JP5229247B2 - Steel pipe pile construction method and steel pipe pile foundation - Google Patents

Steel pipe pile construction method and steel pipe pile foundation Download PDF

Info

Publication number
JP5229247B2
JP5229247B2 JP2010021995A JP2010021995A JP5229247B2 JP 5229247 B2 JP5229247 B2 JP 5229247B2 JP 2010021995 A JP2010021995 A JP 2010021995A JP 2010021995 A JP2010021995 A JP 2010021995A JP 5229247 B2 JP5229247 B2 JP 5229247B2
Authority
JP
Japan
Prior art keywords
steel pipe
pipe pile
press
fitting
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010021995A
Other languages
Japanese (ja)
Other versions
JP2011157780A (en
Inventor
真治 妙中
吉郎 石濱
優任 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010021995A priority Critical patent/JP5229247B2/en
Publication of JP2011157780A publication Critical patent/JP2011157780A/en
Application granted granted Critical
Publication of JP5229247B2 publication Critical patent/JP5229247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼管杭の施工方法および鋼管杭基礎に関し、詳しくは、回転圧入工法によって鋼管杭を地盤に貫入する際に利用可能な鋼管杭の施工方法、および内面に螺旋状の突起を有した鋼管杭を前記施工方法によって地盤に貫入して構築される鋼管杭基礎に関する。 The present invention relates to construction methods and the steel pipe Kuimoto foundation of the steel pipe pile, particularly, a method and construction of the available steel pipe pile when penetrating the steel pipe pile in the ground by the rotary press fitting method, and the helical projection on the inner surface concerning the steel pipe pile having a steel pipe Kuimoto foundation that is built to penetrate the ground by the construction method.

従来、先端ビットや螺旋状の羽根を有した鋼管を回転させつつ地盤に貫入することで構築される鋼管杭が知られている(例えば、特許文献1〜4参照)。
特許文献1に記載された鋼管杭では、鋼管の内周面および外周面にそれぞれ螺旋状の突起が形成され、外周面の突起が地盤にねじ込まれて掘進するとともに、外周面の突起と逆旋回に形成された内周面の突起で鋼管内部の土砂を締め固めることで、管内土の閉塞効果を高めて先端支持力の向上が図られるようになっている。
また、特許文献2に記載された鋼管杭は、先端外周面の羽根の掘進力によって地盤に貫入されるとともに、鋼管先端近傍の内周面に形成された円環状の突起(開孔リブ)で管内土を閉塞し、鋼管先端部に支持底部を形成することで、回転トルクを軽減しつつ先端支持力の向上が図られるようになっている。
Conventionally, steel pipe piles constructed by penetrating into the ground while rotating a steel pipe having a tip bit or a spiral blade are known (for example, see Patent Documents 1 to 4).
In the steel pipe pile described in Patent Document 1, spiral protrusions are formed on the inner peripheral surface and the outer peripheral surface of the steel pipe, respectively, and the protrusions on the outer peripheral surface are screwed into the ground to dig, and reversely swivel with the protrusions on the outer peripheral surface. By tightening the earth and sand inside the steel pipe with the projections on the inner peripheral surface formed in the above, the blocking effect of the pipe inner soil is enhanced and the tip support force is improved.
Moreover, the steel pipe pile described in Patent Document 2 is penetrated into the ground by the digging force of the blade on the outer peripheral surface of the tip, and is formed by an annular protrusion (opening rib) formed on the inner peripheral surface near the tip of the steel pipe. By closing the pipe soil and forming a support bottom at the tip of the steel pipe, the tip support force can be improved while reducing rotational torque.

一方、特許文献3に記載された鋼管杭は、先端外周面の羽根の掘進力によって地盤に貫入され、この羽根と同じ旋回方向で螺旋状に形成された鋼管内周面の突起が鋼管内部上方に向かって土砂を取り込むことで、管内土の閉塞を防止して回転トルクを軽減しつつ直進性の向上が図られるようになっている。
また、特許文献4に記載された鋼管杭は、回転圧入により先端ビットで地盤を掘削することで地盤に貫入されるようになっている。そして、中間層の掘削時には、土砂を先端ビットで外側へ押し出すことで、管内土の閉塞を防止して回転トルクを軽減し、支持層到達後に逆回転させて鋼管内部に土砂を取り込むことで、管内土の閉塞効果を高めて先端支持力の向上が図られるようになっている。
On the other hand, the steel pipe pile described in Patent Document 3 is penetrated into the ground by the digging force of the blades on the outer peripheral surface of the tip, and the protrusion on the inner peripheral surface of the steel pipe formed in a spiral shape in the same turning direction as the blades By taking in the earth and sand, the straight soil is improved while preventing the soil in the pipe from being blocked and reducing the rotational torque.
Moreover, the steel pipe pile described in patent document 4 is penetrated into the ground by excavating the ground with a tip bit by rotational press-fitting. And at the time of excavation of the intermediate layer, by pushing out the soil with the tip bit to the outside, blockage of the soil in the pipe is prevented, the rotational torque is reduced, and after reaching the support layer, the soil is taken into the steel pipe by reverse rotation, The blocking effect of the soil in the pipe is enhanced to improve the tip support force.

