JP5229813B2 - Tilt detection device using liquid crystal - Google Patents

Tilt detection device using liquid crystal Download PDF

Info

Publication number
JP5229813B2
JP5229813B2 JP2009025694A JP2009025694A JP5229813B2 JP 5229813 B2 JP5229813 B2 JP 5229813B2 JP 2009025694 A JP2009025694 A JP 2009025694A JP 2009025694 A JP2009025694 A JP 2009025694A JP 5229813 B2 JP5229813 B2 JP 5229813B2
Authority
JP
Japan
Prior art keywords
liquid crystal
container
moving body
tilt
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009025694A
Other languages
Japanese (ja)
Other versions
JP2010181305A (en
Inventor
成臣 蝶野
知宏 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi University of Technology
Original Assignee
Kochi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi University of Technology filed Critical Kochi University of Technology
Priority to JP2009025694A priority Critical patent/JP5229813B2/en
Publication of JP2010181305A publication Critical patent/JP2010181305A/en
Application granted granted Critical
Publication of JP5229813B2 publication Critical patent/JP5229813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液晶を利用した液晶を利用した傾き検出装置に関する。液晶は、通常、隣接する液晶分子の向きが大きく変化しないように配向している。しかし、液晶中には、隣接する液晶分子に対して配向が不連続となった部分が発生する場合があり、この不連続となった部分が並んで線状になったものは転傾と呼ばれる。
本発明は、かかる液晶における転傾の周囲に発生する配向分布を利用した液晶を利用した傾き検出装置に関する。
The present invention relates to a tilt detection device using liquid crystal using liquid crystal. The liquid crystal is usually aligned so that the orientation of adjacent liquid crystal molecules does not change significantly. However, in the liquid crystal, there may be a portion where the alignment is discontinuous with respect to the adjacent liquid crystal molecules, and the one where the discontinuous portions are arranged side by side is called a tilt. .
The present invention relates to a tilt detection device using liquid crystal utilizing an orientation distribution generated around the tilt in the liquid crystal.

傾き検出装置は、天井や床面等が水平に対して傾斜しているかどうかを調べるために使用されるものであり、液体を封入した容器に気泡を混入させておき、その気泡の移動により傾斜の有無を調べるものが存在している(例えば、特許文献1〜3)。   The tilt detector is used to check whether the ceiling, floor, etc. are tilted with respect to the horizontal. Bubbles are mixed in a container filled with liquid and tilted by the movement of the bubbles. There exist some which investigate the presence or absence of (for example, patent documents 1-3).

しかしながら、種々の液体を傾斜検出媒体に利用した例は見られるが、傾斜検出媒体として液晶を利用した例は見当たらない。   However, examples using various liquids as tilt detection media can be found, but examples using liquid crystals as tilt detection media are not found.

特開昭62−121308号公報JP-A-62-121308 特開昭58−180907号公報JP 58-180907 A 特開2001−227947号公報JP 2001-227947 A

本発明は上記事情に鑑み、液晶を利用して傾斜を検出することができる液晶を利用した傾き検出装置を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a tilt detection device using liquid crystal that can detect tilt using liquid crystal.

第1発明の液晶を利用した傾き検出装置は、外面に平坦な基準面が形成されている容器と、該容器の内部に封入されている液晶と、該液晶中に移動可能に浸漬された移動体と、該容器の基準面を水平な面に接触させたときにおける前記移動体が静止する基準位置に対して、前記容器を非水平面に接触させたときにおける前記移動体の相対的な位置変化を検出する検出手段を備えており、前記液晶中には、前記移動体の位置に転傾が存在するときと同等の配向分布が形成されていることを特徴とする。   The tilt detection device using the liquid crystal according to the first aspect of the present invention is a container having a flat reference surface formed on the outer surface, a liquid crystal sealed in the container, and a movement immersed in the liquid crystal so as to be movable. The relative position change of the moving body when the container is brought into contact with a non-horizontal plane with respect to the reference position where the moving body is stationary when the body and the reference plane of the container are brought into contact with a horizontal plane The liquid crystal is characterized in that an orientation distribution equivalent to that when there is a tilt at the position of the moving body is formed in the liquid crystal.

第1発明によれば、容器の基準面を天井や床面等に接触させたときに、床面等が非水平であれば、移動体は基準位置から移動するので、傾斜を検出することができる。しかも、液晶に形成する配向分布を調整し、移動体を基準位置に静止させようとする力を調整すれば、傾斜に対する感度を高くしたり低くしたりすることができる。   According to the first invention, when the reference surface of the container is brought into contact with the ceiling, the floor surface or the like, if the floor surface or the like is non-horizontal, the moving body moves from the reference position, so that the inclination can be detected. it can. In addition, the sensitivity to tilt can be increased or decreased by adjusting the orientation distribution formed in the liquid crystal and adjusting the force to keep the moving body stationary at the reference position.

本発明の液晶を利用した傾き検出装置1の概略説明図であり、(A)概略斜視図であり、(B)は床面FLに容器2を載せた状態における概略断面図である。It is a schematic explanatory drawing of the inclination detection apparatus 1 using the liquid crystal of this invention, (A) is a schematic perspective view, (B) is a schematic sectional drawing in the state which mounted the container 2 on the floor surface FL. (A)は容器2の概略平面図であり、(B)は液晶LCの配向分布の概略説明図である。(A) is a schematic top view of the container 2, (B) is a schematic explanatory drawing of orientation distribution of liquid crystal LC. 転傾が存在する液晶のシュリーレン写真であるThis is a schlieren photo of a liquid crystal with tilt. 転傾の周囲における液晶分子の配向をモデル化した図である。It is the figure which modeled the orientation of the liquid crystal molecule in the circumference of inclining.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明の液晶を利用した傾き検出装置は、傾斜検出媒体に、液晶欠陥である転傾が形成されている液晶を利用したことに特徴を有している。
Next, an embodiment of the present invention will be described with reference to the drawings.
The tilt detection apparatus using the liquid crystal according to the present invention is characterized in that the tilt detection medium uses a liquid crystal in which a tilt that is a liquid crystal defect is formed.

まず、本発明の液晶を利用した傾き検出装置の説明をする前に、転傾について説明する。
図3は転傾が存在する液晶のシュリーレン写真である(出展:C. Destrader, H. -T. Nguyen, H. Gasparoux, J. Malthete, and A. M. Levelunt, Mol. Cryst. Liq. Cryst., 71, 118,(1981) 図2.233)。
転傾とは、液晶における配向ベクトルの場の欠陥、すなわち不連続線をいい、図3では、その紙面と垂直な方向に沿って、周囲の液晶分子に対して液晶分子の配向が不連続となっている部分が並んで線状に存在することによって形成されている。この図3において、白色と黒色の帯状組織が交差する箇所(図3におけるA、Bの部分)が欠陥核、つまり、転傾において液晶分子の向きの空間的歪みが最も高くなるところである。なお、周囲の液晶分子に対して配向が不連続となっているとは、その位置において、紙面内での配向が規定できない状態となっていることを意味する。例えば、図3であれば、紙面と垂直な方向、つまり、紙面面外に向かう方向に液晶分子が配向していたり、配向秩序が低下している状態をいう。
以下では、この液晶分子の配向が不連続となっている部分が並んでいる方向を転傾の軸方向という。
図4に、転傾の周囲における液晶分子の配向をモデル化した図を示す(出展:液晶辞典)。図4において、点Pで表されている部分が、転傾が存在する位置である。また、図4において実線が転傾周囲の配向場を示しており、実線に沿って液晶分子が、その配向方向が連続しているように配向している。なお、図4中のSは欠陥の強度を示しておりその絶対値が大きいほど強度が強くなることを意味しており、その符号は欠陥の正負を表している。
First, before explaining the tilt detection apparatus using the liquid crystal according to the present invention, the tilt will be described.
Fig. 3 is a photo of a schlieren of a liquid crystal with tilt (exhibited by C. Destrader, H. -T. Nguyen, H. Gasparoux, J. Malthete, and AM Levelunt, Mol. Cryst. Liq. Cryst., 71 , 118, (1981) Figure 2.233).
The tilt refers to a field defect of the alignment vector in the liquid crystal, that is, a discontinuous line. In FIG. 3, the alignment of the liquid crystal molecules is discontinuous with respect to the surrounding liquid crystal molecules along the direction perpendicular to the paper surface. It is formed by the lined portions existing in a line. In FIG. 3, the portion where the white and black belt-like structures intersect (the portions A and B in FIG. 3) is the defect nucleus, that is, where the spatial distortion of the direction of the liquid crystal molecules becomes the highest in the tilting. Note that the discontinuity of orientation with respect to surrounding liquid crystal molecules means that the orientation in the plane of the paper cannot be defined at that position. For example, in FIG. 3, the liquid crystal molecules are aligned in the direction perpendicular to the paper surface, that is, the direction toward the outside of the paper surface, or the alignment order is lowered.
Hereinafter, the direction in which the portions where the alignment of the liquid crystal molecules is discontinuous is arranged is referred to as the axis direction of tilting.
Fig. 4 shows a model of the orientation of liquid crystal molecules around the tilt (Exhibition: Liquid Crystal Dictionary). In FIG. 4, the portion represented by the point P is the position where tilting exists. In FIG. 4, the solid line indicates the alignment field around the tilt, and the liquid crystal molecules are aligned along the solid line so that the alignment direction is continuous. In addition, S in FIG. 4 has shown the intensity | strength of a defect, and it means that intensity | strength becomes so strong that the absolute value is large, The code | symbol represents the positive / negative of the defect.

つぎに、本発明の液晶を利用した傾き検出装置を説明する。
図1は本発明の液晶を利用した傾き検出装置1の一例であって、(A)概略平面図であり、(B)は概略断面図である。図2は(A)は容器2の概略平面図であり、(B)は液晶LCの配向分布の概略説明図である。なお、図2(B)の液晶LC内に記載されている実線は転傾周囲の配向場を示している。
図1において、符号LCは液晶を示している。この液晶LCは、例えばネマティック液晶やスメクティック液晶、コレステリック液晶、ディスコティック液晶等であるが、転傾を生じさせることができるものであればよく、特に限定はない。
Next, an inclination detecting device using the liquid crystal of the present invention will be described.
FIG. 1 shows an example of an inclination detection apparatus 1 using a liquid crystal according to the present invention. FIG. 1A is a schematic plan view, and FIG. 1B is a schematic cross-sectional view. 2A is a schematic plan view of the container 2, and FIG. 2B is a schematic explanatory diagram of the orientation distribution of the liquid crystal LC. Note that the solid line described in the liquid crystal LC in FIG. 2B indicates the alignment field around the tilt.
In FIG. 1, the code | symbol LC has shown the liquid crystal. The liquid crystal LC is, for example, a nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal, a discotic liquid crystal, or the like, and any liquid crystal LC may be used as long as it can cause tilting, and is not particularly limited.

図1において、符号2は本発明の液晶を利用した傾き検出装置1(以下、単に傾き検出装置1で示す)における容器を示している。この容器2は、略方形に形成されたものであり、その1つの面が平坦な基準面2hとして形成されている。この基準面2hは、傾きを検出する壁面WLや床面FL等に接触させる面であり、平坦な面に形成されている。なお、容器2は平坦な基準面2hを有していればよく、液晶LCは自由に変形できるのでその外形は特に限定されない。   In FIG. 1, reference numeral 2 denotes a container in an inclination detection apparatus 1 (hereinafter simply referred to as the inclination detection apparatus 1) using the liquid crystal of the present invention. The container 2 is formed in a substantially square shape, and one surface thereof is formed as a flat reference surface 2h. The reference surface 2h is a surface that is brought into contact with the wall surface WL, the floor surface FL, or the like that detects inclination, and is formed on a flat surface. Note that the container 2 only needs to have a flat reference surface 2h, and the liquid crystal LC can be freely deformed.

また、容器2は、その内部に中空な空間を備えている。この容器2の中空な空間の上面及び下面は前記基準面2hと平行な平坦な面となるように形成されている。そして、容器2の中空な空間内部には、上述したような液晶LCが封入されており、この液晶LC中に移動体3が配設されている。   Further, the container 2 has a hollow space inside. The upper and lower surfaces of the hollow space of the container 2 are formed to be flat surfaces parallel to the reference surface 2h. The liquid crystal LC as described above is sealed inside the hollow space of the container 2, and the moving body 3 is disposed in the liquid crystal LC.

そして、液晶LCには、容器2の基準面2hを水平な面に接触させたときに、容器2の中心軸CLの位置(以下、基準位置という)に移動体3が位置するように、液晶LC中に形成される配向分布が調整されている。
具体的には、容器2の基準面2hを水平な面に接触させたときに、液晶LC中に、基準位置に転傾が存在するときと同等の配向分布が形成されるように調整されている。例えば、移動体3の表面および容器2の内面を処理して、図2(B)の液晶LC中において実線で示されるような配向分布が形成されるように調整する。すると、容器2の基準面2hを水平な面に接触させたときに、液晶LC中の基準位置に転傾を形成することができるから、移動体3に対して外力が加わっていない状態では、移動体3を中空な空間の中心(図2(B))に配置しておくことができる。
The liquid crystal LC includes a liquid crystal so that the movable body 3 is positioned at a position of the central axis CL of the container 2 (hereinafter referred to as a reference position) when the reference surface 2h of the container 2 is brought into contact with a horizontal surface. The orientation distribution formed in the LC is adjusted.
Specifically, when the reference surface 2h of the container 2 is brought into contact with a horizontal surface, the liquid crystal LC is adjusted so as to form an orientation distribution equivalent to that when there is a tilt at the reference position. Yes. For example, the surface of the moving body 3 and the inner surface of the container 2 are processed so that an alignment distribution as shown by a solid line is formed in the liquid crystal LC of FIG. Then, when the reference surface 2h of the container 2 is brought into contact with a horizontal surface, a tilt can be formed at the reference position in the liquid crystal LC. Therefore, in the state where no external force is applied to the moving body 3, The moving body 3 can be placed at the center of the hollow space (FIG. 2B).

なお、移動体3には、液晶LCと比重に差がある物質であれば、比重が液晶よりも大きいものでも小さいものでも採用することができる。例えば、気泡や水等のように液晶LCと反応しない流体や、金属やプラスチック等の固体を採用することができる。そして、図2(B)に示すような配向分布を液晶LC中に形成する場合、移動体3が固体であれば、移動体3の表面および容器2の内面にラビング処理や垂直配向剤等の処理を行えばよい。また、移動体3が流体であれば、流体に界面活性剤を混合することによって図2(B)に示すような配向分布を液晶LC中に形成することができる。
さらになお、液晶LC中に形成される配向分布はとくに限定されず、例えば、図4に示す配向分布のいずれも採用することができる。そして、欠陥強度(図4中Sで示す)を強くすれば、容器2を転傾の位置(図4中のPの位置)に移動体3を保持しておく力が強くでき、欠陥強度(図4中Sで示す)を弱くすれば、転傾の位置に移動体3を保持しておく力を弱くできる。つまり、容器2内の液晶LC中に形成される配向分布の欠陥強度を変化させれば、傾き検出装置1の感度を調整することができるのである。
In addition, as long as the moving body 3 is a substance having a difference in specific gravity from the liquid crystal LC, a material having a specific gravity larger or smaller than that of the liquid crystal can be used. For example, a fluid that does not react with the liquid crystal LC such as bubbles or water, or a solid such as metal or plastic can be used. When the alignment distribution as shown in FIG. 2B is formed in the liquid crystal LC, if the moving body 3 is solid, the surface of the moving body 3 and the inner surface of the container 2 are subjected to rubbing treatment, vertical alignment agent, etc. What is necessary is just to process. If the moving body 3 is a fluid, an alignment distribution as shown in FIG. 2B can be formed in the liquid crystal LC by mixing a surfactant with the fluid.
Furthermore, the alignment distribution formed in the liquid crystal LC is not particularly limited, and for example, any of the alignment distributions shown in FIG. 4 can be adopted. If the defect strength (indicated by S in FIG. 4) is increased, the force for holding the moving body 3 at the tilting position (position P in FIG. 4) can be increased, and the defect strength ( By weakening (indicated by S in FIG. 4), it is possible to weaken the force for holding the moving body 3 at the tilt position. That is, if the defect intensity of the orientation distribution formed in the liquid crystal LC in the container 2 is changed, the sensitivity of the inclination detecting device 1 can be adjusted.

また、図1では、移動体3は上方の面および下方の面の両方に接触する大きさのものが使用されているが、移動体3は上方の面か下方の面のいずれか一方にのみ接触する程度の大きさであってもよい。そして、移動体3の大きさが上方の面か下方の面のいずれか一方にしか接触しない大きさであれば、液晶LCを挟む面のうち面いずれか一方の面に沿って移動体3が移動できるように液晶LC中の配向を調整しておけばよい。   In FIG. 1, the moving body 3 is of a size that contacts both the upper surface and the lower surface, but the moving body 3 is only on either the upper surface or the lower surface. The magnitude | size of the grade which contacts may be sufficient. If the size of the moving body 3 is such that it only contacts either the upper surface or the lower surface, the moving body 3 moves along one of the surfaces sandwiching the liquid crystal LC. The orientation in the liquid crystal LC may be adjusted so that it can move.

さらに、図1に示すように、容器2には、容器2内の液晶LCに光を照射するLED等の公知の光源5が配設されており、この光源5と液晶LCを挟んで対抗する面には、外部から容器1内を観察しうる観測窓2wが形成されている。この観測窓2wの中心は容器2の中空な空間の中心とほぼ一致するように形成されている。つまり、移動体3に対して外力が加わっていない状態では、観測窓2wの中心に移動体3が位置するように観測窓2wは形成されているのである。   Furthermore, as shown in FIG. 1, the container 2 is provided with a known light source 5 such as an LED that irradiates light to the liquid crystal LC in the container 2, and is opposed to the light source 5 with the liquid crystal LC interposed therebetween. An observation window 2w through which the inside of the container 1 can be observed from the outside is formed on the surface. The center of the observation window 2w is formed so as to substantially coincide with the center of the hollow space of the container 2. That is, in a state where no external force is applied to the moving body 3, the observation window 2w is formed so that the moving body 3 is positioned at the center of the observation window 2w.

この観測窓2wの外方には、観測窓2wを通して液晶LC中における移動体3を撮影する、例えば、CCDカメラ等の検出手段10の検出器11が設けられている。検出器11は傾斜算出部12に接続されている。この傾斜算出部12は、検出器11によって検出された、移動体3の基準位置からの移動量やその位置と、予め記憶しているパラメータに基づいて、容器2の基準面2hが接触している床面FL等の傾きを算出するものである。予め記憶しているパラメータとは、例えば、容器2内の液晶LC自体の剛性等の性質、液晶LCに形成されている転傾の強度、移動体3の物性や重量などである。   Outside the observation window 2w, there is provided a detector 11 of a detecting means 10, such as a CCD camera, for photographing the moving body 3 in the liquid crystal LC through the observation window 2w. The detector 11 is connected to the inclination calculation unit 12. The inclination calculation unit 12 is configured so that the reference surface 2h of the container 2 is in contact with the amount of movement from the reference position of the moving body 3 detected by the detector 11 and the position thereof and the parameters stored in advance. The inclination of the floor surface FL or the like is calculated. The parameters stored in advance are, for example, properties such as rigidity of the liquid crystal LC itself in the container 2, strength of tilting formed in the liquid crystal LC, physical properties and weight of the moving body 3, and the like.

つぎに、上記のごとき傾き検出装置1の使用方法を説明する。
なお、以下では、液晶LCよりも比重が小さい移動体を使用する場合を説明するが、液晶LCよりも比重が大きい移動体を使用する場合は、移動体3の移動方向が逆になるのは、いうまでもない。
Next, a method of using the tilt detection apparatus 1 as described above will be described.
Hereinafter, a case where a moving body having a specific gravity smaller than that of the liquid crystal LC is used will be described. However, when a moving body having a specific gravity larger than that of the liquid crystal LC is used, the moving direction of the moving body 3 is reversed. Needless to say.

まず、傾きを測定する前には、水平な面に容器2の基準面2hが面接触するように配置し、移動体3が観測窓2wの中央部に位置するように調整する。   First, before measuring the inclination, the reference surface 2h of the container 2 is placed in surface contact with a horizontal surface, and the moving body 3 is adjusted so as to be positioned at the center of the observation window 2w.

傾き測定では、調整された傾き検出装置1を傾きを計測したい床面FL等に配置する。このとき、容器2の基準面2hが床面FL等に面接触するように配置する。   In the inclination measurement, the adjusted inclination detection device 1 is disposed on the floor surface FL or the like where the inclination is to be measured. At this time, the container 2 is arranged such that the reference surface 2h is in surface contact with the floor surface FL or the like.

傾き検出装置1を配置した床面FL等が水平であれば、移動体3に加わる重力の方向は、容器2の下内面または上内面と垂直になる。すると、移動体3に発生する浮力は、容器2の下内面または上内面に垂直な方向にしか働かないので、移動体3は観測窓2wの中心に静止した状態に保たれる。   If the floor surface FL on which the inclination detecting device 1 is disposed is horizontal, the direction of gravity applied to the moving body 3 is perpendicular to the lower inner surface or upper inner surface of the container 2. Then, the buoyancy generated in the moving body 3 works only in the direction perpendicular to the lower inner surface or the upper inner surface of the container 2, so that the moving body 3 is kept stationary at the center of the observation window 2 w.

一方、床面FL等が水平に対して傾いている場合には、移動体3に加わる重力の方向は容器2の下内面または上内面に対して傾くので、移動体3に発生する浮力は、容器2の下内面または上内面と平行な方向の分力(以下、単に浮力の平行分力という)も有することになる。すると、液晶LCから移動体3に加わる力、つまり、移動体3を観測窓2wの中心に保持するように加わる力よりも浮力の平行分力の方が大きくなれば、移動体3は浮力の平行分力の方向に移動することになる。
そして、液晶LCから移動体3に加わる力は移動体3の観測窓2wの中心からの移動量が大きくなるほど大きくなるので、浮力の平行分力と液晶LCから移動体3に加わる力が釣り合う位置で移動体3は静止する。
On the other hand, when the floor surface FL or the like is inclined with respect to the horizontal, the direction of gravity applied to the moving body 3 is inclined with respect to the lower inner surface or the upper inner surface of the container 2, so that the buoyancy generated in the moving body 3 is It also has a component force in a direction parallel to the lower inner surface or upper inner surface of the container 2 (hereinafter simply referred to as a parallel component of buoyancy). Then, if the force applied to the moving body 3 from the liquid crystal LC, that is, the force applied to hold the moving body 3 at the center of the observation window 2w becomes larger than the parallel component force of the buoyancy, the moving body 3 It moves in the direction of the parallel component force.
Since the force applied from the liquid crystal LC to the moving body 3 increases as the moving amount of the moving body 3 from the center of the observation window 2w increases, the position where the parallel component of buoyancy and the force applied from the liquid crystal LC to the moving body 3 are balanced. Thus, the moving body 3 stops.

移動体3は検出器11によって撮影されており、検出器11が撮影した画像に基づいて、傾斜算出部12は、移動体3が観測窓2wの中央部からどれだけ移動したかを算出する。移動体3に加わる浮力の平行分力は床面FL等の傾きに比例して増減するので、移動体3の移動量に基づいて床面FL等の傾斜角度を算出することができるのである。
なお、検出器11が撮影した画像から移動体3がどの方向に移動したか確認できるので、床面FL等の傾斜方向も算出することができる。
The moving body 3 is photographed by the detector 11, and based on the image photographed by the detector 11, the inclination calculating unit 12 calculates how much the moving body 3 has moved from the central part of the observation window 2w. Since the parallel component force of the buoyancy applied to the moving body 3 increases or decreases in proportion to the inclination of the floor surface FL or the like, the inclination angle of the floor surface FL or the like can be calculated based on the amount of movement of the moving body 3.
In addition, since it can be confirmed in which direction the moving body 3 has moved from the image photographed by the detector 11, the inclination direction of the floor surface FL or the like can also be calculated.

