JP5228730B2 - Analysis method of eddy current loss in magnet of permanent magnet motor - Google Patents

Analysis method of eddy current loss in magnet of permanent magnet motor Download PDF

Info

Publication number
JP5228730B2
JP5228730B2 JP2008237262A JP2008237262A JP5228730B2 JP 5228730 B2 JP5228730 B2 JP 5228730B2 JP 2008237262 A JP2008237262 A JP 2008237262A JP 2008237262 A JP2008237262 A JP 2008237262A JP 5228730 B2 JP5228730 B2 JP 5228730B2
Authority
JP
Japan
Prior art keywords
magnet
analysis
eddy current
dimensional
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008237262A
Other languages
Japanese (ja)
Other versions
JP2010072773A5 (en
JP2010072773A (en
Inventor
隆志 沖津
大器 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2008237262A priority Critical patent/JP5228730B2/en
Publication of JP2010072773A publication Critical patent/JP2010072773A/en
Publication of JP2010072773A5 publication Critical patent/JP2010072773A5/ja
Application granted granted Critical
Publication of JP5228730B2 publication Critical patent/JP5228730B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Control Of Electric Motors In General (AREA)

Description

本発明は、永久磁石式モータの磁石内渦電流損失の解析方法に係り、特に三次元有限要素法と二次元有限要素法を併用した解析方法に関する。   The present invention relates to an analysis method for eddy current loss in a magnet of a permanent magnet motor, and more particularly to an analysis method using both a three-dimensional finite element method and a two-dimensional finite element method.

PMモータの磁石の発熱や減磁を評価するため、磁石中の渦電流損失を数値解析で求める場合には、磁石の三次元的な渦電流分布を考慮した三次元非線形定常磁界解析が必要となる。しかしながら、インバータ駆動に起因するキャリア周波数成分の電流高調波を考慮した解析を行う場合などには、ステップ・バイ・ステップ法の時間刻み幅を小さくした計算を必要とし、計算時間が膨大となってしまうため、三次元解析のみを用いて渦電流損失を算定する方法は実用的でない。   In order to evaluate the heat generation and demagnetization of the magnet of a PM motor, when calculating the eddy current loss in the magnet by numerical analysis, it is necessary to perform a three-dimensional nonlinear stationary magnetic field analysis considering the three-dimensional eddy current distribution of the magnet. Become. However, when performing analysis that takes into account current harmonics of the carrier frequency component due to inverter drive, etc., calculation with a small step size of the step-by-step method is required, and the calculation time becomes enormous. Therefore, a method for calculating eddy current loss using only three-dimensional analysis is not practical.

そのため、鉄芯中の磁束の軸方向成分が無視できると仮定し、モータ全体は二次元非線形定常渦電流解析を行い、得られた各高調波次数の内、主要な次数についてギャップ磁束密度と等しくなる磁気ベクトルポテンシャルを境界条件として与えるとともに、得られた透磁率分布を用いて、ロータのみを三次元複素数近似解析を行うことにより、計算時間を削減する方法が提案されている(例えば、非特許文献1参照)。   Therefore, assuming that the axial component of the magnetic flux in the iron core is negligible, the entire motor performs a two-dimensional nonlinear steady eddy current analysis, and among the obtained harmonic orders, the major orders are equal to the gap magnetic flux density. A method has been proposed in which the calculation time is reduced by giving a magnetic vector potential as a boundary condition and performing a three-dimensional complex approximation analysis of only the rotor using the obtained magnetic permeability distribution (for example, non-patent) Reference 1).

また、2次元解析と同等の計算時間でPMモータの磁石渦電流損失を求める方法として、PMモータの2次元モデルを用い、有限要素法による2次元磁場解析により、磁石内部の磁束密度の時間変化を求め、この磁石内部の磁束密度の時間変化を、磁石のみの3次元モデルに与え、磁石3次元モデルと磁束密度の時間変化から、有限要素法により、磁石の渦電流を考慮した3次元解析を行い、これで求める磁石の渦電流密度の時間変化から、磁石渦電流損失密度を算出する方法を、本願出願人は既に提案している(例えば、特許文献1参照)。
山崎克己、狩野裕二「三次元・二次元有限要素法を併用したIPMモータの損失解析」電気学会静止器・回転機合同研資,SA−07−79,RM−07−95(2007) 特開2008−123076号公報
In addition, as a method of obtaining the magnet eddy current loss of the PM motor in the calculation time equivalent to the two-dimensional analysis, the time change of the magnetic flux density inside the magnet is analyzed by the two-dimensional magnetic field analysis by the finite element method using the two-dimensional model of PM motor. 3D analysis considering the eddy current of the magnet by the finite element method based on the 3D model of the magnet and the temporal change of the magnetic flux density. The applicant of the present application has already proposed a method for calculating the magnet eddy current loss density from the time change of the eddy current density of the magnet obtained by this (see, for example, Patent Document 1).
Katsumi Yamazaki, Yuji Kano “Loss Analysis of IPM Motors Using Three-Dimensional and Two-Dimensional Finite Element Methods” The Institute of Electrical Engineers of Japan, Stationary and Rotating Machine Joint Research Fund, SA-07-79, RM-07-95 (2007) JP 2008-123076 A

上記の三次元有限要素法と二次元有限要素法を併用した解析方法では、ロータ全体については計算時間が増大するが解析精度を高めるために三次元渦電流解析をしているが、ステータの磁気抵抗を考慮した三次元渦電流解析をしていない。   In the analysis method using both the above-mentioned 3D finite element method and 2D finite element method, although the calculation time for the entire rotor increases, 3D eddy current analysis is performed to improve the analysis accuracy. Three-dimensional eddy current analysis considering resistance is not performed.

磁石内渦電流は、反作用磁界としてステータ側に影響を及ぼすため、上記の三次元渦電流解析による磁石内渦電流損失の算出では誤差が発生し、特に渦電流が大きいPMモータの解析では誤差が大きくなり、十分な解析精度が得られない。   Since the eddy current in the magnet affects the stator side as a reaction magnetic field, an error occurs in the calculation of the eddy current loss in the magnet by the above three-dimensional eddy current analysis, and particularly in the analysis of the PM motor having a large eddy current. It becomes large and sufficient analysis accuracy cannot be obtained.

本発明の目的は、計算時間を短縮した渦電流損失の解析ができ、しかも、モータ全体の磁気抵抗も含めた高精度の解析ができる永久磁石式モータの磁石内渦電流損失解析方法を提供することにある。   It is an object of the present invention to provide a method for analyzing eddy current loss in a magnet of a permanent magnet motor that can analyze eddy current loss with reduced calculation time and can perform highly accurate analysis including the magnetic resistance of the entire motor. There is.

本発明は、磁石内渦電流が作る反作用磁界によるステータ側に通る磁束を考慮したモータ全体の磁束分布の影響に着目し、モータ全体の解析は二次元静磁界解析とし、また、磁石中の渦電流損失を算出する三次元渦電流損失解析では、磁石のみを解析領域としステップ・バイ・ステップ法で解析を行い、さらに、渦電流の反作用磁界を考慮した解析に、磁石の渦電流に対するモータ全体の磁気抵抗も考慮した解析を行い、この磁気抵抗の算定にモータ全体の二次元解析を磁石の磁化量を変更して行い、これを等価的なギャップとして解析を行うようにしたもので、以下の方法を特徴とする。   The present invention focuses on the influence of the magnetic flux distribution of the entire motor in consideration of the magnetic flux passing through the stator due to the reaction magnetic field generated by the eddy current in the magnet, and the analysis of the entire motor is a two-dimensional static magnetic field analysis. In the three-dimensional eddy current loss analysis that calculates the current loss, the analysis is performed by the step-by-step method using only the magnet as the analysis area, and the entire motor is applied to the eddy current of the magnet for the analysis considering the reaction magnetic field of the eddy current. The magnetic resistance was also analyzed, and the two-dimensional analysis of the entire motor was performed by changing the magnetization amount of the magnet to calculate this magnetic resistance, and this was analyzed as an equivalent gap. The method is characterized.

(1)二次元解析と三次元解析の併用で永久磁石式モータの磁石中の渦電流損失をコンピュータによるデータ処理で解析する永久磁石式モータの磁石内渦電流損失解析方法であって、
前記コンピュータは、
次式を基礎方程式とする磁気ベクトルポテンシャルAを用いて、モータ全体の二次元静磁界解析を行い、
(1) A method of analyzing eddy current loss in a magnet of a permanent magnet motor in which the eddy current loss in the magnet of the permanent magnet motor is analyzed by data processing by a computer using a combination of two-dimensional analysis and three-dimensional analysis,
The computer
Using the magnetic vector potential A based on the following equation, perform a two-dimensional static magnetic field analysis of the entire motor,

Figure 0005228730
Figure 0005228730

ただし、Mは磁石の磁化量、J0はコイルに与える電流密度、νは磁気抵抗率
より、前記二次元静磁界解析によって得られた磁石中の磁束密度Bmの分布を用いて磁石のみの三次元渦電流解析により渦電流分布を求め
However, M is the amount of magnetization of the magnet, J 0 is the current density applied to the coil, ν is the magnetic resistivity, and the distribution of the magnetic flux density B m in the magnet obtained by the two-dimensional static magnetic field analysis is used. Find the eddy current distribution by three-dimensional eddy current analysis ,

厚み方向に分割された一つの磁石の1/2領域のみを解析領域とし、前記磁束密度Bmの分布を磁石の厚み方向の各層に与え、
磁石の渦電流による反作用磁界を考慮する場合は、次式を基礎方程式とする磁気ベクトルポテンシャルAと電気スカラポテンシャルφを用いて、
Only the 1/2 region of one magnet divided in the thickness direction is set as the analysis region, and the distribution of the magnetic flux density B m is given to each layer in the magnet thickness direction,
When considering the reaction magnetic field due to the eddy current of the magnet, using the magnetic vector potential A and the electric scalar potential φ based on the following equation:

Figure 0005228730
Figure 0005228730

Figure 0005228730
Figure 0005228730

ただし、σは導電率
より、磁石のみの前記三次元渦電流解析を行い、
However, sigma than conductivity, have row the three-dimensional eddy current analysis of only the magnets,

前記反作用磁界を考慮した三次元渦電流解析は、分割された磁石間のギャップGtと磁石と鉄芯間のギャップGaを設定し、磁石中の渦電流に対する磁石および前記ギャップGtとGaを除くモータ全体の磁気抵抗を等価的に置き換えたギャップGlを設定した解析モデルを使って解析することを特徴とする。 The reaction magnetic field three-dimensional eddy current analysis considering sets the gap G a of gap G t magnets and iron core between divided magnet, the magnet and the gap relative to eddy currents in the magnet G t and G The analysis is performed using an analysis model in which a gap G l in which the magnetic resistance of the entire motor excluding a is equivalently replaced is set.

(2)前記ギャップGlの長さは、磁石表面に流れる電流に対する磁石以外のモータ全体の非線形性を考慮した磁気抵抗Riから決定することを特徴とする。 (2) The length of the gap G l is determined from the magnetoresistance R i taking into account the nonlinearity of the entire motor other than the magnet with respect to the current flowing on the magnet surface.

(3)前記磁気抵抗Riは、磁石の磁化量Mを微小量ΔMだけ増やしたときの磁石に鎖交する磁束の変化量Δφを求め、次式、 (3) The magnetic resistance R i is obtained by calculating a magnetic flux change amount Δφ linked to the magnet when the magnetization amount M of the magnet is increased by a minute amount ΔM.

Figure 0005228730
Figure 0005228730

ただし、Llは磁石の長さ、Lwは磁石の幅、Ltは磁石の厚み、μrは磁石のリコイル透磁率,Rmは磁石の磁気抵抗、Rtはモータ全体の磁気抵抗、
より求めることを特徴とする。
Where L l is the magnet length, L w is the magnet width, L t is the magnet thickness, μ r is the magnet recoil permeability, R m is the magnet reluctance, R t is the total motor reluctance,
It is characterized by more demanding.

以上のとおり、本発明によれば、モータ全体の解析は二次元静磁界解析とし、また、磁石中の渦電流損失を算出する三次元渦電流損失解析では、磁石のみを解析領域としステップ・バイ・ステップ法で解析を行い、さらに、渦電流の反作用磁界を考慮した解析に、磁石の渦電流に対するモータ全体の磁気抵抗も考慮した解析を行い、この磁気抵抗の算定にモータ全体の二次元解析を磁石の磁化量を変更して行い、これを等価的なギャップとして解析を行うようにしたため、計算時間を短縮した渦電流損失の解析ができ、しかもステータの磁気抵抗も含めた高精度の解析ができる。   As described above, according to the present invention, the analysis of the entire motor is a two-dimensional static magnetic field analysis, and in the three-dimensional eddy current loss analysis for calculating the eddy current loss in the magnet, only the magnet is set as the analysis region.・ Analyze by the step method, and further analyze the magnetic resistance of the entire motor against the eddy current of the magnet in the analysis considering the reaction magnetic field of the eddy current. This is done by changing the magnetized amount of the magnet and analyzing this as an equivalent gap, so it is possible to analyze the eddy current loss with a reduced calculation time, and in addition, the highly accurate analysis including the magnetoresistance of the stator Can do.

(1)解析方法
図1は本発明の実施形態を示す解析手順であり、二次元・三次元解析方法を併用して磁石内渦電流損失を求める。図1において、ステップS1ではモータ全体の解析を二次元静磁界解析で行う。ステップ(S2−1)および(S2−2)では磁石中の渦電流損失を算出する三次元解析を、磁石のみを解析領域としステップ・バイ・ステップ法で解析を行い、ステップ(S2−1)では渦電流による反作用磁界を無視した三次元解析を行い、ステップ(S2−2)では渦電流による反作用磁界を考慮した三次元解析を行う。さらに、磁石の三次元渦電流損失解析において、磁石の渦電流に対するモータ全体の磁気抵抗を磁石の磁化量Mを変更したモータ全体の二次元解析により算出し、これを等価的なギャップに置き換えて解析する。
(1) Analysis Method FIG. 1 is an analysis procedure showing an embodiment of the present invention, and the eddy current loss in a magnet is obtained using a two-dimensional / three-dimensional analysis method in combination. In FIG. 1, in step S1, the entire motor is analyzed by two-dimensional static magnetic field analysis. In steps (S2-1) and (S2-2), the three-dimensional analysis for calculating the eddy current loss in the magnet is performed by the step-by-step method using only the magnet as the analysis region, and step (S2-1) Then, three-dimensional analysis ignoring the reaction magnetic field caused by eddy current is performed, and in step (S2-2), the three-dimensional analysis considering the reaction magnetic field caused by eddy current is performed. Furthermore, in the three-dimensional eddy current loss analysis of the magnet, the reluctance of the entire motor against the eddy current of the magnet is calculated by two-dimensional analysis of the entire motor with the magnet magnetization M changed, and this is replaced with an equivalent gap. To analyze.

これらステップS1およびステップ(S2−1)、(S2−2)の処理機能は、コンピュータ資源とこれを利用したソフトウェアで構成のコンピュータによるデータ処理で実現されるもので、詳細な処理を以下に説明する。   The processing functions of step S1 and steps (S2-1) and (S2-2) are realized by data processing by a computer composed of computer resources and software using the same, and detailed processing will be described below. To do.

(S1)モータ全体の二次元解析
モータ全体の解析は、非特許文献1と同様の手法で、次式を基礎方程式とする磁気ベクトルポテンシャルAを用いるA法により二次元静磁界解析を行う。
(S1) Two-dimensional analysis of the whole motor The whole motor is analyzed by a method similar to Non-Patent Document 1, and a two-dimensional static magnetic field analysis is performed by the A method using the magnetic vector potential A having the following equation as a basic equation.

Figure 0005228730
Figure 0005228730

ただし、Mは磁石の磁化量、J0はコイルに与える電流密度、νは磁気抵抗率である。 Here, M is the amount of magnetization of the magnet, J 0 is the current density applied to the coil, and ν is the magnetic resistivity.

(S2)磁石の三次元渦電流解析
モータ全体の二次元静磁界解析によって得られた磁石中の磁束密度Bmの分布を用いて磁石のみの三次元解析により渦電流分布を求める。この解析について、渦電流による反作用磁界を無視した場合と考慮した場合の二通りに分けて解析する。
(S2) determining the eddy current distribution by a three-dimensional analysis of only the magnets using the distribution of the magnetic flux density B m in the magnet obtained by the three-dimensional eddy current analysis motor entire two-dimensional static magnetic field analysis of the magnet. This analysis is divided into two cases: when the reaction magnetic field due to eddy current is ignored and when it is considered.

(S2−1)渦電流による反作用磁界を無視した解析
渦電流による反作用磁界を無視した場合の磁石の三次元渦電流解析は、図2の(a)に示すように、対称性を考慮して厚み方向に分割された一つの磁石の1/2領域のみを解析領域とし、二次元解析で得られた磁束密度Bmの分布を磁石の厚み方向の各層に与え、解析を行う。この際、次式に示すファラデーの法則と電流連続の式を用いて定式化を行なう。
(S2-1) Analysis ignoring reaction magnetic field due to eddy current The three-dimensional eddy current analysis of the magnet when ignoring the reaction magnetic field due to eddy current is performed in consideration of symmetry as shown in FIG. Only the 1/2 region of one magnet divided in the thickness direction is set as the analysis region, and the distribution of the magnetic flux density B m obtained by the two-dimensional analysis is given to each layer in the magnet thickness direction for analysis. At this time, the formulation is made using Faraday's law and the current continuity formula shown below.

Figure 0005228730
Figure 0005228730

Figure 0005228730
Figure 0005228730

ここで、Eは電界の強さ、Jeは渦電流密度である。 Here, E is the electric field strength and J e is the eddy current density.

(3)式より、次式に示す電流ベクトルポテンシャルTが定義される。   From equation (3), the current vector potential T shown in the following equation is defined.

Figure 0005228730
Figure 0005228730

(4)式を(2)式に代入すると次式の基礎方程式が得られる。ただし、σは導電率である。   Substituting equation (4) into equation (2) yields the following basic equation: However, (sigma) is electrical conductivity.

Figure 0005228730
Figure 0005228730

なお、電流ベクトルポテンシャルTの境界条件としては、対称面に対しては渦電流密度Jeが垂直となる自然境界、その他の面では渦電流密度Jeが平行となるT=0の固定境界を与える。 As a boundary condition of the current vector potential T, a natural boundary where the eddy current density J e is perpendicular to the symmetry plane, and a fixed boundary of T = 0 where the eddy current density J e is parallel to the other planes. give.

(S2−2)渦電流による反作用磁界を含めた解析
磁石の渦電流による反作用磁界を含めて解析する場合は、次式を基礎方程式とする磁気ベクトルポテンシャルAと電気スカラポテンシャルφを用いるA−φ法を用いる。
(S2-2) Analysis including reaction magnetic field due to eddy current When analysis including reaction magnetic field due to eddy current of magnet is performed, A-φ using magnetic vector potential A and electric scalar potential φ based on the following equation: Use the law.

Figure 0005228730
Figure 0005228730

Figure 0005228730
Figure 0005228730

なお、渦電流の反作用磁界を考慮する場合には、渦電流が作る磁束に対するモータ全体の磁気抵抗を考慮する必要がある。そのため、この場合の解析では、図2の(b)および(c)のように分割された磁石間のギャップGtと磁石と鉄芯間のギャップGaを設定し、また、磁石中の渦電流に対する磁石およびギャップGtとGaを除くモータ全体の磁気抵抗を等価的に置き換えたギャップGlを設定した解析モデルを使って解析する。 In addition, when considering the reaction magnetic field of eddy current, it is necessary to consider the magnetic resistance of the whole motor with respect to the magnetic flux which an eddy current produces. Therefore, in the analysis of this case, to set the gap G a of gap G t magnets and iron core between divided magnet as shown in FIG. 2 (b) and (c), also, the vortex in the magnet using the analysis model was set gap G l by replacing the magnetic resistance of the entire motor equivalently except magnet and the gap G t and G a parsing for current.

このときの境界条件は、磁石対称面には磁束が平行で渦電流が垂直となるA=0、φ=0、Gt上面には磁束が平行となるA=0の固定境界条件を与え、他の面は、透磁率が無限大の鉄芯に接していると仮定し、自然境界条件とした。 The boundary condition at this time is a fixed boundary condition where A = 0, φ = 0, and the magnetic flux is parallel to the magnet symmetry plane and A = 0, φ = 0, and the magnetic flux is parallel to the upper surface of G t . The other surface was assumed to be in contact with an iron core with infinite magnetic permeability, and natural boundary conditions were used.

等価的に加えたギャップGlの長さは、磁石表面に流れる電流に対する磁石以外のモータ全体の非線形性を考慮した磁気抵抗Riから決定する。 The length of the gap G l added equivalently is determined from the magnetoresistance R i considering the non-linearity of the entire motor other than the magnet with respect to the current flowing on the magnet surface.

以下、図2の(d)を参照して、解析方法を説明する。まず、磁石表面に流れる電流Imのみが作る磁束量φを把握するため、磁石の磁化量Mを微小量ΔMだけ増やした解析を行い、磁石に鎖交する磁束の変化量Δφを求めた。このとき、ΔMが磁石内で一定の場合、Imの変化量ΔImとΔMには、次式の関係が成り立つ。 Hereinafter, the analysis method will be described with reference to FIG. First, in order to grasp the amount of magnetic flux φ that only the current I m flowing through the magnet surface make analyzes with increased magnetization M of the magnets by a small amount .DELTA.M, I was determined variation Δφ of magnetic flux linking the magnets. At this time, if ΔM is constant in the magnet, the amount of change [Delta] m and ΔM of I m, the following expression is established.

Figure 0005228730
Figure 0005228730

ここで、Llは磁石の長さ、μrは磁石のリコイル透磁率である。これよりモータ全体の磁気抵抗Rtが次式により算出できる。 Here, L l is the length of the magnet, and μ r is the recoil permeability of the magnet. From this the entire motor reluctance R t can be calculated by the following equation.

Figure 0005228730
Figure 0005228730

また、磁石以外の磁気抵抗Riは、Rtから磁石の磁気抵抗Rmを除けばよいため、次式となる。ただし、Lwは磁石の幅、Ltは磁石の厚みである。 Further, since the magnetic resistance R i other than the magnet is obtained by removing the magnetic resistance R m of the magnet from R t , the following equation is obtained. However, L w is the width of the magnet, L t is the thickness of the magnet.

Figure 0005228730
Figure 0005228730

一方、図3に示すモータの平面図、斜視図および磁石のギャップ関係図について、磁石以外の磁気抵抗Riは次式で表される。 On the other hand, in the plan view, the perspective view, and the gap relation diagram of the magnet shown in FIG. 3, the magnetic resistance R i other than the magnet is expressed by the following equation.

Figure 0005228730
Figure 0005228730

これら(10)、(11)式を等値と置くことにより、Glの長さは以下のように求めることができる。 By setting these equations (10) and (11) as equal, the length of G l can be obtained as follows.

Figure 0005228730
Figure 0005228730

このギャップGlの長さは、電機子電流、ロータ位置によって変化する。 The length of the gap G l varies depending on the armature current and the rotor position.

(2)渦電流損失の解析方法の例
上記の解析方法の妥当性を検討するため、IPMモータ(埋込み磁石型同期モータ)のモデルを使った渦電流損失の解析方法の例を説明する。
(2) Example of Eddy Current Loss Analysis Method In order to examine the validity of the above analysis method, an example of an eddy current loss analysis method using an IPM motor (embedded magnet type synchronous motor) model will be described.

図3の(a)および表1に、検討用モデルとして用いたIPMモータのモデルおよび仕様を示す。この解析には、妥当性を検討することを目的としているためIPMモータの電機子電流は理想的な正弦波とした。また、磁石の軸方向の分割の影響も検討するため、磁石を軸方向に1、3、5分割した場合でそれぞれ解析を行った。   FIG. 3A and Table 1 show the models and specifications of the IPM motor used as the model for study. The purpose of this analysis is to examine the validity, so the armature current of the IPM motor was an ideal sine wave. Moreover, in order to examine the influence of the division of the magnet in the axial direction, the analysis was performed when the magnet was divided into 1, 3, and 5 in the axial direction.

Figure 0005228730
Figure 0005228730

この解析では、磁石の渦電流を考慮した三次元非線形渦電流解析によって得られた渦電流損失を真値と仮定して、本解析方法による解析結果との比較でその妥当性を検討した。その三次元分割図を図3の(b)に示す。この分割図は、二次元分割図を厚み方向に積み上げて作成し、解析領域は対称性を考慮して分割された磁石1個の半分の厚みとした。   In this analysis, the eddy current loss obtained by the three-dimensional nonlinear eddy current analysis considering the eddy current of the magnet is assumed to be a true value, and its validity is examined by comparison with the analysis result by this analysis method. The three-dimensional division diagram is shown in FIG. This division diagram was created by stacking two-dimensional division diagrams in the thickness direction, and the analysis region was half the thickness of one magnet divided in consideration of symmetry.

