JP5234051B2 - Vehicle power supply - Google Patents

Vehicle power supply Download PDF

Info

Publication number
JP5234051B2
JP5234051B2 JP2010101701A JP2010101701A JP5234051B2 JP 5234051 B2 JP5234051 B2 JP 5234051B2 JP 2010101701 A JP2010101701 A JP 2010101701A JP 2010101701 A JP2010101701 A JP 2010101701A JP 5234051 B2 JP5234051 B2 JP 5234051B2
Authority
JP
Japan
Prior art keywords
power
conversion circuit
auxiliary
vehicle
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010101701A
Other languages
Japanese (ja)
Other versions
JP2011234473A (en
Inventor
章 坂本
和良 大林
淳之 蛭間
正人 水越
淳 石井
充 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010101701A priority Critical patent/JP5234051B2/en
Priority to FR1153567A priority patent/FR2959357B1/en
Priority to US13/094,232 priority patent/US8937400B2/en
Publication of JP2011234473A publication Critical patent/JP2011234473A/en
Application granted granted Critical
Publication of JP5234051B2 publication Critical patent/JP5234051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、車両の外部の電源装置に接続される授受電口を介して前記外部の電源装置との間で電力の授受を行なう車両用電源装置に関する。   The present invention relates to a vehicular power supply device that transfers power to and from the external power supply device via a power transmission / reception port connected to a power supply device external to the vehicle.

この種の電源装置としては、例えば下記特許文献1に見られるように、車両の駆動輪にモータジェネレータが付与する動力を制御すべく操作される走行用のインバータを用いて、外部の商用電源から供給される電力を車両内のバッテリに充電するものも提案されている。   As this type of power supply device, as seen in, for example, Patent Document 1 below, an inverter for traveling that is operated to control the power applied by the motor generator to the driving wheels of the vehicle is used, and an external commercial power supply is used. Some have been proposed for charging the supplied electric power to a battery in the vehicle.

特開2007−318970号公報JP 2007-318970 A

ところで、上記走行用インバータには高い信頼性が要求され、走行用のインバータは、通常、車両に要求される走行可能な総時間に渡ってその動作が保証されるべきものとされれる。一方、外部の商用電源から供給される電力の充電には通常長時間を要する。このため、車両に要求される走行可能な総時間を固定した場合、充電機能を搭載する車両では、搭載しない車両と比較して、走行用のインバータに要求される耐久性能が過大となるおそれがある。   By the way, high reliability is required for the traveling inverter, and the traveling inverter should normally be guaranteed to operate over the total travel time required for the vehicle. On the other hand, charging of power supplied from an external commercial power supply usually takes a long time. For this reason, when the total travelable time required for the vehicle is fixed, the vehicle equipped with the charging function may have excessive durability performance required for the inverter for traveling compared to a vehicle not equipped with the charging function. is there.

本発明は、上記課題を解決するためになされたものであり、その目的は、駆動輪に走行用回転機が付与する動力を制御するために操作される走行用電力変換回路に要求される耐久性能を過大とすることなく車両の外部の電源装置に接続される授受電口を介して前記外部の電源装置との間で電力の授受を行なうことのできる車両用電源装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a durability required for a traveling power conversion circuit operated to control power applied by a traveling rotating machine to drive wheels. An object of the present invention is to provide a vehicular power supply device capable of transferring power to and from the external power supply device via a power transfer port connected to the external power supply device of the vehicle without excessive performance. .

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明は、車両の外部の電源装置に接続される授受電口を介して前記外部の電源装置との間で電力の授受を行なう車両用電源装置において、前記車両は、駆動輪に機械的に連結される走行用回転機と、前記駆動輪に前記走行用回転機が付与する動力を制御するために操作される走行用電力変換回路と、前記走行用回転機以外の車載負荷としての車載補機と、該車載補機に電力を供給する蓄電手段と、前記車載補機および前記蓄電手段間に介在する補機用電力変換回路とを備え、前記授受電口を前記補機用電力変換回路に電気的に接続する電力授受用電気経路を備え、該電力授受用電気経路に接続される1の補機用電力変換回路を用いて前記補機を駆動する場合に当該1の補機用電力変換回路の入力端子を通過する電力の最大値よりも、前記授受電口および電力授受用電気経路を介して前記外部の電源装置との間で電力の授受を行なう場合に前記入力端子を通過する電力の最大値の方が大きくて且つ、この際に前記外部の電源装置との間で電力の授受を行なうために用いられる補機用電力変換回路が単一の電力変換回路であり、前記外部の電源装置の電力が前記単一の電力変換回路に接続される補機の定格出力よりも大きく、前記補機の定格出力よりも前記補機用電力変換回路の定格出力の方が大きいことを特徴とする。 According to a first aspect of the present invention, there is provided a vehicular power supply device that transfers power to and from the external power supply device via a power transfer port connected to a power supply device external to the vehicle. A traveling rotator mechanically coupled to the vehicle, a traveling power conversion circuit operated to control power applied by the traveling rotator to the drive wheel, and an in-vehicle load other than the traveling rotator And a power storage circuit for supplying power to the in-vehicle auxiliary machine, and a power conversion circuit for auxiliary equipment interposed between the in-vehicle auxiliary machine and the power storage means. A power transmission / reception electric path electrically connected to the power conversion circuit, and the auxiliary machine is driven by using one auxiliary power conversion circuit connected to the power transmission / reception electric path. The maximum value of power passing through the input terminal of the auxiliary power converter circuit Also, and with it is rather large maximum value of the power that passes through the input terminals when through the transfer electric outlet and electric power transfer electric path for exchanging power between the external power supply, this The auxiliary power conversion circuit used to transfer power to and from the external power supply device is a single power conversion circuit, and the power of the external power supply device is the single power conversion. It is characterized in that it is larger than the rated output of the auxiliary machine connected to the circuit, and the rated output of the auxiliary power conversion circuit is larger than the rated output of the auxiliary machine .