そして、移動体3の重量および体積と液晶LCに形成する転傾の強さを調整しておけば、傾き検出装置1が検出することができる傾きを自在に調整することができる。例えば、転傾の強度を強くしておけば移動体3を元の位置(観測窓2wの中心)に留めておく力が強くなるので、傾斜が大きくても傾斜角度を検出することができる。逆に、転傾の強度を弱くしておけば移動体3を元の位置(観測窓2wの中央部)に留めておく力が弱くなるので、微妙な傾斜であってもその傾斜角度を精度よく検出することができる。   If the weight and volume of the moving body 3 and the strength of the tilt formed on the liquid crystal LC are adjusted, the tilt that can be detected by the tilt detection device 1 can be freely adjusted. For example, if the strength of the tilting is increased, the force to keep the moving body 3 at the original position (center of the observation window 2w) is increased, so that the tilt angle can be detected even if the tilt is large. On the contrary, if the strength of the tilt is weakened, the force to keep the moving body 3 at the original position (the central part of the observation window 2w) is weakened. Can be detected well.

なお、容器2に電極や磁極を備えておき、この電極や磁極から液晶LCに電場や磁場を加えることによって液晶LCの粘度や液晶欠陥が物体3に及ぼす力等を調整して検出可能な傾きを自由に調整できるようにしてもよい。この場合、傾きを検査する現場において液晶LCを最適な状態にできるので、好適である。   The container 2 is provided with electrodes and magnetic poles, and an electric field and magnetic field are applied to the liquid crystal LC from the electrodes and magnetic poles, thereby adjusting the viscosity of the liquid crystal LC and the force exerted on the object 3 by the liquid crystal defect, etc. May be adjusted freely. This is preferable because the liquid crystal LC can be brought into an optimum state at the site where the inclination is inspected.

なお、図1および図2に示すように、観測窓2wに目盛りなどを設けておけば、検出手段10を設けなくても、傾斜角度や傾斜方向を人が目視で観察し判断することも可能である。
また、光源5は必ずしも必要なく、観測窓2wから内部に照射される外部光だけで移動体3を検出したり目視で確認できるのであれば設けなくてもよい。
さらに、容器2の内部において、光源5と対向する位置に検出器11を配置しておくのであれば、観測窓2wは設けなくてもよい。
As shown in FIGS. 1 and 2, if the observation window 2w is provided with a scale or the like, it is possible for a person to visually observe and judge the inclination angle and the inclination direction without providing the detection means 10. It is.
Further, the light source 5 is not necessarily required, and may be omitted if the moving body 3 can be detected or visually confirmed only by the external light irradiated inside from the observation window 2w.
Furthermore, if the detector 11 is disposed in the container 2 at a position facing the light source 5, the observation window 2w may not be provided.

本発明の液晶を利用した傾き検出装置は、床面に限らず、垂直な壁面等の傾きを検査する装置として使用できる。   The tilt detection apparatus using the liquid crystal according to the present invention is not limited to a floor surface but can be used as an apparatus for inspecting a tilt of a vertical wall surface or the like.

1 傾き検出装置
2 容器
2h 基準面
2w 観測窓
3 移動体
10 検出手段
LC 液晶
DESCRIPTION OF SYMBOLS 1 Inclination detection apparatus 2 Container 2h Reference plane 2w Observation window 3 Moving body 10 Detection means LC Liquid crystal

Claims (1)

外面に平坦な基準面が形成されている容器と、
該容器の内部に封入されている液晶と、
該液晶中に移動可能に浸漬された移動体と、
該容器の基準面を水平な面に接触させたときにおける前記移動体が静止する基準位置に対して、前記容器を非水平面に接触させたときにおける前記移動体の相対的な位置変化を検出する検出手段を備えており、
前記液晶は、
前記容器の基準面を水平な面に接触させたときに、前記基準位置に転傾が存在するときと同等の配向分布が形成されるように調整されている
ことを特徴とする液晶を利用した傾き検出装置。
A container having a flat reference surface formed on the outer surface;
Liquid crystal sealed inside the container;
A moving body immersed so as to be movable in the liquid crystal;
A relative position change of the movable body when the container is brought into contact with a non-horizontal plane is detected with respect to a reference position where the movable body is stationary when the reference plane of the container is brought into contact with a horizontal plane. A detection means,
The liquid crystal
Utilizing liquid crystal, the liquid crystal is adjusted so that when the reference surface of the container is brought into contact with a horizontal surface, an orientation distribution equivalent to that when a tilt is present at the reference position is formed. Tilt detection device.
JP2009025694A 2009-02-06 2009-02-06 Tilt detection device using liquid crystal Expired - Fee Related JP5229813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025694A JP5229813B2 (en) 2009-02-06 2009-02-06 Tilt detection device using liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025694A JP5229813B2 (en) 2009-02-06 2009-02-06 Tilt detection device using liquid crystal

Publications (2)

Publication Number Publication Date
JP2010181305A JP2010181305A (en) 2010-08-19
JP5229813B2 true JP5229813B2 (en) 2013-07-03

Family

ID=42762956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025694A Expired - Fee Related JP5229813B2 (en) 2009-02-06 2009-02-06 Tilt detection device using liquid crystal

Country Status (1)

Country Link
JP (1) JP5229813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209753B1 (en) * 2019-11-29 2021-01-29 한국건설기술연구원 A method and apparatus for measuring a slope change amount based on image recognition, which real-time measurement of a relative slope change amount in comparison with a point in time when installed in a structure and a facility

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853849B2 (en) * 2006-02-09 2012-01-11 公立大学法人高知工科大学 Torque measuring device, torque sensor and torque measuring method using liquid crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209753B1 (en) * 2019-11-29 2021-01-29 한국건설기술연구원 A method and apparatus for measuring a slope change amount based on image recognition, which real-time measurement of a relative slope change amount in comparison with a point in time when installed in a structure and a facility

Also Published As

Publication number Publication date
JP2010181305A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
Huang et al. Influences of gas–liquid interface contamination on bubble motions, bubble wakes, and instantaneous mass transfer
Parkinson et al. The interaction between a very small rising bubble and a hydrophilic titania surface
US20110120218A1 (en) Hand-Held Detection Device for Determining the Height of a Material in a Container and Methods of Use
Madani et al. Oil drop shedding from solid substrates by a shearing liquid
Wang et al. Liquid-level measurement using a single digital camera
US10584966B2 (en) Precision inclinometer with parallel dipole line trap system
Yaminsky et al. Stability of aqueous films between bubbles. Part 2. Effects of trace impurities and evaporation
FI122997B (en) Method and arrangement for measuring flow rate of optically inhomogeneous material
JP5229813B2 (en) Tilt detection device using liquid crystal
WO2017004021A1 (en) Special purpose cuvette assembly and method for optical microscopy of nanoparticles in liquids
Kazoe et al. Evanescent wave-based particle tracking velocimetry for nanochannel flows
An et al. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency
Evgenidis et al. Gas–liquid flow of sub-millimeter bubbles at low void fractions: Experimental study of bubble size distribution and void fraction
Boneva et al. Attraction between particles at a liquid interface due to the interplay of gravity-and electric-field-induced interfacial deformations
CN109253948B (en) Device and method for testing free energy of solid surface by hanging drop method
CN204679387U (en) The dynamical interfacial tension instrument of a kind of high speed, controllable temperature
KR101710573B1 (en) Ultrasonic Inspection apparatus equipped with Variable extension 2-axis rail
Tirapu-Azpiroz et al. Advanced optical on-chip analysis of fluid flow for applications in carbon dioxide trapping
Harth et al. Measurement of the interface tension of smectic membranes in water
Pieper et al. Layer-formation of non-colloidal suspensions in a parallel plate rheometer under steady shear
Ma et al. Effect of geometric constraint caused by nearby particles on the detachment from the particle-laden interface
JP4853849B2 (en) Torque measuring device, torque sensor and torque measuring method using liquid crystal
Liu et al. Floating behavior of hydrophobic glass spheres
CN207556531U (en) A kind of marble air floating platform levelness and seam difference in height automatic detection device
JP6313047B2 (en) Apparatus and method for measuring the level of pile pile

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees