JP5229603B2 - Calmodulin-binding protein involved in the regulation of brassinosteroid biosynthesis - Google Patents

Calmodulin-binding protein involved in the regulation of brassinosteroid biosynthesis Download PDF

Info

Publication number
JP5229603B2
JP5229603B2 JP2006266334A JP2006266334A JP5229603B2 JP 5229603 B2 JP5229603 B2 JP 5229603B2 JP 2006266334 A JP2006266334 A JP 2006266334A JP 2006266334 A JP2006266334 A JP 2006266334A JP 5229603 B2 JP5229603 B2 JP 5229603B2
Authority
JP
Japan
Prior art keywords
seq
atbpr1
plant
brassinosteroid
biosynthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006266334A
Other languages
Japanese (ja)
Other versions
JP2008079570A (en
Inventor
俊夫 青木
隆次郎 今泉
真一 綾部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2006266334A priority Critical patent/JP5229603B2/en
Publication of JP2008079570A publication Critical patent/JP2008079570A/en
Application granted granted Critical
Publication of JP5229603B2 publication Critical patent/JP5229603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明はブラシノステロイド生合成反応を触媒する複数の酵素遺伝子の転写を活性化または抑制する新規な調節因子に関する。さらに、この調節因子の発現量を制御することによって、ブラシノステロイドの生合成能を増強した有用植物や、形態形成が調節された植物を効率的に得ることに関する。   The present invention relates to a novel regulatory factor that activates or suppresses transcription of a plurality of enzyme genes that catalyze brassinosteroid biosynthesis reaction. Furthermore, it is related with obtaining efficiently the useful plant which increased the biosynthesis ability of brassinosteroid, and the plant by which the morphogenesis was controlled by controlling the expression level of this regulator.

ブラシノステロイドは植物の成長と発生に必須な植物ホルモンである。その生理作用は細胞伸長、維管束の分化、ストレス耐性の付与など多岐に渡っており、農業への利用価値が極めて高い。しかし、合成ブラシノステロイドの製造コストが高いために実際の農業現場では利用されていない。   Brassinosteroids are plant hormones essential for plant growth and development. Its physiological effects are diverse, such as cell elongation, vascular differentiation, and stress tolerance, and it is extremely useful for agriculture. However, due to the high production cost of synthetic brassinosteroids, they are not used in actual agricultural fields.

近年、ブラシノステロイドの生合成と代謝およびシグナル伝達に関わる遺伝子が次々に単離され、ブラシノステロイドの生合成経路が明らかにされてきている(例えば、非特許文献1〜3参照)。シロイヌナズナのブラシノステロイド生合成経路を図1に示した。
さらに、シロイヌナズナにおいて、ブラシノステロイドの合成酵素タンパク質をコードする新規な遺伝子(CYP90D1)が見出されている(例えば、特許文献1参照)。
In recent years, genes involved in brassinosteroid biosynthesis, metabolism, and signal transduction have been isolated one after another, and the biosynthesis pathway of brassinosteroid has been elucidated (for example, see Non-Patent Documents 1 to 3). The brassinosteroid biosynthesis pathway of Arabidopsis thaliana is shown in FIG.
Furthermore, a novel gene (CYP90D1) encoding brassinosteroid synthase protein has been found in Arabidopsis thaliana (see, for example, Patent Document 1).

ブラシノステロイドの生合成調節に関しては、活性型のブラシノステロイドであるブラシノライドによる処理で、ブラシノステロイド生合成遺伝子の発現が負のフィードバック制御を受けること(例えば、非特許文献4参照)やCYP90A1(CPD)遺伝子の発現が日周変化すること(例えば、非特許文献5参照)等が確認されている。また、カルシウムイオン依存性カルモジュリンがブラシノステロイド生合成の早期段階の反応を触媒するDWF1の酵素機能に必須であることが示されている(例えば、非特許文献6参照)。   Regarding the regulation of brassinosteroid biosynthesis, the expression of the brassinosteroid biosynthesis gene is subjected to negative feedback control by treatment with brassinolide, which is an active brassinosteroid (see, for example, Non-Patent Document 4). It has also been confirmed that the expression of the CYP90A1 (CPD) gene changes daily (for example, see Non-Patent Document 5). In addition, it has been shown that calcium ion-dependent calmodulin is essential for the enzyme function of DWF1 that catalyzes the early stage reaction of brassinosteroid biosynthesis (see, for example, Non-Patent Document 6).

また、生合成に関わる酵素遺伝子に関しては、これらを過剰発現させることにより、ブラシノステロイドの生合成能が増強された有用植物が得られることが確認されている。
例えば、生合成の早期段階の反応を触媒するCYP90B1(DWF4)遺伝子のシロイヌナズナ過剰発現体では花茎が徒長し、種子の生産量が増加したが、この過剰発現体ではブラシノライドの生産量は増加しないことが確認されている(例えば、非特許文献7参照)。ブラシノライド合成の最終段階を触媒するCYP85A2遺伝子の過剰発現体でもDWF4遺伝子の過剰発現体と同様の表現型を示したが、この過剰発現体ではブラシノライドの生産量は増加することが確認されている(例えば、非特許文献8参照)。また、CYP90C1(ROT3)遺伝子の過剰発現体は花と葉のサイズ(縦方向)のみが大きくなることが確認されている(例えば、非特許文献9参照)。
In addition, regarding the enzyme genes involved in biosynthesis, it has been confirmed that useful plants with enhanced brassinosteroid biosynthesis ability can be obtained by overexpressing them.
For example, in Arabidopsis overexpression of the CYP90B1 (DWF4) gene that catalyzes an early stage reaction in biosynthesis, the flower stem lengthened and seed production increased, but this overexpression increased brassinolide production. It has been confirmed that they do not (see, for example, Non-Patent Document 7). The overexpressed CYP85A2 gene, which catalyzes the final stage of brassinolide synthesis, showed the same phenotype as the overexpressed DWF4 gene, but it was confirmed that the overexpressed body increased the production of brassinolide. (See, for example, Non-Patent Document 8). In addition, it has been confirmed that an overexpressing body of CYP90C1 (ROT3) gene increases only the size (vertical direction) of flowers and leaves (see, for example, Non-Patent Document 9).

