 g of the porous silica A obtained in Production Example 1 was immersed in 0.025 L of a 50-fold amount of 0.2 M aluminum nitrate solution for 1 hour, stirred at room temperature for 2 hours, and then filtered. The obtained solid was dried and then calcined at 580 ° C. for 6 hours to obtain 0.4 g of silica porous body B containing aluminum.
The pore diameter distribution of the obtained porous silica B was measured with a nitrogen adsorption device (BELsorb II) manufactured by BEL, and the average pore diameter was determined by the BJH method. The average pore diameter was 10.6 nm.

得られたシリカ多孔体Bのアルミニウム含有量をICP発光分析装置にて測定したところ、アルミニウム金属での含有量は0.3%であった。また、得られたシリカ多孔体BのX線回折パターンを測定したころ、d間隔が2nmより大きい位置に1つのピークを有した。
得られたシリカ多孔体の比表面積を窒素脱吸着により算出したところ508m/gであった。
When the aluminum content of the obtained porous silica B was measured with an ICP emission spectrometer, the content of aluminum metal was 0.3%. Further, when the X-ray diffraction pattern of the obtained porous silica B was measured, it had one peak at a position where the d interval was larger than 2 nm.
It was 508 m < 2 > / g when the specific surface area of the obtained silica porous body was computed by nitrogen desorption.

実施例1
製造例1で得られたシリカ多孔体Aの50mgに、1.0mg/mlのグルタミナーゼと0.01Mエチルアミン溶液を5ml添加し、4℃で24時間攪拌し、本発明の耐アルカリ性グルタミナーゼA1を得た。このとき使用したグルタミナーゼ溶液について、反応後の上澄み液を同仁化学の蛋白定量キットによりCBB法を用いてタンパク質濃度を測定した。得られた耐アルカリ性グルタミナーゼA1中のグルタミナーゼ含有量を式1より求めたところ、7.4質量%であった。
Example 1
5 ml of 1.0 mg / ml glutaminase and 0.01 M ethylamine solution are added to 50 mg of the porous silica A obtained in Production Example 1, and stirred at 4 ° C. for 24 hours to obtain the alkali-resistant glutaminase A1 of the present invention. It was. For the glutaminase solution used at this time, the protein concentration of the supernatant after the reaction was measured by the CBB method using a protein quantification kit manufactured by Dojindo Chemical. The glutaminase content in the obtained alkali-resistant glutaminase A1 was determined from Formula 1 and found to be 7.4% by mass.

比較例1
シリカ多孔体Aに代えて、比較品の製造例1で得られたシリカ多孔体Bを用いた以外は実施例1と同様の方法でグルタミナーゼ多孔体混合物B1を得た。このとき使用したグルタミナーゼ溶液について、反応後の上澄み液を同仁化学の蛋白定量キットによりCBB法を用いてタンパク質濃度を測定した。得られたグルタミナーゼB1中のグルタミナーゼ含有量を式1より求めたところ、8.2質量%であった。
Comparative Example 1
Instead of the porous silica A, a glutaminase porous material mixture B1 was obtained in the same manner as in Example 1, except that the porous silica B obtained in Comparative Production Example 1 was used. For the glutaminase solution used at this time, the protein concentration of the supernatant after the reaction was measured by the CBB method using a protein quantification kit manufactured by Dojindo Chemical. The glutaminase content in the obtained glutaminase B1 was calculated from Formula 1 and found to be 8.2% by mass.

試験例1
実施例1で得られた耐アルカリ性グルタミナーゼA1、および比較例1で得られたグルタミナーゼB1について、それぞれ50mgにpH10の0.02M L−グルタミン/0.12Mエチルアミン塩酸塩溶液10mlを添加し、4℃で20時間撹拌した。遠心分離後、固形分を回収し、酵素活性を元のグルタミナーゼの酵素活性を100とした時の酵素活性で算出した。結果を表1に示した。
Test example 1
For the alkali-resistant glutaminase A1 obtained in Example 1 and the glutaminase B1 obtained in Comparative Example 1, 10 ml of 0.02M L-glutamine / 0.12M ethylamine hydrochloride solution having a pH of 10 was added to 50 mg each. For 20 hours. After centrifugation, the solid content was collected, and the enzyme activity was calculated as the enzyme activity when the enzyme activity of the original glutaminase was taken as 100. The results are shown in Table 1.

Figure 0005234452
Figure 0005234452

試験例2
実施例1で得られた耐アルカリ性グルタミナーゼA1および比較例1で得られたグルタミナーゼB1について、それぞれ0.05gにpH10の0.02M L−グルタミン/0.12Mエチルアミン塩酸塩溶液10mlを添加し、4℃で20時間撹拌・反応させた。その後、耐アルカリ性グルタミナーゼA1およびグルタミナーゼB1を遠心分離により上層の反応溶液を除去し、沈殿した耐アルカリ性グルタミナーゼA1およびグルタミナーゼB1を回収した(1回合成)。回収した耐アルカリ性グルタミナーゼA1およびグルタミナーゼB1にそれぞれpH10の0.02M L−グルタミン/0.12Mエチルアミン塩酸塩溶液10mlを添加し、4℃で20時間撹拌・反応させた後、遠心分離により沈殿した耐アルカリ性グルタミナーゼA1およびグルタミナーゼB1を回収する同様の操作を計6回繰り返した。回収した耐アルカリ性グルタミナーゼA1およびグルタミナーゼB1において、1回、3回および6回合成後の酵素活性を元の酵素活性を100とした時の酵素活性で算出した。結果を表2に示した。
Test example 2
With respect to the alkali-resistant glutaminase A1 obtained in Example 1 and the glutaminase B1 obtained in Comparative Example 1, 10 ml of 0.02M L-glutamine / 0.12M ethylamine hydrochloride solution having a pH of 10 was added to 0.05 g. The mixture was stirred and reacted at 20 ° C. for 20 hours. Thereafter, the alkali-resistant glutaminase A1 and glutaminase B1 were centrifuged to remove the upper reaction solution, and the precipitated alkali-resistant glutaminase A1 and glutaminase B1 were collected (single synthesis). To the recovered alkali-resistant glutaminase A1 and glutaminase B1, 10 ml of 0.02M L-glutamine / 0.12M ethylamine hydrochloride solution each having a pH of 10 was added, stirred and reacted at 4 ° C. for 20 hours, and then precipitated by centrifugation. The same operation for recovering alkaline glutaminase A1 and glutaminase B1 was repeated a total of 6 times. In the collected alkali-resistant glutaminase A1 and glutaminase B1, the enzyme activity after synthesis once, three times and six times was calculated as the enzyme activity when the original enzyme activity was taken as 100. The results are shown in Table 2.

Figure 0005234452
Figure 0005234452

このように本実施形態によれば、従来のグルタミナーゼの耐アルカリ性を著しく向上させた耐アルカリ性グルタミナーゼを提供することができた。この耐アルカリ性グルタミナーゼを用いることにより、調味食品等を製造する目的の上で、極めて効率的にグルタミナーゼを作用させることが可能となる。   As described above, according to the present embodiment, it was possible to provide an alkali-resistant glutaminase in which the alkali resistance of the conventional glutaminase is remarkably improved. By using this alkali-resistant glutaminase, glutaminase can be made to act very efficiently for the purpose of producing seasoned foods and the like.

Claims (3)

平均細孔径が3nm〜14nmの細孔径を備え、シリカ多孔体中の金属の含有量が1〜20質量%であるシリカ多孔体と、グルタミナーゼとから構成されており、前記金属が、ジルコニウムであると共に、前記シリカ多孔体の細孔内に前記グルタミナーゼが吸着されている耐アルカリ性グルタミナーゼ。 It is composed of a porous silica material having an average pore size of 3 nm to 14 nm and a metal content in the porous silica material of 1 to 20% by mass, and glutaminase, and the metal is zirconium. together with the porous silica alkali resistance glutaminase the glutaminase that is adsorbed in the pores of the. シリカ多孔体のX線回折におけるd間隔が2nmより大きい位置に少なくとも1つのピークを持つ請求項1記載の耐アルカリ性グルタミナーゼ。 The alkali-resistant glutaminase according to claim 1, wherein the porous silica has at least one peak at a position where the d interval in X-ray diffraction is larger than 2 nm. 耐アルカリ性グルタミナーゼ中のグルタミナーゼの含有量が、2〜20質量%である請求項1または2に記載の耐アルカリ性グルタミナーゼ。
The alkali-resistant glutaminase according to claim 1 or 2 , wherein the content of glutaminase in the alkali-resistant glutaminase is 2 to 20% by mass.
JP2008025824A 2008-02-06 2008-02-06 Alkali resistant glutaminase Active JP5234452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025824A JP5234452B2 (en) 2008-02-06 2008-02-06 Alkali resistant glutaminase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025824A JP5234452B2 (en) 2008-02-06 2008-02-06 Alkali resistant glutaminase

Publications (2)

Publication Number Publication Date
JP2009183195A JP2009183195A (en) 2009-08-20
JP5234452B2 true JP5234452B2 (en) 2013-07-10

Family

ID=41067168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025824A Active JP5234452B2 (en) 2008-02-06 2008-02-06 Alkali resistant glutaminase

Country Status (1)

Country Link
JP (1) JP5234452B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574522B2 (en) * 2005-11-17 2010-11-04 太陽化学株式会社 Porous silica derivative
JP5276777B2 (en) * 2006-02-08 2013-08-28 太陽化学株式会社 Method for producing porous body

Also Published As

Publication number Publication date
JP2009183195A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
KR101614544B1 (en) Method of Preparation Using Crystalline Nano-sized Seed
KR101800526B1 (en) Zeolites with hierarchical porosity
US20050232841A1 (en) Mesoporous silica, mesoporous silica composite material, and processes for production thereof
JP5101202B2 (en) Spherical mesoporous material
CN105271299B (en) A kind of preparation method of the zeolites of mesoporous ZSM 5
US20140141963A1 (en) Zeolites and composites incorporating zeolites
CN105621445B (en) A kind of NaY types molecular sieve and preparation method thereof
CN109796019A (en) A kind of hollow silicon dioxide nanosphere and its preparation method and application
CN104817272B (en) The adsorbent of metal ion is adsorbed with as the application of colouring agent, gained colouring agent and its preparation and application
JP2020513399A (en) Method for producing zeolite using structure inducer containing benzyl group and zeolite produced therefrom
JPWO2002085785A1 (en) Manufacturing method of inorganic porous material
CN105329912B (en) A kind of preparation method of Jie&#39;s micropore composite Y molecular sieve
JP2015509478A (en) Preparation of molecular sieve SSZ-23
CN104071802B (en) The preparation method of the low silicone zeolite of a kind of multi-stage porous
CN102674390A (en) Method for directly synthesizing heteroatom substituted multistage ordered mesoporous molecular sieve
JP2006256891A (en) Aluminum silicate and its production method
JP5234452B2 (en) Alkali resistant glutaminase
CN102602959A (en) Preparation method of pure nano-silicon ZSM-5 zeolite
JP2002226283A (en) Porous compact and method for manufacturing the same
JP2006232594A (en) Mesoporous inorganic body and method for manufacturing the same
JP2007045692A (en) Method of manufacturing mesoporous silica and method of manufacturing the same
JP4599144B2 (en) MARLINOITE TYPE ZEOLITE MEMBRANE AND METHOD FOR PRODUCING THE SAME
US6890500B2 (en) Salt-templated microporous solids
JP2008145190A (en) Microcapsule, filler for liquid chromatograph, and column for liquid chromatograph using it
CN112441591A (en) Green one-step hydrothermal synthesis method and application of manganese silicate microspheres

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250