特開平4−85415号公報Japanese Patent Laid-Open No. 4-85415 特開平8−226124号公報JP-A-8-226124 特開2005−299192号公報JP 2005-299192 A 特開2009−249893号公報JP 2009-249893 A

ところで、特許文献1、2に記載された鋼管杭のように、鋼管内部に土を取り込んで閉塞させることは、先端支持力向上の面では好ましいものの、施工時の圧入抵抗が増大することにより施工性が低下してしまうという不都合が生じる。
このような不都合に対して特許文献3に記載された鋼管杭のように、鋼管内周面の突起が羽根と同じ旋回方向で形成され、鋼管内部上方に向かって土を取り込むように構成されているものの、鋼管内周面と管内土との摩擦抵抗によって管内土が徐々に閉塞することから、貫入に伴って圧入抵抗が大きくなってしまう。
また、特許文献4に記載された鋼管杭のように、先端ビットの角度を調整することで、鋼管内部に流入する土砂量を調整することはできるものの、貫入に伴って増加する土砂量が一定量を超えると管内土の閉塞現象が発生することが考えられ、上述のような不都合を十分に解消することは困難である。
By the way, as in the steel pipe piles described in Patent Documents 1 and 2, it is preferable to take in the soil inside the steel pipe and close it, but it is preferable in terms of improving the tip support force, but the press-fit resistance during construction increases. Inconvenience that the performance is lowered.
For such inconvenience, as in the steel pipe pile described in Patent Document 3, the protrusion on the inner peripheral surface of the steel pipe is formed in the same turning direction as the blade, and is configured to take in the soil upward inside the steel pipe. However, since the pipe soil is gradually blocked by the frictional resistance between the inner peripheral surface of the steel pipe and the pipe inner soil, the press-fitting resistance increases with penetration.
Moreover, although the amount of earth and sand which flows into the inside of a steel pipe can be adjusted by adjusting the angle of a tip bit like the steel pipe pile described in patent document 4, the amount of earth and sand which increases with penetration is constant. If the amount is exceeded, a clogging phenomenon of the soil in the pipe may occur, and it is difficult to sufficiently eliminate the above disadvantages.

本発明の目的は、回転圧入に伴う管内土の閉塞現象を調整することで圧入抵抗の増加を抑制することができ、施工性を向上させることができる鋼管杭の施工方法および鋼管杭基礎を提供することにある。 An object of the present invention, it is possible to suppress an increase in the press-in resistance by adjusting the blockage in the tube soil caused by rotation press fitting, the construction method and steel Kuimoto foundation of steel pipe pile that can improve the workability It is to provide.

本発明は、管内土の閉塞現象の発生メカニズムに着目することで、当該閉塞現象を調整して圧入抵抗の増加を抑制しようとするものである。
具体的には、図8に示すように、鋼管Pの内部に流入する土砂と鋼管内周面P1には、施工時において摩擦力F1,F2が発現している。施工時(つまり下向きに鋼管Pが移動する場合)においては、管内土S1は下向きの摩擦力F1を受けている。この下向きの摩擦力F1は鋼管内周面P1付近の土砂に下向きの圧縮応力C1となり、管内土S1の下方へと伝達される。一方、圧縮応力C1を受ける管内土S1の下方向に位置する管内土S2は、下向きの圧縮応力C2により、その土圧レベルが上昇し、作用として管内に作用する水平方向の土圧H3を増加させることとなる。このように摩擦力F1から、圧縮応力C1,C2の増加、鋼管内周面P1に作用する水平土圧H3の増加は、管内土S1,S2の上部から下方へと順次、伝達されることで管内における摩擦力F3を急激に増加させ、この結果として管内土S2の下向きの圧縮応力C3が地盤の破壊強度を超えるまで増強された結果、閉塞現象が発生する。
The present invention is intended to suppress the increase in press-fit resistance by adjusting the blockage phenomenon by paying attention to the generation mechanism of the blockage phenomenon of the pipe soil.
Specifically, as shown in FIG. 8, friction forces F <b> 1 and F <b> 2 are expressed in the earth and sand flowing into the steel pipe P and the inner peripheral surface P <b> 1 of the steel pipe at the time of construction. During construction (that is, when the steel pipe P moves downward), the pipe soil S1 receives a downward frictional force F1. This downward frictional force F1 becomes a downward compressive stress C1 on the earth and sand in the vicinity of the inner peripheral surface P1 of the steel pipe, and is transmitted downward of the pipe inner soil S1. On the other hand, in the pipe soil S2 that is positioned below the pipe soil S1 that receives the compressive stress C1, the earth pressure level rises due to the downward compressive stress C2, and the earth pressure H3 acting in the pipe increases as an action. Will be allowed to. As described above, the increase in the compressive stresses C1 and C2 and the increase in the horizontal earth pressure H3 acting on the inner peripheral surface P1 of the steel pipe are sequentially transmitted from the upper part to the lower part of the pipe inner soils S1 and S2 from the friction force F1. As a result, the frictional force F3 in the pipe is rapidly increased, and as a result, the downward compressive stress C3 in the pipe soil S2 is increased until it exceeds the fracture strength of the ground, resulting in a blockage phenomenon.

以上のような閉塞現象のメカニズムを基に鋭意検討を進めた結果、閉塞現象を引き起こす管内の摩擦力F1〜F3や、それによる鉛直方向の土圧応力C1〜C3の重ね合わせ現象を抑制することで、あるいは助長することで、管内土S1,S2の閉塞が調整可能となることが明らかになった。本発明は、摩擦力F1〜F3に応じて増強される下向きの圧縮応力C1〜C3を調整することで、管内土S1,S2の閉塞を調整して圧入抵抗の増加を抑制するという作用効果を得るために以下の構成を備える。   As a result of intensive studies based on the mechanism of the blockage phenomenon as described above, the superposition phenomenon of the frictional forces F1 to F3 in the pipe that cause the blockage phenomenon and the earth pressure stresses C1 to C3 in the vertical direction is suppressed. In addition, or by promoting it, it became clear that the blockage of the pipe soils S1, S2 can be adjusted. The present invention adjusts the downward compressive stresses C1 to C3 that are increased according to the frictional forces F1 to F3, thereby adjusting the blockage of the pipe soils S1 and S2 and suppressing an increase in press-fit resistance. In order to obtain, the following configuration is provided.

本発明の鋼管杭の施工方法は、内面に螺旋状の突起を有する鋼管杭を地盤に回転圧入する鋼管杭の施工方法であって、前記螺旋状の突起と鋼管軸とがなす下向きの傾斜角度と、回転圧入時の回転変位量と鉛直変位量とで構成する施工角度とが同一象限となるように、前記鋼管杭の回転方向を設定し、前記突起の傾斜角度よりも前記施工角度が大きくなるように、前記鋼管杭の回転速度および圧入速度の少なくとも一方を調節しつつ回転圧入する第1回転圧入工程を備えることを特徴とする。   The steel pipe pile construction method of the present invention is a steel pipe pile construction method in which a steel pipe pile having a spiral projection on the inner surface is rotationally press-fitted into the ground, and the downward inclination angle formed by the spiral projection and the steel pipe shaft. And the rotation direction of the steel pipe pile is set so that the construction angle formed by the rotational displacement amount and the vertical displacement amount at the time of rotary press-fitting is in the same quadrant, and the construction angle is larger than the inclination angle of the protrusion. As such, it comprises a first rotary press-fitting step of rotary press-fitting while adjusting at least one of the rotational speed and press-fitting speed of the steel pipe pile.

以上の本発明によれば、鋼管内面に形成した螺旋状の突起の傾斜角度と同一象限かつ当該傾斜角度よりも回転圧入時の回転変位量と鉛直変位量とで構成する施工角度が大きくなるように、回転速度や圧入速度を調節することで、圧入に伴って閉塞しようとする管内土を突起が上向きに押し上げることができ、管内土に生じる下向きの圧縮応力を解消または低減させることができる。従って、第1回転圧入工程において、管内土の閉塞現象を調整しつつ鋼管杭を回転圧入することで、貫入に伴う圧入抵抗の増加を効果的に抑制することができ、回転トルクの増大を抑えて施工性を向上させることができる。
以上の第1回転圧入工程における回転速度や圧入速度の調節方法としては、回転速度のみを調節してもよいし、圧入速度のみを調節してもよいし、さらには回転速度と圧入速度の両方を調節してもよい。ここで、具体的には、突起の傾斜角度と施工角度とが同一となる回転速度と圧入速度の組み合わせに対し、回転速度を速く(回転変位量を大きく)してもよいし、また圧入速度を遅く(鉛直変位量を小さく)してもよいし、さらには回転速度を速くかつ圧入速度を遅くしてもよく、いずれの調節方法によっても突起の傾斜角度よりも施工角度を大きくすることができる。
According to the present invention described above, the construction angle formed by the rotational displacement amount and the vertical displacement amount at the time of rotational press-fitting is larger than the inclination angle of the spiral projection formed on the inner surface of the steel pipe and the same inclination angle. In addition, by adjusting the rotation speed and the press-fitting speed, the protrusions can push up the pipe inner soil to be closed along with the press-fitting, and the downward compressive stress generated in the pipe inner soil can be eliminated or reduced. Therefore, in the first rotary press-fitting process, the steel pipe pile is rotary press-fitted while adjusting the clogging phenomenon of the in-pipe soil, so that the increase in press-fitting resistance due to penetration can be effectively suppressed, and the increase in rotational torque is suppressed. Workability can be improved.
As a method for adjusting the rotational speed and the press-fitting speed in the first rotary press-fitting step, only the rotational speed may be adjusted, only the press-fitting speed may be adjusted, or both the rotational speed and the press-fitting speed may be adjusted. May be adjusted. Here, specifically, the rotational speed may be increased (the rotational displacement amount is increased) or the press-fit speed with respect to the combination of the rotational speed and the press-fit speed at which the inclination angle of the protrusion and the construction angle are the same. (The amount of vertical displacement can be reduced), the rotational speed can be increased and the press-fitting speed can be decreased, and the construction angle can be made larger than the inclination angle of the protrusions by any adjustment method. it can.

この際、本発明の鋼管杭の施工方法は、前記施工角度が前記突起の傾斜角度と同一となるか、または前記施工角度が前記突起の傾斜角度よりも小さくなるように、回転圧入時の回転速度および圧入速度の少なくとも一方を調節しつつ回転圧入する第2回転圧入工程を備えることが好ましい。
さらに、前記鋼管杭の先端を支持層へ貫入する際に前記第2回転圧入工程を実施することが好ましい。
このような構成によれば、必要に応じて第2回転圧入工程を実施することで、管内土が閉塞するように閉塞現象を調整することもでき、例えば、施工最終段階である支持層へ貫入する際において、管内土の閉塞を促進させることで、先端支持力を確保することができる。
以上の第2回転圧入工程では、突起の傾斜角度と施工角度とが同一となるように回転速度と圧入速度とを調節してもよいし、あるいは前記第1回転圧入工程とは逆に、突起の傾斜角度と施工角度とが同一となる組み合わせに対し、回転速度を遅く(回転変位量を小さく)し、または圧入速度を速く(鉛直変位量を大きく)し、さらには回転速度を遅くかつ圧入速度を速くすることで、突起の傾斜角度よりも施工角度が小さくなるように調節してもよい。
At this time, the method for constructing the steel pipe pile of the present invention is such that the construction angle is the same as the inclination angle of the protrusion, or the rotation at the time of rotational press-fitting so that the construction angle is smaller than the inclination angle of the protrusion. It is preferable to provide a second rotary press-fitting step of rotary press-fitting while adjusting at least one of the speed and the press-fitting speed.
Furthermore, it is preferable that the second rotary press-fitting step is performed when the tip of the steel pipe pile is penetrated into the support layer.
According to such a configuration, by performing the second rotary press-fitting process as necessary, the clogging phenomenon can be adjusted so that the soil in the pipe is clogged, for example, it penetrates into the support layer at the final stage of construction. In doing so, the tip support force can be ensured by promoting the blockage of the soil in the pipe.
In the above second rotational press-fitting process, the rotational speed and the press-fitting speed may be adjusted so that the inclination angle of the protrusion and the construction angle are the same, or conversely to the first rotational press-fitting process, For a combination with the same inclination angle and construction angle, reduce the rotational speed (decrease rotational displacement), increase the press-fit speed (increase vertical displacement), further reduce the rotational speed and press-fit By increasing the speed, the construction angle may be adjusted to be smaller than the inclination angle of the protrusion.

また、本発明の鋼管杭の施工方法では、前記鋼管杭を打ち止めする際に、前記鋼管杭を逆回転させて当該鋼管杭内部の土を締め固める逆回転工程を実施することが好ましい。
このような逆回転工程を実施するようにすれば、突起が管内土を下向きに押し下げることによって管内土を締め固めることで、その閉塞をさらに促進させることができ、先端支持力の向上を図ることができる。
Moreover, in the construction method of the steel pipe pile of this invention, when stopping the said steel pipe pile, it is preferable to implement the reverse rotation process which reversely rotates the said steel pipe pile and compacts the soil inside the said steel pipe pile.
If such a reverse rotation process is carried out, the projections can push down the inner soil of the tube and compact the inner soil of the tube, thereby further promoting the blockage and improving the tip support force. Can do.

また、本発明の鋼管杭基礎は、内面に螺旋状の突起を有した鋼管杭を前記いずれかの施工方法によって地盤に貫入して構築されることを特徴とする。
このような鋼管杭基礎によれば、前述の施工方法と同様の効果を得ることができ、施工性の向上による施工コストの低減および工期の短縮を図りつつ、高い先端支持力を確保した杭基礎を構築することができる。
Moreover, the steel pipe pile foundation of the present invention is constructed by penetrating a steel pipe pile having a spiral protrusion on the inner surface into the ground by any one of the above construction methods.
According to such a steel pipe pile foundation, the same effect as the construction method described above can be obtained, and a pile foundation that secures a high end support force while reducing construction cost and shortening the construction period by improving workability. Can be built .

以上のような本発明の鋼管杭の施工方法および鋼管杭基礎によれば、回転圧入に伴う管内土の閉塞を抑制したり閉塞を促進させたりなど、閉塞現象を適宜に調整することができることから、圧入抵抗の増加を抑制することによる施工性の向上を図ることができるとともに、必要に応じて閉塞を促進させることにより先端支持力を高めることもできる。 According to construction methods and the steel pipe Kuimoto foundation of the steel pipe pile of the present invention as described above, such as or to promote the reduction or closing the closure of the tube soil caused by rotation press fitting, it is possible to adjust the blockage appropriately Therefore, it is possible to improve the workability by suppressing the increase of the press-fit resistance, and it is possible to increase the tip support force by promoting the blocking as necessary.

本発明の鋼管杭基礎の一部を示す断面図である。It is sectional drawing which shows a part of steel pipe pile foundation of this invention. 前記鋼管杭基礎に用いる鋼管杭の作用を説明する図である。It is a figure explaining the effect | action of the steel pipe pile used for the said steel pipe pile foundation. 前記鋼管杭の回転圧入方法を説明する図である。It is a figure explaining the rotation press-fitting method of the said steel pipe pile. 前記鋼管杭の突起の作用を説明する図である。It is a figure explaining the effect | action of the protrusion of the said steel pipe pile. 前記鋼管杭を用いた実験結果を示すグラフである。It is a graph which shows the experimental result using the said steel pipe pile. 前記突起の他の作用を説明する図である。It is a figure explaining the other effect | action of the said protrusion. 本発明の変形例に係る鋼管杭を示す断面図である。It is sectional drawing which shows the steel pipe pile which concerns on the modification of this invention. 一般的な鋼管杭における圧入時の作用を説明する図である。It is a figure explaining the effect | action at the time of the press fit in a general steel pipe pile.

以下、本発明の一実施形態を図面に基づいて説明する。
図1において、鋼管杭基礎1は、地盤Gに貫入した鋼管杭2を備えて構成されている。鋼管杭2は、杭打ち機により回転されるとともに圧入される回転圧入工法によって地盤Gに貫入されるものであって、その内周面3に螺旋状の突起である複数のリブ4が形成された内面リブ付きのスパイラル鋼管で構成されている。リブ4は、深さ方向(図1中の下方)に向かって時計回りの螺旋状に形成され、その傾斜を図2に示すように、鋼管軸Zとなす傾斜角度θ1として規定する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, the steel pipe pile foundation 1 is provided with the steel pipe pile 2 penetrated into the ground G. The steel pipe pile 2 is inserted into the ground G by a rotary press-fitting method that is rotated and pressed by a pile driving machine, and a plurality of ribs 4 that are spiral protrusions are formed on the inner peripheral surface 3 thereof. It consists of a spiral steel pipe with internal ribs. The rib 4 is formed in a spiral shape clockwise in the depth direction (downward in FIG. 1), and its inclination is defined as an inclination angle θ1 formed with the steel pipe axis Z as shown in FIG.

このような鋼管杭2を回転貫入する際、図2に示すように、その内部に取り込んだ管内土Sにおいて内周面3付近にて上向きの相対変位δを強制的に与えることにより、管内土Sに対して上向きの応力Tを発生させ、管内土Sの閉塞を引き起こす下向きの圧縮応力Cを低下させることが可能になる。この作用は、図3に示すように、たとえば鋼管杭2に鉛直下向きの荷重Qを与えて下向き変位D1を10mmを発生させると、管内土Sもそれに伴い10mm下方へ移動しようとするが、リブ4の傾斜角度θ1と施工時の圧入回転角度(施工角度)θ2とを適切に設定した場合には、リブ4の下方への変位を10mm以下(たとえば6mm)にすることが可能となる。ここで、圧入回転角度θ2は、鋼管杭2の鉛直下向き変位D1と、回転方向の荷重Rに伴う回転変位量D2により構成される角度で規定される。このように、相対的に管内土Sは4mmの上向き変位をリブ4から受けることとなり、上方へ移動させようとする力が作用することから、下向き圧縮応力Cの低下を促進することが可能となる。なお、圧入回転角度θ2は、鋼管杭2に回転を与え鉛直変位D1をゼロとした単なる回転施工時の状態を上限90度とし、回転を与えず鉛直変位D1のみを与えた状態を下限0度として範囲が限定される。   When the steel pipe pile 2 is rotated and penetrated, as shown in FIG. 2, the pipe inner soil S is forced to give an upward relative displacement δ in the vicinity of the inner peripheral surface 3 in the pipe inner soil S. It is possible to generate an upward stress T with respect to S and to reduce a downward compressive stress C that causes blockage of the in-pipe soil S. As shown in FIG. 3, for example, when a vertical downward load Q is applied to the steel pipe pile 2 to generate a downward displacement D1 of 10 mm, the pipe soil S also moves downward by 10 mm. When the inclination angle θ1 of 4 and the press-fit rotation angle (construction angle) θ2 at the time of construction are set appropriately, the downward displacement of the rib 4 can be made 10 mm or less (for example, 6 mm). Here, the press-fit rotation angle θ2 is defined by an angle constituted by the vertical downward displacement D1 of the steel pipe pile 2 and the rotational displacement amount D2 accompanying the load R in the rotation direction. In this way, the pipe soil S relatively receives an upward displacement of 4 mm from the rib 4, and a force to move upward acts, so that it is possible to promote a decrease in the downward compressive stress C. Become. Note that the press-fit rotation angle θ2 is a simple rotation construction state in which the steel pipe pile 2 is rotated and the vertical displacement D1 is zero, and the upper limit is 90 degrees. The range is limited.

以上のように管内土Sに強制的に上向きの応力Tを与えるためには、管内土S、特に鋼管内周面3近傍の土砂に鋼管杭2に対して上向きの相対変位δを与える必要がある。そこで、図4に示すように、回転圧入時の鋼管杭2における一部分のリブ4Aに着目した場合、このリブ4Aは、鋼管杭2の鉛直下向き変位(鉛直変位量)D1および回転変位量D2に伴って、図4中右向き下方のリブ4Bに向かって移動する(経路K1)こととなる。一方、この移動は、概念的にはリブ4の傾斜角度θ1に沿った方向である仮想のリブ4Cへの移動である経路K2(土砂の移動はほとんど発生しない)と、この仮想のリブ4Cから上方のリブ4Bに向かう上向きの移動である経路K3(土砂を上に持ち上げる)との二つの要素で構成されることから、図2で示した内周面3付近の土砂を上方へ移動させ、その部分の管内土Sに上向きの応力Tを与えることで、結果としてリブ4の下側においては、下向きの圧縮応力Cを解放することが可能となる。以上のような現象を発生させるためのリブ4の傾斜角度θ1と圧入回転角度θ2の構成条件は、傾斜角度θ1<圧入回転角度θ2となり、圧入回転角度θ2の下限および上限の条件から、0度<傾斜角度θ1<圧入回転角度θ2<90度となる。そして、このようなリブ4の傾斜角度θ1と圧入回転角度θ2の構成条件に基づいて鋼管杭2を地盤Gに回転圧入する施工工程を第1回転圧入工程とする。   In order to forcibly apply upward stress T to the pipe soil S as described above, it is necessary to apply an upward relative displacement δ to the steel pipe pile 2 to the pipe soil S, particularly to the sand near the inner peripheral surface 3 of the steel pipe. is there. Therefore, as shown in FIG. 4, when attention is paid to a part of the rib 4A in the steel pipe pile 2 at the time of the rotary press-fitting, the rib 4A has a vertical downward displacement (vertical displacement amount) D1 and a rotational displacement amount D2 of the steel pipe pile 2. Along with this, the rib 4B moves downward in the right direction in FIG. 4 (path K1). On the other hand, this movement is conceptually a path K2 (the movement of earth and sand hardly occurs) that is a movement to the virtual rib 4C that is the direction along the inclination angle θ1 of the rib 4, and from this virtual rib 4C. Since it is composed of two elements, a path K3 (uplifting earth and sand) that is an upward movement toward the upper rib 4B, the earth and sand near the inner peripheral surface 3 shown in FIG. By applying an upward stress T to the pipe inner soil S in that portion, it becomes possible to release the downward compressive stress C on the lower side of the rib 4 as a result. The configuration conditions of the inclination angle θ1 and the press-fit rotation angle θ2 of the rib 4 for causing the above phenomenon are such that the tilt angle θ1 <the press-fit rotation angle θ2, and the lower limit and upper limit conditions of the press-fit rotation angle θ2 are 0 degrees. <Inclination angle θ1 <Press-fit rotation angle θ2 <90 degrees. And the construction process which rotationally press-fits the steel pipe pile 2 to the ground G based on the structural conditions of such inclination angle (theta) 1 and press-fit rotation angle (theta) 2 of a rib 4 is set as a 1st rotation press-fit process.

以上の効果を検証した実験結果を図5のグラフに示す。
この実験において、鋼管は模型試験サンプルとし、内面螺旋突起付きと突起なしの通常鋼管を準備し、これを乾燥砂で構成された砂地盤へ回転圧入を行った。鋼管径は100mmであり、内面螺旋突起高さは3mm(杭径の約3%)であり、内面螺旋は杭先端付近から杭径と同じ長さの範囲のみに設置されている。
内面螺旋突起付き鋼管(図5にAで示す)と突起なしの通常鋼管(図5にBで示す)の結果を比較すると、貫入量/杭径が3.0倍を超えたあたりから大きな違いがみられる。つまり、通常鋼管(B)では、3.0倍を超えても貫入力が増加傾向を示すのに対し、内面螺旋付き鋼管(A)では、貫入力が一定値に収束し、それ以上の増加が見られない。
ここで、一般には、貫入量/杭径が3〜5倍程度となったときに閉塞が発生するといわれているが、通常鋼管の結果はこの現象を再現している。一方、内面螺旋付き鋼管では、前述のように閉塞発生を抑制することができるため、収束した値以上の貫入力増加を抑制できていることが確認された。
以上の結果より、内面螺旋は杭全長に設置されている必要はなく、杭先端付近に限定して設置されることが効果的であることが分かる。この実験結果および一般的な閉塞発生が生じる貫入量から推測されるように、螺旋設置範囲は杭先端から杭径の1〜5倍の範囲にあることが、加工コスト抑制の点からも望ましい。
The experimental results verifying the above effects are shown in the graph of FIG.
In this experiment, a steel pipe was used as a model test sample, a normal steel pipe with and without an inner spiral protrusion was prepared, and this was rotationally pressed into a sand ground composed of dry sand. The steel pipe diameter is 100 mm, the inner surface spiral protrusion height is 3 mm (about 3% of the pile diameter), and the inner surface spiral is installed only in the range from the vicinity of the pile tip to the same length as the pile diameter.
Comparing the results of the steel pipe with inner spiral protrusion (shown by A in FIG. 5) and the normal steel pipe without protrusion (shown by B in FIG. 5), there is a big difference since the penetration / pile diameter exceeded 3.0 times Is seen. That is, in the normal steel pipe (B), the penetration force tends to increase even if it exceeds 3.0 times, whereas in the steel pipe with the inner spiral (A), the penetration force converges to a constant value and increases further. Is not seen.
Here, it is generally said that the blockage occurs when the penetration amount / pile diameter becomes about 3 to 5 times, but the result of the normal steel pipe reproduces this phenomenon. On the other hand, in the steel pipe with an inner surface spiral, it was confirmed that the increase of the penetration force beyond the converged value could be suppressed because the occurrence of the blockage can be suppressed as described above.
From the above results, it can be seen that the inner spiral does not need to be installed on the entire length of the pile, and it is effective to be installed only in the vicinity of the tip of the pile. As inferred from the results of this experiment and the amount of penetration that causes general blockage, it is desirable from the viewpoint of processing cost control that the spiral installation range is in the range of 1 to 5 times the pile diameter from the pile tip.

また、以上のような第1回転圧入工程に続いて、鋼管杭2の先端を支持層に貫入して鋼管杭2を打ち止めする際には、先端支持力を発揮させることが望ましく、そのためには、抑制していた管内土Sの閉塞を促進するように、以下の第2回転圧入工程を実施する。
第2回転圧入工程は、第1回転圧入工程に対して、鋼管杭2の鉛直下向き変位D1と回転変位量D2とで構成される圧入回転角度をθ2からθ2’に変化させることによって対応する。具体的には、図6に示すように、リブ4の傾斜角度θ1と圧入回転角度θ2’の構成条件を変化させることとする。この場合、リブ4Aは、圧入回転角度θ2’に従ってリブ4Dに向かって移動する(経路K4)こととなるものの、この移動は、概念的には傾斜角度θ1に従った仮想のリブ4Cへの移動である経路K2(土砂の移動はほとんど発生しない)と、この仮想のリブ4Cから下方のリブ4Dに向かう下向きの移動である経路K5との二つの要素で構成されることから、経路K5の移動分に応じて管内土Sを下向きに押し込む作用を引き起こすことにより、管内土Sの閉塞を促進することができる。
Further, following the first rotary press-fitting step as described above, when the steel pipe pile 2 is penetrated into the support layer and the steel pipe pile 2 is stopped, it is desirable to exert the tip support force. Then, the following second rotary press-fitting process is carried out so as to promote the blocking of the in-pipe soil S.
The second rotational press-fitting process corresponds to the first rotational press-fitting process by changing the press-fitting rotation angle formed by the vertical downward displacement D1 and the rotational displacement amount D2 of the steel pipe pile 2 from θ2 to θ2 ′. Specifically, as shown in FIG. 6, the configuration conditions of the inclination angle θ1 and the press-fit rotation angle θ2 ′ of the rib 4 are changed. In this case, the rib 4A moves toward the rib 4D according to the press-fitting rotation angle θ2 ′ (path K4), but this movement conceptually moves to the virtual rib 4C according to the inclination angle θ1. The path K2 (the movement of earth and sand hardly occurs) and the path K5 which is a downward movement from the virtual rib 4C to the lower rib 4D are included in the movement of the path K5. By causing the action of pushing the pipe soil S downward according to the minutes, the blockage of the pipe soil S can be promoted.

さらに、第2回転圧入工程に続いてあるいは第2回転圧入工程に代えて鋼管杭2を打ち止めする際に、前記第1回転圧入工程における鋼管杭2の回転方向(本実施形態では下向きに時計回り)を逆回転(下向き反時計回りに回転)させる逆回転工程を実施してもよい。このような逆回転工程を実施することで、リブ4によって管内土Sを下向きに押し込むことにより、管内土Sの閉塞をさらに促進することができる。
従って、鋼管杭2の先端が支持層に到達するまでの第1回転圧入工程においては、傾斜角度θ1<圧入回転角度θ2となるように、鋼管杭2の鉛直下向き変位D1と回転変位量D2とを調節しつつ鋼管杭2を回転圧入することで、管内土Sに上向きの応力Tを与えて鋼管内周面3との摩擦力Fを低減することにより、管内土Sの閉塞を抑制することができ、圧入抵抗の増加を抑えて施工性を向上させることができる。
一方、鋼管杭2の先端を支持層に貫入して鋼管杭2を打ち止めする際には、第2回転圧入工程および逆回転工程の少なくとも一方を実施することで、管内土Sを下向きに押し込んで管内土Sの閉塞を促進することにより、先端支持力を増大させることができる。
Further, when the steel pipe pile 2 is clamped after the second rotary press-fitting process or in place of the second rotary press-fitting process, the rotation direction of the steel pipe pile 2 in the first rotary press-fit process (in this embodiment, clockwise downward) ) May be reversely rotated (rotated counterclockwise downward). By performing such a reverse rotation process, the pipe soil S can be pushed downward by the ribs 4 to further promote the blockage of the pipe soil S.
Accordingly, in the first rotational press-fitting process until the tip of the steel pipe pile 2 reaches the support layer, the vertical downward displacement D1 and the rotational displacement amount D2 of the steel pipe pile 2 are set such that the inclination angle θ1 <the press-fit rotational angle θ2. The steel pipe pile 2 is rotationally press-fitted while adjusting the pressure, so that upward stress T is applied to the pipe soil S and the friction force F with the steel pipe inner peripheral surface 3 is reduced, thereby suppressing the blockage of the pipe soil S. It is possible to improve the workability by suppressing an increase in press-fit resistance.
On the other hand, when the steel pipe pile 2 is penetrated into the support layer to stop the steel pipe pile 2, the pipe inner soil S is pushed downward by performing at least one of the second rotational press-fitting process and the reverse rotational process. By promoting the blockage of the pipe soil S, the tip support force can be increased.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記実施形態では、鋼管杭2の鉛直下向き変位D1と回転変位量D2とを調節することで、リブ4の傾斜角度θ1よりも圧入回転角度θ2が大きくなるようにしたが、これに限らず、鉛直下向き変位D1のみを調節してもよいし、回転変位量D2のみを調節してもよい。
In addition, this invention is not limited to the said embodiment, Including other structures etc. which can achieve the objective of this invention, the deformation | transformation etc. which are shown below are also contained in this invention.
For example, in the previous SL embodiment, by adjusting the a vertically downward displacement D1 of the steel pipe pile 2 and the rotational displacement amount D2, was so pressed the rotation angle θ2 than the inclination angle θ1 of the rib 4 is increased, to Not limited to this, only the vertical downward displacement D1 may be adjusted, or only the rotational displacement amount D2 may be adjusted.

さらに、鉛直下向き変位D1および回転変位量D2を調節する方法として、杭打ち機から鋼管杭2に作用させる鉛直下向きの荷重Qおよび回転方向の荷重Rを制御する方法を説明したが、杭打ち機による荷重制御に限らず、図7に示すように、鋼管杭2の先端に設ける掘進用の螺旋羽根5の形状によって鉛直下向き変位D1および回転変位量D2を調節してもよい。具体的には、前記実施形態のように所定の傾斜角度θ1を有したリブ4の段差寸法H1(半回転当たり)に対し、螺旋羽根5の段差寸法H2を小さく形成する、すなわち、リブ4の傾斜角度θ1よりも螺旋羽根5の掘進に伴う圧入回転角度θ2が大きくなり、杭打ち機では鋼管杭2に回転力を加えるだけで前記第1回転圧入工程を実施することができるようになる。   Further, as a method of adjusting the vertical downward displacement D1 and the rotational displacement amount D2, the method of controlling the vertical downward load Q and the rotational load R applied to the steel pipe pile 2 from the pile driving machine has been described. As shown in FIG. 7, the vertical downward displacement D <b> 1 and the rotational displacement amount D <b> 2 may be adjusted according to the shape of the spiral blade 5 for excavation provided at the tip of the steel pipe pile 2. Specifically, the step size H2 of the spiral blade 5 is made smaller than the step size H1 (per half rotation) of the rib 4 having a predetermined inclination angle θ1 as in the above-described embodiment. The press-fitting rotation angle θ2 associated with the excavation of the spiral blade 5 becomes larger than the inclination angle θ1, and the pile driving machine can perform the first rotary press-fitting step only by applying a rotational force to the steel pipe pile 2.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
In addition, the best configuration, method and the like for carrying out the present invention have been disclosed in the above description, but the present invention is not limited to this. That is, the invention has been illustrated and described with particular reference to certain specific embodiments, but without departing from the spirit and scope of the invention, Various modifications can be made by those skilled in the art in terms of material, quantity, and other detailed configurations.
Therefore, the description limiting the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such restrictions is included in this invention.

1…鋼管杭基礎、2…鋼管杭、3…内周面、4…リブ(突起)、D1…鉛直下向き変位(鉛直変位量)、D2…回転変位量、S…管内土、θ1…傾斜角度、θ2,θ2’…圧入回転角度(施工角度)。   DESCRIPTION OF SYMBOLS 1 ... Steel pipe pile foundation, 2 ... Steel pipe pile, 3 ... Inner peripheral surface, 4 ... Rib (protrusion), D1 ... Vertical downward displacement (vertical displacement amount), D2 ... Rotary displacement amount, S ... In-pipe soil, (theta) 1 ... Inclination angle , Θ2, θ2 ′: press-fitting rotation angle (construction angle).

Claims (5)

内面に螺旋状の突起を有する鋼管杭を地盤に回転圧入する鋼管杭の施工方法であって、
前記螺旋状の突起と鋼管軸とがなす下向きの傾斜角度と、回転圧入時の回転変位量と鉛直変位量とで構成する施工角度とが同一象限となるように、前記鋼管杭の回転方向を設定し、
前記突起の傾斜角度よりも前記施工角度が大きくなるように、前記鋼管杭の回転速度および圧入速度の少なくとも一方を調節しつつ回転圧入する第1回転圧入工程を備えることを特徴とする鋼管杭の施工方法。
A steel pipe pile construction method in which a steel pipe pile having a spiral projection on the inner surface is rotationally pressed into the ground,
The rotation direction of the steel pipe pile is set so that the downward inclination angle formed by the spiral projection and the steel pipe shaft and the construction angle formed by the rotational displacement amount and the vertical displacement amount at the time of rotary press-fitting are in the same quadrant. Set,
A steel pipe pile comprising a first rotary press-fitting step of rotary press-fitting while adjusting at least one of a rotational speed and a press-fitting speed of the steel pipe pile so that the construction angle is larger than an inclination angle of the protrusion. Construction method.
請求項1に記載の鋼管杭の施工方法において、
前記施工角度が前記突起の傾斜角度と同一となるか、または前記施工角度が前記突起の傾斜角度よりも小さくなるように、回転圧入時の回転速度および圧入速度の少なくとも一方を調節しつつ回転圧入する第2回転圧入工程を備えることを特徴とする鋼管杭の施工方法。
In the construction method of the steel pipe pile of Claim 1,
Rotational press-fitting while adjusting at least one of the rotational speed and the press-fitting speed at the time of rotational press-fitting so that the construction angle is the same as the inclination angle of the protrusion or the construction angle is smaller than the inclination angle of the protrusion. A steel pipe pile construction method comprising a second rotary press-fitting step.
請求項2に記載の鋼管杭の施工方法において、
前記鋼管杭の先端を支持層へ貫入する際に前記第2回転圧入工程を実施することを特徴とする鋼管杭の施工方法。
In the construction method of the steel pipe pile according to claim 2,
The steel pipe pile construction method, wherein the second rotary press-fitting step is performed when the tip of the steel pipe pile is penetrated into the support layer.
請求項1から請求項3のいずれかに記載の鋼管杭の施工方法において、
前記鋼管杭を打ち止めする際に、前記鋼管杭を逆回転させて当該鋼管杭内部の土を締め固める逆回転工程を実施することを特徴とする鋼管杭の施工方法。
In the construction method of the steel pipe pile in any one of Claims 1-3,
A method for constructing a steel pipe pile, comprising performing a reverse rotation step of reversely rotating the steel pipe pile to compact the soil inside the steel pipe pile when the steel pipe pile is clamped.
内面に螺旋状の突起を有した鋼管杭を請求項1から請求項4のいずれかに記載の鋼管杭の施工方法によって地盤に貫入して構築されることを特徴とする鋼管杭基礎。   A steel pipe pile foundation, wherein a steel pipe pile having a spiral projection on the inner surface is constructed by penetrating into the ground by the steel pipe pile construction method according to any one of claims 1 to 4.
JP2010021995A 2010-02-03 2010-02-03 Steel pipe pile construction method and steel pipe pile foundation Active JP5229247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021995A JP5229247B2 (en) 2010-02-03 2010-02-03 Steel pipe pile construction method and steel pipe pile foundation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021995A JP5229247B2 (en) 2010-02-03 2010-02-03 Steel pipe pile construction method and steel pipe pile foundation

Publications (2)

Publication Number Publication Date
JP2011157780A JP2011157780A (en) 2011-08-18
JP5229247B2 true JP5229247B2 (en) 2013-07-03

Family

ID=44589957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021995A Active JP5229247B2 (en) 2010-02-03 2010-02-03 Steel pipe pile construction method and steel pipe pile foundation

Country Status (1)

Country Link
JP (1) JP5229247B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2520723A (en) * 2013-11-29 2015-06-03 Francis & Lewis Internat Ltd A screw pile and a method of pile driving a screw pile
CN103774646A (en) * 2014-01-20 2014-05-07 南通东南公路工程有限公司 Screw pouring pile and use method thereof
JP5842046B1 (en) 2014-10-21 2016-01-13 新日鉄住金エンジニアリング株式会社 Rotary press-fit steel pipe pile
JP6874469B2 (en) * 2016-06-08 2021-05-19 日本製鉄株式会社 Construction method of rotary press-fit steel pipe pile
NL2019068B1 (en) * 2017-06-14 2018-12-21 Ihc Holland Ie Bv A template and a method of using the template
CN114108624A (en) * 2021-12-21 2022-03-01 中建八局第三建设有限公司 Two-adjustment one-control type perpendicularity control construction method for one-column one-pile steel pipe column

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612543U (en) * 1984-06-11 1986-01-09 西村工業株式会社 Hollow pile for embedding
JPH09302650A (en) * 1996-05-13 1997-11-25 Toukikiyou:Kk Buried pile for foundation construction
JP2005299192A (en) * 2004-04-09 2005-10-27 Nippon Steel Corp Rotary press-in steel pipe pile and method of driving the same

Also Published As

Publication number Publication date
JP2011157780A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5229247B2 (en) Steel pipe pile construction method and steel pipe pile foundation
WO1999046449A1 (en) Rotation buried pile and execution management method therefor
JP5595137B2 (en) Landslide prevention method
JP5053154B2 (en) Rotary press-fit pile and its construction method
WO2016063910A1 (en) Rotary press-in steel pipe pile
JP5013384B2 (en) Rotating penetrating steel pipe pile
JP2001193063A (en) Rotary press-in steel pipe pile
JP6504388B2 (en) Penetration method of penetration pile and penetration pile
JP4874433B2 (en) Steel pipe pile
JPH11303069A (en) Screwed type steel pipe pile with blade and execution method therefor
JP4988068B2 (en) Steel pipe pile and its construction method
JP4232743B2 (en) Rotating penetrating pile and its construction method
JP2015148135A (en) Spiral pile base and construction method thereof
KR102259937B1 (en) Helical pile
JP3450774B2 (en) Steel pipe pile and its burial method
JP5163711B2 (en) Threaded pile and method of construction
JP2023034714A (en) Pile construction method and loosening member holding mechanism used in the pile construction method
JP2004316421A (en) Rotary press-in steel pipe pile
JP3754419B2 (en) Steel pipe pile
JP2007132008A (en) Structure of jacking pile, and its burying method
JP7376854B2 (en) Screw-in steel pipe pile, its design method, and construction method
WO2023181782A1 (en) Screwing-type steel pipe pile, screwing-type steel pipe pile design method, screwing-type steel pipe pile manufacturing method, and screwing-type steel pipe pile construction method
JPH01127718A (en) Drill steel tubular pile
JP7279855B2 (en) Pile, pile construction method, structure, structure construction method, pile design method, and pile manufacturing method
JP5777424B2 (en) Ground excavation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5229247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350