この解析法を用いる場合のモータ全体の二次元解析の分割図は、積み上げに用いた二次元分割図とした。また、この解析法で磁石の三次元解析に用いた分割図を図3の(c)に示す。これら分割図の磁石およびギャップGt、Ga部分は図3(b)の三次元分割図と同様とし、渦電流による反作用磁界を無視した解析法(ステップS2−1)では磁石部のみを、渦電流による反作用磁界を考慮した解析法(ステップS2−2)では磁石およびギャップGt、Ga、Glも含んだ分割図とした。なお、Gtは0.2mm、 Gaは0.1mmとし、Glは解析ステップ毎に算出し、分割図を修正している。 The division diagram for the two-dimensional analysis of the entire motor when this analysis method is used is the two-dimensional division diagram used for stacking. Moreover, the division figure used for the three-dimensional analysis of the magnet by this analysis method is shown in FIG. The magnets and gaps Gt and Ga in these division diagrams are the same as those in the three-dimensional division diagram of FIG. 3B, and in the analysis method (step S2-1) ignoring the reaction magnetic field due to eddy currents, In the analysis method that takes into account the reaction magnetic field (step S2-2), a division diagram including a magnet and gaps G t , G a , and G l is used. Incidentally, G t is 0.2 mm, G a is set to 0.1 mm, G l is calculated for each analysis step, and fixes the split view.

この解析例では、回転子が45deg回転すれば一周期となるが、解析は一周期を96分割した0.469degずつ回転させて行った。真値と仮定する三次元非線形渦電流解析では、ステップ・バイ・ステップ法を用いてほぼ定常状態になる1.5周期分解析し、また、ステップS1のモータの二次元静磁界解析、およびステップS2−1の磁石の解析では1周期分、ステップS2−2の磁石の解析ではほぼ定常状態になる1.5周期分解析した。   In this analysis example, one period is obtained if the rotor rotates 45 degrees, but the analysis was performed by rotating each period by 0.469 deg divided into 96 parts. In the three-dimensional nonlinear eddy current analysis that assumes a true value, a step-by-step method is used to analyze 1.5 periods in which the steady state is obtained. In addition, a two-dimensional static magnetic field analysis of the motor in step S1, and a step In the analysis of the magnet of S2-1, the analysis was performed for one period, and in the analysis of the magnet of Step S2-2, the analysis was performed for 1.5 periods that are almost in a steady state.

(3)解析方法の検証
<3・1>トルク波形
図1のステップS1(二次元静磁界解析)の妥当性を検討するため、二次元静磁界解析によって得られたトルク波形を三次元渦電流解析の結果と比較した。図4に全領域に換算したトルクの時間的変化を示す。ただし、磁石を分割しない場合の三次元解析で得られた平均トルクで正規化している。この図より、磁石を分割しない場合には、二次元解析と三次元解析で若干の差が生じるが、5分割した場合には、磁石の渦電流の影響が小さくなるため、ほぼ一致していることが確認された。
(3) Verification of analysis method <3.1> Torque waveform To examine the validity of step S1 (two-dimensional static magnetic field analysis) in FIG. 1, the torque waveform obtained by the two-dimensional static magnetic field analysis is converted into a three-dimensional eddy current. The results were compared with the analysis results. FIG. 4 shows a temporal change in torque converted to the entire region. However, it is normalized by the average torque obtained by the three-dimensional analysis when the magnet is not divided. From this figure, when the magnet is not divided, there is a slight difference between the two-dimensional analysis and the three-dimensional analysis. However, when the magnet is divided into five, the influence of the eddy current of the magnet becomes small, so they are almost the same. It was confirmed.

<3・2>ギャップGlの算出
図5の(A)に磁石に通常の電機子電流と磁化量Mを与えて計算したロータ位置での磁束密度分布を、図5の(b)に渦電流の反作用磁界を考慮する場合のギャップGlを算出するため磁石の磁化量をM+ΔMに変更して計算し、Mで計算した磁束密度ベクトルを減じたΔMのみの磁束密度分布を示す。
3.2 Calculation of Gap G l The magnetic flux density distribution at the rotor position calculated by applying a normal armature current and the amount of magnetization M to the magnet in FIG. 5A, and the vortex in FIG. The magnetic flux density distribution of only ΔM obtained by changing the magnetization amount of the magnet to M + ΔM and subtracting the magnetic flux density vector calculated by M in order to calculate the gap G l when considering the reaction magnetic field of the current is shown.

これらの図より、渦電流の反作用磁界が作る磁束はロータの磁気飽和のためステータを通っており、磁気抵抗を精度よく計算する場合にはステータまで考慮しなければならないことがわかる。   From these figures, it can be seen that the magnetic flux generated by the eddy current reaction magnetic field passes through the stator due to the magnetic saturation of the rotor, and the stator must be taken into account when calculating the magnetic resistance accurately.

図6に、ロータ位置による(12)式で求めたギャップ長Glの変化を示す。この図よりギャップ長Glはロータ位置と電機子電流により変化することがわかる。 FIG. 6 shows a change in the gap length Gl obtained by the equation (12) depending on the rotor position. From this figure, it can be seen that the gap length G l varies depending on the rotor position and the armature current.

<3・3>渦電流損失
図7に、三次元渦電流解析と本発明による解析法によって得られた磁石1個当りの渦電流損失の時間的変化を示す。図7の(a)は磁石を分割しない場合を示し、(b)は磁石を3つに分割した場合を、(c)は磁石を5個に分割した場合を示す。また、図7の(a)〜(c)において、3Dは三次元渦電流解析法による渦電流損失、Method1はモータ全体の二次元解析による渦電流損失、Method2withoutGlは磁気抵抗を無視した場合の渦電流損失、Method2withGlは磁気抵抗を考慮した場合の渦電流損失を示す。ただし、図は、磁石を分割しない三次元解析で得られた平均渦電流損失の値で正規化してある。
<3.3> Eddy Current Loss FIG. 7 shows temporal changes in eddy current loss per magnet obtained by the three-dimensional eddy current analysis and the analysis method according to the present invention. 7A shows a case where the magnet is not divided, FIG. 7B shows a case where the magnet is divided into three, and FIG. 7C shows a case where the magnet is divided into five. In FIGS. 7A to 7C, 3D is an eddy current loss by a three-dimensional eddy current analysis method, Method 1 is an eddy current loss by a two-dimensional analysis of the entire motor, and Method 2withoutG 1 is a case where magnetic resistance is ignored. eddy current loss, Method2withG l shows the eddy current loss in the case of considering the magnetoresistance. However, the figure is normalized with the value of the average eddy current loss obtained by the three-dimensional analysis without dividing the magnet.

図7の特性から、磁石を分割しない(a)では、解析手法間の差が大きいが、これは、磁石の渦電流による反作用磁界の影響が大きいためである。すなわち、渦電流の反作用磁界を無視したMethod1では、反作用磁界による磁石内の磁束の減少が考慮されないため、渦電流が大きくなり渦電流損失は過大評価されてしまう。一方、Method2においてギャップGlを無視した場合には、逆に反作用磁界による磁束の減少が大きく、渦電流が小さくなり渦電流損失は過小評価されてしまう。また、ギャップGlを考慮したMethod2は、三次元渦電流解析の結果とほぼ一致しており、妥当な結果が得られていることがわかる。なお、磁石の分割数を増やすにつれて、渦電流が作る反作用磁界が小さくなるため、解析手法間の差も小さくなり、5分割した場合には、どの提案法を用いてもほぼ妥当な結果が得られることがわかる。 From the characteristics shown in FIG. 7, when the magnet is not divided (a), the difference between the analysis methods is large, because the influence of the reaction magnetic field due to the eddy current of the magnet is large. That is, in Method 1 ignoring the reaction magnetic field of eddy current, the decrease of the magnetic flux in the magnet due to the reaction magnetic field is not taken into consideration, so the eddy current increases and the eddy current loss is overestimated. On the other hand, in the case of ignoring the gap G l in Method2, the large decrease in magnetic flux by the reaction field in the opposite, eddy current loss eddy current is reduced would be underestimated. In addition, Method 2 in consideration of the gap G l substantially matches the result of the three-dimensional eddy current analysis, and it can be seen that a reasonable result is obtained. As the number of magnet divisions is increased, the reaction magnetic field created by eddy currents decreases, so the difference between the analysis methods also decreases, and in the case of 5 divisions, almost reasonable results are obtained no matter which proposed method is used. I understand that

図8に、磁石を分割しない場合の各解析手法で得られた平均渦電流損失密度分布を示す。ギャップGlを考慮したMethod2の結果は三次元渦電流解析(3D)で得られた分布とほぼ一致する。 FIG. 8 shows the average eddy current loss density distribution obtained by each analysis method when the magnet is not divided. The result of Method 2 considering the gap G l substantially coincides with the distribution obtained by the three-dimensional eddy current analysis (3D).

図9に、各解析手法で求めた磁石1個当りの平均渦電流損失の統計図を示す。ただし、図は磁石を分割しない場合の三次元解析で得られた値で正規化してある。この図からも明らかなように、ギャップGlを考慮したMethod2の誤差は、最も大きくなる磁石を分割しない場合でも5%程度であり、本発明の解析方法の妥当性が確認された。 FIG. 9 shows a statistical diagram of the average eddy current loss per magnet obtained by each analysis method. However, the figure is normalized with the value obtained by the three-dimensional analysis when the magnet is not divided. As is clear from this figure, the error of Method 2 in consideration of the gap G l is about 5% even when the largest magnet is not divided, confirming the validity of the analysis method of the present invention.

<3・4>解析諸元
表2に、モータ全体を三次元渦電流解析した場合とMethod2を用いた場合の解析諸元を示す。
<3.4> Analysis specifications Table 2 shows the analysis specifications when the three-dimensional eddy current analysis of the entire motor and Method 2 are used.

Figure 0005228730
Figure 0005228730

三次元渦電流解析(3D)とMethod2の磁石の解析は、ステップ・バイ・ステップ法を用いて定常状態に達する1.5周期分の計算時間を示した。また、Method2のモータ解析(2D)は静磁界解析であるため1周期のみの解析でよいが、ギャップGlを算出するために、磁石の磁化量Mとその修正量ΔMを使用して再度1周期分計算する必要があり、その合計を示した。 Three-dimensional eddy current analysis (3D) and Method 2 magnet analysis showed a calculation time for 1.5 cycles to reach steady state using the step-by-step method. Further, Method 2 motor analysis (2D) is a static magnetic field analysis, and therefore analysis of only one period is sufficient. However, in order to calculate the gap G l , 1 again using the magnet magnetization M and its correction amount ΔM. It is necessary to calculate the period, and the total is shown.

本発明の解析方法を用いることにより計算時間は約1/30に削減でき、有用であることが確認された。   By using the analysis method of the present invention, the calculation time can be reduced to about 1/30, which was confirmed to be useful.

(4)実施形態による特徴的事項
本実施形態では、PMモータの磁石での渦電流損失を高速に求めるため、モータの二次元静磁界解析と磁石の三次元渦電流解析を併用した方法とするとともに、正弦波駆動のIPMモータに適用し、本実施形態の解析方法の妥当性と有用性が確認された。この特徴事項を要約すると以下のようになる。
(4) Characteristic matter according to the embodiment In this embodiment, in order to obtain the eddy current loss in the magnet of the PM motor at a high speed, the method uses a combination of the two-dimensional static magnetic field analysis of the motor and the three-dimensional eddy current analysis of the magnet. At the same time, it was applied to a sine wave drive IPM motor, and the validity and usefulness of the analysis method of this embodiment was confirmed. This feature is summarized as follows.

(a)二次元静磁界解析で得られた磁石中の磁束分布を用いて磁石内の三次元渦電流解析する方法として、渦電流の反作用磁界を無視する場合と考慮する場合の二通りの方法を適用できる。また、反作用磁界を考慮する方法では、反作用磁界に対する磁気抵抗も考慮するため、磁石に等価的なギャップを設けて解析する方法を適用できる。   (A) As a method of analyzing the three-dimensional eddy current in the magnet using the magnetic flux distribution in the magnet obtained by the two-dimensional static magnetic field analysis, there are two methods of ignoring the reaction magnetic field of eddy current and considering it. Can be applied. Further, in the method that considers the reaction magnetic field, since the magnetic resistance against the reaction magnetic field is also taken into account, a method of analyzing by providing an equivalent gap in the magnet can be applied.

(b)磁石を厚み方向に分割しないモデルに実施形態の解析方法を適用した場合、渦電流の反作用磁界を無視した場合および反作用磁界に対するモータの磁気抵抗を無視した場合に得られた渦電流損失は三次元解析の結果と大幅に異なるが、反作用磁界とそれに対する磁気抵抗を考慮すれば妥当な結果が得られることが確認された。また、磁石の分割を増やした場合には、反作用磁界の影響を無視した提案法でも妥当な結果が得られる。   (B) When the analysis method of the embodiment is applied to a model in which the magnet is not divided in the thickness direction, the eddy current loss obtained when the reaction magnetic field of the eddy current is ignored and when the magnetic resistance of the motor with respect to the reaction magnetic field is ignored Is significantly different from the results of the three-dimensional analysis, but it was confirmed that reasonable results can be obtained by considering the reaction magnetic field and the corresponding magnetoresistance. In addition, when the number of magnets is increased, a reasonable result can be obtained even with the proposed method ignoring the influence of the reaction magnetic field.

(c)本実施形態の解析方法を用いることにより計算時間を大幅に削減できる。   (C) The calculation time can be greatly reduced by using the analysis method of the present embodiment.

本発明の実施形態を示す解析手順。The analysis procedure which shows embodiment of this invention. 磁石の解析モデル。An analysis model of a magnet. IPMモータの平面図、斜視図および磁石のギャップ関係図。The top view of an IPM motor, a perspective view, and the gap related figure of a magnet. 三次元と二次元解析によるトルクの時間的変化例。Example of temporal change of torque by 3D and 2D analysis. 磁化量MとΔMが作る磁束密度分布の例。An example of a magnetic flux density distribution created by magnetization amounts M and ΔM. ロータ位置によるギャップ長Glの変化例。Variation of the gap length G l by the rotor position. 磁石1個当りの渦電流損失の時間的変化。Temporal change in eddy current loss per magnet. 分割しない磁石の各解析手法で得られた平均渦電流損失密度分布。Average eddy current loss density distribution obtained by each analysis method of non-divided magnets. 各解析手法で求めた磁石1個当りの平均渦電流損失の統計図。Statistical chart of average eddy current loss per magnet obtained by each analysis method.

Claims (3)

二次元解析と三次元解析の併用で永久磁石式モータの磁石中の渦電流損失をコンピュータによるデータ処理で解析する永久磁石式モータの磁石内渦電流損失解析方法であって、
前記コンピュータは、
次式を基礎方程式とする磁気ベクトルポテンシャルAを用いて、モータ全体の二次元静磁界解析を行い、
Figure 0005228730
ただし、Mは磁石の磁化量、J0はコイルに与える電流密度、νは磁気抵抗率
より、前記二次元静磁界解析によって得られた磁石中の磁束密度Bmの分布を用いて磁石のみの三次元渦電流解析により渦電流分布を求め、
厚み方向に分割された一つの磁石の1/2領域のみを解析領域とし、前記磁束密度B m の分布を磁石の厚み方向の各層に与え、
磁石の渦電流による反作用磁界を考慮する場合は、次式を基礎方程式とする磁気ベクトルポテンシャルAと電気スカラポテンシャルφを用いて、
Figure 0005228730
Figure 0005228730
ただし、σは導電率
より、磁石のみの前記三次元渦電流解析を行い、
前記反作用磁界を考慮した三次元渦電流解析は、分割された磁石間のギャップG t と磁石と鉄芯間のギャップG a を設定し、磁石中の渦電流に対する磁石および前記ギャップG t とG a を除くモータ全体の磁気抵抗を等価的に置き換えたギャップG l を設定した解析モデルを使って解析することを特徴とする永久磁石式モータの磁石内渦電流損失解析方法。
A method for analyzing eddy current loss in a magnet of a permanent magnet motor, in which the eddy current loss in the magnet of the permanent magnet motor is analyzed by data processing by a computer using a combination of two-dimensional analysis and three-dimensional analysis,
The computer
Using the magnetic vector potential A based on the following equation, perform a two-dimensional static magnetic field analysis of the entire motor,
Figure 0005228730
However, M is the amount of magnetization of the magnet, J 0 is the current density applied to the coil, ν is the magnetic resistivity, and the distribution of the magnetic flux density B m in the magnet obtained by the two-dimensional static magnetic field analysis is used. Find the eddy current distribution by three-dimensional eddy current analysis,
Only the 1/2 region of one magnet divided in the thickness direction is set as the analysis region, and the distribution of the magnetic flux density B m is given to each layer in the magnet thickness direction,
When considering the reaction magnetic field due to the eddy current of the magnet, using the magnetic vector potential A and the electric scalar potential φ based on the following equation:
Figure 0005228730
Figure 0005228730
Where σ is conductivity
From the 3D eddy current analysis of the magnet only,
The reaction magnetic field three-dimensional eddy current analysis considering sets the gap G a of gap G t magnets and iron core between divided magnet, the magnet and the gap relative to eddy currents in the magnet G t and G An analysis method for eddy current loss in a magnet of a permanent magnet motor, characterized in that the analysis is performed using an analysis model in which a gap Gl is set in which the magnetic resistance of the entire motor except a is equivalently replaced .
前記ギャップGlの長さは、磁石表面に流れる電流に対する磁石以外のモータ全体の非線形性を考慮した磁気抵抗Riから決定することを特徴とする請求項1に記載の永久磁石式モータの磁石内渦電流損失解析方法。 The magnet of the permanent magnet motor according to claim 1 , wherein the length of the gap G l is determined from a magnetic resistance R i in consideration of non-linearity of the entire motor other than the magnet with respect to a current flowing on the magnet surface. Internal eddy current loss analysis method. 前記磁気抵抗Riは、磁石の磁化量Mを微小量ΔMだけ増やしたときの磁石に鎖交する磁束の変化量Δφを求め、次式、
Figure 0005228730
ただし、Llは磁石の長さ、Lwは磁石の幅、Ltは磁石の厚み、μrは磁石のリコイル透磁率,Rmは磁石の磁気抵抗、Rtはモータ全体の磁気抵抗、
より求めることを特徴とする請求項2に記載の永久磁石式モータの磁石内渦電流損失解析方法。
The magnetic resistance R i is obtained by calculating a change amount Δφ of the magnetic flux linked to the magnet when the magnetization amount M of the magnet is increased by a minute amount ΔM.
Figure 0005228730
Where L l is the magnet length, L w is the magnet width, L t is the magnet thickness, μ r is the magnet recoil permeability, R m is the magnet reluctance, R t is the total motor reluctance,
The method for analyzing eddy current loss in a magnet of a permanent magnet motor according to claim 2 , wherein the eddy current loss analysis method is used.
JP2008237262A 2008-09-17 2008-09-17 Analysis method of eddy current loss in magnet of permanent magnet motor Expired - Fee Related JP5228730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008237262A JP5228730B2 (en) 2008-09-17 2008-09-17 Analysis method of eddy current loss in magnet of permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008237262A JP5228730B2 (en) 2008-09-17 2008-09-17 Analysis method of eddy current loss in magnet of permanent magnet motor

Publications (3)

Publication Number Publication Date
JP2010072773A JP2010072773A (en) 2010-04-02
JP2010072773A5 JP2010072773A5 (en) 2011-07-07
JP5228730B2 true JP5228730B2 (en) 2013-07-03

Family

ID=42204517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008237262A Expired - Fee Related JP5228730B2 (en) 2008-09-17 2008-09-17 Analysis method of eddy current loss in magnet of permanent magnet motor

Country Status (1)

Country Link
JP (1) JP5228730B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948766B2 (en) * 2011-09-02 2016-07-06 富士電機株式会社 Simulation method for permanent magnet rotating electrical machine, loss calculation method using the same, simulation program, loss calculation program, simulation system, and loss calculation system
KR102235396B1 (en) * 2016-07-28 2021-04-02 현대일렉트릭앤에너지시스템(주) Analysis method for starting characterstics of mortor
JP6206608B1 (en) * 2017-01-06 2017-10-04 新日鐵住金株式会社 Electromagnetic field analysis apparatus, electromagnetic field analysis method, and program
JP7057235B2 (en) * 2018-06-28 2022-04-19 株式会社日立製作所 Divided magnet eddy current loss analysis method
CN109600006B (en) * 2018-11-30 2020-12-08 浙江大学 Solving method for electromagnetic design of surface-mounted permanent magnet motor
CN110110417B (en) * 2019-04-26 2023-05-16 南京辑星科技有限公司 Design method of linear type eddy current magnetic brake
CN111104743A (en) * 2019-12-18 2020-05-05 齐鲁工业大学 Method for determining distribution of direct-current magnetic bias transient magnetic field and eddy current loss of transformer
CN111353214A (en) * 2020-01-10 2020-06-30 湘潭大学 Optimization method combining three-section dislocation method of magnetic poles with V-shaped magnetic poles
CN111737893B (en) * 2020-05-22 2022-09-20 北京理工大学 Permanent magnet synchronous motor modeling method based on predictable iron loss
CN112560301B (en) * 2020-11-26 2021-10-08 东南大学 Magnetic material eddy current loss calculation method based on magnetic induction principle
CN113328674B (en) * 2021-06-07 2022-08-09 广西大学 High-speed permanent magnet motor permanent magnet loss compensation method and system considering time-space harmonic conditions
CN113553742B (en) * 2021-07-29 2024-04-19 浙江大学 Nonlinear analytical model-based high-speed permanent magnet motor eddy current loss calculation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218859B2 (en) * 1994-05-27 2001-10-15 株式会社日立製作所 Magnetic field analysis method
JP2000268061A (en) * 1999-03-15 2000-09-29 Mitsubishi Electric Corp Method and device for analyzing electromagnetic field
JP4763934B2 (en) * 2001-09-06 2011-08-31 株式会社日本総合研究所 3D mesh generation method, rotating machine magnetic field analysis method, 3D mesh generation apparatus, rotating machine magnetic field analysis apparatus, computer program, and recording medium
JP2005207900A (en) * 2004-01-23 2005-08-04 Hitachi Ltd Magnetic field analysis method, magnetic field analysis program, and recording medium for recording magnetic field analysis program
JP4992391B2 (en) * 2006-11-09 2012-08-08 株式会社明電舎 Magnet eddy current loss analysis method for PM motor

Also Published As

Publication number Publication date
JP2010072773A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP5228730B2 (en) Analysis method of eddy current loss in magnet of permanent magnet motor
Liu et al. Nonlinear equivalent magnetic network of a linear permanent magnet vernier machine with end effect consideration
Canova et al. Analytical modeling of rotating eddy-current couplers
Gasparin et al. Additional cogging torque components in permanent-magnet motors due to manufacturing imperfections
Hur et al. Vibration reduction of IPM-type BLDC motor using negative third harmonic elimination method of air-gap flux density
Weidenholzer et al. A flux-based PMSM motor model using RBF interpolation for time-stepping simulations
Lu et al. Analytical model of permanent magnet linear synchronous machines considering end effect and slotting effect
Hargreaves et al. Calculation of iron loss in electrical generators using finite-element analysis
Xia et al. Cogging torque modeling and analyzing for surface-mounted permanent magnet machines with auxiliary slots
Nair et al. Analytical prediction of 3-D magnet eddy current losses in surface mounted PM machines accounting slotting effect
Handgruber et al. Three-dimensional eddy-current analysis in steel laminations of electrical machines as a contribution for improved iron loss modeling
CN108206660B (en) Torque analysis method of novel five-phase meter-embedded permanent magnet synchronous motor
Mahmoud et al. Nonlinear analytical computation of the magnetic field in reluctance synchronous machines
Liu et al. Magnetic field and thrust analysis of the U-channel air-core permanent magnet linear synchronous motor
Paymozd et al. Subdomain model for predicting the performance of linear resolver considering end effect and slotting effect
Xu et al. Indirect analytical modeling and analysis of V-shaped interior PM synchronous machine
Hafner et al. Static electromagnetic field computation by conformal mapping in permanent magnet synchronous machines
Lee et al. A novel methodology for the demagnetization analysis of surface permanent magnet synchronous motors
Kim et al. Simplified impedance modeling and analysis for inter-turn fault of IPM-type BLDC motor
Chen et al. Torque calculation of five-phase synchronous reluctance motors with shifted-asymmetrical-salient-poles under saturation condition
Gotovac et al. Analytical model of permeance variation losses in permanent magnets of the multipole synchronous machine
CN112906259B (en) Method for analyzing electromagnetic performance of permanent magnet vernier motor based on accurate conformal mapping
Faradonbeh et al. Analytical modeling of steel shielding cylinder in surface mounted permanent magnet machines
Martin et al. Homogenization technique for axially laminated rotors of synchronous reluctance machines
Zeze et al. Vector magnetic characteristic analysis of a surface permanent magnet motor by means of complex E&S modeling

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees