JP5233034B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP5233034B2
JP5233034B2 JP2009207492A JP2009207492A JP5233034B2 JP 5233034 B2 JP5233034 B2 JP 5233034B2 JP 2009207492 A JP2009207492 A JP 2009207492A JP 2009207492 A JP2009207492 A JP 2009207492A JP 5233034 B2 JP5233034 B2 JP 5233034B2
Authority
JP
Japan
Prior art keywords
solar cell
heat sink
crystal
crystal solar
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009207492A
Other languages
Japanese (ja)
Other versions
JP2011044677A (en
JP2011044677A5 (en
Inventor
章次 上林
正彦 相羽
誠 藤野
Original Assignee
小真株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小真株式会社 filed Critical 小真株式会社
Priority to JP2009207492A priority Critical patent/JP5233034B2/en
Publication of JP2011044677A publication Critical patent/JP2011044677A/en
Publication of JP2011044677A5 publication Critical patent/JP2011044677A5/ja
Application granted granted Critical
Publication of JP5233034B2 publication Critical patent/JP5233034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

低炭素社会の実現に寄与する結晶系太陽電池パネルに関する技術であり,配線の剥離の低減,放熱特性の改善,軽量化及び防湿性の確保に関する。It is a technology related to crystalline solar cell panels that contribute to the realization of a low-carbon society. It relates to the reduction of wiring peeling, improvement of heat dissipation characteristics, weight reduction, and ensuring moisture resistance.

結晶系太陽電池パネルの材料である単結晶や多結晶のシリコンセルの厚みは200μm程度であって衝撃に弱く,これを緩和する構造は必須である。The thickness of a single-crystal or polycrystalline silicon cell, which is a material for a crystalline solar cell panel, is about 200 μm and is vulnerable to impact, and a structure that relaxes this is essential.

3結晶系太陽電池セルからの電力取り出しは,3結晶系太陽電池セル上の配線パターンの上に銀ペースト等により導線を敷設して為されるが,通常使われる15.5cm角程度の3結晶系太陽電池セルにおいてその出力電流は7.5A程度と大きいため,3結晶系太陽電池セル上の配線パターン上に敷設する導線として,通常幅2mm,厚み0.3mm程の半田メッキ付き銅線が使われる。Power extraction from the three-crystal solar cell is performed by laying a conductor with silver paste on the wiring pattern on the three-crystal solar cell. Since the output current of a solar cell is as large as about 7.5 A, a solder-plated copper wire with a width of about 2 mm and a thickness of about 0.3 mm is usually used as a conductive wire laid on a wiring pattern on a three-crystal solar cell. used.

3結晶系太陽電池セル上の配線パターンと敷設する半田メッキ付き銅線が接する部分に湿気が入り込むと電池が形成され腐食するので,湿気の浸入を防ぐ事は信頼性を確保する上で重要である。Since moisture is formed and corroded when moisture enters the part where the wiring pattern on the three-crystal solar cell and the copper wire with solder plating to be laid are in contact, it is important to prevent moisture from entering. is there.

衝撃緩和及び防湿のため,13EVAで3結晶系太陽電池セルの表裏両面を完全封止するが,空気の膨張による破壊を防ぐため,内に空気を残さない事が重要である。In order to alleviate the impact and prevent moisture, the front and back surfaces of the three-crystal solar cell are completely sealed with 13 EVA. However, it is important not to leave air inside in order to prevent destruction due to air expansion.

衝撃の緩和及び湿気の進入防止及び組立性を確保するため,太陽光入射側から,12硬質ガラス,13EVAで完全封止された3結晶系太陽電池セル,14反射フイルムを順に重ねるが,これを束ねる15パッキン材と頑丈な16サイドフレームが心要となる。In order to alleviate the impact and prevent moisture from entering and to ensure assembly, 12 hard glass, 3 crystal solar cells completely sealed with 13 EVA, and 14 reflective film are stacked in order from the sunlight incident side. The 15 packing materials to be bundled and the sturdy 16 side frame are important.

12硬質ガラス,13EVAで完全封止された3結晶系太陽電池セル,14反射フイルムを順に重ねる際,空気の膨張による破壊を防ぐため,その何れの層間にも空気を残さないようにする必要がある。When stacking 12 hard glass, 3 crystalline solar cells fully sealed with 13 EVA, and 14 reflective film in order, it is necessary to leave no air between any of the layers to prevent destruction due to air expansion. is there.

3結晶系太陽電池セルは,温度が上昇すると,その出力が低下するので放熱を考慮した構造が重要である。Since the output of a three-crystal solar cell decreases as the temperature rises, a structure that takes heat dissipation into account is important.

特開平11−87757
特開2009−32852
JP-A-11-87757
JP2009-32852A

衝撃の緩和及び防湿のため13EVAで3結晶系太陽電池セルの表裏両面を封止するが,厚みが増すと太陽光の透過量が下がることからその厚みは大凡0.3mm程度である。しかし金属に比べ13EVAの熱伝導性は悪く,3結晶系太陽電池セルが太陽光から受ける熱を,13EVAを通して効率よく外部に放射することが難しい。この為太陽光から受ける熱は内部に蓄積され,晴天時においては外気温に対し3結晶系太陽電池セルの温度は大凡40℃ほど上昇し,シリコン固有の禁制帯幅(−0.45%/℃)により18%程度出力が低下するので,温度上昇を防ぐ事が課題である。Although both front and back surfaces of the three-crystal solar cell are sealed with 13 EVA for shock mitigation and moisture prevention, the thickness is about 0.3 mm because the amount of sunlight transmitted decreases as the thickness increases. However, the thermal conductivity of 13EVA is poorer than that of metal, and it is difficult to efficiently radiate the heat received by the tricrystalline solar cells from sunlight through 13EVA. For this reason, the heat received from sunlight is accumulated inside, and in sunny weather, the temperature of the three-crystal solar cell rises by about 40 ° C with respect to the outside air temperature, and the forbidden band width (-0.45% / Since the output is reduced by about 18% due to (° C.), it is a problem to prevent the temperature rise.

3結晶系太陽電池セルは,温度上昇によってその出力が低下するので効率よく放熱する構造を採用しなければならないが,14反射フイルムの裏側に放熱板を取り付ける方法では,熱は13EVAや14反射フイルムを経由するのでその分,熱の伝導が妨げられ,十分な放熱効果が得られない。Since the output of a three-crystal solar cell decreases with increasing temperature, a structure that efficiently dissipates heat must be adopted. However, when a heat sink is attached to the back of a 14-reflective film, heat is generated by 13 EVA or 14-reflective film. Because of this, the heat conduction is hindered, and sufficient heat dissipation effect cannot be obtained.

12硬質ガラスと3結晶系太陽電池セル上の配線パターンが無い部分は何れも平坦である。また,12硬質ガラスと13EVA及び13EVAと3結晶系太陽電池セルは夫々密着している。一方,3結晶系太陽電池セル上の配線パターン上に敷設された半田メッキ付き銅線は3結晶系太陽電池セル表面から約0.3mm盛り上がっており,配線の無い部分の13EVAの厚みは配線のある部分より厚く,3結晶系太暘電池セル上の配線パターン上に敷設された銅線で13EVAが囲われる形になるので,温度上昇により13EVAが膨張すると13EVAは3結晶系太陽電池セル上の配線パターン上に敷設された銅線を横方向から押す事になる。3結晶系太陽電池セルの中央部に配置された5太陽電池セル表面配線に加わる横方向の力は左右大凡同じだが端部に配置されている配線では中央部からの力に対して外側からの力が弱く,配線に加わる力の左右バランスがとれないので,剥離までには至らないにしても配線パターンと銀ペースト,銀ペーストと銅線の間にマイクロクラックが入り抵抗値が上昇し電力ロスを生じる。あるいは,また稀に一部で剥離が起こり発電した電気を集められないといった事も生じる。The portions on the 12 hard glass and the tricrystalline solar cells without the wiring pattern are flat. In addition, 12 hard glass, 13 EVA, 13 EVA, and 3 crystal solar cells are in close contact with each other. On the other hand, the copper wire with solder plating laid on the wiring pattern on the three-crystal solar cell is raised about 0.3 mm from the surface of the three-crystal solar cell, and the thickness of 13EVA in the portion without the wiring is Since 13EVA is thicker than a certain part and is surrounded by copper wire laid on the wiring pattern on the three-crystal solar cell, when EVA expands due to temperature rise, 13EVA is on the three-crystal solar cell. The copper wire laid on the wiring pattern is pushed from the side. The lateral force applied to the surface wiring of the five solar cells arranged at the center of the three-crystal solar cell is almost the same on the left and right, but in the wiring arranged at the ends, the force from the center is applied from the outside. Since the force is weak and the left / right balance of the force applied to the wiring cannot be achieved, even if it does not lead to peeling, a microcrack is inserted between the wiring pattern and the silver paste, and the silver paste and the copper wire, resulting in an increase in resistance and power loss. Produce. Or, in some rare cases, separation may occur and the generated electricity cannot be collected.

150W級結晶系太陽電池パネルの1表面板に主として使われる12硬質ガラスと16サイドフレームの重量が主因で,150W級結晶系太陽電池パネル1枚は20Kg(130g/W)ほどの重量となり,取り扱いが容易でない点も課題である。Mainly due to the weight of 12 hard glass and 16 side frames, which are mainly used for one surface plate of 150W class crystal solar panel, one 150W class crystal solar panel weighs about 20Kg (130g / W). It is also a problem that is not easy.

12硬質ガラス,13EVAで完全封止された17結晶系太陽電池セルユニット,14反射フイルムを順に重ねた太陽電池パネルに衝撃緩和及び湿気進入防止のために使用される15パッキン材は経年変化で細かなクラックが入ったり弾力性が乏しくなるなど,当初の目的を達し得なくなるという課題がある。15 packing material used for impact mitigation and prevention of moisture intrusion on solar panels with 12 hard glass, 13 crystalline solar cell units fully sealed with 13 EVA, and 14 reflective films in order. There is a problem that the original purpose cannot be achieved, for example, a crack occurs or elasticity becomes poor.

放熱板に3結晶系太陽電池セルを7接着剤或いは両面粘着テープを介して取付け,又1表面板と3結晶系太陽電池セルの受光面との間及び周辺に軟らかい樹脂を充填する構造を特徴とする。即ち,放熱板に3結晶系太陽電池セルを7接着剤或いは両面粘着テープを介して取付けることにより,より効率よく放熱板に熱が伝搬され温度上昇を抑える事が可能になる。又図1に示すように,4放熱板組品の凹を6太陽電池セル裏面配線の盛り上がりと対応させて配置する事により,4放熱板組品と6太陽電池セル裏面配線の短絡を防ぐ事が可能になる。Features a structure in which 3 crystal solar cells are attached to the heat sink via 7 adhesives or double-sided adhesive tape, and soft resin is filled between and around the surface plate and the light receiving surface of the 3 crystal solar cells And That is, by attaching the three crystal solar cells to the heat sink via seven adhesives or double-sided adhesive tape, heat can be more efficiently propagated to the heat sink and the temperature rise can be suppressed. In addition, as shown in FIG. 1, by arranging the recesses of the 4 heat sink assembly in correspondence with the rising of the back wiring of the 6 solar cells, the short circuit between the 4 heat sink assembly and the 6 solar cell back wiring can be prevented. Is possible.

結晶系太陽電池パネルにおいて,温度上昇による出力の低下,温度上昇による3結晶系太陽電池セル,配線用材料,2封止樹脂及び7接着剤或いは両面粘着テープの対温度膨張係数の違いに起因する配線剥離,断線,機密性の確保等に対し信頼性の向上及び軽量化による取り扱いの容易さの向上が図れる。In crystalline solar panels, output decreases due to temperature rise, due to differences in coefficient of thermal expansion with respect to temperature of 3-crystal solar cells, wiring materials, 2 sealing resin and 7 adhesives or double-sided adhesive tape due to temperature rise. It is possible to improve reliability and ease of handling by reducing the weight with respect to wiring separation, disconnection, and ensuring confidentiality.

結晶系太陽電池セル部分の断面図である。It is sectional drawing of a crystalline solar cell part. 結晶系太陽電池パネル端部の断面図である。It is sectional drawing of a crystalline solar cell panel edge part. 放熱板組品の斜視図である。It is a perspective view of a heat sink assembly. 放熱板組品の端部の斜視図である。It is a perspective view of the edge part of a heat sink assembly. 結晶系太陽電池パネル内の結晶系太陽電池セルの配置図である。It is a layout view of crystalline solar cells in a crystalline solar panel. 従来の結晶系太陽電池パネル端部の断面図である。It is sectional drawing of the conventional crystalline solar cell panel edge part.

図1は結晶系太陽電池モジュールに使用する主要部材の配置を示す断面図で,1は表面板,2は封止樹脂,3は結晶系太陽電池セル,4は放熱板組品である。FIG. 1 is a cross-sectional view showing the arrangement of main members used in a crystalline solar cell module, wherein 1 is a surface plate, 2 is a sealing resin, 3 is a crystalline solar cell, and 4 is a radiator plate assembly.

1表面板は,ポリカーボネートを主材料とする耐候性のある透明樹脂の平板であり,大凡一辺70cm,厚みは2mm程度で,重量は1.3Kg程度である。One surface plate is a flat plate of weather-resistant transparent resin mainly composed of polycarbonate, and has a side of about 70 cm, a thickness of about 2 mm, and a weight of about 1.3 kg.

2封止樹脂は,粘性があるが流動性が高く,柔らかく,耐候性のある透明樹脂で,3結晶系太陽電池セル上部の2封止樹脂の厚みは大凡0.5mmで,図2の様に1表面板と4放熱板組品で囲まれる全域に充填され,その重量は400g程度である。2 Sealing resin is a transparent resin that is viscous but has high fluidity, softness, and weather resistance. The thickness of the 2 sealing resin at the top of the 3-crystal solar cell is approximately 0.5 mm, as shown in FIG. The entire area surrounded by 1 surface plate and 4 heat sink assembly is filled, and its weight is about 400g.

3結晶系太陽電池セルは15.5cm角程度の大きさで,図5の様に16枚を配置することで約55Wの定格出力を得ることができる。3結晶系太陽電池セル16枚の総重量は1表面板,2封止樹脂,4放熱板組品の重量に比して微小である。The three-crystal solar cell has a size of about 15.5 cm square, and a rated output of about 55 W can be obtained by arranging 16 pieces as shown in FIG. The total weight of the 16 three-crystal solar cells is very small compared to the weight of the 1 surface plate, 2 sealing resin, and 4 heat sink assembly.

4放熱板組品は,図3及び図4の様にその端部近くまでその深さが3mm程の凹凸の溝加工が施された2枚の薄いアルミ板即ち18表面放熱板と8裏面放熱板で構成され,溝が直交する様に配置され,そして両板が接する部分は溶接又はその他の方法で接合されている。組品の一辺は70cm程度,最も厚い部分は大凡6mmの厚みで,重量は800g程度である。As shown in Fig. 3 and Fig. 4, the 4 heat sink assembly consists of two thin aluminum plates with an uneven groove depth of about 3mm to the end, that is, 18 surface heat sink and 8 back heat dissipation. It is composed of plates, arranged so that the grooves are orthogonal, and the part where both plates touch is joined by welding or other methods. One side of the assembly is about 70 cm, the thickest part is about 6 mm thick, and the weight is about 800 g.

4放熱板組品に施される溝の幅及びその深さは6太陽電池セル裏面配線とショートしないように確保する。又溝の位置は3結晶系太陽電池セルの配線パターンの位置によって決められ,その数は3結晶系太陽電池セル1枚当り2乃至3本程度が妥当である。The width and depth of the groove provided in the 4 heat sink assembly are secured so as not to short-circuit with the 6 solar cell back surface wiring. Further, the position of the groove is determined by the position of the wiring pattern of the three crystal solar cells, and the number of grooves is appropriate to be about two to three per one three crystal solar cell.

4放熱板組品の端部は図4に示す様に,凹凸の溝加工を施さず,2枚の放熱板は互いに接しない様になっており,上記接合のあと,周辺部に11スペーサーを嵌め込む。11スペーサーは約100℃の温度で変形しない軽い樹脂であれば特に材質は問わない。この重量は約400gである。4 As shown in Fig. 4, the end of the heat sink assembly is not grooved, and the two heat sinks are not in contact with each other. Fit. The 11 spacer is not particularly limited as long as it is a light resin that does not deform at a temperature of about 100 ° C. This weight is about 400 g.

4放熱板組品に使用するアルミ板は板厚1mm以下で,0.3mm程度もあれば充分である。またアルマイト加工などの表面処理が為されている。4 The aluminum plate used for the heat sink assembly should be less than 1mm thick and about 0.3mm. In addition, surface treatment such as anodizing is applied.

図2は結晶系太陽電池パネル端部付近に使用する主要部材の配置を示す断面図であり,10は外枠,11はスペーサー,9は10外枠と11スペーサーに設けられた通気孔であり,この通気孔を通して空気の自然対流が得られる。FIG. 2 is a cross-sectional view showing the arrangement of main members used near the ends of the crystalline solar cell panel, 10 is an outer frame, 11 is a spacer, and 9 is a vent hole provided in 10 outer frame and 11 spacer. , Natural convection of air is obtained through this vent.

図5の様に配置,配線された3結晶系太陽電池セルは,6結晶系太陽電池裏面配線が4放熱板組品の溝の概中央部に位置する様配置し,4放熱板組品に接着する。The three crystal solar cells arranged and wired as shown in FIG. 5 are arranged so that the back wiring of the six crystal solar cells is positioned at the approximate center of the groove of the four heat sink assemblies. Glue.

3結晶系太陽電池セルの接着は,アクリル系又はブチル系接着剤を厚み50μmほど4放熱板組品に塗布,又はアクリル系又はブチル系の厚み50μm程の両面粘着テープを4放熱板組品に貼り付け,その上に3結晶系太陽電池セルを圧着貼り付ける。Adhesion of tricrystalline solar cells is achieved by applying acrylic or butyl adhesive to 4 heat sink assemblies with a thickness of about 50 μm, or double-sided adhesive tape with an acrylic or butyl thickness of about 4 μm to 4 heat sink assemblies. A three-crystal solar cell is bonded by pressure.

太陽光入射面の反対側に2封止樹脂を貼り付けた1表面板を,3結晶系太陽電池セルが接着された4放熱板組品の上に,空気を咬まない様に位置を合わせながら置く。While aligning the position of the 1 surface plate with 2 sealing resin pasted on the opposite side of the sunlight incident surface on the 4 heat sink assembly to which the 3 crystalline solar cells are bonded Put.

この組品に10外枠を取り付ける。10外枠の重量は1Kg程度である。A 10 outer frame is attached to this assembly. The weight of the 10 outer frame is about 1 kg.

上記の構造,組み立てによるユニットの総重量は大凡4.0Kgで,W当り73gとなり従来品の約56%に抑えることができる。The total weight of the unit by the above structure and assembly is approximately 4.0 Kg, which is 73 g per W, which can be suppressed to about 56% of the conventional product.

本結晶系太陽電池パネル試作品での性能実験において,外気温が31℃のとき,熱飽和するに充分な時間だけ直射日光が当っている1表面板の表面温度は46℃,直射日光が当っていない4放熱板組品の表面温度は32℃であった。同じく熱飽和するに充分な時間だけ直射日光が当っている条件で,4放熱板組品の代わりとして0.5mm程度の厚みの従来から多用されている13EVAと同等の樹脂で3結晶系太陽電池セルを封止すると,直射日光が当っていない裏側の樹脂表面温度は46.5℃となり,図1乃至4で示す構造は放熱に有効であることが実証された。In a performance test using this crystalline solar cell panel prototype, when the outside air temperature is 31 ° C, the surface temperature of one surface plate that is exposed to direct sunlight for a time sufficient for thermal saturation is 46 ° C, and it is exposed to direct sunlight. The surface temperature of the four heat radiating plate assemblies was 32 ° C. Similarly, a three-crystal solar cell made of a resin equivalent to 13EVA, which has been used frequently in the past, has a thickness of about 0.5 mm as a substitute for the four heat sink assembly, under the condition that it is exposed to direct sunlight for a sufficient time to saturate. When the cell was sealed, the resin surface temperature on the back side not exposed to direct sunlight was 46.5 ° C., and it was proved that the structure shown in FIGS. 1 to 4 was effective for heat dissipation.

11スペーサーの幅は大凡3cmほどで,10外枠の幅と大凡同じである。この間には3結晶系太陽電池セルは配置しないので,10外枠の端面から3結晶系太陽電池セルまでの距離は大凡3cmほどとなり,湿気進入防止に充分である。The width of 11 spacer is about 3 cm, which is roughly the same as the width of 10 outer frame. Since the three-crystal solar cells are not arranged during this period, the distance from the end face of the outer frame 10 to the three-crystal solar cells is about 3 cm, which is sufficient for preventing moisture from entering.

6太陽電池セル裏面配線は,18表面放熱板の溝凹部に配置され,この溝は2封止樹脂により外気と遮断されているので,防湿性は保たれている。6 solar cell back surface wiring is arrange | positioned in the groove | channel recessed part of 18 surface heat sink, and since this groove | channel is interrupted | blocked with external air by 2 sealing resin, moisture-proof property is maintained.

太陽電池に関しては信頼性の確保,軽量化,温度上昇による発電効率の低下を緩和する事が課題であり,その対応方法の提案である。As for solar cells, it is a challenge to ensure reliability, reduce weight, and mitigate the decrease in power generation efficiency due to temperature rise.

1 表面板
2 封止樹脂
3 結晶系太陽電池セル
4 放熱板組品
5 太陽電池セル表面配線
6 太陽電池セル裏面配線
7 接着剤
8 裏面放熱板
9 通気孔
10 外枠
11 スペーサー
12 硬質ガラス
13 EVA
14 反射フイルム
15 パッキン材
16 サイドフレーム
17 結晶系太陽電池セルユニット
18 表面放熱板
DESCRIPTION OF SYMBOLS 1 Surface plate 2 Sealing resin 3 Crystalline solar cell 4 Heat sink plate assembly 5 Solar cell surface wiring 6 Solar cell back surface wiring 7 Adhesive 8 Back surface heat sink 9 Vent hole 10 Outer frame 11 Spacer 12 Hard glass 13 EVA
14 Reflective film 15 Packing material 16 Side frame 17 Crystalline solar cell unit 18 Surface heat sink

Claims (2)

結晶系太陽電池セルの裏面配線に対応する部分に凹溝を施した放熱板に、接着剤或いは両面粘着テープを用いて結晶系太陽電池セルを貼り付ける事を特徴とする太陽電池パネル。A solar battery panel, wherein a crystal solar battery cell is attached to a heat sink having a concave groove in a portion corresponding to a back surface wiring of the crystal solar battery cell using an adhesive or a double-sided adhesive tape. 表面板と結晶系太陽電池セルの受光面との間に樹脂を充填する事を特徴とする請求項1に記載の太陽電池パネル。The solar cell panel according to claim 1, wherein a resin is filled between the surface plate and the light receiving surface of the crystalline solar cell.
JP2009207492A 2009-08-19 2009-08-19 Solar cell module Expired - Fee Related JP5233034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207492A JP5233034B2 (en) 2009-08-19 2009-08-19 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207492A JP5233034B2 (en) 2009-08-19 2009-08-19 Solar cell module

Publications (3)

Publication Number Publication Date
JP2011044677A JP2011044677A (en) 2011-03-03
JP2011044677A5 JP2011044677A5 (en) 2012-11-01
JP5233034B2 true JP5233034B2 (en) 2013-07-10

Family

ID=43831851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207492A Expired - Fee Related JP5233034B2 (en) 2009-08-19 2009-08-19 Solar cell module

Country Status (1)

Country Link
JP (1) JP5233034B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131781A (en) * 1977-04-21 1978-11-16 Agency Of Ind Science & Technol Condensing type solar battery device
JPS5423489A (en) * 1977-07-25 1979-02-22 Japan Solar Energy Solar optical generator
JPS59111053U (en) * 1983-01-14 1984-07-26 京セラ株式会社 Structure of solar panel
JPS6245080A (en) * 1985-08-22 1987-02-27 Agency Of Ind Science & Technol Solar cell module
JP3069502B2 (en) * 1994-12-26 2000-07-24 ワイケイケイアーキテクチュラルプロダクツ株式会社 Solar cell module
JP3448153B2 (en) * 1996-04-12 2003-09-16 積水化学工業株式会社 Solar cell module and its mounting structure
JP2000114569A (en) * 1998-10-07 2000-04-21 Kanegafuchi Chem Ind Co Ltd Solar battery module
US20050161074A1 (en) * 2003-12-16 2005-07-28 Paul Garvison Photovoltaic module mounting unit and system

Also Published As

Publication number Publication date
JP2011044677A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
TWI565090B (en) Flexible solar panel module, an installated structure thereof and method for fabricating the same
WO2015096490A1 (en) Dual-glass photovoltaic cell module
CN103000728B (en) Solar cell backboard assembly and solar module
EP2450965B1 (en) Photovoltaic power-generating apparatus
WO2015096493A1 (en) Photovoltaic cell module
US20130098447A1 (en) Method for manufacturing solar battery module and solar battery module manufactured by the manufacturing method
US20100000595A1 (en) Solar cell module
WO2015096488A1 (en) Dual-glass photovoltaic cell module and rim for same
WO2017177829A1 (en) Double glass assembly
WO2015096491A1 (en) Dual-glass cell module
WO2018107999A1 (en) Photovoltaic module
KR20150031885A (en) Solar cell module
KR20130056115A (en) Solar cell module
JP2011077103A (en) Solar cell module
TWM508795U (en) Flexible solar panel module, an installated structure thereof
JP3602721B2 (en) Solar cell module
CN209981247U (en) Curved surface shingled photovoltaic module
JP5233034B2 (en) Solar cell module
US20230023997A1 (en) Photovoltaic assembly
US9954484B2 (en) Solar battery module
JP4772011B2 (en) Solar cell module
JP2004281796A (en) Solar cell module
JP2004311455A (en) Solar cell module
JP4206265B2 (en) Solar cell module
JP2004327630A (en) Solar cell module

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees