JP5229058B2 - Refractory structure of cement manufacturing apparatus and method of using the same - Google Patents

Refractory structure of cement manufacturing apparatus and method of using the same Download PDF

Info

Publication number
JP5229058B2
JP5229058B2 JP2009083938A JP2009083938A JP5229058B2 JP 5229058 B2 JP5229058 B2 JP 5229058B2 JP 2009083938 A JP2009083938 A JP 2009083938A JP 2009083938 A JP2009083938 A JP 2009083938A JP 5229058 B2 JP5229058 B2 JP 5229058B2
Authority
JP
Japan
Prior art keywords
refractory
temperature
layer
heat insulating
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009083938A
Other languages
Japanese (ja)
Other versions
JP2010235366A (en
Inventor
知道 安松
計介 武永
佳行 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009083938A priority Critical patent/JP5229058B2/en
Publication of JP2010235366A publication Critical patent/JP2010235366A/en
Application granted granted Critical
Publication of JP5229058B2 publication Critical patent/JP5229058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、耐火物が敷設されたセメント製造装置の耐火構造およびその耐火構造を有するセメント製造装置の使用方法に関する。   The present invention relates to a fireproof structure of a cement manufacturing apparatus in which a refractory material is laid, and a method of using the cement manufacturing apparatus having the fireproof structure.

図2に通常のセメント焼成装置の概略図を示す。予熱塔10の最下段サイクロン11の天井部12の内部には耐火物が施工されている。図3に従来の該内張り耐火物の断面図を示す。この2層の耐火物の構造は、キャスタブルの断熱層2と、キャスタブルの耐火層4から成っている。各耐火物を固定する金属製であるスタッド5,6は、最下段サイクロン11の鉄皮1に溶接されている。ここに、スタッドとは、現地で流し込み固化するキャスタブル耐火物を炉壁の内側に強固に固定するための一種の埋め込み用の鋲であって、キャスタブルの内部に多数埋設される。スタッドは、スタッドの先端部が分岐したY字型スタッド5や、スタッドの途中と先端が分岐したYY字型スタッド6のいずれかでそれぞれ交互に混成され、耐火物の落下を防止する目的で設置されている。   FIG. 2 shows a schematic diagram of a normal cement baking apparatus. A refractory is applied to the inside of the ceiling portion 12 of the lowermost cyclone 11 of the preheating tower 10. FIG. 3 shows a cross-sectional view of the conventional lining refractory. This two-layered refractory structure includes a castable heat insulating layer 2 and a castable refractory layer 4. Studs 5 and 6 made of metal for fixing each refractory are welded to the iron skin 1 of the lowermost cyclone 11. Here, the stud is a kind of embedding rod for firmly fixing the castable refractory which is poured and solidified in the field to the inside of the furnace wall, and many studs are embedded in the castable. Studs are installed alternately for the purpose of preventing the fall of refractory materials, which are mixed alternately with either the Y-shaped stud 5 with the tip of the stud branched or the YY-shaped stud 6 with the stud branched in the middle. Has been.

しかし、近年の廃棄物をセメント原料に有効利用する状況において、その廃棄物の使用量が徐々に増加するにしたがって、耐火物の剥落が見られるようになった。この結果、耐火物の全体的な厚さが薄くなって、鉄皮1の温度が上昇してしまう。そのため、セメント焼成装置を停止して補修せざるをえなかった。   However, in recent situations where waste is effectively used as a raw material for cement, the refractory has come off as the amount of waste used gradually increases. As a result, the overall thickness of the refractory is reduced and the temperature of the iron skin 1 is increased. Therefore, the cement firing device had to be stopped and repaired.

特許文献1には、2層または3層の耐火物の施工方法が示されている。しかし、廃棄物の使用量が徐々に増加することに起因すると思われる上記の問題点について記載されておらず、耐火物の剥落を防止する対策が待望されていた。断熱層と耐火層の厚さは耐火断熱性能のみを基準としているため、該耐火物の各層の境界部13の温度が700〜800℃になるような使用条件では、スタッドが腐食しやすく、炉内の内張り耐火物の剥離と落下は避けられない状態であった。   Patent Document 1 discloses a method for constructing two or three layers of refractories. However, the above-mentioned problem that seems to be caused by the gradual increase in the amount of waste used is not described, and a countermeasure for preventing the refractory from peeling off has been awaited. Since the thickness of the heat insulating layer and the refractory layer is based only on the refractory heat insulating performance, the stud is easily corroded under the use conditions such that the temperature of the boundary portion 13 of each layer of the refractory is 700 to 800 ° C. Peeling and falling of the inner lining refractory was inevitable.

特開平11−130485号公報JP-A-11-130485

本発明は、耐火物が剥離や落下を起こすことなく耐火物を確実に保持するためのセメント製造装置の耐火構造およびその使用方法を提供することを目的とする。   An object of the present invention is to provide a refractory structure for a cement manufacturing apparatus and a method for using the refractory for reliably holding the refractory without peeling or dropping.

本発明者らは、内張り耐火物である断熱層2と耐火層4の状況を注意深く観察するとともに、種々の検討の結果、以下のような知見を得るに至った。
まず、近年の廃棄物をセメント原燃料に有効利用する状況において、その廃棄物の使用量が徐々に増加するにしたがって、耐火物の剥落が見られるようになった。剥落の原因を調査した結果、耐火物を固定して支えているスタッド5,6が腐食・切断し、耐火物を保持できなくなることが判った。また、切断部は、この内張り耐火物の断熱層2と耐火層4の境界部13で見られており、切断部を分析したところ金属腐食によるものが主因ということが判った。図3に示す断熱層2と耐火層4の境界部13の温度は、熱計算を行うと790℃になった。この温度近辺の領域では、セメント原料中の化学成分の塩化カリウム(KCl)と塩化ナトリウム(NaCl)とが液体の状態で存在していることが推測された。温度域が700〜800℃の範囲内であると、断熱層2と耐火層4の境界部13にできた間隙より炉内7から侵入した気相のアルカリ塩であるKClとNaClが液相になる。この液相が凝縮し、断熱層2や耐火層4を保持している境界部13部分の金属製のスタッド5,6を腐食させ、さらに場合によっては境界部13付近において切断15を起しやすくしていたと推測された。この範囲の温度域を腐食温度領域9と呼ぶ。近年の廃棄物には塩素を多く含むものが増加しており、図2に示す最下段サイクロン11でのガス中の塩素濃度が高くなっており、このような腐食が増加していると考えた。
The inventors of the present invention carefully observed the situation of the heat insulating layer 2 and the refractory layer 4 that are lining refractories, and as a result of various studies, the inventors have obtained the following knowledge.
First, in recent circumstances where waste is effectively used as a raw material for cement, the refractory has come off as the amount of waste used increases gradually. As a result of investigating the cause of the peeling, it was found that the studs 5 and 6 supporting and fixing the refractory were corroded and cut, and the refractory could not be held. In addition, the cut portion is seen at the boundary portion 13 between the heat-insulating layer 2 and the refractory layer 4 of the lining refractory. When the cut portion is analyzed, it is found that the main cause is metal corrosion. The temperature of the boundary portion 13 between the heat insulating layer 2 and the refractory layer 4 shown in FIG. 3 was 790 ° C. when thermal calculation was performed. In the region around this temperature, it was speculated that the chemical components potassium chloride (KCl) and sodium chloride (NaCl) in the cement raw material existed in a liquid state. When the temperature range is in the range of 700 to 800 ° C., KCl and NaCl, which are gaseous alkali salts that have entered from the inside of the furnace 7 through the gap formed at the boundary portion 13 between the heat insulating layer 2 and the refractory layer 4, are in the liquid phase. Become. This liquid phase condenses, corroding the metal studs 5 and 6 in the boundary portion 13 holding the heat insulating layer 2 and the refractory layer 4, and in some cases, the cutting 15 is likely to occur near the boundary portion 13. I guess it was. This temperature range is called the corrosion temperature range 9. Recently, wastes containing a large amount of chlorine have increased, and the chlorine concentration in the gas in the lowermost cyclone 11 shown in FIG. 2 has increased, and it is considered that such corrosion has increased. .

図7に示すように、耐火層4とスタッド5,6の熱膨張差の熱応力による亀裂や、最下段サイクロン11のサイクロンガス出口19の下端部である内筒部17において、耐火物を設置しない付近の部分などを経由して、炉内7で気化したKClやNaClなどが境界部13に侵入すると推定できた。これは、炉内7に含有するアルカリ塩の腐食性ガスによって腐食し穴が開いた状態でのスリーブ18と内筒部17との間隙や、スリーブ18と耐火層4の間隙などを経由して液相温度領域の境界部13で液化して侵入してくると考えられた。
これらの検討から、腐食温度領域9に境界部13が存在していればスタッド5,6が腐食し切断に至る可能性が高いものと推定した。その結果、耐火層4が剥落し、耐火物の全体的な厚さが薄くなって、鉄皮1の温度が上昇し、セメント焼成装置を停止して補修せざるを得なくなっているものと推定した。
As shown in FIG. 7, a refractory is installed in a crack due to a thermal stress due to a difference in thermal expansion between the refractory layer 4 and the studs 5 and 6, and an inner cylinder portion 17 which is a lower end portion of the cyclone gas outlet 19 of the lowermost cyclone 11. It was estimated that KCl, NaCl, etc. vaporized in the furnace 7 invaded the boundary portion 13 through a portion in the vicinity of the area not to be used. This is caused by the gap between the sleeve 18 and the inner cylindrical portion 17 in the state where the hole is opened due to corrosion by the alkali salt corrosive gas contained in the furnace 7, the gap between the sleeve 18 and the refractory layer 4, and the like. It was considered that the liquid phase temperature region liquefied and entered at the boundary portion 13.
From these examinations, it is estimated that if the boundary portion 13 exists in the corrosion temperature region 9, the studs 5 and 6 are corroded and likely to be cut. As a result, the refractory layer 4 is peeled off, the overall thickness of the refractory is reduced, the temperature of the iron skin 1 rises, and it is estimated that the cement baking apparatus must be stopped and repaired. did.

本発明者らは、セメント焼成装置の予熱塔10における内張り耐火物について、腐食温度領域9に境界部13が存在しない耐火構造を見出した。
すなわち、本発明は以下のとおりである。
(1)セメント製造装置の高温雰囲気となる箇所の内壁面に一端が固定され、他端が高温雰囲気に向かって延出したスタッドと、前記内壁面に沿って断熱ボードが敷設された断熱層と、前記断熱ボート層に接して耐火物が敷設された耐火層と、を備えるセメント製造装置の耐火構造であって、
前記断熱層の層厚は25〜50mmの範囲であり、前記耐火層の層厚は200〜300mmの範囲であり、前記スタッドは前記断熱層と前記耐火層に没入され、前記断熱ボードと前記耐火物を保持する構造であることを特徴とするセメント製造装置の耐火構造。
(2)前記高温雰囲気となる箇所は、セメント製造装置における予熱塔の最下段サイクロン、仮焼炉、ライジングダクト、またはロータリーキルンの窯尻部のうちの少なくとも1つである前記(1)記載のセメント製造装置の耐火構造。
(3)塩化物を含む高温物質が前記高温雰囲気に存在し
前記塩化物を含む高温物質の一部が気体状となり前記耐火層と前記断熱層との境界部に到達した際の温度が、前記塩化物を含む高温物質の凝固温度以下の温度である前記(1)記載の耐火構造を有するセメント製造装置を使用する方法。
(4)前記凝固温度は700℃以下である前記(3)記載の耐火構造を有するセメント製造装置を使用する方法。
The present inventors have found a refractory structure in which the boundary portion 13 does not exist in the corrosion temperature region 9 for the lining refractory in the preheating tower 10 of the cement firing apparatus.
That is, the present invention is as follows.
(1) A stud in which one end is fixed to the inner wall surface of the cement manufacturing apparatus that becomes a high temperature atmosphere and the other end extends toward the high temperature atmosphere, and a heat insulating layer in which a heat insulating board is laid along the inner wall surface, A refractory layer in which a refractory is laid in contact with the heat insulating boat layer, and a refractory structure of a cement manufacturing apparatus comprising:
The heat insulation layer has a thickness of 25 to 50 mm, the fireproof layer has a thickness of 200 to 300 mm, the stud is immersed in the heat insulation layer and the fireproof layer, and the heat insulation board and the fireproof layer. A fireproof structure for a cement manufacturing apparatus, characterized by having a structure for holding an object.
(2) The cement according to (1), wherein the high temperature atmosphere is at least one of a lowermost cyclone of a preheating tower, a calcining furnace, a rising duct, or a kiln bottom of a rotary kiln in a cement manufacturing apparatus. Fireproof structure of manufacturing equipment.
(3) The temperature when a high-temperature substance containing chloride is present in the high-temperature atmosphere and a part of the high-temperature substance containing chloride becomes gaseous and reaches the boundary between the refractory layer and the heat insulating layer, The method of using the cement manufacturing apparatus which has the fireproof structure of said (1) description which is the temperature below the solidification temperature of the high temperature substance containing a chloride.
(4) The method using the cement manufacturing apparatus having the fireproof structure according to (3), wherein the solidification temperature is 700 ° C. or less.

本発明によれば、化学成分KClとNaClが液体状態で存在する耐火物層の位置に境界部13の間隙を作らないので、スタッド5,6の腐食を大幅に低減させることができる。この結果、スタッド5,6の腐食切断15が低減され、耐火物の炉内7への落下を防止することができる。これにより、耐火物を補修する頻度が大幅に低下することができ、セメント焼成装置の操業度を向上させることができる。   According to the present invention, since the gap of the boundary portion 13 is not formed at the position of the refractory layer where the chemical components KCl and NaCl exist in a liquid state, corrosion of the studs 5 and 6 can be greatly reduced. As a result, the corrosion cutting 15 of the studs 5 and 6 is reduced, and the refractory can be prevented from falling into the furnace 7. Thereby, the frequency which repairs a refractory can fall significantly, and the operating degree of a cement baking apparatus can be improved.

本発明における耐火物の構造の概略図を示す。The schematic of the structure of the refractory in this invention is shown. 通常のセメント焼成装置の一例の概略図を示す。The schematic of an example of a normal cement baking apparatus is shown. 従来の耐火物の構造の概略図を示す。The schematic of the structure of the conventional refractory is shown. 本発明におけるY字型スタッドの構造の概略図を示す。The schematic of the structure of the Y-shaped stud in this invention is shown. 本発明におけるYY字型スタッドの構造の概略図を示す。The schematic of the structure of the YY-shaped stud in this invention is shown. 本発明における断熱ボードの目地構造の一部を示す。A part of joint structure of the heat insulation board in this invention is shown. アルカリ塩が、耐火物の境界部へ侵入する間隙の概略図を示す。The schematic of the gap | interval which an alkali salt penetrate | invades into the boundary part of a refractory is shown. 本発明の実施例における断熱ボードとスタッドの敷設図を示す。The laying figure of the heat insulation board and stud in the Example of this invention is shown.

本発明でいうセメント製造装置の高温雰囲気となる箇所とは、セメント製造装置における予熱塔10の最下段サイクロン11の天井部12、最下段サイクロン11、仮焼炉25、ライジングダクト26、ロータリーキルンの窯尻部27などの少なくとも1箇所において、炉壁のキャスタブルが重力によって、鉄皮から剥がれる可能性がある炉の天井部や傾斜部分などが挙げられる。
一例として、セメント製造装置における予熱塔10の最下段サイクロン11の天井部12に施工する内張り耐火物について2つの例を詳細に説明する。図1に本発明の該内張り耐火物の断面図を示す。この2層の耐火物の構造は、厚さが25〜50mmの熱伝導率の低い断熱ボード3と、厚さが200〜300mmのキャスタブルの耐火層4から成っている。このような断熱ボード3と耐火層4との厚さで施工することのよって、境界部13の温度を700℃以下にすることができる。温度が700℃以下であれば、金属腐食性物質が固相となり、境界部13の間隙からスタッド5,6の位置へ侵入し難くなる。
In the present invention, the place where the cement production apparatus is in a high temperature atmosphere is the ceiling portion 12 of the lowermost cyclone 11 of the preheating tower 10, the lowermost cyclone 11, the calcining furnace 25, the rising duct 26, and the kiln of the rotary kiln. In at least one place such as the buttocks 27, there may be mentioned a ceiling portion or an inclined portion of the furnace where the castable of the furnace wall may be peeled off from the iron shell due to gravity.
As an example, two examples of the lining refractories to be constructed on the ceiling portion 12 of the lowermost cyclone 11 of the preheating tower 10 in the cement manufacturing apparatus will be described in detail. FIG. 1 shows a cross-sectional view of the lining refractory according to the present invention. This two-layer refractory structure is composed of a heat insulating board 3 having a thickness of 25 to 50 mm and a low thermal conductivity, and a castable refractory layer 4 having a thickness of 200 to 300 mm. By constructing with the thickness of such a heat insulation board 3 and the fireproof layer 4, the temperature of the boundary part 13 can be 700 degrees C or less. If the temperature is 700 ° C. or lower, the metal corrosive substance becomes a solid phase, and it is difficult to enter the position of the studs 5 and 6 from the gap of the boundary portion 13.

[断熱ボード]
従来のキャスタブルで施工する断熱層の代わりに、本発明において使用する断熱ボード3の厚さは、25〜50mmが好ましい。25mm未満であると、鉄皮1(内壁面)の温度上昇を抑える為、耐火層4の厚くなりすぎ、コスト的に有利とは言えない。また、50mmを越えると、耐火層4が薄くなり耐火の機能を発揮できないおそれがある。また、断熱ボード3の形状は、一辺が長さ500〜1000mmの正方角または長方角のボードであることが好ましい。しかし、各辺の縁と角について隣接する断熱ボードと接触させるように並べて、目地16をつくらないようにし、厚さが一定であれば、どんな不定形の形であってもよい。
[Insulation board]
The thickness of the heat insulation board 3 used in the present invention is preferably 25 to 50 mm instead of the conventional heat insulation layer constructed by castable. If it is less than 25 mm, the temperature rise of the iron skin 1 (inner wall surface) is suppressed, so that the refractory layer 4 becomes too thick, which is not advantageous in terms of cost. Moreover, when it exceeds 50 mm, there exists a possibility that the fireproof layer 4 may become thin and a fireproof function may not be exhibited. Moreover, it is preferable that the shape of the heat insulation board 3 is a square or a rectangular board with one side having a length of 500 to 1000 mm. However, as long as the edges and corners of each side are arranged in contact with the adjacent heat insulating board so as not to form the joint 16 and the thickness is constant, any irregular shape may be used.

図8に示すように、目地16については、断熱ボード3がスタッド5,6に当たる部分をカットし、全ての目地16の幅が0〜5mm程度になるように断熱ボード3の大きさを決めてもよい。この場合は断熱ボード3の一辺の寸法がスタッド5,6の直径の長さ分の程度、長くなる。なお、断熱ボード3は、小刻みに切断した小片の断熱ボード21であれはどんな形状のものを併用してもよい。このようにすれば、元来廃棄してしまう小片の断熱ボードを有効利用することができる。   As shown in FIG. 8, for the joint 16, the size of the heat insulating board 3 is determined so that the heat insulating board 3 hits the studs 5 and 6 and the width of all the joints 16 is about 0 to 5 mm. Also good. In this case, the dimension of one side of the heat insulating board 3 is increased by the length of the diameter of the studs 5 and 6. The heat insulating board 3 may be of any shape as long as it is a small piece of the heat insulating board 21 cut into small pieces. If it does in this way, the small-sized heat insulation board which will be discarded originally can be used effectively.

断熱ボード3の材質は、シリカ、アルミナを主成分としたセラミックファイバーボードが好ましい。この断熱性能としては、熱伝導率が0.1〜0.2W/(m・K)が好ましい。例えば、新日化サーマルセラミック(株)製の型番:SCボード1260相当品(SiO=54質量%、Al=46質量%)である。この断熱ボード3は従来のキャスタブル断熱層より断熱効果が高く、厚さが25mmの時、温度が250〜300℃低下し、または厚さが50mmの時、温度が400〜500℃低下する。すなわち、断熱ボード3の断熱性能は、キャスタブルに比べて良好であるので、厚みを薄くすることができる。このため、境界部13付近の温度を腐食温度領域9から低温部に離すことが可能となり、アルカリ塩の液相が侵入し難くなる。これによって、スタッド5,6の腐食の防止ができる。 The material of the heat insulating board 3 is preferably a ceramic fiber board mainly composed of silica and alumina. As this heat insulation performance, a thermal conductivity of 0.1 to 0.2 W / (m · K) is preferable. For example, model number: SC board 1260 equivalent (SiO 2 = 54% by mass, Al 2 O 3 = 46% by mass) manufactured by Shin-Nika Thermal Ceramics Co., Ltd. The heat insulating board 3 has a higher heat insulating effect than the conventional castable heat insulating layer, and when the thickness is 25 mm, the temperature is reduced by 250 to 300 ° C., or when the thickness is 50 mm, the temperature is reduced by 400 to 500 ° C. That is, since the heat insulation performance of the heat insulation board 3 is better than that of castable, the thickness can be reduced. For this reason, it becomes possible to separate the temperature in the vicinity of the boundary portion 13 from the corrosion temperature region 9 to the low temperature portion, and the liquid phase of the alkali salt hardly enters. Thereby, the corrosion of the studs 5 and 6 can be prevented.

なお、このときの、炉外8の外気温度が30℃で、外気の風速が1.0m/秒とし、炉内7の温度を900℃としている。断熱ボード3を使用することによって、耐火層4は高アルミナ質キャスタブルで施工することができる。また、断熱ボード3は乾燥収縮がほとんどないので、断熱層2の内部での亀裂が起こりにくい。
断熱ボード3を内表面の鉄皮1に敷設する方法としては、断熱ボードを鉄皮に接着剤で貼り付ける方法が簡便である。
At this time, the outside air temperature outside the furnace 8 is 30 ° C., the wind speed of the outside air is 1.0 m / second, and the temperature inside the furnace 7 is 900 ° C. By using the heat insulating board 3, the refractory layer 4 can be constructed with a high alumina castable. Further, since the heat insulation board 3 hardly undergoes drying shrinkage, cracks in the heat insulation layer 2 hardly occur.
As a method of laying the heat insulation board 3 on the iron skin 1 on the inner surface, a method of attaching the heat insulation board to the iron skin with an adhesive is simple.

[スタッドと断熱ボード]
図4と図5に一例を示すように、各耐火物を固定するスタッド5,6は、最下段サイクロン11の鉄皮1に溶接部14で盛り付け溶接された丸鋼22からできており、先端部のY字型スタッド5またはYY字型スタッド6のいずれかのみで構成されるか、または、前記2種類の形状のスタッド5,6が交互に配置され混成されている。好ましくは、YY字型スタッド6のみで構成される方が強度的にはよい。
[Stud and insulation board]
As shown in FIG. 4 and FIG. 5, the studs 5 and 6 for fixing each refractory are made of a round steel 22 welded to the iron shell 1 of the lowermost cyclone 11 by a welded portion 14. Only the Y-shaped stud 5 or the YY-shaped stud 6 is formed, or the two types of studs 5 and 6 are alternately arranged and mixed. Preferably, it is better in strength to include only the YY-shaped stud 6.

Y字の開き角度は、55〜80度であり、スタッド5,6の材質はステンレス鋼の規格がSUS304,SUS309S,SUS310Sなどであって、外径寸法がφ10〜20mmである。なお、外径がφ10mm未満であると、耐火物の自重やスタッド5,6の腐食による切断によって、キャスタブルが落下しやすくなる。外径がφ20mmを越えると熱性能のスペックが過剰となり経済性に劣る。   The opening angle of the Y-shape is 55 to 80 degrees, and the materials of the studs 5 and 6 are stainless steel standards such as SUS304, SUS309S, and SUS310S, and the outer diameter is φ10 to 20 mm. If the outer diameter is less than φ10 mm, the castable can easily fall due to the weight of the refractory or the cutting due to corrosion of the studs 5 and 6. If the outer diameter exceeds 20 mm, the thermal performance specifications become excessive and the economy is inferior.

また、スタッド5,6は正方配列または千鳥配列であって、このスタッド同士の距離は250〜500mmであるが、図8の例のように、スタッド5,6を取り付ける位置に断熱ボード3の間隙である目地16が交差する位置となるような断熱ボード3の寸法とすることが構造上よい。このため、断熱ボード3の寸法はスタッド同士の距離によって影響され決定されるので、スタッド5,6の太さなどによって、断熱ボード3の実際の寸法を決定することが好ましい。   The studs 5 and 6 have a square arrangement or a staggered arrangement, and the distance between the studs is 250 to 500 mm. However, as shown in the example of FIG. It is structurally good to set it as the dimension of the heat insulation board 3 which becomes the position where the joint 16 which is is. For this reason, since the dimension of the heat insulation board 3 is influenced and determined by the distance between the studs, it is preferable to determine the actual dimension of the heat insulation board 3 based on the thickness of the studs 5 and 6.

図9に示すように、丸鋼22などを寝かせて断熱ボード3の表面を押さえつけ、スタッド5,6に溶接すると一段と断熱ボード3の固定性が向上する。小刻みに切断した小片の断熱ボード21を利用する場合は、該押さえつけ用の丸鋼22で押さえつけることが好ましい。   As shown in FIG. 9, when the round steel 22 or the like is laid down and the surface of the heat insulating board 3 is pressed and welded to the studs 5 and 6, the fixing property of the heat insulating board 3 is further improved. When a small piece of heat insulating board 21 cut in small increments is used, it is preferable to press it with the pressing round steel 22.

[キャスタブル耐火物]
耐火層4は高アルミナ質キャスタブルである。まず、図6に示すように、型枠23を固定する直径がφ5.5〜6.5mmの型枠止めボルト25をスタッド5,6に溶接し、最後に型枠23を組み立て、型枠止めボルト25にナットで固定する。その後、上部の流し込み口24から型枠23にキャスタブル耐火物が流し込まれ、耐火物としての耐火層4として施工される。耐火物を流し込んだ後、夏季では24時間以上の養生を、また、冬季では48時間以上の養生をして、耐火層4の高アルミナ質キャスタブルが凝結して固化したら、型枠23を解体して取り除き耐火物の施工は完了する。なお、型枠23の厚みは12mmであって、材質は木質系のものが好ましいが、耐火物の重量に耐えうる強度をもった厚みの軽金属系・樹脂系のものであってもよい。
[Castable refractories]
The refractory layer 4 is a high alumina castable. First, as shown in FIG. 6, a mold fixing bolt 25 having a diameter of φ5.5 to 6.5 mm for fixing the mold 23 is welded to the studs 5 and 6, and finally the mold 23 is assembled and fixed to the mold. The bolt 25 is fixed with a nut. Then, a castable refractory is poured into the mold 23 from the upper pouring opening 24, and is constructed as a refractory layer 4 as a refractory. After pouring the refractory, curing for 24 hours or more in the summer and curing for 48 hours or more in the winter, when the high alumina castable of the refractory layer 4 is condensed and solidified, the form 23 is disassembled. Removal of the refractory is completed. The thickness of the mold 23 is 12 mm, and the material is preferably a wood-based material, but may be a light metal-based or resin-based material having a strength sufficient to withstand the weight of the refractory.

断熱ボード3の厚みと後述するキャスタブル耐火物の厚みについては、層の境界部付近に金属腐食性物質の液相が生じないようにしつつ、炉内の温度に応じて、耐火物により内壁面を保護し、かつ炉外との断熱を考慮し決定される。断熱ボード3の厚みとキャスタブル耐火物の厚みの比率は、1:4〜1:12の範囲が好ましい。この範囲を外れると、コストや施工の面で必ずしも有利な方法とは言えない。セメント製造装置の高温雰囲気となる箇所の大きさや温度によって異なるが、好ましいキャスタブル耐火物の厚みは、200〜300mm、また、断熱ボート3の厚みは25〜50mmである。   Regarding the thickness of the heat insulating board 3 and the thickness of the castable refractory described later, the inner wall surface is made of refractory according to the temperature in the furnace while preventing the liquid phase of the metal corrosive substance from being generated near the boundary between the layers. It is determined in consideration of protection and insulation from the outside of the furnace. The ratio of the thickness of the heat insulating board 3 to the thickness of the castable refractory is preferably in the range of 1: 4 to 1:12. Outside this range, it is not necessarily an advantageous method in terms of cost and construction. The thickness of the castable refractory is preferably 200 to 300 mm, and the thickness of the heat-insulating boat 3 is 25 to 50 mm, although it varies depending on the size and temperature of the high temperature atmosphere of the cement manufacturing apparatus.

予熱塔10における内張り耐火物について、鉄皮1側を断熱ボード3で、炉内7側をキャスタブルの耐火物とで構成した2層構造で施工する、すなわち断熱ボード3を炉内7の天井部12の鉄皮1に固定し、キャスタブルの施工作業は、耐火層4の一層のみでの打ち込みの作業で行う。耐火層4のキャスタブルを従来よりも厚めにして、一層での打ち込み作業を行うため、スタッド5,6の腐食する危険のある腐食温度領域9にキャスタブルの境界部13の間隙ができない。そのため、金属腐食性物質である塩化物としてのKCl、NaClなどのアルカリ塩の液相が出来にくい構造とすることができる。
本発明のような、耐火構造とすることによって、2種の耐火物の間隙である境界部13に金属腐食性物質の液相が出来にくくなってスタッドの腐食切断15を大幅に低減することができる。
The lining refractory in the preheating tower 10 is constructed with a two-layer structure in which the iron skin 1 side is composed of a heat insulating board 3 and the furnace inner side is composed of a castable refractory, that is, the heat insulating board 3 is a ceiling part of the furnace 7 12 is fixed to the iron skin 1 and castable work is performed by driving only one layer of the refractory layer 4. Since the castable layer of the refractory layer 4 is made thicker than in the prior art and the driving operation is performed in one layer, there is no gap between the castable boundary portions 13 in the corrosion temperature region 9 where the studs 5 and 6 may corrode. Therefore, a structure in which a liquid phase of an alkali salt such as KCl or NaCl as a chloride which is a metal corrosive substance is difficult to be formed can be obtained.
By adopting a refractory structure as in the present invention, it is difficult to form a liquid phase of a metal corrosive substance at the boundary portion 13 which is a gap between two refractories, and the corrosion cutting 15 of the stud can be greatly reduced. it can.

上記の耐火構造を有するセメント製造装置を使用してセメント製造装置を操業する。KCl、NaClなどの塩化物を含む高温物質が前記高温雰囲気に存在する。塩化物を含む高温物質が気体状となって断熱層2と耐火層4の境界部13到達しスタッドを腐食させる機構については、揮発した塩化物が気体状となり耐火物の端部のすきまを通って境界部13に到達し、ここで液体状態となり、毛細管現象で広がって金属のスタッドに到達し腐食させているものと推測される。   A cement manufacturing apparatus is operated using the cement manufacturing apparatus having the above-mentioned fireproof structure. A high temperature material containing a chloride such as KCl or NaCl is present in the high temperature atmosphere. Regarding the mechanism in which high-temperature substances containing chlorides become gaseous and reach the boundary 13 between the heat insulating layer 2 and the refractory layer 4 and corrode the studs, the volatilized chloride becomes gaseous and passes through the clearance at the end of the refractory. It reaches the boundary portion 13 and becomes a liquid state here, and it is presumed that it spreads by capillary action and reaches the metal stud to be corroded.

前記塩化物を含む高温物質の一部が気体状となり前記耐火層と前記断熱層との境界部に到達した際の温度が、前記塩化物を含む高温物質の凝固温度以下の温度である。これにより、KCl、NaClなどの腐食物質が液相でスタッドを接触することを防止することができる。腐食物質はKClを主成分である場合、前記凝固温度は700℃以下の温度とすることにより腐食することを効果的に防止することができる。   The temperature when a part of the high-temperature substance containing chloride becomes gaseous and reaches the boundary between the refractory layer and the heat insulating layer is a temperature equal to or lower than the solidification temperature of the high-temperature substance containing chloride. Thereby, corrosive substances such as KCl and NaCl can be prevented from contacting the stud in the liquid phase. When the corrosive substance is composed mainly of KCl, the solidification temperature can be effectively prevented by setting the solidification temperature to 700 ° C. or lower.

[耐火構造の箇所]
セメント焼成の予熱塔10における最下段サイクロン11の天井部12の内張り耐火物として、図1に示す本発明におけるキャスタブルの耐火層4の1層の打ち込みでの施工方法で実施した。最下段サイクロン11の天井部12のガス温度は、平均900℃であって、最下段サイクロン11のシュート部20での塩素濃度が2質量%であった。
[Location of fireproof structure]
As the lining refractory of the ceiling portion 12 of the lowermost cyclone 11 in the cement-heated preheating tower 10, the castable refractory layer 4 of the present invention shown in FIG. The gas temperature at the ceiling portion 12 of the lowermost cyclone 11 was 900 ° C. on average, and the chlorine concentration at the chute portion 20 of the lowermost cyclone 11 was 2 mass%.

[腐食温度領域の特定]
上記最下段サイクロン11のシュート20でサンプル採取した塩素濃度が2質量%の原料を、実験用回転電気炉にて昇温加熱テストを行った。その結果、700℃を超えた温度で回転電気炉中のサンプルの動息角が変化し始め、750℃付近でサンプル中の塩化物の溶解が盛んになって炉壁に付着し始めた。そこで、本サンプルにおける炉壁への付着の開始温度(液相の開始温度)、すなわち固相と液相の境界温度は、700℃であり、700℃を超える温度を腐食温度領域と特定した。これにより、境界部を700℃以下に設定できれば、腐食を防止することが期待される。
[Identification of corrosion temperature range]
A raw material with a chlorine concentration of 2 mass% sampled by the chute 20 of the lowermost cyclone 11 was subjected to a heating and heating test in an experimental rotary electric furnace. As a result, the respiration angle of the sample in the rotary electric furnace began to change at a temperature exceeding 700 ° C., and the dissolution of chloride in the sample became vigorous at around 750 ° C. and began to adhere to the furnace wall. Therefore, the start temperature of adhesion to the furnace wall (liquid phase start temperature) in this sample, that is, the boundary temperature between the solid phase and the liquid phase was 700 ° C., and the temperature exceeding 700 ° C. was specified as the corrosion temperature region. Thereby, if a boundary part can be set to 700 degrees C or less, it is anticipated that corrosion will be prevented.

[断熱ボードおよび耐火物の厚みの特定]
熱伝導計算を行った結果、断熱ボード3と耐火層4の厚さを以下のように決定した。断熱ボード3と耐火層4を合わせた厚さは、炉内ガスの流れに影響を与えないため、従来通りサイクロン11の設計値である275mmとした。次に内部温度900℃、鉄皮1(内壁面)温度を150℃、断熱ボード3と耐火層4の境界部の温度が600℃以下になるように、定常熱伝導の計算式を用いて計算した。前記腐食温度領域の特定において決定した700℃から100℃余裕を見て600℃とした。また、断熱ボード3は、セラミックファイバーボード(新日化サーマルセラミック(株)製の型番:SCボード1260)で主成分はAl=46質量%,SiO=54質量%、嵩比重が0.25t/m、耐熱最高温度が1260℃、熱伝導率が0.17W/(m・K)を使用した。耐火層4は、高アルミナ質キャスタブルで、主成分はAl=50質量%、SiO=42質量%、圧縮強さは48MPa、曲げ強さは11.2MPa、耐熱最高温度が1500℃、熱伝導率は0.93W/(m・K)を使用した。これらの熱伝導率から断熱ボード3の厚さは50mm、耐火層4の厚さは225mmとなった。
[Identification of insulation board and refractory thickness]
As a result of heat conduction calculation, the thickness of the heat insulation board 3 and the fireproof layer 4 was determined as follows. The total thickness of the heat insulating board 3 and the refractory layer 4 does not affect the flow of the gas in the furnace, and thus is 275 mm, which is the design value of the cyclone 11 as before. Next, calculation is performed using a steady-state heat conduction calculation formula so that the internal temperature is 900 ° C., the temperature of the iron skin 1 (inner wall surface) is 150 ° C., and the temperature at the boundary between the heat insulation board 3 and the refractory layer 4 is 600 ° C. or less. did. From the 700 ° C. determined in the specification of the corrosion temperature region to the 100 ° C. margin, the temperature was set to 600 ° C. The heat insulation board 3 is a ceramic fiber board (model number: SC board 1260 manufactured by Nippon Kayaku Thermal Ceramics Co., Ltd.), and the main components are Al 2 O 3 = 46 mass%, SiO 2 = 54 mass%, and the bulk specific gravity is 0.25 t / m 3 , heat resistant maximum temperature of 1260 ° C., and thermal conductivity of 0.17 W / (m · K) were used. The refractory layer 4 is a high alumina castable, the main components are Al 2 O 3 = 50 mass%, SiO 2 = 42 mass%, the compressive strength is 48 MPa, the bending strength is 11.2 MPa, and the heat resistant maximum temperature is 1500 ° C. The thermal conductivity was 0.93 W / (m · K). From these thermal conductivities, the thickness of the heat insulating board 3 was 50 mm, and the thickness of the refractory layer 4 was 225 mm.

断熱ボード3の寸法は、616×900mmの長方角を基準寸法とし、一部の施工においては、長方形の小片の断熱ボード21を利用した。断熱ボード3の鉄皮1への内張りとYY字型スタッド6の配置は、図9に示すように配置した。このとき、断熱ボード3同士は縁に間隙ができないように互いに接触させて配列させた。なお、断熱ボード3と鉄皮1との接着剤は合成樹脂ボンドを使用した。   The size of the heat insulation board 3 was set to a rectangular dimension of 616 × 900 mm as a reference dimension, and a rectangular piece of heat insulation board 21 was used in some constructions. The lining of the heat insulation board 3 on the iron skin 1 and the arrangement of the YY-shaped stud 6 were arranged as shown in FIG. At this time, the heat insulating boards 3 were arranged in contact with each other so that there was no gap between the edges. The adhesive between the heat insulating board 3 and the iron skin 1 was a synthetic resin bond.

スタッドの寸法については、高さが250mmであり、その形状はYY字型スタッド6を使用した。このスタッドの太さは、直径がφ16mmで、先端部と中間部のY字の開き角度を60度とし、材質は、SUS304の丸鋼22とした。スタッド同士の間隔の距離は、断熱ボード3の長辺方向で450mmであり、短辺方向で616mmの間隔とした。   As for the dimensions of the stud, the height was 250 mm, and the YY-shaped stud 6 was used as the shape. The stud has a diameter of 16 mm, the opening angle of the Y-shape of the tip and the middle is 60 degrees, and the material is round steel 22 of SUS304. The distance between the studs was 450 mm in the long side direction of the heat insulating board 3 and 616 mm in the short side direction.

図9に断熱ボード3,21の押さえ用の丸鋼22の配置の一例を示す。断熱ボード3,21の押さえは、丸鋼22をYY字型スタッド6に溶接して使用し、全ての断熱ボード3,21を押さえているように施工した。丸鋼22の直径は、φ5.5mmの寸法のものを使用した。目地16の幅は、0〜3mmであって、キャスタブル耐火物の打ち込み時に、耐火層4の1層の打ち込みを行って施工処理をした。この際の、目地16の部分の材質は、高アルミナ質キャスタブルである。   FIG. 9 shows an example of the arrangement of the round steel bars 22 for holding the heat insulating boards 3 and 21. The heat insulating boards 3 and 21 were pressed using the round steel 22 welded to the YY-shaped stud 6 so that all the heat insulating boards 3 and 21 were pressed. The round steel 22 had a diameter of φ5.5 mm. The width of the joint 16 is 0 to 3 mm, and when the castable refractory is driven, one layer of the refractory layer 4 is driven and the construction process is performed. At this time, the material of the portion of the joint 16 is a high alumina castable.

キャスタブル耐火物の打ち込み施工については、図6に示すように、最下段サイクロン11の天井部12の鉄皮1に空ける流し込み口24ついては、前記の所定の間隔で、酸素ガス切断器によって穴を開けた。次に、鉄皮1の炉内側の内面にスタッド5,6を前記の所定の間隔で溶接し、固定した。なお、流し込み口24の部分は、あらかじめ断熱ボード3を付けないように断熱ボード3を穴加工していた。
そして、断熱ボード3、21からの厚さが225mmのキャスタブルを流し込む空間を形成し、スタッド5,6を埋め込むように型枠23を設けるために、型枠止めボルト25を近くのスタッド5,6に溶接して固定した。その後、厚さが12mmの型枠23を、型枠止めボルト25に通してナットで締め付けながら、所定の位置に固定した。
型枠23の設定が全て終わったら、図に示すように流し込み口24から、耐火層4のキャスタブル耐火物を流し込んだ。
キャスタブルの養生が完了し硬化したら、型枠23を撤去し、流し込み口24にはふたを溶接することによって、耐火物の施工を完了した。
As shown in FIG. 6, the castable refractory is pierced with an oxygen gas cutter at the predetermined interval, as shown in FIG. It was. Next, the studs 5 and 6 were welded and fixed to the inner surface of the iron skin 1 inside the furnace at the predetermined interval. In addition, in the part of the pouring opening 24, the heat insulation board 3 was previously drilled so that the heat insulation board 3 was not attached.
Then, in order to form a space into which castables having a thickness of 225 mm from the heat insulating boards 3 and 21 are poured, and to form the mold 23 so as to embed the studs 5 and 6, the mold fixing bolts 25 are connected to the nearby studs 5 and 6. And fixed by welding. Thereafter, the mold 23 having a thickness of 12 mm was fixed at a predetermined position while being passed through the mold fixing bolt 25 and tightened with a nut.
When all the setting of the mold 23 was completed, the castable refractory of the refractory layer 4 was poured from the pouring port 24 as shown in the figure.
When the castable curing was completed and cured, the formwork 23 was removed, and a lid was welded to the pouring port 24 to complete the construction of the refractory.

炉内7の温度は平均900℃に対し、鉄皮1と断熱ボード3の接触部の温度が130℃であり、このように施工しても、鉄皮1は操業時においても赤熱しなかった。本発明の本実施例において、約1年間、予熱塔の連続操業を行い、キャスタブルを解体して点検調査を行った結果、YY字型スタッド6は全く腐食切断15していなかった。これは、断熱ボード3と耐火層4の境界部の温度が、最下段サイクロン11のシュート部20でサンプル採取した原料の固相と液相の境界温度より低い温度である600℃以下になるように断熱ボードと耐火物の厚みを設定したことに依るものである。   The temperature inside the furnace 7 is 900 ° C. on the average, and the temperature of the contact portion between the iron skin 1 and the heat insulation board 3 is 130 ° C. Even if the construction is performed in this way, the iron skin 1 did not red heat during operation. . In the present embodiment of the present invention, as a result of continuous operation of the preheating tower for about one year, disassembling the castable and carrying out an inspection survey, the YY-shaped stud 6 was not subjected to corrosion cutting 15 at all. This is so that the temperature at the boundary between the heat insulation board 3 and the refractory layer 4 is 600 ° C. or lower, which is lower than the boundary temperature between the solid phase and the liquid phase of the raw material sampled by the chute 20 of the lowermost cyclone 11. This is because the thickness of the heat insulation board and the refractory is set.

本発明は、スタッドを使用して耐火物を施工しているセメント焼成装置において金属腐食性ガスが存在し、耐火物層の内部で液相となる温度領域が存在する際に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used when a metal corrosive gas is present in a cement firing apparatus in which a refractory is constructed using a stud, and there is a temperature region that becomes a liquid phase inside the refractory layer. .

1 鉄皮(内壁面)
2 断熱層
3 断熱ボード
4 耐火層
5 Y字型スタッド
6 YY字型スタッド
7 炉内
8 炉外
9 腐食温度領域
10 予熱塔
11 最下段サイクロン
12 天井部
13 境界部
14 溶接部
15 腐食切断
16 目地
17 内筒部
18 スリーブ
19 サイクロンガス出口
20 シュート部
21 小片の断熱ボード
22 丸鋼
23 型枠
24 流し込み口
25 型枠止めボルト
1 Iron skin (inner wall surface)
2 Insulating layer 3 Insulating board 4 Refractory layer 5 Y-shaped stud 6 YY-shaped stud 7 Inside the furnace 8 Outside the furnace 9 Corrosion temperature region 10 Preheating tower 11 Lowermost cyclone 12 Ceiling part 13 Boundary part 14 Welding part 15 Corrosion cutting 16 Joint 17 Inner cylinder part 18 Sleeve 19 Cyclone gas outlet 20 Chute part 21 Small piece of heat insulation board 22 Round steel 23 Mold frame 24 Pouring port 25 Mold frame fixing bolt

Claims (4)

セメント製造装置の高温雰囲気となる箇所の内壁面に一端が固定され、他端が高温雰囲気に向かって延出したスタッドと、前記内壁面に沿って断熱ボードが敷設された断熱層と、
前記断熱ボート層に接して耐火物が敷設された耐火層と、を備えるセメント製造装置の耐火構造であって、
前記断熱層の層厚は25〜50mmの範囲であり、前記耐火層の層厚は200〜300mmの範囲であり、前記スタッドは前記断熱層と前記耐火層に没入され、前記断熱ボードと前記耐火物を保持する構造であることを特徴とするセメント製造装置の耐火構造。
One end is fixed to the inner wall surface of the location that becomes a high temperature atmosphere of the cement manufacturing apparatus, the other end extends toward the high temperature atmosphere, a heat insulating layer in which a heat insulating board is laid along the inner wall surface,
A refractory structure of a cement manufacturing apparatus comprising a refractory layer in which a refractory material is laid in contact with the heat insulating boat layer,
The heat insulation layer has a thickness of 25 to 50 mm, the fireproof layer has a thickness of 200 to 300 mm, the stud is immersed in the heat insulation layer and the fireproof layer, and the heat insulation board and the fireproof layer. A fireproof structure for a cement manufacturing apparatus, characterized by having a structure for holding an object.
前記高温雰囲気となる箇所は、セメント製造装置における予熱塔の最下段サイクロン、仮焼炉、ライジングダクト、またはロータリーキルンの窯尻部のうちの少なくとも1つである請求項1記載のセメント製造装置の耐火構造。 2. The fire resistance of a cement production apparatus according to claim 1, wherein the high temperature atmosphere is at least one of a lowermost cyclone of a preheating tower in a cement production apparatus, a calcining furnace, a rising duct, or a kiln bottom of a rotary kiln. Construction. 塩化物を含む高温物質が前記高温雰囲気に存在し、前記塩化物を含む高温物質の一部が気体状となり前記耐火層と前記断熱層との境界部に到達した際の温度が、前記塩化物を含む高温物質の凝固温度以下の温度である請求項1記載の耐火構造を有するセメント製造装置を使用する方法。 A temperature when a high-temperature substance containing chloride exists in the high-temperature atmosphere, and a part of the high-temperature substance containing chloride becomes gaseous and reaches the boundary between the refractory layer and the heat insulating layer, the chloride The method of using a cement manufacturing apparatus having a refractory structure according to claim 1, wherein the temperature is equal to or lower than a solidification temperature of a high-temperature substance including 前記凝固温度は700℃以下である請求項3記載の耐火構造を有するセメント製造装置を使用する方法。 The method for using a cement manufacturing apparatus having a fireproof structure according to claim 3, wherein the solidification temperature is 700 ° C. or less.
JP2009083938A 2009-03-31 2009-03-31 Refractory structure of cement manufacturing apparatus and method of using the same Active JP5229058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083938A JP5229058B2 (en) 2009-03-31 2009-03-31 Refractory structure of cement manufacturing apparatus and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083938A JP5229058B2 (en) 2009-03-31 2009-03-31 Refractory structure of cement manufacturing apparatus and method of using the same

Publications (2)

Publication Number Publication Date
JP2010235366A JP2010235366A (en) 2010-10-21
JP5229058B2 true JP5229058B2 (en) 2013-07-03

Family

ID=43090076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083938A Active JP5229058B2 (en) 2009-03-31 2009-03-31 Refractory structure of cement manufacturing apparatus and method of using the same

Country Status (1)

Country Link
JP (1) JP5229058B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6509769B2 (en) * 2016-03-31 2019-05-08 東京窯業株式会社 Wall structure of container or piping for containing or transporting high temperature gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114266A (en) * 1997-06-23 1999-01-22 Shinagawa Refract Co Ltd Stud fixing structure
JP3616239B2 (en) * 1997-10-23 2005-02-02 東芝セラミックス株式会社 Cement kiln panel and its construction method
JP2001091164A (en) * 1999-09-20 2001-04-06 Yotai Refractories Co Ltd Method for executing panel of refractory
JP2002206705A (en) * 2001-01-11 2002-07-26 Sumitomo Heavy Ind Ltd Fluidized bed furnace and cyclone

Also Published As

Publication number Publication date
JP2010235366A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5488785B2 (en) Refractory construction method and construction furnace
US4450872A (en) Fiber pipe protection for water cooled pipes in reheat furnaces
US20110283520A1 (en) Ceramic lag bolt and use thereof in high temperature insulation installation
WO2007095831A1 (en) A rotary kiln
JP5229058B2 (en) Refractory structure of cement manufacturing apparatus and method of using the same
JP2010505082A5 (en)
US4539055A (en) Fiber pipe protection for water cooled pipes in reheat furnaces
JP2016183784A (en) Hearth for consecutive annealing furnace and consecutive annealing furnace
TWI306145B (en) Installation structure of refractory tile and fireproof structure protecting water pipe wall
CN106123601B (en) A kind of recessed slot type combined fireproof brick of high temperature and production method
CN106123600B (en) A kind of high temperature lower convex platform formula combined fireproof brick and production method
CN116877718A (en) Gate plate of high-temperature flue gate valve and manufacturing method thereof
WO2018025719A1 (en) Heat insulating structure
JP6363899B2 (en) Industrial furnace lining structure
CN205991712U (en) A kind of recessed slot type combined fireproof brick of high temperature
CN205991711U (en) A kind of high temperature lower convex platform formula combined fireproof brick
CN204265460U (en) A kind of corrosion-and high-temp-resistant body of heater for boiling chloridizing furnace
US5800775A (en) Refractory block slag dam
JP2005042967A (en) Heat insulating structure having ceramic fiber and constructing method thereof
CN208269147U (en) A kind of rotary kiln composite brick
CN205505721U (en) Be used for that non ferrous alloy melts, heat preservation stove
Auer et al. Numerical failure analysis for the refractory lining of a tundish
CN210802036U (en) Heat-insulation wear-resistant single-layer furnace lining anchoring structure
CN220356974U (en) Multipurpose fireproof performance test device for fireproof protection material of building component
JP2011038721A (en) Metal case lining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250