JP5229851B2 - Hetero-nanowire structure with trunk and branch and its manufacturing method. - Google Patents

Hetero-nanowire structure with trunk and branch and its manufacturing method. Download PDF

Info

Publication number
JP5229851B2
JP5229851B2 JP2006313337A JP2006313337A JP5229851B2 JP 5229851 B2 JP5229851 B2 JP 5229851B2 JP 2006313337 A JP2006313337 A JP 2006313337A JP 2006313337 A JP2006313337 A JP 2006313337A JP 5229851 B2 JP5229851 B2 JP 5229851B2
Authority
JP
Japan
Prior art keywords
branch
trunk
hetero
zinc
nanowire structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006313337A
Other languages
Japanese (ja)
Other versions
JP2008127239A (en
Inventor
義雄 板東
シェン グォツェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006313337A priority Critical patent/JP5229851B2/en
Publication of JP2008127239A publication Critical patent/JP2008127239A/en
Application granted granted Critical
Publication of JP5229851B2 publication Critical patent/JP5229851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、幹部と枝状部を持ったヘテロ構造物とその製造方法に関し、より詳しくは、リン化亜鉛ナノリボンを幹部とし、硫化亜鉛ナノワイヤーを枝状部とするヘテロナノワイヤー構造物に関する。   The present invention relates to a heterostructure having a trunk portion and a branch portion and a method for producing the same, and more particularly, to a hetero nanowire structure having a zinc phosphide nanoribbon as a trunk portion and zinc sulfide nanowires as branch portions.

今までに、幹部と枝状部を持ったヘテロ構造物として数種類のナノサイズ構造物が知られている。たとえば、酸化インジウムの幹部と酸化亜鉛の枝状部を有するヘテロナノワイヤー構造物(たとえば、非特許文献1,2参照。)、ケイ素の幹部と二酸化ケイ素の枝状部を有するヘテロナノワイヤー構造物(たとえば、非特許文献3,4参照。)が知られている。   To date, several types of nano-sized structures are known as heterostructures having trunks and branches. For example, hetero-nanowire structures having indium oxide trunks and zinc oxide branches (see, for example, Non-Patent Documents 1 and 2), hetero-nanowire structures having silicon trunks and silicon dioxide branches (For example, refer to Non-Patent Documents 3 and 4.).

「J.Y.Lao, ほか、Nano Lett. 2巻、1287頁、2002年。」“J.Y.Lao, et al., Nano Lett. Vol. 2, 1287, 2002.” 「J.G.Wen, ほか、Chem.Phys.Lett. 372巻、717頁、2003年。」"J.G. Wen, et al., Chem. Phys. Lett. 372, 717, 2003." 「H.Wang,ほか、Angew.Chem.Int.Ed. 44巻、6934頁、2005年。」“H. Wang, et al., Angew. Chem. Int. Ed., 44, 6934, 2005.” 「J.Q.Hu,ほか、Adv.Mater. 17巻、971頁、2005年。」“J.Q.Hu, et al., Adv.Mater. 17, 971, 2005.”

本発明は、リン化亜鉛ナノリボンの幹部から成長した硫化亜鉛ナノワイヤーの枝状部を有するヘテロ構造物とその製造方法を提供することを目的とする。   An object of this invention is to provide the heterostructure which has the branch part of the zinc sulfide nanowire grown from the trunk part of the zinc phosphide nanoribbon, and its manufacturing method.

本発明は、上記の課題を解決するものとして、発明1は、幹部と枝状部を持ったヘテロナノワイヤー構造物であって、枝状部が硫化亜鉛ナノワイヤーであって、幹部がリン化亜鉛ナノリボンであることを特徴とする。
発明2は、発明1のヘテロナノワイヤー構造物において、枝状部が幹部の長手方向に対して直角に伸長した形状を有していることを特徴とする。
発明3は、発明1又は2のヘテロナノワイヤー構造物において、枝状部の長さが20×10〜30×10nm、直径が3×10nmであり、幹部のリン化亜鉛ナノリボンの長さが数十μm、幅が8×10〜30×10nm、厚さが14×10nmであることを特徴とする。
発明4は、発明1から3のいずれかのヘテロナノワイヤー構造物の製造方法であって、硫化亜鉛粉末とリン化インジウム粉末の混合物をグラファイト製容器に入れ、不活性ガスを流しながら、125×10±5×10℃に加熱することを特徴とする。
発明5は、発明4のヘテロナノワイヤー構造物の製造方法において、不活性ガスとして、窒素ガスを使用することを特徴とする。
発明6は、発明4または5のヘテロナノワイヤー構造物の製造方法において、不活性ガスの流量が20×10〜35×10sccmの範囲であることを特徴とする。
発明7は、発明4から6のいずれかのヘテロナノワイヤー構造物の製造方法において、 加熱時間が5×10±2×10分間であることを特徴とする。
In order to solve the above problems, the present invention provides a hetero nanowire structure having a trunk and a branch, wherein the branch is a zinc sulfide nanowire, and the trunk is phosphated. It is characterized by being a zinc nanoribbon.
Invention 2 is characterized in that, in the hetero-nanowire structure of Invention 1, the branch-like portion has a shape extending at right angles to the longitudinal direction of the trunk portion.
Invention 3 is the hetero-nanowire structure of Invention 1 or 2, wherein the length of the branch portion is 20 × 10 to 30 × 10 nm, the diameter is 3 × 10 nm, and the length of the zinc phosphide nanoribbon in the trunk is several It is characterized by being 10 μm, a width of 8 × 10 to 30 × 10 nm, and a thickness of 14 × 10 nm.
Invention 4 is a method for producing a hetero-nanowire structure according to any one of Inventions 1 to 3, wherein a mixture of zinc sulfide powder and indium phosphide powder is placed in a graphite container and an inert gas is allowed to flow, It is characterized by heating to 10 ± 5 × 10 ° C.
Invention 5 is characterized in that, in the method for producing a hetero nanowire structure of Invention 4, nitrogen gas is used as an inert gas.
Invention 6 is characterized in that, in the method for producing a hetero nanowire structure of Invention 4 or 5, the flow rate of the inert gas is in the range of 20 × 10 to 35 × 10 sccm.
Invention 7 is the method for producing a hetero nanowire structure according to any one of Inventions 4 to 6, wherein the heating time is 5 × 10 ± 2 × 10 minutes.

本発明により、リン化亜鉛ナノリボンを幹部とし、この幹から硫化亜鉛ナノワイヤーが直角に成長しているヘテロ接合のナノ構造物が初めて実現される。また、本発明の方法により、枝部に硫化亜鉛ナノワイヤー、幹部にリン化亜鉛ナノリボンを有するヘテロ接合ナノ構造物を簡単なプロセスで容易に製造することが出来る。   According to the present invention, a heterojunction nanostructure having a zinc phosphide nanoribbon as a trunk and zinc sulfide nanowires growing perpendicularly from the trunk is realized for the first time. In addition, by the method of the present invention, a heterojunction nanostructure having zinc sulfide nanowires at the branches and zinc phosphide nanoribbons at the trunk can be easily manufactured by a simple process.

本発明の枝部の硫化亜鉛ナノワイヤーを有するリン化亜鉛ナノリボンは、幹部のリン化亜鉛ナノリボンから直角に枝部の硫化亜鉛ナノワイヤーが成長しているヘテロ構造物で、幹部を形成するリン化亜鉛ナノリボンは、正方晶系の双晶であり、その長さは数十μm、幅は80〜300nm,厚さはおよそ140nmである。枝状部からなる硫化亜鉛ナノワイヤーは、六方晶系の結晶構造を持ち、その長さは概ね200〜300nmで、直径はおよそ30nmである。枝状部の硫化亜鉛ナノワイヤーを有するリン化亜鉛ナノリボンのヘテロ構造物の製造方法は、硫化亜鉛粉末とリン化インジウム粉末の混合物をグラファイト製容器に入れ、この容器を誘導加熱円筒管を内側に有する石英管製の縦型高周波誘導加熱炉の中に取り付ける。この加熱炉内を減圧にした後、窒素ガスなどの不活性ガスを流しながら、1250±50℃に50±20分間加熱することからなる。
上記において、硫化亜鉛粉末とリン化インジウム粉末の重量比は1:2〜2:1の範囲が好ましく、この範囲よりも硫化亜鉛粉末の重量が多いと、生成物中に硫化亜鉛ナノワイヤー、硫化亜鉛ナノ粒子が混入する。逆に、この範囲よりも硫化亜鉛粉末の重量が少ないと、枝状部の存在しない直線状のリン化インジウムナノワイヤーが混在してくる。加熱温度は上述の範囲が好ましく、この上限値よりも高いと、硫化亜鉛ナノワイヤーの枝部を有するリン化亜鉛ナノリボンのヘテロ構造物は得られない。逆に上述の範囲よりも加熱温度が低いと反応が進行しない。加熱時間は上述の範囲よりも長いと生成物が逸散し、短いと反応が不十分である。窒素ガスなどの不活性ガスの流量は200〜350sccmの範囲が好ましく、350sccmよりも流量が多いと生成物が逸散しやすく、少ないと硫化亜鉛ナノワイヤー単独が生成する。このような操作を施すことにより、グラファイト誘導加熱円筒管の内壁に暗黄色の粉末が堆積する。
この暗黄色の粉末は、分析により、上述した寸法を有するヘテロ構造物であり,まず,リン化亜鉛双晶結晶のナノリボンが生成し、次に、このナノリボンの側方に硫化亜鉛が直角に成長していくことにより、枝状の硫化亜鉛ナノワイヤーを有するリン化亜鉛ナノリボンヘテロ構造物が形成される。
ZnS(固体) → ZnS(蒸気) (1)
ZnS(蒸気) → Zn(蒸気) + 1/2S2(蒸気) (2)
S2(蒸気) + C(固体) → CS2(蒸気) (3)
InP(固体) → InP(蒸気) (4)
Zn(蒸気) + InP(蒸気) → Zn3P2(固体) + In(蒸気) (5)
ZnS(蒸気) → ZnS(固体) (6)
1250±50℃の高温で固体の硫化亜鉛が硫化亜鉛の蒸気になり、さらに、ここで生成した硫化亜鉛の蒸気は亜鉛と硫黄の蒸気に解離する。硫黄蒸気はグラファイト容器の炭素と反応して気体の二硫化炭素となって反応系外へ逸散する。また、同時に固体のリン化インジウムがリン化インジウムの蒸気となり、(2)式で生じた亜鉛の蒸気と反応してリン化亜鉛となって搬送ガスの不活性ガスにより、誘導加熱円筒管の低温領域へ運ばれて固体の結晶となる。このリン化亜鉛の結晶の側面に硫化亜鉛の結晶が成長して、目的物である枝状部の硫化亜鉛ナノワイヤーを有するリン化亜鉛ナノリボンが形成される。
Zinc phosphide nanoribbons with branch zinc sulfide nanowires of the present invention are heterostructures in which branch zinc sulfide nanowires are grown at right angles from the zinc phosphide nanoribbons of the trunk, and phosphation forming the trunk The zinc nanoribbon is a tetragonal twin, having a length of several tens of μm, a width of 80 to 300 nm, and a thickness of approximately 140 nm. Zinc sulfide nanowires composed of branch-shaped parts have a hexagonal crystal structure, a length of approximately 200 to 300 nm, and a diameter of approximately 30 nm. A method for producing a heterostructure of zinc phosphide nanoribbons having zinc sulfide nanowires in a branch is to put a mixture of zinc sulfide powder and indium phosphide powder into a graphite vessel, and place the vessel with an induction heating cylindrical tube inside. It is installed in a vertical high-frequency induction heating furnace made of quartz tube. After depressurizing the inside of the heating furnace, it is heated to 1250 ± 50 ° C. for 50 ± 20 minutes while flowing an inert gas such as nitrogen gas.
In the above, the weight ratio of zinc sulfide powder to indium phosphide powder is preferably in the range of 1: 2 to 2: 1. If the weight of zinc sulfide powder is larger than this range, zinc sulfide nanowires, sulfide Zinc nanoparticles are mixed. Conversely, when the weight of the zinc sulfide powder is less than this range, linear indium phosphide nanowires having no branch portions are mixed. The heating temperature is preferably in the above range, and if it is higher than the upper limit, a heterostructure of zinc phosphide nanoribbons having branches of zinc sulfide nanowires cannot be obtained. Conversely, when the heating temperature is lower than the above range, the reaction does not proceed. When the heating time is longer than the above range, the product is dissipated, and when the heating time is shorter, the reaction is insufficient. The flow rate of an inert gas such as nitrogen gas is preferably in the range of 200 to 350 sccm. When the flow rate is higher than 350 sccm, the product is easily dissipated, and when it is low, zinc sulfide nanowires alone are generated. By performing such an operation, dark yellow powder is deposited on the inner wall of the graphite induction heating cylindrical tube.
This dark yellow powder is, by analysis, a heterostructure having the dimensions described above. First, a zinc phosphide twin crystal nanoribbon is formed, and then zinc sulfide grows at right angles on the sides of the nanoribbon. As a result, a zinc phosphide nanoribbon heterostructure having branched zinc sulfide nanowires is formed.
ZnS (solid) → ZnS (vapor) (1)
ZnS (steam) → Zn (steam) + 1 / 2S 2 (steam) (2)
S 2 (steam) + C (solid) → CS 2 (steam) (3)
InP (solid) → InP (steam) (4)
Zn (vapor) + InP (vapor) → Zn 3 P 2 (solid) + In (vapor) (5)
ZnS (vapor) → ZnS (solid) (6)
Solid zinc sulfide becomes zinc sulfide vapor at a high temperature of 1250 ± 50 ° C., and the zinc sulfide vapor generated here dissociates into zinc and sulfur vapor. Sulfur vapor reacts with the carbon in the graphite container to form gaseous carbon disulfide and escapes from the reaction system. At the same time, solid indium phosphide becomes vapor of indium phosphide, reacts with the vapor of zinc generated in equation (2) to form zinc phosphide, and the inert gas of the carrier gas causes the low temperature of the induction heating cylindrical tube. It is transported to the region and becomes a solid crystal. A zinc sulfide crystal grows on the side surface of the zinc phosphide crystal, and a zinc phosphide nanoribbon having a branch-like zinc sulfide nanowire as an object is formed.

次に、実施例を示して、さらに具体的に説明する。
(実施例) アルドリッチ社製の硫化亜鉛粉末(純度99%)1.2gとアルドリッチ社製のリン化インジウム粉末(純度99.998%)0.8gの混合物をグラファイト製るつぼに入れ、このるつぼをカーボン繊維からなる断熱材で覆われたグラファイト誘導加熱円筒管を中側に有する石英管製の縦型高周波誘導加熱炉の中に取り付けた。加熱炉内を約20Paの減圧にした後、流量250sccmの窒素ガスを流しながら、上記るつぼの内容物を1250℃に1時間加熱した。加熱終了後、炉を室温に冷却するとグラファイト誘導加熱円筒管の内壁に暗黄色の生成物が29mg堆積した。
Next, an example is shown and it demonstrates still more concretely.
(Example) A mixture of Aldrich zinc sulfide powder (purity 99%) 1.2 g and Aldrich indium phosphide powder (purity 99.998%) 0.8 g was put into a graphite crucible, and the crucible was made of carbon fiber. It was mounted in a vertical high frequency induction heating furnace made of a quartz tube having a graphite induction heating cylindrical tube covered with a heat insulating material on the inside. After reducing the pressure in the heating furnace to about 20 Pa, the contents of the crucible were heated to 1250 ° C. for 1 hour while flowing nitrogen gas at a flow rate of 250 sccm. After heating, when the furnace was cooled to room temperature, 29 mg of dark yellow product was deposited on the inner wall of the graphite induction heating cylindrical tube.

図1に、上記の暗黄色の生成物の粉末X線回折のパターンを示した。このパターンにおいて、星印の付いていない強い反射のピークは、格子定数a=8.095Å、c=11.47Åを有する正方晶系のリン化亜鉛であることが分かった。また、星印の付いているピークは、格子定数a=3.82Å、c=6.257Åを有する六方晶系の硫化亜鉛から成る組成であることが分かった。 FIG. 1 shows the powder X-ray diffraction pattern of the dark yellow product. In this pattern, the peak of strong reflection without an asterisk was found to be tetragonal zinc phosphide having lattice constants a = 8.095Å and c = 11.47Å. The peak marked with an asterisk was found to be composed of hexagonal zinc sulfide having lattice constants a = 3.823.8 and c = 6.257Å.

図2に、上記生成物の低倍率の走査型電子顕微鏡像の写真を示した。長さが数十μmの一次元の繊維状の生成物が形成されていることが確認できる。 FIG. 2 shows a photograph of a low-magnification scanning electron microscope image of the product. It can be confirmed that a one-dimensional fibrous product having a length of several tens of μm is formed.

図3に、上記生成物の高倍率の走査型電子顕微鏡像の写真を示した。この写真から生成物は幹状部分とその幹状部分から直角に成長している枝状部分から出来上がっていることが分かった。多数個のサンプルを観察した結果、幹状部分の幅は80〜300nmであり、枝状部分の長さは200〜300nmで、直径はおよそ30nmであることが分かった。 FIG. 3 shows a high-magnification scanning electron microscope image of the product. From this photograph, it was found that the product was made up of a stem-like portion and a branch-like portion growing at a right angle from the stem-like portion. As a result of observing a large number of samples, it was found that the width of the trunk portion was 80 to 300 nm, the length of the branch portion was 200 to 300 nm, and the diameter was about 30 nm.

図4に、結晶の成長過程を見るために、結晶成長時間を40分間と上記の例よりも短くしたときの生成物の走査型電子顕微鏡像の写真を示したが、この写真から幹状部の断面は長方形であり、その厚さ(断面長方形の短い方の長さを厚さと定義する)はおよそ140nmであることが分かった。すなわち、幹状部分の形状はナノリボン構造をしていることが確認された。
また、この部分の電子線回折のパターンを調べた結果、幹状部はリン化亜鉛の双晶から出来ていることがわかった。
Fig. 4 shows a scanning electron microscope image of the product when the crystal growth time is 40 minutes, which is shorter than the above example, in order to see the crystal growth process. It was found that the cross section was rectangular and its thickness (the shorter length of the cross section rectangle was defined as the thickness) was approximately 140 nm. That is, it was confirmed that the shape of the trunk portion has a nanoribbon structure.
Further, as a result of examining the electron diffraction pattern of this portion, it was found that the trunk portion was made of zinc phosphide twins.

次に、図5に生成物の透過型電子顕微鏡像の写真を示した。この写真で丸印をつけた幹の部分と枝の部分のエネルギー分散型X線分析の結果を図6及び図7にそれぞれ示した。
図6の結果から、幹部は亜鉛とリンの原子比がおよそ3:2からなる組成のリン化亜鉛であることが分った。一方、図7の結果から、枝状部は亜鉛と硫黄の原子比がおよそ1:1からなる組成の硫化亜鉛であることが分った。すなわち、本発明のナノ構造物は、硫化亜鉛ナノワイヤーの枝状部を有し、リン化亜鉛ナノリボンを幹部とするヘテロナノ構造物であることが分った。
Next, FIG. 5 shows a photograph of a transmission electron microscope image of the product. The results of energy dispersive X-ray analysis of the trunk portion and the branch portion circled in this photograph are shown in FIGS. 6 and 7, respectively.
From the results of FIG. 6, it was found that the trunk was zinc phosphide having a composition in which the atomic ratio of zinc to phosphorus was approximately 3: 2. On the other hand, it was found from the results of FIG. 7 that the branch portion is zinc sulfide having a composition in which the atomic ratio of zinc to sulfur is approximately 1: 1. That is, it was found that the nanostructure of the present invention is a hetero-nanostructure having a branch portion of zinc sulfide nanowires and having a zinc phosphide nanoribbon as a trunk.

本発明により、枝状部に硫化亜鉛ナノワイヤーを有し、幹部にリン化亜鉛ナノリボンを有するヘテロナノ構造物が得られたので、オプトエレクトロニクス産業への応用が期待される。   According to the present invention, a hetero-nanostructure having zinc sulfide nanowires in the branch portions and zinc phosphide nanoribbons in the trunk portions is obtained, and therefore, application to the optoelectronics industry is expected.

枝状の硫化亜鉛ナノワイヤーを有するリン化亜鉛ナノリボンの粉末X線回折のパターンを示す図である。It is a figure which shows the pattern of the powder X-ray diffraction of the zinc phosphide nanoribbon which has a branch-like zinc sulfide nanowire. 枝状の硫化亜鉛ナノワイヤーを有するリン化亜鉛ナノリボンの低倍率走査型電子顕微鏡像の写真である。It is a photograph of the low magnification scanning electron microscope image of the zinc phosphide nanoribbon which has a branch-like zinc sulfide nanowire. 枝状の硫化亜鉛ナノワイヤーを有するリン化亜鉛ナノリボンの高倍率走査型電子顕微鏡像の写真である。It is a photograph of the high magnification scanning electron microscope image of the zinc phosphide nanoribbon having the branched zinc sulfide nanowire. 枝状の硫化亜鉛ナノワイヤーを有するリン化亜鉛ナノリボンの結晶成長途中の走査型電子顕微鏡像の写真である。It is a photograph of the scanning electron microscope image in the middle of the crystal growth of the zinc phosphide nanoribbon which has a branched zinc sulfide nanowire. 枝状の硫化亜鉛ナノワイヤーを有するリン化亜鉛ナノリボンの透過型電子顕微鏡像の写真である。It is a photograph of the transmission electron microscope image of the zinc phosphide nanoribbon which has a branch-like zinc sulfide nanowire. リン化亜鉛ナノリボン幹部のエネルギー分散型X線分析の結果を示す図である。It is a figure which shows the result of the energy dispersive X-ray analysis of a zinc phosphide nanoribbon trunk. 硫化亜鉛ナノワイヤー枝部のエネルギー分散型X線分析の結果を示す図である。It is a figure which shows the result of the energy dispersive X-ray analysis of a zinc sulfide nanowire branch part.

Claims (7)

幹部と枝状部を持ったヘテロナノワイヤー構造物であって、枝状部が硫化亜鉛ナノワイヤーであって、幹部がリン化亜鉛ナノリボンであることを特徴とする幹部と枝状部を持ったヘテロナノワイヤー構造物。 A hetero-nanowire structure having a trunk and a branch part, wherein the branch part is a zinc sulfide nanowire and the trunk part is a zinc phosphide nanoribbon, and has a trunk part and a branch part Hetero nanowire structure. 枝状部が幹部の長手方向に対して直角に伸長した形状を有していることを特徴とする請求項1に記載の幹部と枝状部を持ったヘテロナノワイヤー構造物。   The hetero-nanowire structure having a trunk part and a branch part according to claim 1, wherein the branch part has a shape extending perpendicularly to the longitudinal direction of the trunk part. 枝状部の長さが20×10〜30×10nm、直径が3×10nmであり、幹部のリン化亜鉛ナノリボンの幅が8×10〜30×10nm、厚さが14×10nmであることを特徴とする請求項1又は2に記載の幹部と枝状部を持ったヘテロナノワイヤー構造物。 The length of the branch part is 20 × 10-30 × 10 nm, the diameter is 3 × 10 nm, the width of the zinc phosphide nanoribbon of the trunk is 8 × 10-30 × 10 nm, and the thickness is 14 × 10 nm. The hetero-nanowire structure having a trunk part and a branch-like part according to claim 1 or 2. 硫化亜鉛粉末とリン化インジウム粉末の混合物をグラファイト製容器に入れ、不活性ガスを流しながら、125×10±5×10℃に加熱することを特徴とする請求項1から3のいずれかに記載の幹部と枝状部を持ったヘテロナノワイヤー構造物の製造方法。 4. A mixture of zinc sulfide powder and indium phosphide powder is placed in a graphite vessel and heated to 125 × 10 ± 5 × 10 ° C. while flowing an inert gas. Of hetero-nanowire structure having a trunk portion and a branch portion. 不活性ガスとして、窒素ガスを使用することを特徴とする請求項4に記載の幹部と枝状部を持ったヘテロナノワイヤー構造物の製造方法。 The method for producing a hetero-nanowire structure having a trunk portion and a branch portion according to claim 4, wherein nitrogen gas is used as the inert gas. 不活性ガスの流量が20×10〜35×10sccmの範囲であることを特徴とする請求項4または5に記載の幹部と枝状部を持ったヘテロナノワイヤー構造物の製造方法。 6. The method for producing a hetero-nanowire structure having a trunk portion and a branch portion according to claim 4, wherein the flow rate of the inert gas is in a range of 20 × 10 to 35 × 10 sccm. 加熱時間が5×10±2×10分間であることを特徴とする請求項4から6のいずれかに記載の幹部と枝状部を持ったヘテロナノワイヤー構造物の製造方法。 The method for producing a hetero-nanowire structure having a trunk portion and a branch-like portion according to any one of claims 4 to 6 , wherein the heating time is 5 × 10 ± 2 × 10 minutes.
JP2006313337A 2006-11-20 2006-11-20 Hetero-nanowire structure with trunk and branch and its manufacturing method. Expired - Fee Related JP5229851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313337A JP5229851B2 (en) 2006-11-20 2006-11-20 Hetero-nanowire structure with trunk and branch and its manufacturing method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313337A JP5229851B2 (en) 2006-11-20 2006-11-20 Hetero-nanowire structure with trunk and branch and its manufacturing method.

Publications (2)

Publication Number Publication Date
JP2008127239A JP2008127239A (en) 2008-06-05
JP5229851B2 true JP5229851B2 (en) 2013-07-03

Family

ID=39553449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313337A Expired - Fee Related JP5229851B2 (en) 2006-11-20 2006-11-20 Hetero-nanowire structure with trunk and branch and its manufacturing method.

Country Status (1)

Country Link
JP (1) JP5229851B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531949A1 (en) * 1985-09-07 1987-03-19 Hoechst Ag METHOD FOR PRODUCING SS ZINC DIPHOSPHIDE CRYSTALS
JP4576607B2 (en) * 2005-03-02 2010-11-10 独立行政法人物質・材料研究機構 Single crystal zinc sulfide nanotube and method for producing the same

Also Published As

Publication number Publication date
JP2008127239A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
Sha et al. Silicon nanotubes
Duan et al. PEG-assisted synthesis of ZnO nanotubes
Wang et al. Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature
Meng et al. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires
Yuan et al. Temperature-dependent growth mechanism and microstructure of ZnO nanostructures grown from the thermal oxidation of zinc
Liu et al. Defect-induced nucleation and epitaxy: a new strategy toward the rational synthesis of WZ-GaN/3C-SiC core–shell heterostructures
Manzoor et al. Synthesis and enhancement of ultraviolet emission by post-thermal treatment of unique zinc oxide comb-shaped dendritic nanostructures
Qi et al. Preparation and characterization of SiC@ CNT coaxial nanocables using CNTs as a template
Zhu et al. Design and fabrication of BN‐sheathed ZnS nanoarchitectures
Singh et al. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods
Tian et al. Synthesis of large size ZnO microrods by a simple way of thermal evaporation
Han et al. An Efficient Route to Graphitic Carbon‐Layer‐Coated Gallium Nitride Nanorods
Zhang et al. Side by side ZnO/ZnS hetero-junction nanocrystal arrays with superior field emission property
Biswas et al. Fabrication of GaN nanowires and nanoribbons by a catalyst assisted vapor–liquid–solid process
Jana et al. Synthesis of tetrapod like PbS microcrystals by hydrothermal route and its optical characterization
Yang et al. Oxidizing agent impacting on growth of ZnO tetrapod nanostructures and its characterization
Dai et al. Sn-catalyst growth and optical waveguide of ultralong CdS nanowires
JP5229851B2 (en) Hetero-nanowire structure with trunk and branch and its manufacturing method.
Jang et al. Synthesis of ZnO nanorods on GaN epitaxial layer and Si (100) substrate using a simple hydrothermal process
Chen et al. Sulfur-doped gallium phosphide nanowires and their optoelectronic properties
Shen et al. One-step construction of ZnS/C and CdS/C one-dimensional core–shell nanostructures
Jiang et al. Synthesis of aluminum nitride nanostructures via chemical vapor deposition method with nickel as catalyst
Guo et al. Homoepitaxial growth and photoluminescence of self‐assembled In‐doped ZnS nanowire bundles
Xu et al. The growth and optical properties of ZnO nanowires at the junctions of nanowalls
Ma et al. β-Ga2O3 nanowires sheathed with boron nitrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees