JP5230377B2 - Calibration method of pressure measurement unit - Google Patents

Calibration method of pressure measurement unit Download PDF

Info

Publication number
JP5230377B2
JP5230377B2 JP2008304109A JP2008304109A JP5230377B2 JP 5230377 B2 JP5230377 B2 JP 5230377B2 JP 2008304109 A JP2008304109 A JP 2008304109A JP 2008304109 A JP2008304109 A JP 2008304109A JP 5230377 B2 JP5230377 B2 JP 5230377B2
Authority
JP
Japan
Prior art keywords
pressure
liquid
opening
pressure measuring
air chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008304109A
Other languages
Japanese (ja)
Other versions
JP2010125131A (en
Inventor
真明 幸田
聡一郎 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2008304109A priority Critical patent/JP5230377B2/en
Publication of JP2010125131A publication Critical patent/JP2010125131A/en
Application granted granted Critical
Publication of JP5230377B2 publication Critical patent/JP5230377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液体、特に体液或いは薬液を流通させる体外循環回路内の圧力を測定する圧力測定部のキャリブレーション方法に関する。   The present invention relates to a calibration method for a pressure measuring unit that measures a pressure in an extracorporeal circuit through which a liquid, particularly a body fluid or a chemical solution, is circulated.

例えば患者の体内から血液を取り出し、その血液の体外処理を行い、処理された血液を体内に戻す体外循環システムには、通常、体外循環回路内の圧力を測定するための圧力センサが配置されている。   For example, in an extracorporeal circulation system that removes blood from a patient's body, performs extracorporeal treatment of the blood, and returns the processed blood to the body, a pressure sensor for measuring the pressure in the extracorporeal circuit is usually disposed. Yes.

体外循環回路内の圧力を、体液或いは薬液と空気との接触を回避した状態で測定する手段の一例として、特許文献1には、隔膜を介して体外循環回路内の圧力を測定する圧力センサが記載されている。   As an example of means for measuring the pressure in the extracorporeal circulation circuit while avoiding contact between the body fluid or the chemical solution and air, Patent Document 1 discloses a pressure sensor that measures the pressure in the extracorporeal circulation circuit through a diaphragm. Have been described.

図4にこの圧力センサの構成の概略を示す。圧力センサ100は、体外循環回路101の途中に配置されている。圧力センサ100は、空気出入口102を有する空気室103、体外循環回路101に接続される液体流入口104と液体流出口105を有する液体室106、空気室103と液体室106に挟まれて空気室103と液体室106を区画し、空気室103内と液体室106内の圧力差に応じて変形する可撓性隔膜107を有する容器108からなる圧力測定部Aと、空気室103の空気出入口102に連通部109を介して接続され、液体室106内の圧力を可撓性隔膜107を介して空気室103側で測定する圧力測定手段110とを有している。液体室106の圧力の変化により、可撓性隔膜107が変形して空気室103の圧力が液体室106内圧力と相関して変化するので、圧力測定手段110は、空気室103内の圧力を測定し、この値を変換することにより液体室106内の圧力を測定している。   FIG. 4 shows an outline of the configuration of this pressure sensor. The pressure sensor 100 is disposed in the middle of the extracorporeal circuit 101. The pressure sensor 100 includes an air chamber 103 having an air inlet / outlet 102, a liquid chamber 106 having a liquid inlet 104 and a liquid outlet 105 connected to the extracorporeal circuit 101, and an air chamber sandwiched between the air chamber 103 and the liquid chamber 106. 103 and the liquid chamber 106, and a pressure measuring unit A including a container 108 having a flexible diaphragm 107 that deforms according to a pressure difference between the air chamber 103 and the liquid chamber 106, and an air inlet / outlet 102 of the air chamber 103 And a pressure measuring means 110 for measuring the pressure in the liquid chamber 106 on the air chamber 103 side via the flexible diaphragm 107. Since the flexible diaphragm 107 is deformed by the change in the pressure in the liquid chamber 106 and the pressure in the air chamber 103 changes in correlation with the pressure in the liquid chamber 106, the pressure measuring means 110 changes the pressure in the air chamber 103. The pressure in the liquid chamber 106 is measured by measuring and converting this value.

しかしながら、上述のような圧力測定部Aは、通常、使い捨てのディスポーザブル製品であるため、高価な圧力測定手段110は、圧力測定部Aの空気出入口102から分離可能に構成される。そのため、使用中に圧力測定手段110が空気出入口102から取り外される或いは外れることがある。この場合、空気室103が大気開放され、空気室103と液体室106の圧力バランスが変わるので、そのまま圧力測定手段110と空気出入口102を再接続しても、圧力測定再開時の可撓性隔膜107の位置がその度に変わり安定しない。この結果、目的とする圧力測定範囲において圧力が測定できないことがある。   However, since the pressure measuring unit A as described above is normally a disposable disposable product, the expensive pressure measuring unit 110 is configured to be separable from the air inlet / outlet 102 of the pressure measuring unit A. Therefore, the pressure measuring means 110 may be removed from the air inlet / outlet 102 or disconnected during use. In this case, since the air chamber 103 is opened to the atmosphere and the pressure balance between the air chamber 103 and the liquid chamber 106 is changed, the flexible diaphragm when the pressure measurement is resumed even if the pressure measuring means 110 and the air inlet / outlet 102 are reconnected as they are. The position 107 changes every time and is not stable. As a result, the pressure may not be measured within the target pressure measurement range.

非特許文献1には、このような問題の改善を図る圧力測定部のキャリブレーション方法の一例が記載されている。図5はそのキャリブレーション方法を説明するための概略構成図である。この圧力測定部Aは、連通部109に設けられた接続手段111により圧力測定手段110と分離可能に構成されている。圧力測定部Aの従来のキャリブレーション実施システムは、体外循環回路101の途中に配置された圧力測定部Aと、液体流入口104の上流側及び液体流出口105の下流側に配置された体外循環回路101を閉塞する閉塞手段120、121と、2つの閉塞手段120、121の間に配置されたサンプルポート122と、サンプルポート122に接続可能なシリンジ123とから構成される。なお、図5において、図4の各構成部材と同じ機能を奏する構成部材には同じ符号を付している。   Non-Patent Document 1 describes an example of a method for calibrating a pressure measurement unit that attempts to improve such a problem. FIG. 5 is a schematic configuration diagram for explaining the calibration method. The pressure measurement unit A is configured to be separable from the pressure measurement unit 110 by a connection unit 111 provided in the communication unit 109. The conventional calibration execution system for the pressure measurement unit A includes a pressure measurement unit A arranged in the middle of the extracorporeal circuit 101, and an extracorporeal circulation arranged on the upstream side of the liquid inlet 104 and the downstream side of the liquid outlet 105. It comprises blocking means 120, 121 that closes the circuit 101, a sample port 122 disposed between the two closing means 120, 121, and a syringe 123 that can be connected to the sample port 122. In FIG. 5, the same reference numerals are given to the constituent members having the same functions as the constituent members in FIG. 4.

上記した圧力測定部Aにおいて、連通部109の接続手段111が外された場合のキャリブレーション方法は、下記手順において実施される。
1.体外循環回路101の液体送液手段(図示せず)の停止
2.閉塞手段120、121を用いて、液体室106内を閉塞
3.シリンジ123をサンプルポート122に挿入し、1ccの体液または薬液を体外循環回路101内から抽出、または1ccの生理食塩液を体外循環回路101内に注入
4.連通部109の接続手段111を再度接続
5.閉塞手段120、121の開放
In the pressure measurement unit A described above, the calibration method when the connection unit 111 of the communication unit 109 is removed is performed according to the following procedure.
1. 1. Stop liquid feeding means (not shown) of extracorporeal circuit 101 2. The inside of the liquid chamber 106 is closed using the closing means 120, 121. 3. Insert the syringe 123 into the sample port 122 and extract 1 cc body fluid or drug solution from the extracorporeal circuit 101 or inject 1 cc physiological saline into the extracorporeal circuit 101. 4. Reconnect the connection means 111 of the communication unit 109. Opening of the closing means 120, 121

しかしながら、上記したようなキャリブレーション方法においては、手順2において、液体送液手段が停止した時の体外循環回路2内の圧力状態で閉塞を行うため、例えば体外循環回路101内の圧力が陰圧の場合、可撓性隔膜107は液体室106側に変形した状態で、逆に陽圧であれば空気室103側に変形した状態で、液体室106が閉塞手段120、121により閉塞される。従って可撓性隔膜107の位置は、閉塞時の体外循環回路101内の圧力に依存して変動しており、一定でないから、そのような状態で手順3以降の操作を行っても、可撓性隔膜107の位置を例えば圧力測定開始時の適正な位置に常に戻すことはできない。例えば圧力測定再開時の可撓性隔膜107の位置が適正な位置から液体室106側に移動している場合には、可撓性隔膜107の液体室106側への変動可能範囲が低減するので、負圧側の測定限界が高くなる。逆に圧力測定再開時に可撓性隔膜107の位置が適正な位置から空気室103側に移動している場合には、可撓性隔膜107の空気室103側への変動可能範囲が低減するので、陽圧側の測定限界が低くなる。従って、手順3以降の操作を行っても、圧力測定部の正しく圧力を測定できる範囲が狭くなる可能性があった。さらには、シリンジ123をサンプルポート122に挿入または取外す際に、体外循環回路101内の体液あるいは薬液が体外循環回路101外に漏れる危険性、またはシリンジ123の先端に取り付けられた針(図示せず)をサンプルポート122に挿入する際に誤って人体に刺してしまうという危険性があり、ひいては感染のリスクを増大させてしまうという可能性があった。   However, in the calibration method as described above, in step 2, the pressure is closed in the extracorporeal circuit 2 when the liquid feeding means is stopped. For example, the pressure in the extracorporeal circuit 101 is negative. In this case, the flexible membrane 107 is closed to the liquid chamber 106 side, and conversely, if it is positive pressure, the liquid chamber 106 is closed by the closing means 120 and 121 while being deformed to the air chamber 103 side. Therefore, the position of the flexible diaphragm 107 fluctuates depending on the pressure in the extracorporeal circuit 101 at the time of occlusion, and is not constant. The position of the sex diaphragm 107 cannot always be returned to an appropriate position at the start of pressure measurement, for example. For example, when the position of the flexible diaphragm 107 when the pressure measurement is resumed moves from the proper position to the liquid chamber 106 side, the variable range of the flexible diaphragm 107 to the liquid chamber 106 side is reduced. The measurement limit on the negative pressure side increases. On the contrary, when the position of the flexible diaphragm 107 is moved from the proper position to the air chamber 103 side when the pressure measurement is resumed, the variable range of the flexible diaphragm 107 to the air chamber 103 side is reduced. The measurement limit on the positive pressure side is lowered. Therefore, even if the operation after the procedure 3 is performed, there is a possibility that the range in which the pressure measurement unit can correctly measure the pressure becomes narrow. Furthermore, when the syringe 123 is inserted into or removed from the sample port 122, there is a risk that body fluid or chemical solution in the extracorporeal circuit 101 leaks out of the extracorporeal circuit 101, or a needle (not shown) attached to the tip of the syringe 123. ) May be accidentally stabbed into the human body when inserted into the sample port 122, which in turn increases the risk of infection.

特開平09−024026号公報Japanese Patent Application Laid-Open No. 09-024026 Gambro社Plismaflex Operator's manual p.193〜p.199Gambro Plismaflex Operator's manual p.193-p.199

本発明は上記した従来技術の問題点に鑑み、空気と接触することなく体外循環回路内の圧力を測定する上記圧力測定部において、例えば体外循環処理中に圧力測定部の空気室と圧力測定手段との接続が外れ、その後再接続した場合でも、体外循環回路内の圧力を安定して測定し、且つ体外循環回路内の体液あるいは薬液の漏出による感染等のリスクのない圧力測定部のキャリブレーション方法を提供することを目的とする。   In view of the above-described problems of the prior art, the present invention provides a pressure measuring unit that measures the pressure in an extracorporeal circuit without contacting air. For example, during the extracorporeal circulation process, the air chamber and pressure measuring means of the pressure measuring unit Calibration of the pressure measurement unit that stably measures the pressure in the extracorporeal circuit even if it is disconnected and then reconnected, without risk of infection due to leakage of bodily fluids or chemicals in the extracorporeal circuit It aims to provide a method.

本発明者等は、上記課題を解決するために鋭意検討を行った結果、圧力測定部の空気室と圧力測定手段との接続が外れた場合、体外循環回路に接続された液体貯留部内の液体の水位差による圧力を利用して、空気室と圧力測定手段を接続する時の液体室内の圧力を調整すれば、前記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は、以下の構成を含む。   As a result of intensive studies to solve the above problems, the present inventors have found that when the connection between the air chamber of the pressure measurement unit and the pressure measurement unit is disconnected, the liquid in the liquid storage unit connected to the extracorporeal circuit The present inventors have found that the above problem can be solved by adjusting the pressure in the liquid chamber when connecting the air chamber and the pressure measuring means by utilizing the pressure due to the difference in water level, and the present invention has been completed. That is, the present invention includes the following configurations.

(1)体外循環回路と、空気出入口が形成された空気室と、前記体外循環回路に接続された液体流入口と液体流出口が形成された液体室と、前記空気室と前記液体室を区画し、前記空気室内と前記液体室内の圧力差に応じて変形する可撓性隔膜とを備えた容器からなる圧力測定部と、前記空気出入口を通じて前記空気室に対し脱着可能に接続される圧力測定手段と、を有する体外循環システムにおいて、前記圧力測定手段と前記空気室との接続が外れた際に行われる圧力測定部のキャリブレーション方法であって、前記体外循環システムは、前記体外循環回路の前記圧力測定部の両側を閉塞及び開放可能な第一の開閉手段と、前記第一の開閉手段により閉塞可能な区間内の前記体外循環回路から分岐し、液体貯留部が終端に接続された分岐管路と、前記分岐管路を閉塞及び開放可能な第二の開閉手段とを、さらに有するものであり、前記圧力測定手段と前記空気室との接続が外れた後に、前記第一の開閉手段により前記体外循環回路の前記圧力測定部の両側を閉塞する工程と、その後、前記第二の開閉手段により前記分岐管路を開放し、前記液体貯留部の液体の水位差による圧力を前記液体室内にかけて前記液体室内の圧力を調整する工程と、その後、前記圧力測定手段と前記空気室を再接続する工程と、その後、前記第一の開閉手段により前記体外循環回路の前記圧力測定部の両側を開放し、前記第二の開閉手段により前記分岐管路を閉塞する工程と、を有することを特徴とする、圧力測定部のキャリブレーション方法。
(2)前記液体貯留部には、前記体外循環回路内に供給される液体が貯留されていることを特徴とする、(1)に記載の圧力測定部のキャリブレーション方法。
(3)圧力測定開始前に行われる、前記圧力測定手段と前記空気室との初期接続の際に、前記第二の開閉手段により前記分岐管路を開放し、前記液体貯留部の液体の水位差による圧力を前記液体室内にかけて前記液体室内の圧力を調整し、その後前記圧力測定手段と前記空気室を接続していることを特徴とする、(1)又は(2)に記載の圧力測定部のキャリブレーション方法。
(4)前記第一の開閉手段により閉塞可能な前記体外循環回路の区間には、複数の前記圧力測定部が接続されており、当該体外循環回路の前記複数の圧力測定部同士の間には、前記体外循環回路を閉塞及び開放可能な第三の開閉手段が設けられており、前記第三の開閉手段により前記体外循環回路の圧力測定部同士の間が開放された状態で、前記液体貯留部の液体の水位差による圧力を前記複数の圧力測定部の液体室内の液体にかけて各液体室内の圧力を調整することを特徴とする、(1)〜(3)に記載の圧力測定部のキャリブレーション方法。
なお、「前記圧力測定手段と前記空気室との接続が外れた際」には、圧力測定手段と空気室との接続が意図的に外された場合のみならず、意図せずに外れた場合も含まれる。また、前記圧力測定手段と前記空気室との接続には、直接接続されている場合のみならず、間接的に接続されている場合も含まれる。
(1) An extracorporeal circuit, an air chamber formed with an air inlet / outlet, a liquid inlet connected to the extracorporeal circuit, a liquid chamber formed with a liquid outlet, and the air chamber and the liquid chamber are partitioned And a pressure measuring unit comprising a container having a flexible diaphragm that deforms according to a pressure difference between the air chamber and the liquid chamber, and a pressure measurement that is detachably connected to the air chamber through the air inlet / outlet. In the extracorporeal circulation system, the pressure measurement unit calibration method performed when the connection between the pressure measurement means and the air chamber is disconnected, the extracorporeal circulation system is configured by the extracorporeal circulation circuit. A first opening / closing means capable of closing and opening both sides of the pressure measuring unit, and a branch branched from the extracorporeal circuit in a section which can be closed by the first opening / closing means, and a liquid storage part connected to the terminal tube And a second opening / closing means capable of closing and opening the branch pipe, and after the connection between the pressure measuring means and the air chamber is disconnected, the first opening / closing means A step of closing both sides of the pressure measuring unit of the extracorporeal circuit, and then opening the branch pipe by the second opening / closing means, and applying a pressure due to a liquid level difference of the liquid in the liquid reservoir to the liquid chamber Adjusting the pressure in the liquid chamber, then reconnecting the pressure measuring means to the air chamber, and then opening both sides of the pressure measuring section of the extracorporeal circuit by the first opening / closing means. And a step of closing the branch conduit by the second opening / closing means.
(2) The pressure measuring unit calibration method according to (1), wherein the liquid storing unit stores a liquid supplied into the extracorporeal circuit.
(3) In the initial connection between the pressure measuring means and the air chamber, which is performed before the start of pressure measurement, the second opening / closing means opens the branch pipe, and the liquid level in the liquid storage section The pressure measurement unit according to (1) or (2), wherein the pressure in the liquid chamber is adjusted by applying a pressure due to the difference, and then the pressure measuring means and the air chamber are connected. Calibration method.
(4) In the section of the extracorporeal circuit that can be closed by the first opening / closing means, a plurality of the pressure measuring units are connected, and between the plurality of pressure measuring units of the extracorporeal circuit. And a third opening / closing means capable of closing and opening the extracorporeal circuit, wherein the liquid reservoir is in a state where the pressure measuring parts of the extracorporeal circuit are opened by the third opening / closing means. The pressure measurement unit calibration according to any one of (1) to (3), wherein the pressure in each liquid chamber is adjusted by applying a pressure due to a difference in water level of the liquid to the liquid in the liquid chambers of the plurality of pressure measurement units. Method.
In addition, when “the connection between the pressure measuring means and the air chamber is disconnected”, not only when the connection between the pressure measuring means and the air chamber is intentionally disconnected, but also when the connection is unintentionally disconnected. Is also included. The connection between the pressure measuring means and the air chamber includes not only a direct connection but also an indirect connection.

本発明によれば、圧力測定部の空気室と圧力測定手段との接続が外れ、その後再接続した場合に、体外循環回路内の圧力を安定して測定し、且つ体外循環回路内の体液あるいは薬液の漏出による感染等のリスクをなくすことができる。   According to the present invention, when the connection between the air chamber of the pressure measuring unit and the pressure measuring means is disconnected and then reconnected, the pressure in the extracorporeal circuit is stably measured, and the body fluid in the extracorporeal circuit or Risk of infection due to leakage of chemicals can be eliminated.

以下、図面を参照して、本発明の好ましい実施の形態について説明する。図1は、本実施の形態に係る圧力測定部のキャリブレーション方法が実施される体外循環システム1の構成の概略を示す説明図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of a configuration of an extracorporeal circulation system 1 in which a pressure measuring unit calibration method according to the present embodiment is implemented.

図1に示すように体外循環システム1は、例えば血液等の液体が流れる体外循環回路2を有している。体外循環回路2は、例えば患者から取り出された血液を血液浄化器3に送り患者に戻す回路を有している。体外循環回路2の血液浄化器3よりも採血部側には、例えば第一の開閉手段10、圧力センサ11、第一の開閉手段12、チューブポンプ13、圧力センサ14が採血部側からこの順で設けられている。また、体外循環回路2の血液浄化器3よりも返血部側には、血液の脱気等を行い且つ圧力の測定を行うドリップチャンバ15、開閉手段16が採血部側からこの順で設けられている。   As shown in FIG. 1, the extracorporeal circulation system 1 includes an extracorporeal circulation circuit 2 through which a liquid such as blood flows. The extracorporeal circuit 2 has, for example, a circuit that sends blood taken from the patient to the blood purifier 3 and returns it to the patient. For example, the first opening / closing means 10, the pressure sensor 11, the first opening / closing means 12, the tube pump 13, and the pressure sensor 14 are arranged in this order from the blood collection section side to the blood collection section side of the extracorporeal circuit 2 from the blood purifier 3. Is provided. Further, a drip chamber 15 for performing blood deaeration and measuring pressure and an opening / closing means 16 are provided in this order from the blood collection unit side on the blood return side of the extracorporeal circuit 2 relative to the blood purifier 3. ing.

また、体外循環回路2の第一の開閉手段10、12により閉塞可能な区間には、分岐管路20が分岐している。分岐管路20には、第二の開閉手段21が接続されている。分岐管路20の終端には、液体が貯留された液体貯留部22が接続されている。この液体貯留部22は、例えば後述する圧力センサ11の圧力測定部Aの液体室より高い位置に設置されている。液体貯留部22には、例えば体外循環処理後に体外循環回路2内に供給される生理食塩水などの液体が貯留されている。   Further, a branch pipe 20 is branched in a section that can be closed by the first opening / closing means 10, 12 of the extracorporeal circuit 2. A second opening / closing means 21 is connected to the branch pipeline 20. A liquid storage part 22 in which liquid is stored is connected to the end of the branch pipe 20. This liquid storage part 22 is installed in the position higher than the liquid chamber of the pressure measurement part A of the pressure sensor 11 mentioned later, for example. In the liquid reservoir 22, for example, a liquid such as physiological saline supplied into the extracorporeal circuit 2 after the extracorporeal circulation processing is stored.

第一の開閉手段10、12、開閉手段16及び第二の開閉手段21は、例えば管路を閉塞及び開放可能なものであり、例えば鉗子、手動クランプ、バルブなどが用いられている。   The first opening / closing means 10, 12, the opening / closing means 16 and the second opening / closing means 21 are capable of closing and opening the conduit, for example, using forceps, a manual clamp, a valve or the like.

圧力センサ11は、例えば図2に示すように空気出入口30が形成された空気室31と、体外循環回路2に接続された液体流入口32と液体流出口33が形成された液体室34と、空気室31と液体室34を区画し、空気室31内と液体室34内の圧力差に応じて変形する可撓性隔膜35とを備えた容器36からなる圧力測定部Aと、空気出入口30を通じて空気室31に対し脱着可能に接続される圧力測定手段37とを有している。空気室31の空気出入口30と圧力測定手段37は、連通部38により接続され、当該連通部38に設けられた接続手段39により着脱自在になっている。   For example, as shown in FIG. 2, the pressure sensor 11 includes an air chamber 31 in which an air inlet / outlet 30 is formed, a liquid inlet 32 connected to the extracorporeal circuit 2, and a liquid chamber 34 in which a liquid outlet 33 is formed, A pressure measuring unit A including a container 36 that includes an air chamber 31 and a liquid chamber 34 and includes a flexible diaphragm 35 that deforms according to a pressure difference between the air chamber 31 and the liquid chamber 34, and an air inlet / outlet 30. And a pressure measuring means 37 detachably connected to the air chamber 31. The air inlet / outlet port 30 of the air chamber 31 and the pressure measuring means 37 are connected by a communication part 38, and are detachable by a connection means 39 provided in the communication part 38.

可撓性隔膜35は、例えば軟質であって生体適合性を有している材質で構成されている。例えば可撓性隔膜35の材質には、ポリ塩化ビニル、シリコン系樹脂、スチレン系熱可塑性エラストマー、スチレン系熱可塑性エラストマーコンパウンド等が用いられている。   The flexible diaphragm 35 is made of, for example, a soft material having biocompatibility. For example, polyvinyl chloride, silicone resin, styrene thermoplastic elastomer, styrene thermoplastic elastomer compound, or the like is used as the material of the flexible diaphragm 35.

圧力測定手段37には、例えば圧力トランスデューサやブルドン管などにより圧力を測定するものが用いられている。接続手段39には、例えばルアーコネクタによる方式、カプラーによる方式、スリーブ状の管を挿入する方式などのものが用いられている。   For the pressure measuring means 37, for example, a pressure measuring unit or a Bourdon tube is used to measure the pressure. As the connection means 39, for example, a luer connector system, a coupler system, a sleeve-like tube insertion system, or the like is used.

次に、以上の体外循環システム1において、接続手段39による空気室31と圧力測定手段37との接続が外れた際に行われる圧力測定部Aのキャリブレーション方法について説明する。なお、この空気室31と圧力測定手段37との接続が外れた際には、意図的に取り外した場合と意図せずに外れた場合が含まれる。例えば、体外循環処理開始前の空気によるリークチェックや回路内を洗浄するプライミング処理後に意図的に取り外される場合もあるし、体外循環処理中に事故で外れることも考えられる。   Next, in the above extracorporeal circulation system 1, a calibration method of the pressure measuring unit A performed when the connection between the air chamber 31 and the pressure measuring unit 37 by the connecting unit 39 is disconnected will be described. When the connection between the air chamber 31 and the pressure measuring means 37 is disconnected, the case where the air chamber 31 and the pressure measuring means 37 are disconnected is included. For example, it may be intentionally removed after a leak check with air before the start of extracorporeal circulation processing or a priming process for cleaning the inside of the circuit, or it may be removed due to an accident during extracorporeal circulation processing.

先ず、体外循環システム1において圧力センサ11による圧力測定が開始される前に、圧力測定部Aの空気室31と圧力測定手段37との初期接続が行われる。このときの液体室34内と空気室31内の初期圧力により、可撓性隔膜35の初期位置が決定される。空気室31内の初期圧力は、空気出入口50が大気に開放されているために大気圧である。   First, before the pressure measurement by the pressure sensor 11 is started in the extracorporeal circulation system 1, the initial connection between the air chamber 31 of the pressure measurement unit A and the pressure measurement unit 37 is performed. The initial position of the flexible diaphragm 35 is determined by the initial pressure in the liquid chamber 34 and the air chamber 31 at this time. The initial pressure in the air chamber 31 is atmospheric pressure because the air inlet / outlet port 50 is open to the atmosphere.

液体室34の初期圧力は、大気圧であってもよいし、大気圧でなくてもよい。液体室34の初期圧力が大気圧でない場合、例えば初期圧力が陽圧の場合、可撓性隔膜35の初期位置は空気室31よりとなり、陰圧の測定範囲を大きくすることが可能となる。逆に初期圧力が陰圧の場合、可撓性隔膜35の初期位置は液体室34よりとなり、陽圧の測定範囲を大きくすることが可能となる。液体室34内の初期圧力は、圧力の測定範囲によって適宜選択しなければならないが、−200mmHg(−26kPa)から200mmHg(26kPa)であることが好ましく、さらに好ましくは−100mmHg(−13kPa)から100mmHg(13kPa)であり、最も好ましくは−50mmHg(−6kPa)〜50mmHg(6kPa)である。この液体室24の初期圧力は、例えばチューブポンプ13を用いて、液体室34に液体または空気を流すことにより調整してもよい。また、初期圧力が大気圧である場合には、液体室24の圧力調整を積極的に行うことなく圧力測定部Aと圧力測定手段37を接続してもよい。   The initial pressure of the liquid chamber 34 may be atmospheric pressure or may not be atmospheric pressure. When the initial pressure of the liquid chamber 34 is not atmospheric pressure, for example, when the initial pressure is a positive pressure, the initial position of the flexible diaphragm 35 is the air chamber 31, and the measurement range of the negative pressure can be increased. Conversely, when the initial pressure is a negative pressure, the initial position of the flexible diaphragm 35 is located in the liquid chamber 34, and the positive pressure measurement range can be increased. The initial pressure in the liquid chamber 34 must be appropriately selected depending on the pressure measurement range, but is preferably −200 mmHg (−26 kPa) to 200 mmHg (26 kPa), more preferably −100 mmHg (−13 kPa) to 100 mmHg. (13 kPa), and most preferably -50 mmHg (-6 kPa) to 50 mmHg (6 kPa). The initial pressure in the liquid chamber 24 may be adjusted by flowing liquid or air into the liquid chamber 34 using, for example, the tube pump 13. Further, when the initial pressure is atmospheric pressure, the pressure measurement unit A and the pressure measurement unit 37 may be connected without positively adjusting the pressure of the liquid chamber 24.

なお、可撓性隔膜35を予め空気室31側に撓ませておくことにより、さらに次のような効果がある。本実施の形態のようにチューブポンプ13の上流側の圧力センサ11で主に陰圧で使用される場合には、長時間の連続使用により、接続手段39から空気室31内に空気が徐々に入り込むので、可撓性隔膜35の位置が液体室34側に移動していく。これにより、最終的には、可撓性隔膜35が液体室34側に大きく撓み、その動きが抑制されるため、圧力測定の精度が落ちる。よって可撓性隔膜35を予め空気室31側に撓ませておくことにより、その分圧力測定部Aの長時間の連続使用が可能になる。   In addition, the following effects are obtained by bending the flexible diaphragm 35 in advance toward the air chamber 31 side. When the pressure sensor 11 on the upstream side of the tube pump 13 is mainly used at a negative pressure as in the present embodiment, the air gradually enters the air chamber 31 from the connection means 39 by continuous use for a long time. Since it enters, the position of the flexible diaphragm 35 moves to the liquid chamber 34 side. As a result, the flexible diaphragm 35 is finally greatly bent toward the liquid chamber 34 and its movement is suppressed, so that the accuracy of pressure measurement is reduced. Therefore, by previously bending the flexible diaphragm 35 toward the air chamber 31, the pressure measuring unit A can be used continuously for a long time.

また、上記可撓性隔膜35の位置設定は、液体貯留部22の設置高さや液体貯留部22の水位の設定により行われる。   The position of the flexible diaphragm 35 is set by setting the installation height of the liquid reservoir 22 and the water level of the liquid reservoir 22.

接続手段39により圧力測定手段37と空気室31が初期接続された後、体外循環システム1において、プライミング処理や患者に対する体外循環処理が開始され、体外循環回路2内で液体循環が行われ、それに応じて適宜圧力センサ11による圧力測定が行われる。このとき、第二の開閉手段21により分岐管路20は閉塞されており、第一の開閉手段10、12により体外循環回路2は開放されている。体外循環処理では、例えば患者から採血された血液は、体外循環回路2を通じて血液浄化器3に供給され、所定成分が分離または吸着された後、患者に戻される。   After the pressure measuring means 37 and the air chamber 31 are initially connected by the connecting means 39, the priming process and the extracorporeal circulation process for the patient are started in the extracorporeal circulation system 1, and the liquid circulation is performed in the extracorporeal circulation circuit 2. Accordingly, pressure measurement by the pressure sensor 11 is appropriately performed. At this time, the branch line 20 is closed by the second opening / closing means 21, and the extracorporeal circuit 2 is opened by the first opening / closing means 10, 12. In the extracorporeal circulation processing, for example, blood collected from a patient is supplied to the blood purifier 3 through the extracorporeal circulation circuit 2, and after a predetermined component is separated or adsorbed, the blood is returned to the patient.

そして、例えば体外循環処理中に、接続手段39による圧力測定手段37と空気室31との接続が外れた場合には、先ず第一の開閉手段10、12により体外循環回路2の圧力測定部Aの両側が閉塞される。次に、第二の開閉手段21により分岐管路20が開放され、液体貯留部22の液体の水位差による圧力P0が液体室34内にかけられ、液体室34内が圧力P0に調整される。その状態で接続手段39により圧力測定手段37と空気室31が再接続される。その後、第一の開閉手段10、12により体外循環回路2の圧力測定部Aの両側が開放され、第二の開閉手段21により分岐管路20が閉塞される。ここで圧力P0は、目的とする圧力測定範囲における圧力測定が可能な位置に可撓性隔膜35を移動させる圧力であればよい。圧力P0の許容範囲は、目的とする圧力測定範囲によって適宜設定されればよいが、好ましくは液体室34の初期圧力±50mHg(±6kPa)以内、さらに好ましくは初期圧力±20mmHg(±2.6kPa)以内、さらに好ましくは初期圧力±5mmHg(±0.6kPa)であり、最も好ましくは初期圧力である。なお、前述のように主に陰圧の測定を行う場合、初期圧力よりも圧力が高い状態を圧力P0と設定すると、さらに長時間の圧力測定を行うことが可能となる。過度に陽圧にすると可撓性隔膜35が空気室31に張り付き、陽圧側の測定が不可能となるが、主に陰圧の測定に用いる場合は特に問題ない。例えば初期圧力+300mmHg(40kPa)のような状態でも問題ない。 For example, when the connection between the pressure measuring means 37 and the air chamber 31 is disconnected by the connecting means 39 during the extracorporeal circulation processing, first, the pressure measuring unit A of the extracorporeal circulation circuit 2 by the first opening / closing means 10 and 12. Both sides of the are blocked. Next, the branch pipe 20 is opened by the second opening / closing means 21, and the pressure P 0 due to the liquid level difference of the liquid in the liquid reservoir 22 is applied to the liquid chamber 34, and the inside of the liquid chamber 34 is adjusted to the pressure P 0. The In this state, the pressure measuring means 37 and the air chamber 31 are reconnected by the connecting means 39. Thereafter, both sides of the pressure measuring unit A of the extracorporeal circuit 2 are opened by the first opening / closing means 10, 12, and the branch line 20 is closed by the second opening / closing means 21. Here, the pressure P 0 may be any pressure that moves the flexible diaphragm 35 to a position where pressure measurement is possible in the target pressure measurement range. The allowable range of the pressure P 0 may be set as appropriate depending on the target pressure measurement range, but is preferably within the initial pressure of the liquid chamber 34 ± 50 mHg (± 6 kPa), and more preferably the initial pressure ± 20 mmHg (± 2. 6 kPa), more preferably an initial pressure of ± 5 mmHg (± 0.6 kPa), and most preferably an initial pressure. In the case where the negative pressure is mainly measured as described above, if the pressure higher than the initial pressure is set as the pressure P 0 , it is possible to perform the pressure measurement for a longer time. If the pressure is excessively high, the flexible diaphragm 35 sticks to the air chamber 31 and measurement on the positive pressure side becomes impossible. However, there is no particular problem when used mainly for measurement of negative pressure. For example, there is no problem even in a state of initial pressure +300 mmHg (40 kPa).

以上の実施の形態によれば、接続手段39により圧力測定手段37と空気室31とが再接続される前に、液体貯留部22内の液体の水位差による圧力P0を液体室34内にかけて、液体室34内の圧力を調整するので、可撓性隔膜35を適正な位置に調整できる。この結果、再接続後にも、圧力測定部Aを用いた体外循環回路2内の圧力測定を安定して行うことができる。また、従来のようにシリンジを用いることがないので、体外循環回路2内の体液あるいは薬液の漏出による感染等のリスクをなくすことができる。 According to the above embodiment, before the pressure measuring means 37 and the air chamber 31 are reconnected by the connecting means 39, the pressure P 0 due to the liquid level difference in the liquid reservoir 22 is applied to the liquid chamber 34. Since the pressure in the liquid chamber 34 is adjusted, the flexible diaphragm 35 can be adjusted to an appropriate position. As a result, the pressure in the extracorporeal circuit 2 using the pressure measurement unit A can be stably measured even after reconnection. Further, since a syringe is not used as in the prior art, it is possible to eliminate the risk of infection or the like due to leakage of bodily fluids or drug solutions in the extracorporeal circuit 2.

また、液体貯留部22は、体外循環回路2内に供給される生理食塩水などの液体が貯留されているものであり、体外循環中の患者の血圧低下時の緊急輸液として必要な、また体外循環処理後の血液の回収や回路内の洗浄に必要な既存の液体貯留部であるので、液体室34内の圧力調整のために新たに装置を設ける必要がない。また、液体貯留部22は、体外循環処理中或いはその前に液体貯留部22内の水位が変動しないので、再接続時に液体室34にかかる圧力P0が一定になり、可撓性隔膜35の調整位置が一定になる。これにより、可撓性隔膜35をより正確に位置調整できる。なお、体外循環処理中に液体貯留部22の液体が使用される場合であっても、水位の大きな変動がなければ圧力P0の変動が少なく、可撓性隔膜35を適正な位置に調整できる。 The liquid reservoir 22 stores a liquid such as physiological saline supplied into the extracorporeal circuit 2 and is necessary for emergency infusion when the blood pressure of the patient during extracorporeal circulation is lowered. Since this is an existing liquid reservoir required for blood collection after circulation processing and washing in the circuit, it is not necessary to provide a new device for adjusting the pressure in the liquid chamber 34. In addition, since the water level in the liquid reservoir 22 does not change during or before the extracorporeal circulation process, the pressure P 0 applied to the liquid chamber 34 at the time of reconnection becomes constant, and the flexible diaphragm 35 The adjustment position becomes constant. Thereby, the position of the flexible diaphragm 35 can be adjusted more accurately. Even when the liquid in the liquid reservoir 22 is used during the extracorporeal circulation treatment, the pressure P 0 is less fluctuated if the water level is not fluctuated greatly, and the flexible diaphragm 35 can be adjusted to an appropriate position. .

以上の実施の形態において、圧力測定部Aの空気室31と圧力測定手段37との初期接続が行われる際の、液体室34の初期圧力を設定する際に、第二の開閉手段21により分岐管路20を開放し、液体貯留部22の液体の水位差による圧力P0を液体室34内の液体にかけて液体室34内の圧力を調整し、その後圧力測定手段37と空気室31を接続するようにしてもよい。こうすることにより、圧力測定開始前の初期設定時の液体室34内の圧力調整も簡単に行うことができる。また、圧力測定の開始から終了まで、同じ液体貯留部22の液体の水位差による圧力P0を用いて液体室34の圧力が調整されるので、圧力測定の開始から終了まで液体室34の調整圧力を一定にできる。 In the above embodiment, when the initial pressure of the liquid chamber 34 is set when the air chamber 31 of the pressure measuring unit A and the pressure measuring means 37 are initially connected, the second opening / closing means 21 branches. The pipe 20 is opened, the pressure P 0 due to the liquid level difference in the liquid reservoir 22 is applied to the liquid in the liquid chamber 34 to adjust the pressure in the liquid chamber 34, and then the pressure measuring means 37 and the air chamber 31 are connected. You may do it. By doing so, it is possible to easily adjust the pressure in the liquid chamber 34 at the time of initial setting before the start of pressure measurement. Also, since the pressure P 0 is adjusted from the start to the end of the pressure measurement using the pressure P 0 due to the difference in the liquid level of the liquid in the same liquid reservoir 22, the adjustment of the liquid chamber 34 is performed from the start to the end of the pressure measurement. The pressure can be kept constant.

以上の実施の形態は、圧力センサ11で圧力測定手段37と空気室31の接続が外れた際の圧力測定部Aのキャリブレーションであったが、圧力測定部Aが同様の構成を有するものであれば、当該圧力センサ14の圧力測定部Aも同様のキャリブレーションを行ってもよい。かかる場合、例えば図3に示すようにチューブポンプ13が、体外循環回路2を閉塞状態と開放状態にできる可動式のハウジング40を有している。これにより、チューブポンプ13が第三の開閉手段となる。また、2つの圧力センサ11、14の下流側の開閉手段16を第一の開閉手段とする。そして、例えば圧力センサ11、14の圧力測定手段37と空気室31との接続が外れた際には、2つの第一の開閉手段10、16によって体外循環回路2が閉塞され、チューブポンプ13のハウジング40と第一の開閉手段12により圧力センサ11と圧力センサ14の間の体外循環回路2が開放される。その後、第二の開閉手段21により分岐管路20が開放され、液体貯留部22の液体の水位差による圧力P0が各圧力測定部Aの液体室34にかけられ、各液体室34の圧力が調整される。これにより、各容器36内の可撓性隔膜35が適正な位置に調整される。そして、その状態で、圧力センサ11、14の圧力調整手段37と空気室31が接続手段39により接続される。こうすることにより、液体貯留部22の液体の水位差による圧力P0を用いて、2つの圧力測定部Aのキャリブレーションを行うことができる。 The above embodiment is the calibration of the pressure measurement unit A when the pressure measurement unit 37 and the air chamber 31 are disconnected by the pressure sensor 11, but the pressure measurement unit A has the same configuration. If there is, the pressure measurement unit A of the pressure sensor 14 may perform the same calibration. In such a case, for example, as shown in FIG. 3, the tube pump 13 has a movable housing 40 that can put the extracorporeal circuit 2 into a closed state and an open state. Thereby, the tube pump 13 becomes the third opening / closing means. Further, the opening / closing means 16 on the downstream side of the two pressure sensors 11 and 14 is defined as a first opening / closing means. For example, when the connection between the pressure measuring means 37 of the pressure sensors 11 and 14 and the air chamber 31 is disconnected, the extracorporeal circuit 2 is closed by the two first opening and closing means 10 and 16, and the tube pump 13 The extracorporeal circuit 2 between the pressure sensor 11 and the pressure sensor 14 is opened by the housing 40 and the first opening / closing means 12. Thereafter, the branch pipe 20 is opened by the second opening / closing means 21, and the pressure P 0 due to the liquid level difference of the liquid in the liquid storage unit 22 is applied to the liquid chamber 34 of each pressure measuring unit A, and the pressure in each liquid chamber 34 is changed. Adjusted. Thereby, the flexible diaphragm 35 in each container 36 is adjusted to an appropriate position. In this state, the pressure adjusting means 37 of the pressure sensors 11 and 14 and the air chamber 31 are connected by the connecting means 39. By doing so, the calibration of the two pressure measuring units A can be performed using the pressure P 0 due to the liquid level difference of the liquid in the liquid storage unit 22.

また、圧力センサ14の圧力測定部Aのキャリブレーションを行うにあたり、例えば体外循環回路2の圧力センサ14の圧力測定部Aの両側に第一の開閉手段を別途設け、当該第一の開閉手段によって閉塞可能な区間内に、液体貯留部22に通じる他の分岐管路を別途設けるようにしてもよい。この場合、圧力センサ11、14毎に所望の圧力に液体室34の圧力を調整できる。例えばチューブポンプ13の下流側に位置する圧力センサ14のように、主に陽圧で使用される場合には、長時間の連続使用により接続手段39により空気室31の空気が徐々に抜けていき可撓性隔膜35の位置が空気室31側に移動していくので、予め可撓性隔膜35が液体室34側に撓むように液体室34の圧力調整を行ってもよい。こうすることにより、圧力センサ14の圧力測定部Aをより長時間連続使用することができる。   Further, when calibrating the pressure measuring unit A of the pressure sensor 14, for example, a first opening / closing unit is separately provided on both sides of the pressure measuring unit A of the pressure sensor 14 of the extracorporeal circuit 2, and the first opening / closing unit Another branch conduit that leads to the liquid reservoir 22 may be separately provided in the blockable section. In this case, the pressure of the liquid chamber 34 can be adjusted to a desired pressure for each of the pressure sensors 11 and 14. For example, when used mainly at positive pressure, such as the pressure sensor 14 located on the downstream side of the tube pump 13, the air in the air chamber 31 is gradually released by the connecting means 39 by continuous use for a long time. Since the position of the flexible diaphragm 35 moves to the air chamber 31 side, the pressure of the liquid chamber 34 may be adjusted in advance so that the flexible diaphragm 35 bends to the liquid chamber 34 side. By doing so, the pressure measuring unit A of the pressure sensor 14 can be continuously used for a longer time.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に相到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be made within the scope of the ideas described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

例えば以上の実施の形態では、液体貯留部22内の水位が圧力測定部Aの液体室34内の水位(可撓性隔膜35の位置)より高くなるように液体貯留部22が設置されていたが、液体室34の調整圧に応じて、液体貯留部22内の水位が液体室34内の水位より低くなるように液体貯留部22を設置してもよい。なお、圧力測定手段37と圧力測定部Aとの接続が外れたときに、可撓性隔膜35が撓んで、液体室34内の水位が下がったり上がったりしている場合もあるため、液体貯留部22の水位が平坦時の可撓性隔膜35の位置と同じになるように、液体貯留部22を設定してもよい。また、例えば本発明は、上記以外の構成の体外循環システム、体外循環回路にも適用できる。また、圧力測定部のある体外循環回路に流される液体は、体液或いは薬液であれば何でもよく、体液の例として、血液、血漿、リンパ液、組織液、尿等が挙げられ、薬液の例としては、生理食塩液、抗血液凝固剤、新鮮凍結血漿、透析液、アルブミン溶液、ろ過型人工腎臓用補液等が挙げられる。また、体外循環処理には、例えば血液ろ過療法、血液透析療法、血液ろ過透析療法、持続的血液透析療法、持続的血液ろ過療法、持続的血液ろ過透析療法、血漿交換療法、血漿吸着療法、二重ろ過血漿交換療法、血液吸着療法、血球成分除去療法、腹水ろ過濃縮再静注療法、経皮的心肺補助療法等の体外循環療法を行う処理が含まれる。   For example, in the above embodiment, the liquid storage unit 22 is installed such that the water level in the liquid storage unit 22 is higher than the water level in the liquid chamber 34 of the pressure measurement unit A (position of the flexible diaphragm 35). However, the liquid reservoir 22 may be installed so that the water level in the liquid reservoir 22 is lower than the water level in the liquid chamber 34 according to the adjustment pressure of the liquid chamber 34. In addition, when the connection between the pressure measuring unit 37 and the pressure measuring unit A is disconnected, the flexible diaphragm 35 may bend and the water level in the liquid chamber 34 may be lowered or raised. The liquid reservoir 22 may be set so that the water level 22 is the same as the position of the flexible diaphragm 35 when flat. Further, for example, the present invention can be applied to an extracorporeal circulation system and an extracorporeal circulation circuit having configurations other than those described above. In addition, the liquid flowing into the extracorporeal circuit having the pressure measuring unit may be any body fluid or drug solution. Examples of the body fluid include blood, plasma, lymph fluid, tissue fluid, urine and the like. Examples of the drug solution include Examples include physiological saline, anticoagulant, fresh frozen plasma, dialysate, albumin solution, filtration artificial kidney replacement fluid, and the like. Examples of extracorporeal circulation treatment include hemofiltration, hemodialysis, hemodialysis, continuous hemodialysis, continuous hemofiltration, continuous hemofiltration, plasma exchange, plasma adsorption, The treatment includes extracorporeal circulation therapy such as heavy filtration plasma exchange therapy, blood adsorption therapy, blood cell component removal therapy, ascites filtration concentration reinfusion therapy, and percutaneous cardiopulmonary adjuvant therapy.

本発明は、圧力測定部の空気室と圧力測定手段との接続が外れ、その後再接続した場合に、体外循環回路内の圧力を安定して測定でき、且つ体外循環回路内の体液あるいは薬液の漏出による感染等のリスクのない圧力測定部のキャリブレーションを行う際に有用である。   The present invention can stably measure the pressure in the extracorporeal circuit when the connection between the air chamber of the pressure measuring unit and the pressure measuring means is disconnected and then reconnected, and the body fluid or chemical solution in the extracorporeal circuit can be measured. This is useful when calibrating a pressure measurement unit without risk of infection due to leakage.

本実施の形態における体外循環システムの構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the extracorporeal circulation system in this Embodiment. 本実施の形態における圧力センサの構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the pressure sensor in this Embodiment. 本実施の形態における体外循環回路の他の構成を示す説明図である。It is explanatory drawing which shows the other structure of the extracorporeal circuit in this Embodiment. 従来の圧力測定部の構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional pressure measurement part. 従来の圧力測定部のキャリブレーションを説明するための体外循環回路の模式図である。It is a schematic diagram of the extracorporeal circuit for demonstrating the calibration of the conventional pressure measurement part.

符号の説明Explanation of symbols

1 体外循環システム
2 体外循環回路
3 血液浄化器
10 第一の開閉手段
11 圧力センサ
12 第一の開閉手段
13 チューブポンプ
16 開閉手段(第一の開閉手段)
20 分岐管路
21 第二の開閉手段
22 液体貯留部
30 空気出入口
31 空気室
32 液体流入口
33 液体流出口
34 液体室
35 可撓性隔膜
36 容器
37 圧力測定手段
39 接続手段
A 圧力測定部
DESCRIPTION OF SYMBOLS 1 Extracorporeal circulation system 2 Extracorporeal circulation circuit 3 Blood purifier 10 First opening / closing means 11 Pressure sensor 12 First opening / closing means 13 Tube pump 16 Opening / closing means (first opening / closing means)
20 branch pipe 21 second opening / closing means 22 liquid reservoir 30 air inlet / outlet 31 air chamber 32 liquid inlet 33 liquid outlet 34 liquid chamber 35 flexible diaphragm 36 container 37 pressure measuring means 39 connecting means A pressure measuring section

Claims (4)

体外循環回路と、
空気出入口が形成された空気室と、前記体外循環回路に接続された液体流入口と液体流出口が形成された液体室と、前記空気室と前記液体室を区画し、前記空気室内と前記液体室内の圧力差に応じて変形する可撓性隔膜とを備えた容器からなる圧力測定部と、
前記空気出入口を通じて前記空気室に対し脱着可能に接続される圧力測定手段と、
を有する体外循環システムにおいて、前記圧力測定手段と前記空気室との接続が外れた際に行われる圧力測定部のキャリブレーション方法であって、
前記体外循環システムは、前記体外循環回路の前記圧力測定部の両側を閉塞及び開放可能な第一の開閉手段と、前記第一の開閉手段により閉塞可能な区間内の体外循環回路から分岐し、液体貯留部が終端に接続された分岐管路と、前記分岐管路を閉塞及び開放可能な第二の開閉手段とを、さらに有するものであり、
前記圧力測定手段と前記空気室との接続が外れた後に、前記第一の開閉手段により前記体外循環回路の前記圧力測定部の両側を閉塞する工程と、
その後、前記第二の開閉手段により前記分岐管路を開放し、前記液体貯留部の液体の水位差による圧力を前記液体室内にかけて前記液体室内の圧力を調整する工程と、
その後、前記圧力測定手段と前記空気室を再接続する工程と、
その後、前記第一の開閉手段により前記体外循環回路の前記圧力測定部の両側を開放し、前記第二の開閉手段により前記分岐管路を閉塞する工程と、を有することを特徴とする、圧力測定部のキャリブレーション方法。
An extracorporeal circuit,
An air chamber in which an air inlet / outlet is formed, a liquid inlet connected to the extracorporeal circuit, a liquid chamber in which a liquid outlet is formed, the air chamber and the liquid chamber are partitioned, and the air chamber and the liquid A pressure measuring unit comprising a container provided with a flexible diaphragm that deforms in accordance with a pressure difference in the room;
Pressure measuring means detachably connected to the air chamber through the air inlet and outlet;
In the extracorporeal circulation system, the pressure measuring unit calibration method performed when the connection between the pressure measuring means and the air chamber is disconnected,
The extracorporeal circulation system branches from an extracorporeal circuit in a section that can be closed and opened by the first opening and closing means, and a first opening and closing means capable of closing and opening both sides of the pressure measuring unit of the extracorporeal circulation circuit, The liquid storage section further includes a branch pipe connected to the end, and a second opening / closing means capable of closing and opening the branch pipe,
A step of closing both sides of the pressure measuring unit of the extracorporeal circuit by the first opening / closing means after the connection between the pressure measuring means and the air chamber is disconnected;
Then, the step of opening the branch pipe by the second opening and closing means, and adjusting the pressure in the liquid chamber by applying a pressure due to the liquid level difference of the liquid in the liquid storage portion to the liquid chamber;
And then reconnecting the pressure measuring means and the air chamber;
And then opening both sides of the pressure measuring unit of the extracorporeal circuit with the first opening and closing means and closing the branch pipe with the second opening and closing means. Calibration method for the measurement unit.
前記液体貯留部には、前記体外循環回路内に供給される液体が貯留されていることを特徴とする、請求項1に記載の圧力測定部のキャリブレーション方法。   The pressure measuring unit calibration method according to claim 1, wherein a liquid supplied into the extracorporeal circuit is stored in the liquid storing unit. 圧力測定開始前に行われる、前記圧力測定手段と前記空気室との初期接続の際には、前記第二の開閉手段により前記分岐管路を開放し、前記液体貯留部の液体の水位差による圧力を前記液体室内にかけて前記液体室内の圧力を調整し、その後前記圧力測定手段と前記空気室を接続していることを特徴とする、請求項1又は2に記載の圧力測定部のキャリブレーション方法。   At the time of initial connection between the pressure measuring means and the air chamber, which is performed before the start of pressure measurement, the branch conduit is opened by the second opening / closing means, and the liquid level difference of the liquid in the liquid reservoir is caused. The pressure measuring unit calibration method according to claim 1 or 2, wherein pressure is applied to the liquid chamber to adjust the pressure in the liquid chamber, and then the pressure measuring means and the air chamber are connected. . 前記第一の開閉手段により閉塞可能な前記体外循環回路の区間には、複数の前記圧力測定部が接続されており、当該体外循環回路の前記複数の圧力測定部同士の間には、前記体外循環回路を閉塞及び開放可能な第三の開閉手段が設けられており、
前記第三の開閉手段により前記体外循環回路の圧力測定部同士の間が開放された状態で、前記液体貯留部の液体の水位差による圧力を前記複数の圧力測定部の液体室内にかけて各液体室内の圧力を調整することを特徴とする、請求項1〜3に記載の圧力測定部のキャリブレーション方法。
A plurality of the pressure measurement units are connected to a section of the extracorporeal circuit that can be closed by the first opening / closing means, and the extracorporeal circuit is connected between the plurality of pressure measurement units of the extracorporeal circuit. A third opening / closing means capable of closing and opening the circulation circuit is provided;
In a state where the pressure measuring units of the extracorporeal circuit are opened by the third opening / closing means, a pressure due to a liquid level difference of the liquid in the liquid reservoir is applied to the liquid chambers of the plurality of pressure measuring units, The pressure measurement unit calibration method according to claim 1, wherein the pressure is adjusted.
JP2008304109A 2008-11-28 2008-11-28 Calibration method of pressure measurement unit Active JP5230377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304109A JP5230377B2 (en) 2008-11-28 2008-11-28 Calibration method of pressure measurement unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304109A JP5230377B2 (en) 2008-11-28 2008-11-28 Calibration method of pressure measurement unit

Publications (2)

Publication Number Publication Date
JP2010125131A JP2010125131A (en) 2010-06-10
JP5230377B2 true JP5230377B2 (en) 2013-07-10

Family

ID=42325918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304109A Active JP5230377B2 (en) 2008-11-28 2008-11-28 Calibration method of pressure measurement unit

Country Status (1)

Country Link
JP (1) JP5230377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363936A (en) * 2012-12-20 2015-02-18 甘布罗伦迪亚肾脏产品公司 Target volume based diaphragm repositioning for pressure measurement apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE541598T1 (en) * 2007-12-06 2012-02-15 Asahi Kasei Kuraray Medical Co CALIBRATION PROCEDURE FOR A PRESSURE GAUGE
WO2016068213A1 (en) * 2014-10-28 2016-05-06 ニプロ株式会社 Blood circuit having pressure measurement part
WO2016092848A1 (en) * 2014-12-09 2016-06-16 ニプロ株式会社 Membrane position adjustor and blood purification system provided therewith
JP6475104B2 (en) * 2015-06-23 2019-02-27 日機装株式会社 Blood purification equipment
JP6725749B2 (en) * 2017-03-31 2020-07-22 旭化成メディカル株式会社 Blood purification device, control method thereof, and elimination method of defective blood removal
US11786905B2 (en) * 2019-02-01 2023-10-17 Terumo Kabushiki Kaisha Blood component separation apparatus with internal pressure monitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143069A (en) * 1984-12-18 1986-06-30 日本メデイカルエンジニアリング株式会社 Pressure measuring method in blood circuit
JPS61143068A (en) * 1984-12-18 1986-06-30 日本メデイカルエンジニアリング株式会社 Blood dialytic method and apparatus
JP4869133B2 (en) * 2007-04-10 2012-02-08 旭化成クラレメディカル株式会社 Method for detecting breakage of flexible diaphragm and pressure sensor used therefor
JP2008051663A (en) * 2006-08-24 2008-03-06 Asahi Kasei Kuraray Medical Co Ltd Pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363936A (en) * 2012-12-20 2015-02-18 甘布罗伦迪亚肾脏产品公司 Target volume based diaphragm repositioning for pressure measurement apparatus
CN104363936B (en) * 2012-12-20 2017-04-05 甘布罗伦迪亚股份公司 The film based on target volume for pressure gauge resets

Also Published As

Publication number Publication date
JP2010125131A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5230377B2 (en) Calibration method of pressure measurement unit
KR102196471B1 (en) Apparatus and method for hemodialysis
CN107614032B (en) Medical hydraulic pressure detection device
JP5337618B2 (en) Calibration method of blood pressure removal detecting means and blood purification device
US10610634B2 (en) Blood purification apparatus
US11896751B2 (en) Adjusting device for pressure detector
CA2574537C (en) System and method for peritoneal dialysis
US9616471B2 (en) Rinsing line, medical technical functional device, medical technical treatment apparatus and method
JP2007282928A5 (en)
JP2007282928A (en) Extrasomatic circulation circuit, method of confirming connection condition of pressure measuring line with pressure measuring means and extrasomatic circulation apparatus
US20200206407A1 (en) Blood Purification Apparatus and Method of Discharging Bubbles Therefrom
CN102215889A (en) Method and device for recognition of paravasal bleeding
JP5426269B2 (en) Blood circuit and blood purification apparatus having the same
US11957819B2 (en) Artificial kidney to support a concept of digital dialysis (CDD)
US20230108191A1 (en) Artificial Kidney to support a concept of digital dialysis (CDD)
EP3714919A1 (en) Reinfusion tube system, package and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5230377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350