このように、過剰発現させた生合成酵素遺伝子の違いによって表現型や蓄積するブラシノステロイドの種類および量が異なるため、ブラシノステロイドの生合成能を増強した有用植物を効率的に得ることは難しかった。このような有用植物を効率的に作製するためには、植物種や有用形質を付与する器官における活性型ブラシノステロイドの種類を考慮しつつ、複数の生合成酵素遺伝子の転写を活性化させ、または抑制する必要があると考えられる。
Fujioka, S. and Yokota, T. (2003) Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54: 137-164. Li, J. (2005) Brassinosteroid signaling: from receptor kinases to transcription factors. Curr. Opin. Plant Biol. 8: 526-531. Choe, S. (2006) Brassinosteroid biosynthesis and inactivation. Physiol. Plant. 126: 539-548. Tanaka, K. Asami, T. Yoshida, S. Nakamura, Y. Matsuo, T. and Okamoto, S. (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol. 138: 1117-1125 Bancos, S. Szatmari, A.M. Castle, J. Kozma-Bognar, L. Shibata, K. Yokota, T. Bishop, G.J. Nagy, F. and Szekeres, M. (2006) Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiol. 141: 299-309. Du, L. and Poovaiah, B.W. (2005) Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature. 437: 741-745. Choe, S. Fujioka, S. Noguchi, T. Takatsuto, S. Yoshida, S. and Feldmann, K.A. (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 26: 573-582. Kim, T.W. Hwang, J.Y. Kim, Y.S. Joo, S.H. Chang, S.C. Lee, J.S. Takatsuto, S. and Kim, S.K. (2005) Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell. 17: 2397-2412. Kim, G.T. Tsukaya, H. Saito, Y. and Uchimiya, H. (1999) Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis.Proc. Natl. Acad. Sci. USA. 96: 9433-9437. 特開2003-334089号公報
In this way, because the type and amount of brassinosteroid that accumulates phenotypes and accumulate depending on the overexpressed biosynthetic enzyme gene, it is possible to efficiently obtain useful plants with enhanced brassinosteroid biosynthesis ability. was difficult. In order to efficiently produce such useful plants, while considering the types of active brassinosteroids in organs that impart plant species and useful traits, activate transcription of multiple biosynthetic enzyme genes, Or it may be necessary to suppress.
Fujioka, S. and Yokota, T. (2003) Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54: 137-164. Li, J. (2005) Brassinosteroid signaling: from receptor kinases to transcription factors. Curr. Opin. Plant Biol. 8: 526-531. Choe, S. (2006) Brassinosteroid biosynthesis and inactivation. Physiol. Plant. 126: 539-548. Tanaka, K. Asami, T. Yoshida, S. Nakamura, Y. Matsuo, T. and Okamoto, S. (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism.Plant Physiol.138: 1117-1125 Bancos, S. Szatmari, AM Castle, J. Kozma-Bognar, L. Shibata, K. Yokota, T. Bishop, GJ Nagy, F. and Szekeres, M. (2006) Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiol. 141: 299-309. Du, L. and Poovaiah, BW (2005) Ca2 + / calmodulin is critical for brassinosteroid biosynthesis and plant growth.Nature. 437: 741-745. Choe, S. Fujioka, S. Noguchi, T. Takatsuto, S. Yoshida, S. and Feldmann, KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis.Plant J. 26 : 573-582. Kim, TW Hwang, JY Kim, YS Joo, SH Chang, SC Lee, JS Takatsuto, S. and Kim, SK (2005) Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell. 17: 2397-2412. Kim, GT Tsukaya, H. Saito, Y. and Uchimiya, H. (1999) Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis.Proc. Natl. Acad. Sci. USA. 96: 9433-9437 . JP2003-334089

本発明はブラシノステロイド生合成反応を触媒する複数の酵素遺伝子の転写を活性化または抑制する新規な調節因子を得ることを課題とする。さらに、この調節因子の発現量を制御することによって、ブラシノステロイドの生合成能を増強した有用植物や、形態形成が調節された植物を効率的に得ることを課題とする。   An object of the present invention is to obtain a novel regulatory factor that activates or suppresses the transcription of a plurality of enzyme genes that catalyze the brassinosteroid biosynthesis reaction. Furthermore, it is an object of the present invention to efficiently obtain useful plants having enhanced brassinosteroid biosynthesis ability and plants with regulated morphogenesis by controlling the expression level of the regulator.

本発明者らは前記課題を解決するために鋭意研究を行った結果、植物に普遍的な複数のブラシノステロイド生合成酵素遺伝子の転写制御を担う調節因子を見出した。そして、この調節因子が植物の全器官で発現しており、カルモジュリンと結合することを確認した。また、この調節因子の発現を制御することにより、葉身と葉柄の形態形成が変化することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found a regulatory factor responsible for transcriptional control of a plurality of brassinosteroid biosynthetic enzyme genes universal to plants. It was confirmed that this regulator is expressed in all organs of plants and binds to calmodulin. Moreover, by controlling the expression of this regulatory factor, it has been found that the morphogenesis of leaf blades and petiole changes, and the present invention has been completed.

すなわち、本発明は次の(1)〜(10)に記載のポリヌクレオチド、植物等に関する。
(1) 配列表配列番号1の塩基配列を有するポリヌクレオチド。
(2) ポリヌクレオチドがブラシノステロイド生合成反応の調節因子をコードする遺伝子である上記(1)に記載のポリヌクレオチド。
(3) 調節因子がブラシノステロイド生合成反応を触媒する酵素遺伝子の転写を活性化または抑制する調節因子である上記(1)または(2)に記載のポリヌクレオチド。
(4) 酵素遺伝子がCYP85A1、CYP90C1およびCYP90D1である上記(3)に記載のポリヌクレオチド。
(5) 上記(1)〜(4)のいずれかに記載のポリヌクレオチドを含有するプラスミド。
(6) 上記(1)〜(4)のいずれかに記載のポリヌクレオチドにより形質転換された植物。
(7) 形質転換によって、葉身、葉柄のいずれか1つ以上の形態が変化した上記(6)に記載の植物。
(8) マメ科またはアブラナ科の植物である上記(6)または(7)に記載の植物。
(9) 上記(1)〜(4)のいずれかに記載のポリヌクレオチドにより植物を形質転換し、該ポリヌクレオチドの発現によって、ブラシノステロイド生合成反応を触媒する酵素遺伝子の転写を活性化または抑制することにより、該植物の形態を変化させる方法。
(10) (a)または(b)のアミノ酸配列からなるタンパク質。
(a)配列表配列番号2のアミノ酸配列。
(b)ブラシノステロイド生合成反応の調節をするタンパク質のアミノ酸配列であって、配列表配列番号2のアミノ酸配列において、1若しくは数個のアミノ酸配列が欠失、置換若しくは付加されたアミノ酸配列。
That is, this invention relates to the polynucleotide, plant, etc. as described in following (1)-(10).
(1) A polynucleotide having the base sequence of SEQ ID NO: 1 in the sequence listing.
(2) The polynucleotide according to (1) above, wherein the polynucleotide is a gene encoding a regulator of brassinosteroid biosynthesis reaction.
(3) The polynucleotide according to (1) or (2) above, wherein the regulatory factor is a regulatory factor that activates or suppresses transcription of an enzyme gene that catalyzes the brassinosteroid biosynthesis reaction.
(4) The polynucleotide according to (3) above, wherein the enzyme genes are CYP85A1, CYP90C1 and CYP90D1.
(5) A plasmid containing the polynucleotide according to any one of (1) to (4) above.
(6) A plant transformed with the polynucleotide according to any one of (1) to (4) above.
(7) The plant according to (6), wherein one or more forms of leaf blade and petiole are changed by transformation.
(8) The plant according to the above (6) or (7), which is a leguminous or cruciferous plant.
(9) Transforming a plant with the polynucleotide according to any one of (1) to (4) above, and activating transcription of an enzyme gene that catalyzes brassinosteroid biosynthesis reaction by expression of the polynucleotide or A method of changing the form of the plant by inhibiting.
(10) A protein comprising the amino acid sequence of (a) or (b).
(A) The amino acid sequence of SEQ ID NO: 2 in the sequence listing.
(B) an amino acid sequence of a protein that regulates brassinosteroid biosynthesis reaction, wherein one or several amino acid sequences are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 2 in Sequence Listing.

本発明の調節因子の発現を制御することにより、ブラシノステロイドの生合成能を増強した有用植物を効率的に得ることが可能となる。また、観賞用等の目的によって、葉の形や大きさを変えた植物を得ることができる。
本発明によって得られた調節因子は、シロイヌナズナ以外の植物にも普遍的に存在している可能性があることから、様々な植物の形態形成の調節に利用できる可能性が高い。
By controlling the expression of the regulatory factor of the present invention, it becomes possible to efficiently obtain useful plants having enhanced brassinosteroid biosynthesis ability. Moreover, the plant which changed the shape and the magnitude | size of a leaf can be obtained for the objectives, such as ornamental use.
Since the regulatory factor obtained by the present invention may exist universally in plants other than Arabidopsis thaliana, there is a high possibility that it can be used to control the morphogenesis of various plants.

本発明のポリヌクレオチドとは、植物から抽出、単離した天然のポリヌクレオチドであってもよく、また、その塩基配列に従って、PCR等の公知の方法によって合成したものであってもよい。   The polynucleotide of the present invention may be a natural polynucleotide extracted and isolated from a plant, or may be synthesized by a known method such as PCR according to its base sequence.

本発明のブラシノステロイド生合成反応の調節因子とは、ブラシノステロイド生合成反応経路において、該反応を触媒する酵素遺伝子の転写活性を調節する因子のことをいう。
例えば、シロイヌナズナのブラシノステロイド生合成反応経路においては、本発明の調節因子が、酵素遺伝子CYP85A1、CYP90C1およびCYP90D1をコードする遺伝子の発現を調節する因子であることが好ましい。本発明の調節因子が発現を調節する遺伝子は植物によって異なるため、これらに限定されない。
The regulator of brassinosteroid biosynthesis reaction of the present invention refers to a factor that regulates the transcription activity of the enzyme gene that catalyzes the reaction in the brassinosteroid biosynthesis reaction pathway.
For example, in the Arabidopsis brassinosteroid biosynthesis reaction pathway, the regulator of the present invention is preferably a factor that regulates the expression of genes encoding the enzyme genes CYP85A1, CYP90C1, and CYP90D1. Since the gene whose expression is regulated by the regulatory factor of the present invention varies depending on the plant, it is not limited thereto.

本発明のプラスミドとは、プラスミドに組み込んだ遺伝子を増幅するために、大腸菌に形質転換するプラスミドと、組み込んだ遺伝子を発現するために、アグロバクテリウム(Agrobacterium) を通じて植物に形質転換するプラスミドのいずれも含まれる。形質転換する対象に応じて、公知のベクターを用いることができる。 Plasmid A of the present invention, in order to amplify the gene incorporated into a plasmid, to express the plasmid transformed into E. coli, a gene incorporated, any plasmid to be transformed into a plant via Agrobacterium (Agrobacterium) Is also included. A known vector can be used depending on the subject to be transformed.

本発明の植物の形態を変化させる方法とは、上記で作製したプラスミドをエレクトロポレーション法、パーティクルガン法等の公知の方法によってRhizobium radiobactor(旧名称Agrobacterium tumefaciens) EHA101株等に導入した後、得られたR. radiobactorの形質転換体を花序浸し法等の公知の方法によって植物に取り込むことにより行うことができる。 The method for changing the morphology of the plant of the present invention is obtained by introducing the plasmid prepared above into Rhizobium radiobactor (former name Agrobacterium tumefaciens ) EHA101 strain by a known method such as electroporation method or particle gun method. The obtained transformant of R. radiobactor can be incorporated into a plant by a known method such as an inflorescence dipping method.

本発明の形態が変化した植物とは、上記のような方法で形質転換された植物が、本発明のブラシノステロイド生合成反応の調節因子の発現によって、ブラシノステロイド生合成反応を触媒する酵素遺伝子の転写を活性化または抑制することにより、該植物の形態が変化した植物のことをいう。   The plant in which the form of the present invention has changed is an enzyme that catalyzes the brassinosteroid biosynthesis reaction by the expression of the regulator of the brassinosteroid biosynthesis reaction of the present invention by a plant transformed by the method as described above. A plant whose shape has been changed by activating or repressing gene transcription.

本発明のタンパク質とは、植物から抽出、単離した天然のタンパク質であってもよく、また、そのアミノ酸配列や、それをコードする塩基配列に従って、公知の方法によって合成したものであってもよい。
以下、本発明の詳細を実施例等で説明するが、本発明はこれらに限定されるものではない。
The protein of the present invention may be a natural protein extracted and isolated from a plant, or may be synthesized by a known method according to its amino acid sequence or base sequence encoding it. .
Hereinafter, the details of the present invention will be described with reference to examples and the like, but the present invention is not limited thereto.

シロイヌナズナBPR1cDNAのクローニング
培養土で栽培したシロイヌナズナのエコタイプColumbiaのロゼット葉からSV Total RNA Isolation System(プロメガ製)を用いてtotal RNAを抽出し、Superscript first-strand synthesis system for RT-PCR(インビトロジェン製)を用いてcDNAを得た。このcDNAを鋳型にして、At2g33990ox_U1(配列表配列番号3)およびAt2g33990ox_L1,(配列表配列番号4)のプライマーとKOD-plus(東洋紡製)を用いて94℃2分間の後、94℃15秒間次いで60℃30秒間さらに68℃1分間の保温を1サイクルとして10サイクルからなるPCR反応を行った。
Cloning of Arabidopsis BPR1 cDNA Total RNA was extracted from rosette leaves of Arabidopsis ecotype Columbia grown in culture using the SV Total RNA Isolation System (Promega) and Superscript first-strand synthesis system for RT-PCR (Invitrogen) Was used to obtain cDNA. Using this cDNA as a template, primers of At2g33990ox_U1 (SEQ ID NO: 3) and At2g33990ox_L1, (SEQ ID NO: 4) and KOD-plus (manufactured by Toyobo) were used at 94 ° C. for 2 minutes, then at 94 ° C. for 15 seconds. A PCR reaction consisting of 10 cycles was carried out with 60 ° C. for 30 seconds and 68 ° C. for 1 minute as one cycle.

さらに、Gatewayテクノロジー(インビトロジェン製)を用いてクローニングするために、得られた反応物を鋳型にして、attB1(配列表配列番号5)およびattB2(配列表配列番号6)のプライマーとKOD-plusを用いて94℃2分間の後、94℃15秒間次いで55℃30秒間さらに68℃1分間の保温を1サイクルとして20サイクルからなるPCR反応を行い、attBアダプター配列を付加した。   Furthermore, for cloning using Gateway technology (manufactured by Invitrogen), primers of attB1 (SEQ ID NO: 5) and attB2 (SEQ ID NO: 6) and KOD-plus were used with the obtained reaction product as a template. The PCR reaction was performed at 94 ° C. for 2 minutes, followed by 20 cycles of incubation at 94 ° C. for 15 seconds, then 55 ° C. for 30 seconds and then 68 ° C. for 1 minute, and an attB adapter sequence was added.

attBアダプター配列を付加したPCR産物をBPクロナーゼ(インビトロジェン製)によって、Gatewayテクノロジー対応のドナーベクターpDONR221(インビトロジェン製)にクローニングした。得られたプラスミド(pDONR221-AtBPR1とする)のインサート部分についてABI PRISM 3100 Genetic Analyzer(アプライドバイオシステムズ製)を用いてDNAシーケンスを行った。得られた配列を配列表配列番号1に示した。また、この塩基配列から該当すると思われるアミノ酸配列を配列番号2に示した。   The PCR product to which the attB adapter sequence was added was cloned into a donor vector pDONR221 (Invitrogen) compatible with Gateway technology using BP clonase (Invitrogen). DNA sequencing was performed on the insert part of the obtained plasmid (referred to as pDONR221-AtBPR1) using ABI PRISM 3100 Genetic Analyzer (manufactured by Applied Biosystems). The resulting sequence is shown in SEQ ID NO: 1 in the sequence listing. Moreover, the amino acid sequence which seems to correspond from this base sequence was shown to sequence number 2.

AtBPR1の大腸菌発現ベクターの構築
実施例1より調製したシロイヌナズナcDNAを鋳型にして、At2g33990pET21a_U1(配列表配列番号7)およびAt2g33990pET21a_L1(配列表配列番号8)のプライマーとTaKaRa Ex Taq(タカラバイオ製)を用いて、94℃3分間の後、94℃30秒間次いで60℃30秒間さらに72℃1分間の保温を1サイクルとして25サイクルからなるPCR反応を行った。
反応物を電気泳動し、約0.9 kbの増幅断片を切り出し、GENECLEAN II Kit(キューバイオジーン製)を用いて精製した。そのcDNA断片はDNA Ligation Kit <Mighty Mix>(タカラバイオ製)を用いて、pGEM-T Easy Vector(プロメガ製)にクローニングした。得られたプラスミド(以下、pGEM-AtBPR1とする)のインサート部分についてABI PRISM 3100 Genetic Analyzerを用いてDNAシーケンスを行い、配列が配列表配列番号1の塩基配列であることを確認した。
Construction of E. coli expression vector of AtBPR1 Using the Arabidopsis cDNA prepared from Example 1 as a template, primers of At2g33990pET21a_U1 (SEQ ID NO: 7) and At2g33990pET21a_L1 (SEQ ID NO: 8) and TaKaRa Ex Taq (manufactured by Takara Bio) Then, after 94 ° C. for 3 minutes, a PCR reaction comprising 25 cycles was carried out, with one cycle of 94 ° C. for 30 seconds, then 60 ° C. for 30 seconds, and 72 ° C. for 1 minute.
The reaction product was electrophoresed, an about 0.9 kb amplified fragment was excised, and purified using GENECLEAN II Kit (manufactured by Kew Biogene). The cDNA fragment was cloned into pGEM-T Easy Vector (Promega) using DNA Ligation Kit <Mighty Mix> (Takara Bio). The insert part of the obtained plasmid (hereinafter referred to as pGEM-AtBPR1) was subjected to DNA sequencing using ABI PRISM 3100 Genetic Analyzer, and the sequence was confirmed to be the base sequence of SEQ ID NO: 1 in the sequence listing.

pGEM-AtBPR1を制限酵素EcoRIで消化し、約0.9 kbの断片を切り出し、精製した。一方、大腸菌発現用ベクターpET21a(ノバジェン製)も制限酵素EcoRIで消化した。これらをDNA Ligation Kit <Mighty Mix>(タカラバイオ製)を用いてライゲーションし、AtBPR1の大腸菌発現ベクター(以下、pET21-AtBPR1とする)を得た。pET21-AtBPR1のインサート部分についてABI PRISM 3100 Genetic Analyzerを用いてDNAシーケンスを行い、配列が配列表配列番号1の塩基配列であることを再度確認した。大腸菌Rosetta (DE3)株(ノバジェン製)をpET21-AtBPR1で形質転換した。   pGEM-AtBPR1 was digested with the restriction enzyme EcoRI, and a fragment of about 0.9 kb was excised and purified. On the other hand, E. coli expression vector pET21a (Novagen) was also digested with restriction enzyme EcoRI. These were ligated using DNA Ligation Kit <Mighty Mix> (manufactured by Takara Bio) to obtain an AtBPR1 E. coli expression vector (hereinafter referred to as pET21-AtBPR1). The insert part of pET21-AtBPR1 was subjected to DNA sequencing using ABI PRISM 3100 Genetic Analyzer, and it was confirmed again that the sequence was the base sequence of SEQ ID NO: 1 in the sequence listing. E. coli Rosetta (DE3) strain (Novagen) was transformed with pET21-AtBPR1.

カルモジュリン結合アッセイ
1 mMのIPTGを添加した大腸菌Rosetta (DE3)株を28℃で4時間培養することでAtBPR1のT7融合タンパクを発現誘導した。培養終了後、遠心分離により集菌し、氷冷したリン酸緩衝液(pH7.3)で菌体を洗浄後、同緩衝液10mlに懸濁した。氷上において超音波処理により菌体を破砕した後、遠心分離し上清を回収し、0.45μmのメンブランフィルター(アドバンテック製)でろ過した。リン酸緩衝液で平衡化した100μlのカルモジュリンアガロースビーズ(シグマ製)と1mMのCaCl2または5mMのEGTAを添加した 500μlの粗タンパク質抽出液を混合し、4℃で一晩インキュベートした。
Calmodulin binding assay
E. coli Rosetta (DE3) strain supplemented with 1 mM IPTG was cultured at 28 ° C. for 4 hours to induce expression of AtBPR1 T7 fusion protein. After completion of the culture, the cells were collected by centrifugation, washed with ice-cold phosphate buffer (pH 7.3), and suspended in 10 ml of the same buffer. The cells were disrupted by sonication on ice, centrifuged, and the supernatant was collected and filtered through a 0.45 μm membrane filter (Advantech). 100 μl of calmodulin agarose beads (manufactured by Sigma) equilibrated with phosphate buffer and 500 μl of crude protein extract supplemented with 1 mM CaCl 2 or 5 mM EGTA were mixed and incubated overnight at 4 ° C.

遠心分離してカルモジュリンアガロースビーズを回収後、500μlのリン酸緩衝液で4回、最後に100μlで洗浄した。洗浄後のカルモジュリンアガロースビーズは50μlの4×SDSサンプル処理液(ノバジェン製)に懸濁し、100℃で3分間加熱して結合タンパクを溶出した。次にLaemmliの方法に従い、粗タンパク質抽出液、カルモジュリンアガロースビーズ未結合画分、最終洗浄画分、結合画分を、10%ポリアクリルアミドゲルを用いたSDS-PAGEによって分離した。   After collecting the calmodulin agarose beads by centrifugation, the beads were washed 4 times with 500 μl phosphate buffer and finally with 100 μl. The washed calmodulin agarose beads were suspended in 50 μl of 4 × SDS sample treatment solution (Novagen) and heated at 100 ° C. for 3 minutes to elute the bound protein. Next, according to the Laemmli method, the crude protein extract, the calmodulin agarose bead unbound fraction, the final washed fraction, and the bound fraction were separated by SDS-PAGE using a 10% polyacrylamide gel.

電気泳動後、ポリアクリルアミドゲルからタンパク質を転写緩衝液(15.6 mM Tris, 120 mM glycine, 20% methanol, 0.1% SDS)中でセミドライ型の転写装置(バイオ・ラッド製)を用いて20 Vで30分間の条件でPVDF膜(バイオ・ラッド製)に転写した。転写後のPVDF膜をブロッティング溶液に浸し、室温で一晩振とうした。その後、TBST緩衝液で10000倍に希釈したアルカリホスファターゼ標識T7タグ抗体(T7・Tag AP Western Blot Kit, ノバジェン製)の溶液に浸して室温で30分間穏やかに振とうした。次いで転写膜をTBST溶液で2分間5回の洗浄後、アルカリホスファターゼの基質であるCDP-Starで処理し、化学発光検出した。その結果、図2に示すように、T7タグ融合タンパク質として大腸菌で発現させたAtBPR1はin vitroでカルシウムイオンの存在下でカルモジュリンと優先的に結合することがわかった。   After electrophoresis, the protein from the polyacrylamide gel is transferred to a buffer solution (15.6 mM Tris, 120 mM glycine, 20% methanol, 0.1% SDS) using a semi-dry type transfer device (manufactured by Bio-Rad) at 30 V at 20 V. Transferred to a PVDF membrane (manufactured by Bio-Rad) under the condition of minutes. The transferred PVDF membrane was immersed in a blotting solution and shaken overnight at room temperature. Thereafter, the sample was immersed in a solution of alkaline phosphatase-labeled T7 tag antibody (T7 • Tag AP Western Blot Kit, manufactured by Novagen) diluted 10,000 times with TBST buffer and gently shaken at room temperature for 30 minutes. Next, the transfer membrane was washed 5 times with TBST solution for 2 minutes and then treated with CDP-Star, which is a substrate for alkaline phosphatase, to detect chemiluminescence. As a result, as shown in FIG. 2, it was found that AtBPR1 expressed in E. coli as a T7 tag fusion protein preferentially binds to calmodulin in the presence of calcium ions in vitro.

AtBPR1の植物発現ベクターの構築
LRクロナーゼ(インビトロジェン製)を用いて、実施例1で作製したpDONR221-AtBPR1のAtBPR1 cDNA部位をデスティネーションベクターpGWB2に組み換えた。得られたAtBPR1植物発現ベクターをpGWB2-AtBPR1とした。
Construction of plant expression vector of AtBPR1
Using LR clonase (Invitrogen), the AtBPR1 cDNA site of pDONR221-AtBPR1 prepared in Example 1 was recombined with the destination vector pGWB2. The obtained AtBPR1 plant expression vector was designated as pGWB2-AtBPR1.

シロイヌナズナの形質転換
実施例4で作製したpGWB2-AtBPR1をRhizobium radiobactor(旧名称Agrobacterium tumefaciens)EHA101株にエレクトロポレーション法で導入した。形質転換R. radiobactor EHA101株はハイグロマイシン (100 mg/l)とカナマイシン (50 mg/l)を含むLB寒天培地で28℃2日間培養した。生じたコロニーをハイグロマイシン (100 mg/l)とカナマイシン (50 mg/l)を含むLB液体培地で28℃一晩の前培養をした後、28℃で一晩の本培養を行った。シロイヌナズナの形質転換は花序浸し法 (参考文献1参照) によって行った。得られたT1種子を表面殺菌し、ハイグロマイシン (40 mg/l)とカルベニシリン (400 mg/l)を含むMS培地に播種した。T2種子を回収し、ホモ個体を選抜した。
[参考文献1]
Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
Transformation of Arabidopsis thaliana The pGWB2-AtBPR1 prepared in Example 4 was introduced into Rhizobium radiobactor (former name Agrobacterium tumefaciens) EHA101 strain by electroporation. The transformed R. radiobactor EHA101 strain was cultured at 28 ° C. for 2 days in an LB agar medium containing hygromycin (100 mg / l) and kanamycin (50 mg / l). The resulting colonies were precultured overnight at 28 ° C. in an LB liquid medium containing hygromycin (100 mg / l) and kanamycin (50 mg / l), followed by main culture at 28 ° C. overnight. Transformation of Arabidopsis thaliana was performed by the inflorescence dipping method (see Reference 1). The obtained T1 seeds were surface sterilized and sown in an MS medium containing hygromycin (40 mg / l) and carbenicillin (400 mg / l). T2 seeds were collected and homozygous individuals were selected.
[Reference 1]
Clough, SJ and Bent, AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.Plant J. 16: 735-743.

AtBPR1遺伝子破壊変異体の単離
The Salk Institute Genome Analysis Laboratory (SIGnAL)のデータベース(http://signal.salk.edu/tabout.html)からAtBPR1遺伝子のプロモーター領域にT-DNAが挿入した個体を見出した。The Arabidopsis Biological Resource Center (ABRC)からSALK_041348ラインを取り寄せ、At2g33990RT_U3(配列表配列番号9)およびAt2g33990RT_L3(配列表配列番号10)のプライマーを用いたRT-PCRによってAtBPR1遺伝子の発現が抑制されていることを確認した。
Isolation of AtBPR1 gene disruption mutant
From the database of The Salk Institute Genome Analysis Laboratory (SIGnAL) (http://signal.salk.edu/tabout.html), an individual in which T-DNA was inserted into the promoter region of AtBPR1 gene was found. The SALK_041348 line was ordered from The Arabidopsis Biological Resource Center (ABRC), and the expression of AtBPR1 gene was suppressed by RT-PCR using At2g33990RT_U3 (SEQ ID NO: 9) and At2g33990RT_L3 (SEQ ID NO: 10) primers. It was confirmed.

AtBPR1過剰発現および破壊変異体の表現型解析
MS培地に野生型、GUS遺伝子発現植物体、実施例5で作製したAtBPR1過剰発現変異体、実施例6で単離したAtBPR1破壊変異体を播種した。発芽22日後の幼植物体を比較したところ、図3に示すように、AtBPR1の過剰発現変異体は葉柄が伸長し、葉身が縦方向へ伸長しており、対照的にAtBPR1の破壊変異体は葉柄が短縮し、葉身が縦方向に短縮していた。これは、非特許文献9に示されたCYP90C1(ROT3)変異体と類似した表現型であった。
Phenotypic analysis of AtBPR1 overexpression and disruption mutants
The wild type, GUS gene-expressing plant, the AtBPR1 overexpression mutant prepared in Example 5, and the AtBPR1 disruption mutant isolated in Example 6 were seeded on MS medium. Compared with the seedlings 22 days after germination, as shown in Fig. 3, the overexpressing mutant of AtBPR1 has an extended petiole and a longitudinally extending leaf blade, and in contrast, a mutant mutant of AtBPR1. The petioles were shortened and the blades were shortened vertically. This was a phenotype similar to the CYP90C1 (ROT3) mutant shown in Non-Patent Document 9.

ブラシノライド処理によるAtBPR1破壊変異の相補
野生型と実施例6で単離したAtBPR1破壊変異体を100 nMのブラシノライド(和光純薬工業製)および対照としてエタノールを添加したMS培地に播種した。図4に示すように、ブラシノライドの添加によって、AtBPR1破壊変異体で見られる発芽遅延が解消された。また、図5に示すように、AtBPR1破壊変異体で見られる葉身と葉柄の短縮はブラシノライドの添加で回復した。したがって、AtBPR1がブラシノステロイドの生合成に関わることが示唆された。
Complementation of AtBPR1 disruption mutation by brassinolide treatment Wild type and AtBPR1 disruption mutant isolated in Example 6 were seeded in MS medium supplemented with 100 nM brassinolide (manufactured by Wako Pure Chemical Industries) and ethanol as a control. . As shown in FIG. 4, the addition of brassinolide eliminated the germination delay seen in the AtBPR1 disruption mutant. Moreover, as shown in FIG. 5, the shortening of leaf blades and petiole seen in the AtBPR1 disruption mutant was restored by the addition of brassinolide. Therefore, it was suggested that AtBPR1 is involved in the biosynthesis of brassinosteroids.

ブラシノステロイド生合成酵素遺伝子の発現解析
発芽22日後の野生型、GUS遺伝子発現植物体、実施例5で作製したAtBPR1過剰発現変異体、実施例6で単離したAtBPR1破壊変異体から実施例1と同様の方法でcDNAを調製した。RT-PCRにはDET2, CYP90B1(DWF4), CYP90A1(CPD), CYP72B1(BAS1)、CYP90C1 (ROT3)、CYP90D1、CYP85A1, CYP85A2の各ブラシノステロイド生合成酵素遺伝子について、次の配列表配列番号からなる特異的プライマーを使用した。
DET2のプライマー: DET2_U1(配列番号11)およびDET2_L1(配列番号12)
CYP90B1(DWF4)のプライマー: CYP90B1_U1(配列番号13)およびCYP90B1_L1(配列番号14)
CYP90A1(CPD)のプライマー:CYP90A1_U1(配列番号15)およびCYP90A1_L1(配列番号16)
CYP90C1(ROT3)のプライマー:CYP90C1_U1(配列番号17)およびCYP90C1_L1(配列番号18)
CYP90D1のプライマー:CYP90D1_U1(配列番号19)およびCYP90D1_L1(配列番号20)
CYP85A1のプライマー:CYP85A1_U1(配列番号21)およびCYP85A1_L1(配列番号22)
CYP85A2のプライマー:CYP85A2_U1(配列番号23)およびCYP85A2_L1(配列番号24)
CYP72B1(BAS1)のプライマー:CYP72B1_U1(配列番号25)およびCYP72B1_L1(配列番号26)
Expression analysis of brassinosteroid biosynthetic enzyme gene Example 22 from wild-type, GUS gene-expressing plant 22 days after germination, AtBPR1 overexpression mutant prepared in Example 5, AtBPR1 disruption mutant isolated in Example 6 CDNA was prepared in the same manner as above. RT-PCR uses DET2, CYP90B1 (DWF4), CYP90A1 (CPD), CYP72B1 (BAS1), CYP90C1 (ROT3), CYP90D1, CYP85A1, and CYP85A2 brassinosteroid biosynthetic enzyme genes from the sequence numbers shown in the following sequence listing. Specific primers were used.
DET2 primers: DET2_U1 (SEQ ID NO: 11) and DET2_L1 (SEQ ID NO: 12)
CYP90B1 (DWF4) primers: CYP90B1_U1 (SEQ ID NO: 13) and CYP90B1_L1 (SEQ ID NO: 14)
CYP90A1 (CPD) primers: CYP90A1_U1 (SEQ ID NO: 15) and CYP90A1_L1 (SEQ ID NO: 16)
CYP90C1 (ROT3) primers: CYP90C1_U1 (SEQ ID NO: 17) and CYP90C1_L1 (SEQ ID NO: 18)
CYP90D1 primers: CYP90D1_U1 (SEQ ID NO: 19) and CYP90D1_L1 (SEQ ID NO: 20)
CYP85A1 primers: CYP85A1_U1 (SEQ ID NO: 21) and CYP85A1_L1 (SEQ ID NO: 22)
CYP85A2 primers: CYP85A2_U1 (SEQ ID NO: 23) and CYP85A2_L1 (SEQ ID NO: 24)
CYP72B1 (BAS1) primers: CYP72B1_U1 (SEQ ID NO: 25) and CYP72B1_L1 (SEQ ID NO: 26)

TaKaRa Ex Taqを用いて、94℃3分間の後、94℃30秒間次いで55-62℃30秒間さらに72℃1分間の保温を1サイクルとしてPCR反応を行った。PCRサイクルは各々の遺伝子によって最適化した。内部標準として、コントロールのプライマーAtUBQ10_U1(配列表配列番号27)およびAtUBQ10_L1(配列表配列番号28)を使用した。その結果、図6に示すように、AtBPR1がブラシノステロイド生合成の後期反応に関わる酵素であるCYP90C1(ROT3)とCYP85A1およびCYP90C1と協調して機能するCYP90D1をコードする遺伝子の転写を制御していることが明らかとなった。   Using TaKaRa Ex Taq, PCR reaction was performed with 94 ° C. for 3 minutes, 94 ° C. for 30 seconds, then 55-62 ° C. for 30 seconds and further 72 ° C. for 1 minute for one cycle. The PCR cycle was optimized for each gene. As internal standards, control primers AtUBQ10_U1 (SEQ ID NO: 27) and AtUBQ10_L1 (SEQ ID NO: 28) were used. As a result, as shown in FIG. 6, AtBPR1 regulates the transcription of CYP90C1 (ROT3), an enzyme involved in the late reaction of brassinosteroid biosynthesis, and CYP90D1, which functions in cooperation with CYP85A1 and CYP90C1. It became clear that

AtBPR1の器官別発現解析
シロイヌナズナのエコタイプColumbiaの花、長角果、茎、二次葉、ロゼット葉、根から実施例1と同様の方法でcDNAを調製した。このcDNAを鋳型にして、At2g33990RT_U1(配列表配列番号29)およびAt2g33990RT_L1(配列表配列番号30)のプライマーとTaKaRa Ex Taqを用いて94℃3分間の後、94℃30秒間次いで63℃30秒間さらに72℃1分間の保温を1サイクルとして28サイクルからなるPCR反応を行った。その結果、図7に示すように、AtBPR1は調べた全器官で発現していた。
Expression analysis of AtBPR1 by organ cDNA was prepared from Arabidopsis ecotype Columbia flowers, long-horned fruit, stem, secondary leaf, rosette leaf, and root in the same manner as in Example 1. Using this cDNA as a template, primers of At2g33990RT_U1 (SEQ ID NO: 29) and At2g33990RT_L1 (SEQ ID NO: 30) and TaKaRa Ex Taq were used at 94 ° C. for 3 minutes, then at 94 ° C. for 30 seconds and then at 63 ° C. for 30 seconds. A PCR reaction consisting of 28 cycles was carried out with 1 minute incubation at 72 ° C as one cycle. As a result, as shown in FIG. 7, AtBPR1 was expressed in all organs examined.

以上より、BPR1は、ブラシノステロイド生合成の後期反応を触媒する酵素(CYP90C1、CYP85A1)の遺伝子発現を特異的に制御するブラシノステロイド生合成の調節因子であることが示唆された。これを用いることにより、植物の形態形成において、例えば葉の形状を変えることが可能となる。
そして、本発明によって、BPR1以外の他のカルモジュリン結合蛋白質もブラシノステロイド生合成の調節に関与している可能性が示唆された。
These results suggest that BPR1 is a regulator of brassinosteroid biosynthesis that specifically regulates gene expression of enzymes (CYP90C1, CYP85A1) that catalyze late reactions of brassinosteroid biosynthesis. By using this, in the morphogenesis of plants, for example, the shape of leaves can be changed.
The present invention suggested that calmodulin-binding proteins other than BPR1 may be involved in the regulation of brassinosteroid biosynthesis.

本発明の調節因子の発現を制御することにより、ブラシノステロイドの生合成能を増強した有用植物を効率的に得ることが可能となる。また、観賞用等の目的によって、葉の形や大きさを変えた植物を得ることができる。   By controlling the expression of the regulatory factor of the present invention, it becomes possible to efficiently obtain useful plants having enhanced brassinosteroid biosynthesis ability. Moreover, the plant which changed the shape and the magnitude | size of a leaf can be obtained for the objectives, such as ornamental use.