上記発明では、授受電口を介して外部の電源装置との間で電力の授受を行なうに際し、補機用電力変換回路を用いることで、上記電力の授受によって走行用電力変換回路に要求される耐久性能が過大となる事態を回避することができる。ただし、補機用電力変換回路の定格出力が小さい場合、外部の電源装置との間で電力を授受する際の電力量が制約を受けるおそれがある。この点、上記発明では、補機の駆動に要求される電力よりも大きい電力を扱えるように補機用電力変換回路を冗長設計することで、こうした問題を回避することができる。   In the above invention, when power is exchanged with an external power supply device via the power transmission / reception port, the power conversion circuit for auxiliary equipment is used, and thus the power conversion circuit for traveling is required by the power exchange. A situation in which the durability performance is excessive can be avoided. However, when the rated output of the power conversion circuit for auxiliary machines is small, there is a risk that the amount of power when power is exchanged with an external power supply device is limited. In this regard, in the above-described invention, such a problem can be avoided by redundantly designing the auxiliary power conversion circuit so that the electric power larger than the electric power required for driving the auxiliary machine can be handled.

また、上記発明では、補機自体の定格出力を冗長設計することがないため、コストアップ等を抑制することができる。 Moreover, in the said invention, since the rated output of auxiliary machine itself is not redundantly designed, a cost increase etc. can be suppressed.

請求項3記載の発明は、請求項1または2記載の発明において、前記補機用電力変換回路の定格出力は、前記走行用電力変換回路の定格出力よりも小さいことを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, characterized in that a rated output of the auxiliary power converter circuit is smaller than a rated output of the power converter circuit for travel.

一実施形態にかかるシステム構成図。The system block diagram concerning one Embodiment. 同実施形態にかかる電力変換回路の回路構成を示す回路図。The circuit diagram which shows the circuit structure of the power converter circuit concerning the embodiment. 同実施形態にかかる充電処理を示す回路図。The circuit diagram which shows the charge process concerning the embodiment. 同実施形態にかかるインバータの入力電力の最大値の設定を示す図。The figure which shows the setting of the maximum value of the input electric power of the inverter concerning the embodiment.

以下、本発明にかかる車両用電源装置をパラレルハイブリッド車に適用した一実施形態について、図面を参照しつつ説明する。   Hereinafter, an embodiment in which a vehicle power supply device according to the present invention is applied to a parallel hybrid vehicle will be described with reference to the drawings.

図示される高電圧バッテリ10は、車載高電圧システムを構成するものであり、その端子電圧が高圧(例えば百V以上)となるものである。高電圧バッテリ10には、負荷として、主機ユニット20、電動パワーステアリングユニット30、電動ファンユニット40、および空調ユニット50が接続されている。詳しくは、高電圧バッテリ10の一方の端子(ここでは、正極を例示)には、リレーRMを介して負荷が接続されており、他方の端子(ここでは、負極を例示)には、高抵抗側リレーRMHおよび抵抗体12と低抵抗側リレーRMLとの並列接続体を介して負荷が接続されている。   The illustrated high voltage battery 10 constitutes an in-vehicle high voltage system, and its terminal voltage is a high voltage (for example, 100 V or more). Main unit 20, electric power steering unit 30, electric fan unit 40, and air conditioning unit 50 are connected to high voltage battery 10 as loads. Specifically, a load is connected to one terminal (here positive electrode is exemplified) of the high-voltage battery 10 via a relay RM, and a high resistance is connected to the other terminal (here negative electrode is exemplified). A load is connected via the side relay RMH and the parallel connection body of the resistor 12 and the low resistance side relay RML.

上記主機ユニット20は、車載主機としてのモータジェネレータ(MG)と、インバータ(IV)と、電子制御装置(ECU)とを備えてモータジェネレータの制御量を制御するための制御システムである。なお、主機としてのモータジェネレータの回転軸の一方の端部には、内燃機関18の出力軸(クランク軸)が直結されており、他方の端部には、変速装置14を介して駆動輪16が機械的に連結されている。   The main unit 20 includes a motor generator (MG) as an in-vehicle main unit, an inverter (IV), and an electronic control unit (ECU), and is a control system for controlling the control amount of the motor generator. Note that the output shaft (crankshaft) of the internal combustion engine 18 is directly connected to one end portion of the rotation shaft of the motor generator as the main engine, and the driving wheel 16 is connected to the other end portion via the transmission 14. Are mechanically connected.

同様に、電動パワーステアリングユニット30は、ユーザの操舵角の変位をアシストするためのモータジェネレータ(MG)と、インバータ(IV)と、電子制御装置(ECU)とを備えてモータジェネレータの制御量を制御するための制御システムである。また、電動ファンユニット40は、内燃機関18の冷却水を冷却するためのファンを回転させるモータジェネレータ(MG)と、インバータ(IV)と、電子制御装置(ECU)とを備えてモータジェネレータの制御量を制御するための制御システムである。さらに、空調ユニット50は、圧縮機に回転エネルギを付与するためのモータジェネレータ(MG)と、インバータ(IV)と、電子制御装置(ECU)とを備えてモータジェネレータの制御量を制御するための制御システムである。   Similarly, the electric power steering unit 30 includes a motor generator (MG) for assisting the displacement of the steering angle of the user, an inverter (IV), and an electronic control unit (ECU) to control the control amount of the motor generator. It is a control system for controlling. The electric fan unit 40 includes a motor generator (MG) that rotates a fan for cooling the cooling water of the internal combustion engine 18, an inverter (IV), and an electronic control unit (ECU), and controls the motor generator. A control system for controlling the quantity. Furthermore, the air conditioning unit 50 includes a motor generator (MG) for applying rotational energy to the compressor, an inverter (IV), and an electronic control unit (ECU) for controlling the control amount of the motor generator. Control system.

車両制御ECU60は、上記主機ユニット20や、内燃機関18、変速装置14等を操作することで、車両の運転を制御する電子制御装置である。一方、充電制御装置70は、電圧センサ13によって検出される高電圧バッテリ10の電圧等に基づく高電圧バッテリ10の充電量の制御等、車両内の電力制御を行なう電子制御装置である。なお、これら車両制御ECU60や充電制御装置70は、車載高電圧システムから絶縁された車載低電圧システムを構成しており、端子電圧が低い(例えば数V〜十数V)低電圧バッテリ62を直接の電源とする。この低電圧バッテリ62は、高電圧バッテリ10の電圧を降圧するDCDCコンバータ64の出力電圧が印加されることで、高電圧バッテリ10を電力供給源とするものである。ちなみに、図1では、高電圧システムを2点鎖線で囲ってある。ただし、主機ユニット20、電動パワーステアリングユニット30、電動ファンユニット40、および空調ユニット50のECUについては、低電圧システム内に搭載することが望ましい。   The vehicle control ECU 60 is an electronic control device that controls the operation of the vehicle by operating the main engine unit 20, the internal combustion engine 18, the transmission 14 and the like. On the other hand, the charge control device 70 is an electronic control device that performs power control in the vehicle, such as control of the charge amount of the high voltage battery 10 based on the voltage of the high voltage battery 10 detected by the voltage sensor 13. The vehicle control ECU 60 and the charging control device 70 constitute an in-vehicle low voltage system that is insulated from the in-vehicle high voltage system, and directly connect the low voltage battery 62 with a low terminal voltage (for example, several V to several tens of V). Power supply. The low voltage battery 62 uses the high voltage battery 10 as a power supply source by applying an output voltage of a DCDC converter 64 that steps down the voltage of the high voltage battery 10. Incidentally, in FIG. 1, the high voltage system is surrounded by a two-dot chain line. However, it is desirable that the ECUs of the main unit 20, the electric power steering unit 30, the electric fan unit 40, and the air conditioning unit 50 are mounted in the low voltage system.

上記充電制御装置70は、住宅等の外部の電源装置から供給される電力(商用電源の電力等)を高電圧バッテリ10に充電する制御等、外部の電源装置との間で電力の授受を、電動ファンユニット40の備えるインバータを操作することで行なう機能を有する。ここで、車両の外部の電源装置と電動ファンユニット40のインバータとは、プラグPGを介して電気的に接続される。本実施形態では、このプラグPGとして、車両および外部の電源装置のいずれからも切り離し可能な、車両内と車両外とを電気的に接続するインターフェースを想定している。ただし、このプラグPGを車両の一部(車両に対して着脱不可能)としたり、外部の電源装置の一部(外部の電源装置に対して着脱不可能)としてもよい。   The charging control device 70 exchanges power with an external power supply device, such as control for charging the high voltage battery 10 with power (commercial power supply power, etc.) supplied from an external power supply device such as a house, It has the function performed by operating the inverter with which the electric fan unit 40 is provided. Here, the power supply device outside the vehicle and the inverter of the electric fan unit 40 are electrically connected via the plug PG. In the present embodiment, the plug PG is assumed to be an interface that can be disconnected from either the vehicle or an external power supply device and that electrically connects the inside of the vehicle and the outside of the vehicle. However, the plug PG may be a part of the vehicle (not detachable from the vehicle) or a part of the external power supply (not detachable from the external power supply).

図2に、上記主機ユニット20、電動パワーステアリングユニット30、電動ファンユニット40、空調ユニット50等の一部を備える電力変換回路の構成を示す。   FIG. 2 shows a configuration of a power conversion circuit including a part of the main unit 20, the electric power steering unit 30, the electric fan unit 40, the air conditioning unit 50, and the like.

図示されるように、主機ユニット20の備える主機用インバータIV1、電動パワーステアリングユニット30の備えるパワステ用インバータIV2、電動ファンユニット40の備えるファン用インバータIV3、および空調ユニット50の備える空調用インバータIV4は、いずれも高電位側のスイッチング素子Swpと低電位側のスイッチング素子Swnとの直列接続体を3対備えている。また、高電位側のスイッチング素子Swpには逆並列にフリーホイールダイオードFdpが接続されており、低電位側のスイッチング素子Swnには逆並列にフリーホイールダイオードFdnが接続されている。なお、図2では、スイッチング素子Swp,Swnとして、絶縁ゲートバイポーラトランジスタ(IGBT)を例示した。   As shown in the figure, a main machine inverter IV1 provided in the main machine unit 20, a power steering inverter IV2 provided in the electric power steering unit 30, a fan inverter IV3 provided in the electric fan unit 40, and an air conditioning inverter IV4 provided in the air conditioning unit 50 are Each includes three pairs of serially connected bodies of switching elements Swp on the high potential side and switching elements Swn on the low potential side. A free wheel diode Fdp is connected in antiparallel to the high potential side switching element Swp, and a free wheel diode Fdn is connected in antiparallel to the low potential side switching element Swn. In FIG. 2, an insulated gate bipolar transistor (IGBT) is illustrated as the switching elements Swp and Swn.

ここで、主機用インバータIV1の入力端子にはコンデンサ22が接続されており、出力端子には、主機用モータジェネレータ24が接続されている。また、パワステ用インバータIV2の入力端子にはコンデンサ32が接続されており、出力端子には、パワステ用モータジェネレータ34が接続されている。また、ファン用インバータIV3の入力端子にはコンデンサ42が接続されており、出力端子には、ファン用モータジェネレータ44が接続されている。さらに、空調用インバータIV4の入力端子にはコンデンサ52が接続されており、出力端子には、空調用モータジェネレータ54が接続されている。   Here, a capacitor 22 is connected to the input terminal of the main inverter IV1, and a main motor generator 24 is connected to the output terminal. A capacitor 32 is connected to the input terminal of the power steering inverter IV2, and a power steering motor generator 34 is connected to the output terminal. A capacitor 42 is connected to the input terminal of the fan inverter IV3, and a fan motor generator 44 is connected to the output terminal. Further, a capacitor 52 is connected to the input terminal of the air conditioning inverter IV4, and an air conditioning motor generator 54 is connected to the output terminal.

上記主機用インバータIV1の定格出力Rot1は、パワステ用インバータIV2の定格出力Rot2、ファン用インバータIV3の定格出力Rot3、空調用インバータIV4の定格出力Rot4のいずれよりも大きく設定されている。   The rated output Rot1 of the main machine inverter IV1 is set larger than any of the rated output Rot2 of the power steering inverter IV2, the rated output Rot3 of the fan inverter IV3, and the rated output Rot4 of the air conditioning inverter IV4.

上記ファン用インバータIV3の出力端子のそれぞれは、電力授受用電気経路CLを介して、車両の外部との電気的な接続を司る授受電口(コネクタC1)に接続されている。このコネクタC1には、プラグPGが接続可能である。プラグPGの他方の端部は、商用電源等の供給装置としての住宅内の電源PSと外部との接続を司る授受電口(コネクタC2)に接続される。上記プラグPGは、フィルタ80を備えている。なお、本実施形態では、フィルタ80としてLC回路を例示している。また、図2では、電源PSとして、単相電源を例示しているが、本実施形態における車両自体は3相電源への対応も可能な設定を想定しているため、コネクタC1は、3つの端子を備えている。   Each of the output terminals of the fan inverter IV3 is connected to a power transmission / reception port (connector C1) that controls electrical connection with the outside of the vehicle via a power transmission / reception electric path CL. A plug PG can be connected to the connector C1. The other end of the plug PG is connected to a power transmission / reception port (connector C2) that controls the connection between the power supply PS in the house as a supply device such as a commercial power supply and the outside. The plug PG includes a filter 80. In the present embodiment, an LC circuit is exemplified as the filter 80. In FIG. 2, a single-phase power source is illustrated as the power source PS. However, since the vehicle in the present embodiment is assumed to be capable of supporting a three-phase power source, the connector C1 includes three connectors C1. It has a terminal.

上記ファン用インバータIV3の出力端子および電力授受用電気経路CLの接続点のそれぞれとファン用モータジェネレータ44との間には、この間を電気的に開閉する補機用リレーRDが設けられている。また、電力授受用電気経路CLのそれぞれには、これを開閉する電力授受用リレーRCと、エネルギを蓄える充電用リアクトルLとが設けられている。ここで、補機用リレーRDは、外部の電源装置と車両との間で電力の授受がなされる際にこの電力がファン用モータジェネレータ44に流れ込むことを阻止するためのものである。また、電力授受用リレーRCは、ファン用インバータIV3が外部の電源装置との間で電力の授受を行なうことができる態勢が整っていない場合に、外部の電源装置とファン用インバータIV3とが電気的に接続される事態を回避するためのものである。これらの目的を果たすべく、充電制御装置70は、適宜、電力授受用リレーRCや補機用リレーRDを開閉操作する。   An auxiliary relay RD that electrically opens and closes between each of the connection points of the output terminal of the fan inverter IV3 and the electric power transfer electric path CL and the fan motor generator 44 is provided. Each of the electric power transfer paths CL is provided with an electric power transfer relay RC that opens and closes the electric path CL and a charging reactor L that stores energy. Here, the auxiliary relay RD is for preventing the electric power from flowing into the fan motor generator 44 when electric power is exchanged between the external power supply device and the vehicle. The power transfer relay RC is configured such that the external power supply device and the fan inverter IV3 are electrically connected when the fan inverter IV3 is not ready to transfer power to and from the external power supply device. It is for avoiding the situation where it is connected. In order to achieve these purposes, the charging control device 70 appropriately opens and closes the power transfer relay RC and the auxiliary relay RD.

コネクタC1の3つの端子のうちの1つと残りの2つのそれぞれとの間には、この間の電位差を検出する電圧センサ82,84が設けられている。上記充電制御装置70は、電圧センサ82,84の出力等に基づき、電源PSから供給される電力を高電圧バッテリ10に充電する制御を行なう。   Between one of the three terminals of the connector C1 and each of the remaining two, voltage sensors 82 and 84 for detecting a potential difference therebetween are provided. The charging control device 70 performs control for charging the high-voltage battery 10 with power supplied from the power source PS based on the outputs of the voltage sensors 82 and 84 and the like.

このように、本実施形態では、駆動輪16に動力を付与する主機用モータジェネレータ24以外の車載電気負荷であるファン用モータジェネレータ44に接続されるファン用インバータIV3を用いて高電圧バッテリ10を充電するため、充電処理のなされる時間の積算値が増大しても、主機用インバータIV1の劣化を招くことがない。また、上記充電処理を高効率で行なうことも可能となる。すなわち、通常、商用電源の利用可能な電力は「1.5〜3kW」程度であり、この電力は、主機用インバータIV1の最大出力(例えば15kW以上」)と比較して非常に小さい。一方、インバータの入力電力に対する出力電力の比(効率)は、一般に、最大出力付近で最大となり、最小出力近傍では小さくなっている。このため、主機用インバータIV1を用いて充電処理を行ったのでは、効率が著しく低下するおそれがある。これに対し、ファン用インバータIV3の最大出力は、「数kW」であるため、充電処理を高効率で行なうことができる。   As described above, in this embodiment, the high-voltage battery 10 is connected using the fan inverter IV3 connected to the fan motor generator 44, which is an in-vehicle electric load other than the main motor generator 24 that applies power to the drive wheels 16. Since charging is performed, even if the integrated value of the time during which the charging process is performed increases, the main inverter IV1 does not deteriorate. In addition, the charging process can be performed with high efficiency. That is, normally, the available power of the commercial power supply is about “1.5 to 3 kW”, and this power is very small compared to the maximum output (for example, 15 kW or more) of the main machine inverter IV1. On the other hand, the ratio (efficiency) of the output power to the input power of the inverter is generally maximum near the maximum output and small near the minimum output. For this reason, if the charging process is performed using the main machine inverter IV1, the efficiency may be significantly reduced. On the other hand, since the maximum output of the fan inverter IV3 is “several kW”, the charging process can be performed with high efficiency.

図3に、本実施形態にかかる充電制御の態様を示す。なお、図3では、単相電源から電力が供給される場合を例にとって説明する。   FIG. 3 shows an aspect of charge control according to the present embodiment. Note that FIG. 3 illustrates an example in which power is supplied from a single-phase power source.

図3(a)および図3(b)は、W相の電位よりもV相の電位の方が高い場合を例示している。この場合、図3(a)に示されるように、V相の低電位側のスイッチング素子Swnをオン状態とすることで、電源PS、充電用リアクトルL、V相のスイッチング素子Swn、W相のフリーホイールダイオードFdn、および充電用リアクトルLを備えるループ回路を電流が流れ、充電用リアクトルLにエネルギが蓄積される。その後、図3(b)に示されるように、V相のスイッチング素子Swnをオフ操作することで、電源PS、充電用リアクトルL、V相のフリーホイールダイオードFdp、コンデンサ42、W相のフリーホイールダイオードFdn、および充電用リアクトルLを備えるループ回路を電流が流れ、コンデンサ42が充電され、ひいてはこれに並列接続される高電圧バッテリ10が充電される。   FIG. 3A and FIG. 3B illustrate the case where the V-phase potential is higher than the W-phase potential. In this case, as shown in FIG. 3A, by turning on the V-phase low potential side switching element Swn, the power supply PS, the charging reactor L, the V-phase switching element Swn, and the W-phase switching element A current flows through a loop circuit including the freewheel diode Fdn and the charging reactor L, and energy is stored in the charging reactor L. Thereafter, as shown in FIG. 3B, by turning off the V-phase switching element Swn, the power source PS, the charging reactor L, the V-phase free wheel diode Fdp, the capacitor 42, and the W-phase free wheel. A current flows through a loop circuit including the diode Fdn and the charging reactor L, the capacitor 42 is charged, and consequently, the high voltage battery 10 connected in parallel thereto is charged.

一方、図3(c)および図3(d)は、V相の電位よりもW相の電位の方が高い場合を例示している。この場合、図3(c)に示されるように、W相の低電位側のスイッチング素子Swnをオン状態とすることで、電源PS、充電用リアクトルL、W相のスイッチング素子Swn、V相のフリーホイールダイオードFdn、および充電用リアクトルLを備えるループ回路を電流が流れ、充電用リアクトルLにエネルギが蓄積される。その後、図3(d)に示すように、W相のスイッチング素子Swnをオフ操作することで、電源PS、充電用リアクトルL、W相のフリーホイールダイオードFdp、コンデンサ42、V相のフリーホイールダイオードFdn、および充電用リアクトルLを備えるループ回路を電流が流れ、コンデンサ42が充電され、ひいてはこれに並列接続される高電圧バッテリ10が充電される。   On the other hand, FIG. 3C and FIG. 3D illustrate the case where the W-phase potential is higher than the V-phase potential. In this case, as shown in FIG. 3C, by turning on the low-phase switching element Swn of the W phase, the power supply PS, the charging reactor L, the switching element Swn of the W phase, A current flows through a loop circuit including the freewheel diode Fdn and the charging reactor L, and energy is stored in the charging reactor L. Thereafter, as shown in FIG. 3D, by turning off the W-phase switching element Swn, the power source PS, the charging reactor L, the W-phase free wheel diode Fdp, the capacitor 42, the V-phase free wheel diode A current flows through a loop circuit including Fdn and the charging reactor L, the capacitor 42 is charged, and the high-voltage battery 10 connected in parallel thereto is charged.

ところで、ファン用モータジェネレータ44に要求される最大出力は、通常、商用電源の電力(例えば単相100Vの場合に1.5kW,単相200Vの場合に3kW)と比較して小さい。このため、ファン用インバータIV3を、ファン用モータジェネレータ44を駆動する際に要求される必要最小限の電力(1.5kW未満)に対処可能なように設計したのでは、商用電源との間で電力の授受を十分に行なうことができないおそれがある。こうした事態への対処法として、ファン用インバータIV3と空調用インバータIV4とを並列使用することなども考えられる。ただし、この場合、補機用リレーRDの数が増加したり、電力授受用電気経路CLの配線長が増加したりする等、必要なハードウェア手段が増加する。   By the way, the maximum output required for the fan motor generator 44 is usually smaller than the power of the commercial power supply (for example, 1.5 kW for a single-phase 100 V, 3 kW for a single-phase 200 V). For this reason, the fan inverter IV3 is designed so as to be able to cope with the necessary minimum power (less than 1.5 kW) required when driving the fan motor generator 44. There is a possibility that power cannot be sufficiently transferred. As a countermeasure against such a situation, it is conceivable to use the fan inverter IV3 and the air conditioning inverter IV4 in parallel. However, in this case, necessary hardware means increase, such as an increase in the number of auxiliary relays RD and an increase in the wiring length of the power transfer electric path CL.

そこで本実施形態では、図4(a)に示されるように、ファン用インバータIV3の定格出力Rot3を、ファン用モータジェネレータ44の定格出力Rot5よりも大きくし、ファン用モータジェネレータ44の駆動目的の観点からはファン用インバータIV3を冗長設計する。これにより、図4(a)に示されるように、ファン用モータジェネレータ44の駆動時にファン用インバータIV3の入力端子を通過する電力の最大値Pdよりも、図4(b)に示す充電時等においてファン用インバータIV3の入力端子を通過する電力の最大値Pcを大きくすることができる。ちなみに、図4(b)では、単相200V電源から供給される電力を充電する場合を示している。ここで、電力は、通常「3kW」程度であり、これは本実施形態の想定しているファン用モータジェネレータ44の最大出力(1.5kW未満)よりも大きい。   Therefore, in the present embodiment, as shown in FIG. 4A, the rated output Rot3 of the fan inverter IV3 is made larger than the rated output Rot5 of the fan motor generator 44, and the purpose of driving the fan motor generator 44 is increased. From the viewpoint, the fan inverter IV3 is redundantly designed. As a result, as shown in FIG. 4A, the maximum value Pd of the electric power passing through the input terminal of the fan inverter IV3 when the fan motor generator 44 is driven is greater than during charging shown in FIG. The maximum value Pc of the electric power passing through the input terminal of the fan inverter IV3 can be increased. Incidentally, FIG. 4B shows a case where power supplied from a single-phase 200V power source is charged. Here, the electric power is normally about “3 kW”, which is larger than the maximum output (less than 1.5 kW) of the fan motor generator 44 assumed in the present embodiment.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)ファン用モータジェネレータ44を駆動する場合にファン用インバータIV3の入力端子を通過する電力の最大値Pdよりも、コネクタC1を介して外部の電源装置との間で電力の授受を行なう場合に上記入力端子を通過する電力の最大値Pcの方が大きくなるようにした。これにより、ファン用インバータIV3のみを用いて外部の電源装置との間の電力の授受を好適に行なうことができる。   (1) When driving the fan motor generator 44, the power is exchanged with an external power supply device via the connector C1 rather than the maximum value Pd of the power passing through the input terminal of the fan inverter IV3. In addition, the maximum value Pc of the power passing through the input terminal is made larger. As a result, power can be exchanged with an external power supply device using only fan inverter IV3.

(2)ファン用モータジェネレータ44の定格出力Rot5よりもファン用インバータIV3の定格出力Rot3を大きくした。これにより、ファン用インバータIV3のみを冗長設計すればよいため、ファン用モータジェネレータ44を必要以上に大型化する必要が生じない。   (2) The rated output Rot3 of the fan inverter IV3 is made larger than the rated output Rot5 of the fan motor generator 44. As a result, only the fan inverter IV3 needs to be redundantly designed, so that the fan motor generator 44 does not need to be enlarged more than necessary.

(3)ファン用インバータIV3の入力端子と主機用インバータIV1の入力端子とに共通の高電圧バッテリ10を接続した。この高電圧バッテリ10は、車両内の他の蓄電手段と比較して容量が大きいため、外部の電源装置との間の電力の授受に際し、放電電力や充電電力を大きくすることができる。   (3) The common high voltage battery 10 is connected to the input terminal of the fan inverter IV3 and the input terminal of the main machine inverter IV1. Since the high voltage battery 10 has a larger capacity than other power storage means in the vehicle, it is possible to increase the discharge power and the charge power when transferring power to and from an external power supply device.

(4)外部の電源装置との電力の授受を行なうための電力変換回路を、ファン用インバータIV3に限った。これにより、電力授受用リレーRC等の部品点数の増加を抑制することができる。   (4) The power conversion circuit for transferring power to and from the external power supply device is limited to the fan inverter IV3. Thereby, the increase in the number of parts, such as the power transfer relay RC, can be suppressed.

(その他の実施形態)
なお、上記実施形態は、以下のように変更して実施してもよい。
<外部との電力授受用の補機インバータの種類について>
外部との電力授受用の補機インバータとしては、ファン用インバータIV3に限らず、例えば空調用インバータIV4やパワステ用インバータIV2であってもよい。また、これら3種のいずれかに限らない。例えば車載操舵角を変位させるための回転機に接続されるインバータとしては、パワステ用インバータIV2に限らず、例えばステアリングバイワイヤシステムに搭載される回転機のインバータであってもよい。
<補機用電力変換回路について>
補機用電力変換回路としては、3相回転機に接続される3相インバータ等、直流電源の電力を交流電力に変換する直流交流変換回路に限らない。例えばブラシ付DCモータに接続されるものであってもよい。これは、通常、ブラシ付DCモータの各端子のそれぞれを直流電源の正極に接続する高電位側のスイッチング素子および負極に接続する低電位側のスイッチング素子を備えている。ただし、こうした電力変換回路は、通常、ブラシ付DCモータの各端子のそれぞれに接続される高電位側のスイッチング素子と低電位側のスイッチング素子とが1つずつとなる。このため、3相入力に対応する場合には、ブラシ付DCモータの各端子のそれぞれに接続される高電位側のスイッチング素子と低電位側のスイッチング素子を複数とするなどすることが望ましい。
(Other embodiments)
The above embodiment may be modified as follows.
<Types of auxiliary inverters for external power transfer>
The auxiliary inverter for power exchange with the outside is not limited to the fan inverter IV3, but may be an air conditioning inverter IV4 or a power steering inverter IV2, for example. Moreover, it is not restricted to either of these three types. For example, the inverter connected to the rotating machine for displacing the vehicle-mounted steering angle is not limited to the power steering inverter IV2, and may be an inverter of a rotating machine mounted on a steering-by-wire system, for example.
<About power conversion circuit for auxiliary equipment>
The auxiliary power conversion circuit is not limited to a DC / AC conversion circuit that converts DC power to AC power, such as a three-phase inverter connected to a three-phase rotating machine. For example, it may be connected to a brushed DC motor. This usually includes a high-potential side switching element that connects each terminal of the brushed DC motor to the positive electrode of the DC power supply and a low-potential side switching element that connects to the negative electrode. However, such a power conversion circuit usually has one high potential side switching element and one low potential side switching element connected to each terminal of the brushed DC motor. For this reason, in the case of supporting three-phase input, it is desirable to use a plurality of high-potential side switching elements and low-potential side switching elements connected to each terminal of the brushed DC motor.

また、その出力端子が回転機に接続されるものにも限らない。例えば、高電圧バッテリ10に並列接続される高電位側のスイッチング素子および低電位側のスイッチング素子と、これらスイッチング素子の接続点がリアクトルを介してコンデンサに接続される降圧コンバータであってもよい。この場合、リアクトルとコンデンサとの間に電力授受用電気経路CLを接続することで、充電処理のためにリアクトルを別途設ける必要が生じない。   Further, the output terminal is not limited to the one connected to the rotating machine. For example, a switching element on a high potential side and a switching element on a low potential side that are connected in parallel to the high voltage battery 10 and a step-down converter in which a connection point of these switching elements is connected to a capacitor via a reactor may be used. In this case, it is not necessary to separately provide a reactor for the charging process by connecting the electric power transfer electric path CL between the reactor and the capacitor.

さらに、補機用電力変換回路としては、車載低電圧システムから絶縁された車載高電圧システムを構成するものに限らない。例えば車載低電圧システムを構成する補機用電力変換回路であってもよい。ただし、通常、低電圧バッテリ62の容量が小さいため、外部から車両への充電電力供給量が所定値以上となる場合、充電処理中に、低電圧バッテリ62の電圧を昇圧して高電圧バッテリ10に印加するコンバータを駆動して高電圧バッテリ10に充電電力を供給するようにすることが望ましい。   Further, the power conversion circuit for auxiliary machines is not limited to that constituting an in-vehicle high voltage system insulated from the in-vehicle low voltage system. For example, it may be an auxiliary power conversion circuit that constitutes an in-vehicle low voltage system. However, since the capacity of the low-voltage battery 62 is usually small, when the amount of charging power supplied from the outside to the vehicle exceeds a predetermined value, the voltage of the low-voltage battery 62 is boosted during the charging process. It is desirable to drive the converter applied to the high voltage battery 10 to supply charging power.

なお、補機用電力変換回路を構成するスイッチング素子としては、IGBTに限らず、例えば電界効果トランジスタ等であってもよい。
<補機用電力変換回路の利用手法について>
外部の電源装置との電力の授受のための補機用電力変換回路の利用手法としては、1の授受電口(コネクタC1)に接続される電力授受用電気経路CLの全てを1の補機用電力変換回路に接続するものに限らない。例えば上記特許文献1に例示されているように、一対のインバータのそれぞれに接続される3相回転機の中性点のそれぞれにコネクタC1の各別の端子が接続されるものであってもよい。なお、この場合、電力授受用電気経路が3相回転機のコイルを備える構成となる。
<電力授受用開閉器について>
電力授受用開閉器としては、電力授受用電気経路CLのそれぞれに対応して設けられる3つの電力授受用リレーRCに限らない。例えば、電力授受用電気経路CLが単相のみを想定して2つの電気経路のみを備える構成において、これら2つの経路のいずれか一方に対応する経路に接続される電力授受用リレーRCのみを設けるようにしてもよい。この場合であっても、電力授受用リレーRCの開操作によって、電力授受用電気経路CLと電力変換回路等との間を開ループ状態とすることはできる。
In addition, as a switching element which comprises the power converter circuit for auxiliary machines, not only IGBT but a field effect transistor etc. may be sufficient, for example.
<How to use power conversion circuit for auxiliary equipment>
As a method of using an auxiliary power conversion circuit for transmitting and receiving electric power to and from an external power supply device, all the electric power transfer electric paths CL connected to one transfer port (connector C1) are connected to one auxiliary device. It is not restricted to what is connected to the power conversion circuit for operation. For example, as exemplified in Patent Document 1, each of the terminals of the connector C1 may be connected to each neutral point of a three-phase rotating machine connected to each of the pair of inverters. . In this case, the electric power transmission / reception electric path includes a coil of a three-phase rotating machine.
<About the switch for power transfer>
The power transfer switch is not limited to the three power transfer relays RC provided corresponding to each of the power transfer electric paths CL. For example, in a configuration in which the power transfer electrical path CL includes only two electrical paths assuming only a single phase, only the power transfer relay RC connected to the path corresponding to one of these two paths is provided. You may do it. Even in this case, an open loop state can be established between the power transfer electrical path CL and the power conversion circuit by opening the power transfer relay RC.

また、例えば電力授受用開閉器を設けることなく、代わりにプラグPGの接続条件を、車両が停止していることと該当する補機が駆動されていないこととの論理積が真であることとしてもよい。ただし、これは決め毎とするよりも、上記論理積が真とならない限り、プラグPGの他方の端子をコネクタC1に差し込めないようにする手段を設けることで実現することが望ましい。
<補機用開閉器について>
補機用開閉器としては、電力授受用電気経路CLのそれぞれに対応して設けられる3つの補機用リレーRDに限らない。例えば、電力授受用電気経路CLが単相のみを想定して2つの電気経路のみを備える構成において、これら2つの経路のいずれか一方に対応する経路を開閉する補機用リレーRDのみを設けるようにしてもよい。
In addition, for example, without providing a power transfer switch, instead of connecting the plug PG, the logical product of the fact that the vehicle is stopped and the corresponding auxiliary machine is not driven is true. Also good. However, it is preferable to realize this by providing means for preventing the other terminal of the plug PG from being inserted into the connector C1 as long as the logical product is not true.
<Auxiliary switch>
The auxiliary switch is not limited to the three auxiliary relays RD provided corresponding to each of the electric power transfer electric paths CL. For example, in a configuration in which the electric power transfer electric path CL includes only two electric paths assuming only a single phase, only the auxiliary relay RD that opens and closes a path corresponding to one of these two paths is provided. It may be.

また、補機用開閉器を設けなくてもよい。この場合、充電用リアクトルLに代えて、補機のリアクトル(例えばファン用モータジェネレータ44のリアクトル)を用いて充電処理を行ってもよい。
<そのほか>
・充電用リアクトルLを、電力授受用電気経路CLの全てに設ける代わりに、例えば、いずれか2つの経路または1つの経路に設けてもよい。
Moreover, the auxiliary switch may not be provided. In this case, instead of the charging reactor L, the charging process may be performed using a reactor of an auxiliary machine (for example, a reactor of the fan motor generator 44).
<Other>
The charging reactor L may be provided in any two paths or one path, for example, instead of being provided in all of the electric power transfer electric paths CL.

・授受電口(コネクタC1)の数を1個ではなく、複数とし、これらに各別の補機用電力変換回路を接続してもよい。   -The number of power transmission / reception ports (connectors C1) may be plural instead of one, and different auxiliary power conversion circuits may be connected to them.

・1組の電力授受用電気経路CLの全てに1の補機用電力変換回路を接続する場合のこの補機用電力変換回路の数としては、1個に限らず、2つ以上であってもよい。   The number of auxiliary power conversion circuits when one auxiliary power conversion circuit is connected to all of one set of electric power transfer paths CL is not limited to one, and is two or more. Also good.

・先の図2等において、高電圧バッテリ10と主機用インバータIV1との間に昇圧コンバータを介在させてもよい。   In FIG. 2 and the like, a boost converter may be interposed between the high voltage battery 10 and the main inverter IV1.

・車両としては、パラレルハイブリッド車に限らず、例えばシリーズハイブリッド車やパラレル・シリーズハイブリッド車等であってもよい。もっともハイブリッド車に限らず、例えば車載主機として回転機のみを備える電気自動車等であってもよい。   The vehicle is not limited to a parallel hybrid vehicle, and may be, for example, a series hybrid vehicle or a parallel series hybrid vehicle. However, it is not limited to a hybrid vehicle, and may be an electric vehicle including only a rotating machine as an in-vehicle main machine.

・車両制御ECU60による高電圧バッテリ10の充放電制御としては、その両端の電圧に基づき行われるものに限らない。例えば、高電圧バッテリ10が電池セルの直列接続体としての組電池であるなら、所定個数ずつの電池セルの状態の各検出値に基づき高電圧バッテリ10の充放電制御を行ってもよい。   The charge / discharge control of the high-voltage battery 10 by the vehicle control ECU 60 is not limited to that performed based on the voltage at both ends. For example, if the high-voltage battery 10 is an assembled battery as a series connection body of battery cells, the charge / discharge control of the high-voltage battery 10 may be performed based on each detected value of the state of a predetermined number of battery cells.

10…高電圧バッテリ、24…主機用モータジェネレータ(走行用回転機の一実施形態)、IV1…主機用インバータ(走行用電力変換回路の一実施形態)、IV4…空調用インバータ(補機用電力変換回路の一実施形態)、RC…電力授受用リレー(電力授受用開閉器の一実施形態)、RD…補機用リレー(補機用開閉器の一実施形態)、CL…電力授受用電気経路、C1…コネクタ(授受電口の一実施形態)。   DESCRIPTION OF SYMBOLS 10 ... High voltage battery, 24 ... Motor generator for main machines (one embodiment of rotary machine for driving), IV1 ... Inverter for main machines (one embodiment of power conversion circuit for driving), IV4 ... Inverter for air conditioning (Power for auxiliary machine) One embodiment of conversion circuit), RC: relay for power transfer (one embodiment of switch for power transfer), RD: relay for auxiliary machine (one embodiment of switch for auxiliary machine), CL: electricity for power transfer Path, C1... Connector (one embodiment of power transmission / reception port).

Claims (3)

車両の外部の電源装置に接続される授受電口を介して前記外部の電源装置との間で電力の授受を行なう車両用電源装置において、
前記車両は、駆動輪に機械的に連結される走行用回転機と、前記駆動輪に前記走行用回転機が付与する動力を制御するために操作される走行用電力変換回路と、前記走行用回転機以外の車載負荷としての車載補機と、該車載補機に電力を供給する蓄電手段と、前記車載補機および前記蓄電手段間に介在する補機用電力変換回路とを備え、
前記授受電口を前記補機用電力変換回路に電気的に接続する電力授受用電気経路を備え、
該電力授受用電気経路に接続される1の補機用電力変換回路を用いて前記補機を駆動する場合に当該1の補機用電力変換回路の入力端子を通過する電力の最大値よりも、前記授受電口および電力授受用電気経路を介して前記外部の電源装置との間で電力の授受を行なう場合に前記入力端子を通過する電力の最大値の方が大きくて且つ、この際に前記外部の電源装置との間で電力の授受を行なうために用いられる補機用電力変換回路が単一の電力変換回路であり、
前記外部の電源装置の電力が前記単一の電力変換回路に接続される補機の定格出力よりも大きく、
前記補機の定格出力よりも前記補機用電力変換回路の定格出力の方が大きい
ことを特徴とする車両用電源装置。
In the vehicular power supply device that transmits and receives electric power to and from the external power supply device via a power transfer port connected to a power supply device outside the vehicle,
The vehicle includes a travel rotator mechanically coupled to drive wheels, a travel power conversion circuit operated to control power applied by the travel rotator to the drive wheels, and the travel An in-vehicle auxiliary machine as an in-vehicle load other than a rotating machine, a power storage means for supplying power to the in-vehicle auxiliary machine, and a power conversion circuit for auxiliary equipment interposed between the in-vehicle auxiliary machine and the power storage means,
A power transfer electrical path that electrically connects the power transfer port to the auxiliary power conversion circuit;
When the auxiliary machine is driven using one auxiliary power conversion circuit connected to the electric power transfer electric path, the maximum value of the power passing through the input terminal of the one auxiliary power conversion circuit the transfer electrostatic port and and in the direction of the maximum value of the power that passes through the input terminal rather large if through the power transfer electric path for exchanging power between the external power supply, this time The auxiliary power conversion circuit used to transfer power to and from the external power supply device is a single power conversion circuit,
The power of the external power supply device is larger than the rated output of an auxiliary machine connected to the single power conversion circuit,
A power supply apparatus for a vehicle, wherein a rated output of the auxiliary power conversion circuit is larger than a rated output of the auxiliary machine .
前記走行用電力変換回路は、前記蓄電手段の一対の端子のそれぞれを前記走行用回転機の端子に接続するスイッチング素子を備えたインバータであることを特徴とする請求項1記載の車両用電源装置。 2. The vehicle power supply device according to claim 1, wherein the travel power conversion circuit is an inverter including a switching element that connects each of the pair of terminals of the power storage unit to a terminal of the travel rotating machine. . 前記補機用電力変換回路の定格出力は、前記走行用電力変換回路の定格出力よりも小さいことを特徴とする請求項1または2記載の車両用電源装置。   The power supply apparatus for a vehicle according to claim 1 or 2, wherein a rated output of the power conversion circuit for auxiliary machinery is smaller than a rated output of the power conversion circuit for traveling.
JP2010101701A 2010-04-27 2010-04-27 Vehicle power supply Active JP5234051B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010101701A JP5234051B2 (en) 2010-04-27 2010-04-27 Vehicle power supply
FR1153567A FR2959357B1 (en) 2010-04-27 2011-04-26 POWER SUPPLY DEVICE FOR VEHICLE
US13/094,232 US8937400B2 (en) 2010-04-27 2011-04-26 Power supply apparatus for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101701A JP5234051B2 (en) 2010-04-27 2010-04-27 Vehicle power supply

Publications (2)

Publication Number Publication Date
JP2011234473A JP2011234473A (en) 2011-11-17
JP5234051B2 true JP5234051B2 (en) 2013-07-10

Family

ID=45323213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101701A Active JP5234051B2 (en) 2010-04-27 2010-04-27 Vehicle power supply

Country Status (1)

Country Link
JP (1) JP5234051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024065970A (en) * 2022-10-31 2024-05-15 株式会社Soken Power conversion device and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130712A (en) * 1991-10-21 1993-05-25 Hitachi Ltd Controller for electric automobile
JPH07222301A (en) * 1994-01-28 1995-08-18 Fuji Electric Co Ltd Redundant operation system for electric automobile
JP4635726B2 (en) * 2005-06-01 2011-02-23 日産自動車株式会社 Electric car
JP2007195336A (en) * 2006-01-19 2007-08-02 Toyota Motor Corp Power supply for vehicle

Also Published As

Publication number Publication date
JP2011234473A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
US8937400B2 (en) Power supply apparatus for vehicle
JP6832751B2 (en) Charge transfer management method and charge transfer device
US10137798B2 (en) Busbars for a power module assembly
US8183820B2 (en) Power processing systems and methods for use in plug-in electric vehicles
US7456602B2 (en) System and method of commonly controlling power converters
CN102412769B (en) Control apparatus for rotary electric machine
US10668812B2 (en) Power supply system
JP5667423B2 (en) Plug-in hybrid vehicle charging device and method
JP5234050B2 (en) Vehicle power supply
JP2019004593A (en) Power supply unit of vehicle
CN101946397A (en) Motor drive apparatus, hybrid drive apparatus and method for controlling motor drive apparatus
US20140225432A1 (en) Converter circuit and method for transferring electrical energy
CN103872970B (en) For operating circuit arrangement and the method for motor
JP2012510791A (en) Interconnect housing for automobiles
CN104254458B (en) Apparatus and method for supplying electric current to electric driver
JP2001037247A (en) Power supply unit, equipment and motor drive provided therewith, and electric vehicle
JP5968697B2 (en) Vehicle power supply
CN104025443A (en) Power module and electric device for the combined powering and charging of an accumulator and a motor respectively
JP2020005389A (en) Power supply system
CN116438734A (en) Vehicle electrical system
BR102013011666A2 (en) Contactor unit, method for operating an isolation contactor and system for isolating a first voltage device from a second voltage device
JP5560877B2 (en) Vehicle charging device
JP5234051B2 (en) Vehicle power supply
JP2018121495A (en) Rotary electric machine control device
US20140346862A1 (en) Motor vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R151 Written notification of patent or utility model registration

Ref document number: 5234051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250