シロイヌナズナのブラシノステロイド生合成経路を示した図である。It is the figure which showed the brassinosteroid biosynthesis pathway of Arabidopsis thaliana. カルモジュリン結合アッセイの結果を示した図である(実施例3)。It is the figure which showed the result of the calmodulin binding assay (Example 3). AtBPR1過剰発現および破壊変異体の表現型解析の結果を示した図である(実施例4)。FIG. 6 shows the results of phenotypic analysis of AtBPR1 overexpression and disruption mutants (Example 4). ブラシノライド処理によるAtBPR1破壊変異の相補の結果を示した図である(実施例8)。It is the figure which showed the result of complementation of the AtBPR1 destruction | mutation mutation by a brassinolide process (Example 8). ブラシノライド処理によるAtBPR1破壊変異の相補の結果を示した図である(実施例8)。It is the figure which showed the result of complementation of the AtBPR1 destruction | mutation mutation by a brassinolide process (Example 8). ブラシノステロイド生合成酵素遺伝子の発現解析の結果を示した図である(実施例9)。It is the figure which showed the result of the expression analysis of a brassinosteroid biosynthesis enzyme gene (Example 9). AtBPR1の器官別発現解析の結果を示した図である(実施例10)。It is the figure which showed the result of the expression analysis according to organ of AtBPR1 (Example 10).

Claims (5)

配列表配列番号1の塩基配列を有するポリヌクレオチドにより形質転換されたシロイヌナズナ。 Arabidopsis transformed with a polynucleotide having the nucleotide sequence of SEQ ID NO: 1 in the sequence listing. 配列表配列番号1の塩基配列を有するポリヌクレオチドを含有するプラスミドにより形質転換された請求項1に記載のシロイヌナズナ。 The Arabidopsis thaliana according to claim 1, transformed by a plasmid containing a polynucleotide having the nucleotide sequence of SEQ ID NO: 1 in the sequence listing. 形質転換によって、葉身、葉柄のいずれか1つ以上の形態が変化した請求項1または2に記載のシロイヌナズナ。 The Arabidopsis thaliana according to claim 1 or 2, wherein one or more forms of leaf blade and petiole are changed by transformation. 配列表配列番号1の塩基配列を有するポリヌクレオチドによりシロイヌナズナを形質転換し、該ポリヌクレオチドの発現によって、ブラシノステロイド生合成反応を触媒する酵素遺伝子の転写を活性化または抑制することにより、シロイヌナズナの形態を変化させる方法。 By transforming Arabidopsis thaliana with a polynucleotide having the base sequence of SEQ ID NO: 1 and activating or repressing transcription of an enzyme gene that catalyzes the brassinosteroid biosynthesis reaction by expression of the polynucleotide, A method of changing form. 配列表配列番号1の塩基配列を有するポリヌクレオチドを含有するプラスミドによりシロイヌナズナを形質転換する、請求項4に記載の方法。

The method according to claim 4, wherein Arabidopsis thaliana is transformed with a plasmid containing a polynucleotide having the nucleotide sequence of SEQ ID NO: 1 in the sequence listing.

JP2006266334A 2006-09-29 2006-09-29 Calmodulin-binding protein involved in the regulation of brassinosteroid biosynthesis Expired - Fee Related JP5229603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266334A JP5229603B2 (en) 2006-09-29 2006-09-29 Calmodulin-binding protein involved in the regulation of brassinosteroid biosynthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266334A JP5229603B2 (en) 2006-09-29 2006-09-29 Calmodulin-binding protein involved in the regulation of brassinosteroid biosynthesis

Publications (2)

Publication Number Publication Date
JP2008079570A JP2008079570A (en) 2008-04-10
JP5229603B2 true JP5229603B2 (en) 2013-07-03

Family

ID=39351048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266334A Expired - Fee Related JP5229603B2 (en) 2006-09-29 2006-09-29 Calmodulin-binding protein involved in the regulation of brassinosteroid biosynthesis

Country Status (1)

Country Link
JP (1) JP5229603B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736802B (en) * 2020-09-16 2023-11-24 青岛农业大学 Method for improving yield of poplar wood

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040216190A1 (en) * 2003-04-28 2004-10-28 Kovalic David K. Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
US20060150283A1 (en) * 2004-02-13 2006-07-06 Nickolai Alexandrov Sequence-determined DNA fragments and corresponding polypeptides encoded thereby

Also Published As

Publication number Publication date
JP2008079570A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
Mitchum et al. Distinct and overlapping roles of two gibberellin 3‐oxidases in Arabidopsis development
Hinz et al. Arabidopsis RAP2. 2: an ethylene response transcription factor that is important for hypoxia survival
Brugiere et al. Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress
Murphy et al. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance
US7371927B2 (en) Methods for modulating plant growth and biomass
AU2002329755B2 (en) Method for increasing stress tolerance in plants
Zhou et al. Effects of co-expressing the plant CDK inhibitor ICK1 and D-type cyclin genes on plant growth, cell size and ploidy in Arabidopsis thaliana
JPH09503389A (en) Transgenic plants showing increased nitrogen assimilation
Boycheva et al. Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis
Sanagi et al. Sugar-responsive transcription factor bZIP3 affects leaf shape in Arabidopsis plants
EP2044201B1 (en) A mutant histidine kinase that confers spontaneous nodulation in plants
Song et al. Overexpression of ZmIPT2 gene delays leaf senescence and improves grain yield in maize
Ryu et al. Modulations of AtGSTF10 expression induce stress tolerance and BAK1-mediated cell death
US10487337B2 (en) Methods for monocot plant improvement
Yin et al. Cinnamoyl coA: NADP oxidoreductase-like 1 regulates abscisic acid response by modulating phaseic acid homeostasis in Arabidopsis thaliana
Li et al. The roles of the atDjA2 and atDjA3 molecular chaperone proteins in improving thermotolerance of Arabidopsis thaliana seedlings
Li et al. Overexpression of TCP transcription factor OsPCF7 improves agronomic trait in rice
Ai et al. PtFCA from precocious trifoliate orange is regulated by alternative splicing and affects flowering time and root development in transgenic Arabidopsis
Kwak et al. Diverse roles of glycine-rich RNA-binding protein 7 in the response of camelina (Camelina sativa) to abiotic stress
JP5229603B2 (en) Calmodulin-binding protein involved in the regulation of brassinosteroid biosynthesis
KR102003114B1 (en) Method for improving the resistance to drought stress using pepper protein phosphatase CaAIPP1 in plants
Wilmowicz et al. The role of PnACO1 in light-and IAA-regulated flower inhibition in Pharbitis nil
JPWO2008029942A1 (en) Utilization of active cytokinin synthase gene
Mei et al. Molecular and functional characterization of ZmNF-YC14 in transgenic Arabidopsis
Wu et al. Heterologous expression of Populus euphratica CPD (PeCPD) can repair the phenotype abnormity caused by inactivated AtCPD through restoring brassinosteroids biosynthesis in Arabidopsis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees