JP5228224B2 - Laser overlaying method - Google Patents

Laser overlaying method Download PDF

Info

Publication number
JP5228224B2
JP5228224B2 JP2009056104A JP2009056104A JP5228224B2 JP 5228224 B2 JP5228224 B2 JP 5228224B2 JP 2009056104 A JP2009056104 A JP 2009056104A JP 2009056104 A JP2009056104 A JP 2009056104A JP 5228224 B2 JP5228224 B2 JP 5228224B2
Authority
JP
Japan
Prior art keywords
laser
end portion
build
valve seat
irradiation position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009056104A
Other languages
Japanese (ja)
Other versions
JP2010207849A (en
Inventor
亮太郎 高田
芳孝 辻井
隆夫 篠原
義光 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009056104A priority Critical patent/JP5228224B2/en
Publication of JP2010207849A publication Critical patent/JP2010207849A/en
Application granted granted Critical
Publication of JP5228224B2 publication Critical patent/JP5228224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、シリンダヘッドのバルブシートに金属粉末を供給しつつ、該金属粉末にレーザを照射することにより溶融させて肉盛り層を形成するレーザ肉盛り方法に関する。   The present invention relates to a laser build-up method in which a metal powder is supplied to a valve seat of a cylinder head and melted by irradiating the metal powder with a laser to form a build-up layer.

内燃機関用シリンダヘッドのバルブシートは、バルブに対して繰り返し接触する箇所であることから当該バルブシートに対して耐摩耗性を向上させる加工が施されている。この種の加工には、レーザを照射して金属粉末を溶融させながら該レーザ照射位置を円環状に移動して肉盛りを行うレーザ肉盛加工(レーザクラッドとも呼ばれる)が知られている。
このレーザ肉盛加工では、肉盛りの始端部と終端部が重なり合ってできるオーバーラップ部分に、未溶着部や空孔(ブローホール等)の欠陥が生じ易いことが知られている。そこで、従来、肉盛りの開始時に、金属粉末の供給量を徐々に増加させるとともに該金属粉末の供給量に応じてレーザの出力を増加させることで、厚みを緩やかに増加させた始端部を形成する技術が知られている。この技術によれば、始端部の厚みが他の箇所に比べて薄くなるため、この始端部と終端部のオーバーラップ部分における上記欠陥の発生を抑制することができる(例えば、特許文献1参照)。
特開2005−299598号公報
Since the valve seat of the cylinder head for an internal combustion engine is a portion that repeatedly contacts the valve, the valve seat is subjected to processing for improving wear resistance. As this type of processing, there is known laser overlay processing (also referred to as laser cladding) in which the laser irradiation position is moved in an annular shape while the metal powder is melted by irradiating a laser to perform overlay.
It is known that in this laser overlay processing, defects such as unwelded portions and voids (such as blow holes) are likely to occur in an overlap portion formed by overlapping the start and end portions of the overlay. Therefore, conventionally, at the start of the build-up, the supply amount of the metal powder is gradually increased and the output of the laser is increased in accordance with the supply amount of the metal powder, thereby forming a starting end portion having a moderately increased thickness. The technology to do is known. According to this technique, since the thickness of the starting end portion is thinner than other portions, the occurrence of the defect in the overlapping portion between the starting end portion and the terminating end portion can be suppressed (for example, see Patent Document 1). .
JP 2005-299598 A

しかしながら、従来の技術においても、上記欠陥を依然としてなくすことができず、バルブシートの歩留まりを向上させるためには、更なる改良が求められている。
本発明は、上述した事情に鑑みてなされたものであり、シリンダヘッドのバルブシートに肉盛りするに当たり、肉盛り層に生じる欠陥を更に抑制可能なレーザ肉盛方法を提供することを目的とする。
However, even in the prior art, the above-described defects cannot still be eliminated, and further improvement is required in order to improve the yield of the valve seat.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a laser cladding method capable of further suppressing defects generated in the overlay layer when overlaying the valve seat of the cylinder head. .

上記目的を達成するために、本発明は、シリンダヘッドのバルブシートに金属粉末を供給しながらレーザを照射することでレーザ照射位置に肉盛り層を形成しつつ、該レーザ照射位置を前記バルブシートに沿って円環状に移動させて肉盛りするレーザ肉盛方法において、前記肉盛りの開始時に、前記金属粉末の供給量を徐々に増加させながら該金属粉末の供給量に応じてレーザ出力を増加させて肉盛りの始端部を形成し、前記金属粉末の供給量及び前記レーザの出力を一定に維持して肉盛りの通常部を形成し、前記始端部の手前から前記レーザの出力を一定のままで前記金属粉末の供給量を所定量まで減少させて肉盛りの終端部を形成し前記始端部に重ねることを特徴とする。   In order to achieve the above-described object, the present invention provides a method for forming a built-up layer at a laser irradiation position by irradiating a laser while supplying a metal powder to a valve seat of a cylinder head, and setting the laser irradiation position to the valve seat. In the laser overlaying method in which the metal powder is moved in an annular shape along the line, the laser output is increased according to the supply amount of the metal powder while gradually increasing the supply amount of the metal powder at the start of the buildup. To form a start portion of the build-up, to maintain the supply amount of the metal powder and the output of the laser constant, to form a normal portion of the build-up, and to make the output of the laser constant from the front of the start end portion The supply amount of the metal powder is reduced to a predetermined amount as it is, and a terminal end portion of the build-up is formed and overlapped with the start end portion.

円環状にレーザ照射位置を移動させて肉盛りを行う場合、レーザ照射位置が始端部の手前まで来ると、始端部及び通常部形成の間にレーザ照射位置の上流側に溜まった残留粉が始端部に押されてレーザ照射位置に入り込み、このレーザ照射位置での粉量が増加する。
本発明によれば、始端部の手前から金属粉末の供給量を減少させて終端部の形成を開始するため、レーザ照射位置での粉量の変動が抑えられ、終端部での欠陥の発生が抑えられる。
When overlaying by moving the laser irradiation position in an annular shape, if the laser irradiation position comes before the start end, residual powder accumulated upstream of the laser irradiation position during the start end and normal part formation will start. It is pushed by the part and enters the laser irradiation position, and the amount of powder at this laser irradiation position increases.
According to the present invention, since the metal powder supply amount is decreased from the front of the start end to start the formation of the end portion, fluctuations in the amount of powder at the laser irradiation position are suppressed, and defects at the end portion are generated. It can be suppressed.

本発明において、前記終端部の形成時には、前記始端部に重なる前までに、前記始端部に形成された傾斜に応じて、前記金属粉末の供給量を前記所定量まで徐々に減少させても良い。
すなわち、始端部に押されてレーザ照射位置に入り込む残留粉の量は、始端部の傾斜に応じて徐々に増加するため、この増加に合せて金属粉末の供給量を減少させることで、欠陥の発生を更に抑制することができる。
In the present invention, when the terminal portion is formed, the supply amount of the metal powder may be gradually decreased to the predetermined amount in accordance with the inclination formed at the starting end portion before overlapping with the starting end portion. .
That is, the amount of residual powder that is pushed by the start end and enters the laser irradiation position gradually increases according to the inclination of the start end, and by reducing the supply amount of metal powder along with this increase, Generation | occurrence | production can further be suppressed.

また本発明において、前記バルブシートのシート面に沿って溝部を形成し、該溝部に前記肉盛り層を形成しても良い。
溝部に前記肉盛り層を形成することで、バルブシートの更なる耐摩耗性の向上が図られる。また、肉盛り時に溝部に金属粉末が溜まり易くなるものの、上記のように、残留粉の量に合せて金属粉末の供給量が減少されることで欠陥の発生が抑制される。これにより、耐摩耗性の向上とともに欠陥の更なる抑制効果が得られる。
Moreover, in this invention, a groove part may be formed along the seat surface of the said valve seat, and the said build-up layer may be formed in this groove part.
By forming the build-up layer in the groove, the wear resistance of the valve seat can be further improved. Moreover, although metal powder tends to accumulate in the groove portion when building up, as described above, the amount of metal powder supplied is reduced in accordance with the amount of residual powder, thereby suppressing the occurrence of defects. Thereby, the further suppression effect of a defect is acquired with the improvement of abrasion resistance.

また本発明において、前記バルブシートの中央を中心に前記レーザ照射位置を円環状に移動させる場合、前記始端部から約270度〜約315度移動したタイミングで前記終端部の形成を開始しても良い。
バルブシートの肉盛り加工においては、始端部から約270〜315度移動したタイミングで、始端部に残留粉が押されてレーザ照射位置に入り込み始めるため、この時点から上記のように金属粉末の供給量を減少させて終端部の形成を開始することで、欠陥の発生を抑えた肉盛りを良好に行うことができる。
Further, in the present invention, when the laser irradiation position is moved in an annular shape around the center of the valve seat, even if the formation of the end portion is started at a timing moved from about 270 degrees to about 315 degrees from the start end portion. good.
In the valve seat build-up processing, the residual powder starts to enter the laser irradiation position at the timing of moving about 270 to 315 degrees from the start end, and from this point on, supply of metal powder as described above By reducing the amount and starting the formation of the terminal portion, it is possible to satisfactorily build up the occurrence of defects.

本発明によれば、始端部の手前から金属粉末の供給量を減少させて終端部の形成を開始するため、レーザ照射位置の上流側に溜まっていた残留粉がレーザ照射位置に入り込んだ場合でもレーザ照射位置での粉量の変動が抑えられ、終端部での欠陥の発生が抑えられる。
また、終端部の形成時には、始端部に重なる前までに、始端部に形成された傾斜に応じて、金属粉末の供給量を前記所定量まで徐々に減少させることで、始端部の傾斜に応じて徐々に増加する残留粉に合せて金属粉末の供給量を減少させることができ、欠陥の発生を更に抑制することができる。
また、バルブシートのシート面に沿って溝部を形成し、該溝部に前記肉盛り層を形成することで、バルブシートの更なる耐摩耗性の向上が図られる。さらに、レーザ照射位置での粉量の変動を抑制するように金属粉末が減少されるため欠陥の発生が抑制される。
また、バルブシートの中央を中心に前記レーザ照射位置を円環状に移動させる場合、始端部から約270度〜約315度移動したタイミングで終端部の形成を開始することで、欠陥の発生を良好に抑えたバルブシートの肉盛りを行うことができる。
According to the present invention, since the supply amount of the metal powder is decreased from the front of the start end portion to start the formation of the end portion, even when the residual powder accumulated on the upstream side of the laser irradiation position enters the laser irradiation position. The fluctuation of the amount of powder at the laser irradiation position is suppressed, and the occurrence of defects at the terminal portion is suppressed.
In addition, when forming the terminal portion, the metal powder supply amount is gradually reduced to the predetermined amount in accordance with the inclination formed at the starting end portion before being overlapped with the starting end portion. Accordingly, the supply amount of the metal powder can be decreased in accordance with the residual powder that gradually increases, and the generation of defects can be further suppressed.
Further, by forming a groove portion along the seat surface of the valve seat and forming the build-up layer in the groove portion, the wear resistance of the valve seat can be further improved. Furthermore, since metal powder is reduced so as to suppress fluctuations in the amount of powder at the laser irradiation position, the occurrence of defects is suppressed.
In addition, when the laser irradiation position is moved in an annular shape around the center of the valve seat, the formation of the end portion is started at a timing moved from about 270 degrees to about 315 degrees from the start end portion, so that the occurrence of defects is good. It is possible to build up the valve seat that is kept to a minimum.

以下、図面を参照して本発明の実施形態について説明する。
図1は、本実施形態に係るバルブシート16のレーザ肉盛方法で用いられるレーザクラッド装置10を示す図であり、図2は、シリンダヘッド12を示す図である。
レーザクラッド装置10は、ワークであるシリンダヘッド12における給排気用バルブ孔14(図2参照)の周囲のバルブシート16に対して、銅合金粉末(金属粉末)18を供給しながら半導体レーザのレーザ光20を照射して銅合金粉末18を溶融及び固化させてレーザ照射位置Pに肉盛り層を形成し、このレーザ照射位置P(図2参照)を環状に移動しながら肉盛りをする装置である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a view showing a laser clad apparatus 10 used in the laser cladding method of the valve seat 16 according to the present embodiment, and FIG. 2 is a view showing a cylinder head 12.
The laser cladding apparatus 10 supplies a laser beam of a semiconductor laser while supplying copper alloy powder (metal powder) 18 to a valve seat 16 around a supply / exhaust valve hole 14 (see FIG. 2) in a cylinder head 12 as a workpiece. An apparatus that irradiates light 20 to melt and solidify the copper alloy powder 18 to form a built-up layer at the laser irradiation position P, and build up the material while moving the laser irradiation position P (see FIG. 2) in an annular shape. is there.

シリンダヘッド12は4気筒型のエンジン用であり、図2に示すように、各気筒当たり4つのバルブシート16が設けられている。このバルブシート16のシート面16Aには、肉盛り用のU字溝部17が周囲に沿って設けられている。シリンダヘッド12はアルミ合金製であり軽量化が図られている。また、シリンダヘッド12のバルブシート16は、バルブに対して繰り返し接触し、シート面16Aのヘルツ面圧は高負荷で、なおかつ、この高負荷が連続的に付与されることから、上記のように該シート面16Aに肉盛りすることで耐摩耗性及び耐熱性の向上が図られている。銅合金粉末18は、銅及びニッケルをベースとする合金の粉末であり、アトマイズ粉末となっている。   The cylinder head 12 is for a four-cylinder engine, and as shown in FIG. 2, four valve seats 16 are provided for each cylinder. On the seat surface 16 </ b> A of the valve seat 16, a U-shaped groove portion 17 for building up is provided along the periphery. The cylinder head 12 is made of an aluminum alloy and is reduced in weight. Further, the valve seat 16 of the cylinder head 12 repeatedly contacts the valve, the Hertz surface pressure of the seat surface 16A is a high load, and this high load is continuously applied. By increasing the thickness of the sheet surface 16A, the wear resistance and heat resistance are improved. The copper alloy powder 18 is an alloy powder based on copper and nickel, and is an atomized powder.

レーザクラッド装置10は、シリンダヘッド12を水平二軸方向に移動して位置決めを行うとともに所定のバルブシート16を中心として回転させるテーブル22と、該テーブル22の制御を行うテーブルコントローラ24と、バルブシート16に対して銅合金粉末18を供給するフィード機構26と、このフィード機構26を制御するフィードコントローラ28とを有する。フィード機構26の収納部26aには銅合金粉末18が投入されており、フィードコントローラ28の作用下にノズル29を介して銅合金粉末18をバルブシート16の周囲の一部に供給可能である。この銅合金粉末18の供給量Sは、フィードコントローラ28により調整可能である。   The laser cladding apparatus 10 includes a table 22 that moves the cylinder head 12 in the horizontal biaxial direction and positions the cylinder head 12 around a predetermined valve seat 16, a table controller 24 that controls the table 22, and a valve seat. 16 includes a feed mechanism 26 that supplies the copper alloy powder 18 to 16 and a feed controller 28 that controls the feed mechanism 26. The copper alloy powder 18 is put into the storage portion 26 a of the feed mechanism 26, and the copper alloy powder 18 can be supplied to a part of the periphery of the valve seat 16 through the nozzle 29 under the action of the feed controller 28. The supply amount S of the copper alloy powder 18 can be adjusted by a feed controller 28.

また、レーザクラッド装置10は、バルブシート16に対して半導体レーザのレーザ光20を照射するレーザ発振機構部30と、該レーザ発振機構部30を制御するレーザコントローラ32と、バルブシート16の拡大撮影を行うカメラ34と、該カメラ34により撮像された画像を表示するモニタ36とを有する。カメラ34は、例えば、CCD式又はMOS式の撮像部を有するカメラである。さらに、レーザクラッド装置10は、テーブルコントローラ24、フィードコントローラ28、レーザコントローラ32及びカメラ34を統合的に制御するメインコントローラ40を有する。   The laser cladding apparatus 10 also includes a laser oscillation mechanism unit 30 that irradiates the laser light 20 of the semiconductor laser onto the valve seat 16, a laser controller 32 that controls the laser oscillation mechanism unit 30, and an enlarged photograph of the valve seat 16. And a monitor 36 that displays an image captured by the camera 34. The camera 34 is, for example, a camera having a CCD type or MOS type imaging unit. Further, the laser cladding apparatus 10 includes a main controller 40 that integrally controls the table controller 24, the feed controller 28, the laser controller 32, and the camera 34.

レーザ発振機構部30は、例えば、モジュール式でGaaAlbAs型(a,bは固相比)のレーザ発振部を有し、半導体のPN接合部からレーザ光20を発生する装置であり、このレーザ光20の波長は、半導体の成分により800〜950[nm]の範囲の所定値となるように設定されている。また、レーザ発振機構部30は、レーザコントローラ32の作用下にレーザ光20の出力Wを調整可能であって、具体的には、PN接合部に印加する制御電圧を変更することによりレーザ光20の出力Wを調整する。レーザ光20の出力Wは、印加電圧を変更することにより瞬時に変化し、応答遅れや出力Wの変化時のオーバシュート等がなく、印加電圧に対して極めて高い応答性を有する。従って、レーザ光20の出力Wは、徐々に変化させることが可能であるとともに、段階的に変化させることも可能である。
また、このレーザ光20の800〜950[nm]の波長範囲は、銅合金粉末18にエネルギーが吸収され易く、銅合金粉末18を効率良く溶融させるため、半導体レーザは、1.2〜2.0[kW]程度の低出力で足り、シリンダヘッド12に対する熱影響を低減できる。しかも銅合金粉末18による溶融池は大きくなり肉盛り層の厚肉化が可能であり、例えば、5[mm]の厚さを形成することができる。
The laser oscillation mechanism section 30 is a device that has a laser oscillation section of, for example, a modular type, GaaAlbAs type (a and b are solid phase ratios), and generates laser light 20 from a semiconductor PN junction. The wavelength of 20 is set to be a predetermined value in the range of 800 to 950 [nm] depending on the semiconductor component. Further, the laser oscillation mechanism unit 30 can adjust the output W of the laser beam 20 under the action of the laser controller 32. Specifically, the laser oscillation unit 30 can change the control voltage applied to the PN junction by changing the control voltage. The output W is adjusted. The output W of the laser light 20 changes instantaneously by changing the applied voltage, and there is no response delay or overshoot when the output W changes, and the output W has a very high response to the applied voltage. Therefore, the output W of the laser beam 20 can be changed gradually and can be changed stepwise.
Further, in the wavelength range of 800 to 950 [nm] of the laser beam 20, energy is easily absorbed by the copper alloy powder 18 and the semiconductor alloy laser is 1.2 to 2. A low output of about 0 [kW] is sufficient, and the thermal effect on the cylinder head 12 can be reduced. Moreover, the molten pool by the copper alloy powder 18 becomes larger, and it is possible to increase the thickness of the built-up layer. For example, a thickness of 5 [mm] can be formed.

レーザ発振機構部30は、バルブシート16に対してシールドガスとして不活性ガス(アルゴンガス等)を吹きつけることができる。レーザ発振機構部30はテーブル22に対する高さ調整が可能である。   The laser oscillation mechanism unit 30 can spray an inert gas (such as argon gas) as a shielding gas against the valve seat 16. The laser oscillation mechanism 30 can be adjusted in height with respect to the table 22.

次に、このように構成されるレーザクラッド装置10を用いてバルブシート16に肉盛りを行う方法について説明する。
先ず、所定の手順によりテーブル22上にシリンダヘッド12を取り付け、テーブルコントローラ24の作用下に所定のバルブシート16が回転中心位置に配置されるように水平位置決めを行う。
次いで、図2に示すように、バルブシート16の周囲の一部に対してフィード機構26のノズル29から銅合金粉末18を供給するとともにレーザ発振機構部30からレーザ光20を照射し、テーブル22を回転させる。テーブル22、フィード機構26及びレーザ発振機構部30は、テーブルコントローラ24、フィードコントローラ28及びレーザコントローラ32により制御され、それぞれメインコントローラ40の作用下に同期し、同時に動作を開始する。また、シールドガスの噴出も同時に開始する。
Next, a method for overlaying the valve seat 16 using the laser clad apparatus 10 configured as described above will be described.
First, the cylinder head 12 is mounted on the table 22 according to a predetermined procedure, and horizontal positioning is performed so that a predetermined valve seat 16 is disposed at the rotation center position under the action of the table controller 24.
Next, as shown in FIG. 2, the copper alloy powder 18 is supplied from a nozzle 29 of the feed mechanism 26 to a part of the periphery of the valve seat 16, and the laser light 20 is irradiated from the laser oscillation mechanism unit 30, so that the table 22 Rotate. The table 22, the feed mechanism 26, and the laser oscillation mechanism unit 30 are controlled by the table controller 24, the feed controller 28, and the laser controller 32, and are synchronized with each other under the action of the main controller 40 and simultaneously start operating. Also, the ejection of shield gas starts simultaneously.

このとき、テーブル22の回転速度がバルブシート16の大きさに応じた一定の速度に維持されつつ、銅合金粉末18の供給量S及びレーザ光20の出力Wは、図3に示すように、テーブル22の回転に伴うバルブシート16の回転角度[deg]に基づいて可変制御される。   At this time, while the rotation speed of the table 22 is maintained at a constant speed according to the size of the valve seat 16, the supply amount S of the copper alloy powder 18 and the output W of the laser light 20 are as shown in FIG. The valve seat 16 is variably controlled based on the rotation angle [deg] of the valve seat 16 as the table 22 rotates.

すなわち、肉盛り開始時には、銅合金粉末18の供給量Sを徐々に最適値Saまで増加させながら、この銅合金粉末18の供給量Sに応じてレーザ光20の出力Wを徐々に最適値Waまで増加させて肉盛りの始端部50の形成が行われる((I)始端部形成工程))。このように、銅合金粉末18の供給量Sを徐々に増加させながら肉盛りが行われることで、図4に示すように、肉盛り層の厚みが緩やかに増加した始端部50が形成されるため、後に説明する終端部52がオーバーラップした際に、このオーバーラップ部54での欠陥の発生が抑制される。   That is, at the start of the build-up, the output W of the laser beam 20 is gradually increased to the optimum value Wa according to the supply amount S of the copper alloy powder 18 while gradually increasing the supply amount S of the copper alloy powder 18 to the optimum value Sa. The build-up start end 50 is formed ((I) start end forming step)). In this way, the build-up is performed while gradually increasing the supply amount S of the copper alloy powder 18, thereby forming the start end portion 50 in which the thickness of the build-up layer gradually increases as shown in FIG. 4. For this reason, when an end portion 52 described later overlaps, the occurrence of defects in the overlap portion 54 is suppressed.

ところで、一般に、アルミニウムと銅との拡散層の厚みが50[μm]以下となると未溶着によるブローホールの発生が多くなり、400[μm]以上となると、アルミニウムと銅との合金化割れが発生しやすくなることが知られている。本レーザ肉盛方法では、供給量Sに合せて出力Wを調整することから、母材であるシリンダヘッド12の溶融量が適正量となって、拡散層の厚さを50〜400[μm]とされる。これにより、合金化割れ及び未溶着を防止し、結果として欠陥の発生を防止することができる。
なお、レーザ光20の出力Wの制御方法は、例えば、所定時間毎の供給量Sをタイマを用いて測定し、該供給量Sに合せて出力Wを制御するとよい。
By the way, generally, when the thickness of the diffusion layer of aluminum and copper is 50 [μm] or less, blowholes are generated due to non-welding, and when it is 400 [μm] or more, alloying cracks between aluminum and copper are generated. It is known to be easy to do. In this laser cladding method, since the output W is adjusted in accordance with the supply amount S, the amount of melting of the cylinder head 12 as the base material becomes an appropriate amount, and the thickness of the diffusion layer is 50 to 400 [μm]. It is said. Thereby, alloying cracking and unwelding can be prevented, and as a result, generation of defects can be prevented.
As a method for controlling the output W of the laser beam 20, for example, the supply amount S for each predetermined time may be measured using a timer, and the output W may be controlled according to the supply amount S.

次いで、銅合金粉末18の供給量S及びレーザ光20の出力Wを、それぞれ最適値Sa、Waに維持して肉盛りの通常部51の形成が行われる((II)通常部形成工程)。これにより、図4に示すように、略一定の厚みの肉盛り層を有する通常部51が形成される。上記最適値Sa、Waには、通常の厚みの肉盛り層を形成するときにシリンダヘッド12の溶融量を適正量とする値が設定されており、これにより、当該通常部51での欠陥の発生も抑制される。   Next, the normal portion 51 of the build-up is formed while maintaining the supply amount S of the copper alloy powder 18 and the output W of the laser beam 20 at the optimum values Sa and Wa, respectively ((II) normal portion forming step). Thereby, as shown in FIG. 4, the normal part 51 which has the build-up layer of substantially constant thickness is formed. The optimum values Sa and Wa are set to values that allow the amount of melting of the cylinder head 12 to be an appropriate amount when a build-up layer having a normal thickness is formed. Occurrence is also suppressed.

その後、始端部50に合流し重なり合う終端部52の形成が行われる((III)終端部形成工程)。この終端部形成工程は、環状に移動したレーザ照射位置Pが始端部50に至る前(回転角度360[deg]より前)のタイミングで開始される。また、終端部形成工程では、通常部形成工程と異なり、レーザ光20の出力Wを最適値Waに一定にしたままで銅合金粉末18の供給量Sを所定量Sb(<Sa)まで減少させて終端部42の形成が行われる。   Thereafter, the terminal portion 52 that merges and overlaps the starting end portion 50 is formed ((III) terminal portion forming step). This end portion forming step is started at a timing before the laser irradiation position P moved in an annular shape reaches the start end portion 50 (before the rotation angle 360 [deg]). Further, in the terminal portion forming step, unlike the normal portion forming step, the supply amount S of the copper alloy powder 18 is decreased to a predetermined amount Sb (<Sa) while the output W of the laser beam 20 is kept constant at the optimum value Wa. Thus, the end portion 42 is formed.

さらに詳述すると、発明者らは、レーザ照射位置Pを高速度カメラで撮影し観察した結果、レーザクラッドにおいては、図5に示すように、ノズル29から噴射された銅合金粉末18が、レーザ照射位置P(溶融池60)に対してワーク回転方向上流側のゾーンK1に残留し、また、始端部50の面上のゾーンK2には赤熱した銅合金粉末18が飛散するとの知見を得た。   More specifically, as a result of observing the laser irradiation position P with a high-speed camera, the inventors have observed that the copper alloy powder 18 injected from the nozzle 29 in the laser cladding is a laser as shown in FIG. It was found that the copper alloy powder 18 remaining in the zone K1 on the upstream side of the workpiece rotation direction with respect to the irradiation position P (the molten pool 60) is scattered in the zone K2 on the surface of the starting end portion 50. .

すなわち、始端部50及び通常部51の形成の間、ゾーンK1に残留粉が溜まり込むこととなるが、レーザ照射位置Pが環状に移動し、当初の始端部50の手前まで来ると、図4の(III)終端部形成工程に示すように、ゾーンK1の残留粉が始端部50に押されてレーザ照射位置Pに入り込む。
これにより、レーザ照射位置Pでは、銅合金粉末18の供給量Saに加えて残留粉の分だけ増加するため、銅合金粉末18の粉量とレーザ光20の出力Wのバランスが崩れる。このため、何ら対策を施さなければ、図6に示すように、レーザ照射位置Pが始端部50に至る手前(回転角度が約−90[deg])の位置から始端部50にかけた肉盛り層で欠陥が集中的に発生する。
特に、本レーザ肉盛り方法では、バルブシート16の肉盛り用のU字溝部17に沿ってレーザ肉盛りを行っているため、該U字溝部17に残留粉が溜まり易くなる。
That is, while the starting end portion 50 and the normal portion 51 are formed, residual powder accumulates in the zone K1, but when the laser irradiation position P moves in an annular shape and comes to the front of the initial starting end portion 50, FIG. As shown in (III) terminal portion forming step, residual powder in the zone K1 is pushed by the start end portion 50 and enters the laser irradiation position P.
As a result, at the laser irradiation position P, in addition to the supply amount Sa of the copper alloy powder 18, the amount of residual powder increases, so the balance between the amount of copper alloy powder 18 and the output W of the laser light 20 is lost. For this reason, if no countermeasure is taken, as shown in FIG. 6, the build-up layer applied to the start end 50 from the position before the laser irradiation position P reaches the start end 50 (rotation angle is about −90 [deg]). Defects occur intensively.
In particular, in this laser embedding method, since the laser embedding is performed along the U-shaped groove portion 17 for embedding the valve seat 16, residual powder tends to accumulate in the U-shaped groove portion 17.

そこで、本レーザ肉盛り方法では、ゾーンK1の残留粉が始端部50に押されてレーザ照射位置Pに入り込み始めるタイミングから終端部形成工程を開始し、この終端部形成工程において、銅合金粉末18の供給量Sを所定量Sbまで次第に減少させる。この結果、レーザ照射位置Pでの銅合金粉末18の粉量の変動が抑制されるため、銅合金粉末18の粉量とレーザ光20の出力Wのバランスが維持され肉盛り層の欠陥の発生が抑制されることとなる。   Therefore, in this laser build-up method, the terminal portion forming process is started from the timing when the residual powder in the zone K1 is pushed by the starting end portion 50 and starts to enter the laser irradiation position P. In this terminal portion forming step, the copper alloy powder 18 Is gradually reduced to a predetermined amount Sb. As a result, fluctuations in the amount of the copper alloy powder 18 at the laser irradiation position P are suppressed, so that the balance between the amount of the copper alloy powder 18 and the output W of the laser beam 20 is maintained, and defects in the overlay layer are generated. Will be suppressed.

この終端部形成工程においては、その開始時から銅合金粉末18の供給量Sを、始端部50に形成した傾斜に応じた減少率αで所定量Sbまで減少させている。
詳述すると、始端部50の傾斜面がゾーンK1の残留粉をレーザ照射位置Pに押し込むことから、押し込みの量の時間的変化は傾斜面の緩急に応じて変化する。すなわち、始端部50の傾斜面が緩やかなほど、レーザ照射位置PへのゾーンK1の残留粉の押し込み量も緩やかに増加する。このように、押し込みの量の時間的変化に合せて銅合金粉末18の供給量Sを徐々に減少させることで、レーザ照射位置Pでの銅合金粉末18の粉量の変動が抑制され、欠陥の発生が更に抑制される。
In this terminal portion forming step, the supply amount S of the copper alloy powder 18 is reduced from the start to a predetermined amount Sb with a reduction rate α corresponding to the inclination formed in the starting end portion 50.
More specifically, since the inclined surface of the start end portion 50 pushes the residual powder in the zone K1 into the laser irradiation position P, the temporal change in the amount of pushing changes according to the slackness of the inclined surface. That is, as the inclined surface of the start end portion 50 becomes gentler, the amount of the residual powder pushed into the laser irradiation position P gradually increases. Thus, by gradually reducing the supply amount S of the copper alloy powder 18 in accordance with the temporal change in the amount of indentation, fluctuations in the amount of the copper alloy powder 18 at the laser irradiation position P are suppressed, and defects are detected. Is further suppressed.

また、本レーザ肉盛り方法では、始端部50の傾斜面の角度θ(図5参照)が約30〜40度となるように、始端部形成工程での銅合金粉末18の供給量S等が設定されている。この角度の傾斜面が始端部50に形成されることで、始端部50が残留粉をレーザ照射位置Pに押し込む際に、当該始端部50の傾斜面上に回り込む残留粉も増える。これにより、レーザ照射位置Pに押し込まれる残留粉の時間的変化を、傾斜面の角度に対してより緩やかにすることができ、一層良好に終端部52での欠陥の発生を抑制できる。また、傾斜面の角度をある程度大きくできるため、始端部形成工程において、銅合金粉末18の供給量Sを微小変化させる必要がなく、始端部50の形成が容易となる。   Further, in this laser overlaying method, the supply amount S of the copper alloy powder 18 in the start end portion forming step is such that the angle θ (see FIG. 5) of the inclined surface of the start end portion 50 is about 30 to 40 degrees. Is set. By forming the inclined surface of this angle at the start end portion 50, when the start end portion 50 pushes the residual powder into the laser irradiation position P, the residual powder that wraps around the inclined surface of the start end portion 50 also increases. Thereby, the temporal change of the residual powder pushed into the laser irradiation position P can be made more gradual with respect to the angle of the inclined surface, and the occurrence of defects at the terminal portion 52 can be suppressed more satisfactorily. Further, since the angle of the inclined surface can be increased to some extent, it is not necessary to minutely change the supply amount S of the copper alloy powder 18 in the starting end forming step, and the starting end 50 can be easily formed.

ここで、始端部50の傾斜面上のゾーンK2(図5参照)には、上記の残留粉の回り込みに加え、レーザ照射位置Pの観察の結果、赤熱した粉末が飛散するとの知見が得られている。終端部形成工程では、レーザ照射位置Pが始端部50に到達した後も、ノズル29から銅合金粉末18の供給を継続して、この始端部50の上にオーバーラップ部54を形成しており、始端部50の傾斜面上のゾーンK2では粉量が増加した状態となる。このため、何ら対策を施さなければ、図6に示すように、オーバーラップ部54においても比較的多くの欠陥が発生する。
そこで本レーザ肉盛り方法では、レーザ照射位置Pが始端部50に重なった後も、銅合金粉末18の供給量Sを所定量Sbまで減少させた状態で、オーバーラップ部54の形成を行う((III−A)オーバーラップ部形成工程)。この結果、上記ゾーンK2での銅合金粉末18の粉量の変動が抑えられるため、欠陥の発生が良好に抑制される。
Here, in the zone K2 (refer to FIG. 5) on the inclined surface of the starting end 50, in addition to the above wraparound of the residual powder, as a result of observation of the laser irradiation position P, knowledge that red hot powder is scattered is obtained. ing. In the terminal portion forming step, the supply of the copper alloy powder 18 from the nozzle 29 is continued even after the laser irradiation position P reaches the starting end portion 50, and the overlap portion 54 is formed on the starting end portion 50. In the zone K2 on the inclined surface of the start end 50, the amount of powder is increased. For this reason, if no countermeasures are taken, a relatively large number of defects occur in the overlap portion 54 as shown in FIG.
Therefore, in this laser build-up method, the overlap portion 54 is formed in a state where the supply amount S of the copper alloy powder 18 is reduced to a predetermined amount Sb even after the laser irradiation position P overlaps the start end portion 50 ( (III-A) Overlap portion forming step). As a result, the fluctuation of the amount of the copper alloy powder 18 in the zone K2 is suppressed, so that the occurrence of defects is satisfactorily suppressed.

なお、銅合金粉末18の供給量Sの所定値Sbは、ゾーンK1の残留粉の堆積量、より詳細には、レーザ照射位置Pに押し込まれる残留粉の最大値に応じて決定される。詳細には、この最大値は、バルブシート16のレーザ肉盛りにおいては略一定であるとの知見が得られており、所定値Sbを、供給量Sの最適値Saに対して約20〜30%の範囲で減少させることで欠陥を良好に抑制することができる。すなわち、所定値Sbを最適値Saよりも約30%を超えて減少させるとレーザ光20の出力が相対的に高くなり過ぎて肉盛り層にクラックが発生し、また、最適値Saよりも約20%を下回る程度に減少させるとレーザ照射位置Pでの粉末量が相対的に多くなり肉盛り層に欠陥が発生することとなる。   The predetermined value Sb of the supply amount S of the copper alloy powder 18 is determined according to the amount of residual powder deposited in the zone K1, more specifically, the maximum value of residual powder pushed into the laser irradiation position P. Specifically, it has been found that this maximum value is substantially constant in the laser build-up of the valve seat 16, and the predetermined value Sb is about 20-30 with respect to the optimum value Sa of the supply amount S. Defects can be satisfactorily suppressed by reducing the content in the range of%. That is, if the predetermined value Sb is decreased by more than about 30% from the optimum value Sa, the output of the laser beam 20 becomes relatively high and cracks are generated in the built-up layer. If the amount is reduced to less than 20%, the amount of powder at the laser irradiation position P is relatively increased, and a defect is generated in the built-up layer.

さらに、バルブシート16のレーザ肉盛りにおいては、バルブシート16の回転に伴い始端部50の形成開始からレーザ照射位置Pが約270〜315度移動したタイミングでゾーンK1の残留粉が始端部50に押され始めるとの知見が得られている。したがって、かかるタイミングで終端部形成工程を開始することで、レーザ照射位置Pで残留粉が押し込まれ始める適正なタイミングで銅合金粉末18の供給量Sを減少させることができ、これにより欠陥を抑えた終端部52を形成することができる。   Further, in the laser build-up of the valve seat 16, the residual powder in the zone K <b> 1 reaches the start end portion 50 at a timing when the laser irradiation position P moves approximately 270 to 315 degrees from the start of the formation of the start end portion 50 with the rotation of the valve seat 16. The knowledge that it starts to be pushed is obtained. Therefore, by starting the terminal portion forming process at such timing, the supply amount S of the copper alloy powder 18 can be reduced at an appropriate timing at which the residual powder starts to be pushed in at the laser irradiation position P, thereby suppressing defects. An end portion 52 can be formed.

このようなオーバーラップ部形成工程での肉盛りは、図3に示すように、始端部50における肉盛り層が所定の一定厚さとなる位置まで続けられる。そして、その後に銅合金粉末18の供給とレーザ光20とを停止させ、バルブシート16に対する肉盛りを終了する。なお、終了時には、供給量Sと出力Wとを徐々に減少させ、終端部52のオーバーラップ部54における肉盛り層が徐々に薄くなるようにして肉盛りを終了させてもよい。
さらにこの後、肉盛りの処理が行われていない他のバルブシート16に対しても同様の肉盛り処理を順次行う。
As shown in FIG. 3, the build-up in the overlap portion forming step is continued to a position where the build-up layer at the start end portion 50 has a predetermined constant thickness. Thereafter, the supply of the copper alloy powder 18 and the laser beam 20 are stopped, and the build-up on the valve seat 16 is finished. At the end, the build-up may be terminated by gradually decreasing the supply amount S and the output W so that the build-up layer in the overlap portion 54 of the end portion 52 becomes gradually thinner.
Thereafter, the same build-up process is sequentially performed on the other valve seats 16 that are not subjected to the build-up process.

以上説明したように、本実施形態に係るバルブシート16のレーザ肉盛方法によれば、始端部50の手前から終端部形成工程を開始し、この終端部形成工程においては、銅合金粉末18の供給量Sを減少させて終端部52を形成することとした。これにより、レーザ照射位置Pの上流側のゾーンK1に溜まっていた残留粉が始端部50に押されてレーザ照射位置Pに入り込んだ場合でも、このレーザ照射位置Pでの粉量の変動が抑えられるから、終端部52での欠陥の発生が抑えられる。また、始端部50が残留粉を押し込んだ際に、残留粉が始端部50の面上に回り込むことで、始端部50の傾斜面上での粉量が増加するものの、銅合金粉末18の供給量Sを減少させたまま始端部50とのオーバーラップ部54を形成するため、オーバーラップ部54での欠陥の発生も良好に抑制できる。   As described above, according to the laser cladding method of the valve seat 16 according to the present embodiment, the terminal portion forming step is started from the front of the starting end portion 50. In this terminal portion forming step, the copper alloy powder 18 The terminal portion 52 is formed by reducing the supply amount S. Thereby, even when the residual powder accumulated in the upstream zone K1 of the laser irradiation position P is pushed by the start end portion 50 and enters the laser irradiation position P, the fluctuation of the powder amount at the laser irradiation position P is suppressed. Therefore, the occurrence of defects in the terminal portion 52 is suppressed. In addition, when the starting end portion 50 pushes in the residual powder, the residual powder wraps around the surface of the starting end portion 50, thereby increasing the amount of powder on the inclined surface of the starting end portion 50, but supplying the copper alloy powder 18. Since the overlap portion 54 with the starting end portion 50 is formed while the amount S is reduced, the occurrence of defects in the overlap portion 54 can be well suppressed.

また、終端部形成工程では、レーザ照射位置Pが始端部50に重なる前までに、始端部50に形成された傾斜に応じた減少率αで銅合金粉末18の供給量Sを所定量Sbまで徐々に減少させている。
これにより、始端部50の傾斜に応じてレーザ照射位置Pで徐々に増加する残留粉の押し込み量に合せて、銅合金粉末18の供給量Sが減少することとなり、欠陥の発生を更に抑制して終端部52を形成することができる。
Further, in the terminal portion forming step, the supply amount S of the copper alloy powder 18 is reduced to a predetermined amount Sb at a reduction rate α corresponding to the inclination formed at the start end portion 50 before the laser irradiation position P overlaps the start end portion 50. It is gradually decreasing.
As a result, the supply amount S of the copper alloy powder 18 is reduced in accordance with the pushing amount of the residual powder that gradually increases at the laser irradiation position P according to the inclination of the starting end portion 50, and the generation of defects is further suppressed. Thus, the end portion 52 can be formed.

また、バルブシート16のシート面16Aに沿ってU字溝部17を形成し、U字溝部17に肉盛り層を形成している。このようにU字溝部17に肉盛り層を形成することで、バルブシート16の更なる耐摩耗性の向上が図られる。また、肉盛り時にU字溝部17に銅合金粉末18が溜まり易くなるものの、上記のように、終端部形成工程では、残留粉の粉量に合せて銅合金粉末18の供給量Sが減少されるため、欠陥の発生を良好に抑制することができる。これにより、耐摩耗性の向上とともに欠陥の良好な抑制効果が得られる。   In addition, a U-shaped groove portion 17 is formed along the seat surface 16 </ b> A of the valve seat 16, and a built-up layer is formed in the U-shaped groove portion 17. Thus, by forming a build-up layer in the U-shaped groove part 17, the wear resistance of the valve seat 16 is further improved. Further, although the copper alloy powder 18 is likely to be accumulated in the U-shaped groove portion 17 when building up, as described above, the supply amount S of the copper alloy powder 18 is reduced in accordance with the amount of residual powder as described above. Therefore, the occurrence of defects can be suppressed satisfactorily. As a result, the wear resistance is improved and a good defect suppression effect is obtained.

また、レーザ照射位置Pが始端部50から円環状に約270度〜約315度移動したタイミングで終端部形成工程を開始している。これによれば、バルブシート16のレーザ肉盛りにおいて、レーザ照射位置Pでの残留粉の押し込みが生じ始める適正なタイミングで銅合金粉末18の供給量Sを減少させることができ、欠陥を抑えた終端部52を形成することができる。   In addition, the end portion forming process is started at a timing when the laser irradiation position P is moved from the start end portion 50 in an annular shape by about 270 degrees to about 315 degrees. According to this, in the laser build-up of the valve seat 16, the supply amount S of the copper alloy powder 18 can be reduced at an appropriate timing when the residual powder starts to be pushed in at the laser irradiation position P, and defects are suppressed. A terminal portion 52 can be formed.

なお、上述した実施の形態は、あくまでも本発明の一態様を示すものであり、本発明の主旨を逸脱しない範囲で任意に変形および応用が可能であることは勿論である。   It should be noted that the above-described embodiment is merely an aspect of the present invention and can be arbitrarily modified and applied without departing from the gist of the present invention.

本発明の実施形態に係るレーザクラッド装置の機能ブロック図である。It is a functional block diagram of the laser clad apparatus concerning the embodiment of the present invention. バルブシートに半導体レーザを照射しながら肉盛りを行う工程を示す模式図である。It is a schematic diagram which shows the process of building up, irradiating a valve seat with a semiconductor laser. 半導体レーザの出力及び銅合金粉末の供給量のチャートである。It is a chart of the output of a semiconductor laser and the supply amount of copper alloy powder. 始端部形成工程、通常部形成工程及び終端部形成工程の各工程を示す模式図である。It is a schematic diagram which shows each process of a start part formation process, a normal part formation process, and a termination | terminus part formation process. レーザ照射位置を拡大して示す模式図である。It is a schematic diagram which expands and shows a laser irradiation position. 肉盛り層に発生する欠陥分布の傾向を示す図である。It is a figure which shows the tendency of the defect distribution which generate | occur | produces in a buildup layer.

10 レーザクラッド装置
12 シリンダヘッド
14 給排気用バルブ孔
16 バルブシート
16A シート面
17 U字溝部
18 銅合金粉末(金属粉末)
20 レーザ光
29 ノズル
50 始端部
51 通常部
52 終端部
54 オーバーラップ部
60 溶融池
P レーザ照射位置
Sb 所定値
K1、K2 ゾーン
DESCRIPTION OF SYMBOLS 10 Laser clad apparatus 12 Cylinder head 14 Supply / exhaust valve hole 16 Valve seat 16A Sheet surface 17 U-shaped groove part 18 Copper alloy powder (metal powder)
20 Laser light 29 Nozzle 50 Start end portion 51 Normal portion 52 End portion 54 Overlap portion 60 Weld pool P Laser irradiation position Sb Predetermined values K1, K2 zones

Claims (4)

シリンダヘッドのバルブシートに金属粉末を供給しながらレーザを照射することでレーザ照射位置に肉盛り層を形成しつつ、該レーザ照射位置を前記バルブシートに沿って円環状に移動させて肉盛りするレーザ肉盛方法において、
前記肉盛りの開始時に、前記金属粉末の供給量を徐々に増加させながら該金属粉末の供給量に応じてレーザ出力を増加させて肉盛りの始端部を形成し、
前記金属粉末の供給量及び前記レーザの出力を一定に維持して肉盛りの通常部を形成し、
前記始端部の手前から前記レーザの出力を一定のままで前記金属粉末の供給量を所定量まで減少させて肉盛りの終端部を形成し前記始端部に重ねる
ことを特徴とするレーザ肉盛方法。
By irradiating a laser while supplying metal powder to the valve seat of the cylinder head, a build-up layer is formed at the laser irradiation position, and the laser irradiation position is moved annularly along the valve seat to build up In the laser cladding method,
At the start of the build-up, gradually increasing the supply amount of the metal powder while increasing the laser output according to the supply amount of the metal powder to form the start end of the build-up,
The supply amount of the metal powder and the output of the laser are kept constant to form a normal part of the overlay,
A laser cladding method comprising: forming a terminal end portion of a build-up by overlapping a predetermined amount by reducing the supply amount of the metal powder to a predetermined amount while keeping the output of the laser constant from before the start end portion. .
前記終端部の形成時には、前記始端部に重なる前までに、前記始端部に形成された傾斜に応じて、前記金属粉末の供給量を前記所定量まで徐々に減少させることを特徴とする請求項1に記載のレーザ肉盛方法。   The supply amount of the metal powder is gradually decreased to the predetermined amount according to the inclination formed at the start end before the end portion is formed, before being overlapped with the start end. The laser cladding method according to 1. 前記バルブシートのシート面に沿って溝部を形成し、該溝部に前記肉盛り層を形成したことを特徴とする請求項1又は2に記載のレーザ肉盛方法。   The laser cladding method according to claim 1 or 2, wherein a groove is formed along a seat surface of the valve seat, and the build-up layer is formed in the groove. 前記バルブシートの中央を中心に前記レーザ照射位置を円環状に移動させる場合、前記始端部から約270〜315度移動したタイミングで前記終端部の形成を開始することを特徴とする請求項1乃至3のいずれかに記載のレーザ肉盛方法。   When the laser irradiation position is moved in an annular shape around the center of the valve seat, the formation of the end portion is started at a timing moved from the start end portion by about 270 to 315 degrees. 4. The laser cladding method according to any one of 3 above.
JP2009056104A 2009-03-10 2009-03-10 Laser overlaying method Expired - Fee Related JP5228224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056104A JP5228224B2 (en) 2009-03-10 2009-03-10 Laser overlaying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056104A JP5228224B2 (en) 2009-03-10 2009-03-10 Laser overlaying method

Publications (2)

Publication Number Publication Date
JP2010207849A JP2010207849A (en) 2010-09-24
JP5228224B2 true JP5228224B2 (en) 2013-07-03

Family

ID=42968610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056104A Expired - Fee Related JP5228224B2 (en) 2009-03-10 2009-03-10 Laser overlaying method

Country Status (1)

Country Link
JP (1) JP5228224B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210093B2 (en) * 2015-07-16 2017-10-11 トヨタ自動車株式会社 Laser overlaying method
JP6729461B2 (en) * 2017-03-22 2020-07-22 トヨタ自動車株式会社 Manufacturing method of overlay layer and manufacturing apparatus thereof
JP7144119B2 (en) * 2018-08-06 2022-09-29 大阪シーリング印刷株式会社 LASER PROCESSING DEVICE AND METHOD OF PROCESSING LONG WORKED WORK WITH LASER PROCESSING DEVICE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3614004B2 (en) * 1998-11-24 2005-01-26 日産自動車株式会社 Method of overlaying with laser beam
JP3724354B2 (en) * 2000-09-11 2005-12-07 日産自動車株式会社 Method of overlaying with laser beam
JP3589289B2 (en) * 2000-09-22 2004-11-17 日産自動車株式会社 Quality determination method and quality determination apparatus for laser cladding processing
JP4359529B2 (en) * 2004-04-15 2009-11-04 本田技研工業株式会社 Laser seating method for valve seat

Also Published As

Publication number Publication date
JP2010207849A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP3209369U (en) A system for starting and using a combination of filler wire feed and high-intensity energy source for root-pass welding of inner diameter of clad pipe
US7586061B2 (en) Method of controlled remelting of or laser metal forming on the surface of an article
CA2497761C (en) Method for controlling the microstructure of a laser metal formed hard layer
EP2318170B1 (en) Method of building up part of a metal workpiece by mig welding using pulsed current and wire feed
EP3481577B1 (en) Method of providing a metal wire to a welding torch
KR20160140849A (en) System and method of welding with use of ac welding waveform and enhanced consumable to improve welding of galvanized workpiece
EP1609557A1 (en) Arc starting method in a hybrid welding process using laser and electric arc, welding device for performing the method, and controller
JP5228223B2 (en) Laser overlaying method
JP5228224B2 (en) Laser overlaying method
JP4359529B2 (en) Laser seating method for valve seat
JP3591147B2 (en) Method of overlaying with laser beam
Victor Hybrid laser arc welding
JP5532629B2 (en) Laser cladding valve sheet forming method and laser cladding valve sheet forming apparatus
JP4848921B2 (en) Composite welding method and composite welding equipment
KR20160036583A (en) Method for creating a textured bond coat surface
RU2708715C1 (en) Method for hybrid laser-arc surfacing of metal articles
JP2014042940A (en) Laser build-up welding apparatus, build-up welding method, and build-up welding component
JP2012223799A (en) Method of manufacturing welded joint
JP2023090821A (en) Laser-arc hybrid welding device
JP5294589B2 (en) Valve seat forming method and cylinder head
JP7284014B2 (en) Laser-arc hybrid welding equipment
JP3724354B2 (en) Method of overlaying with laser beam
JP6358121B2 (en) Laser processing device for valve seat part of cylinder head
JP2011062728A (en) Laser beam welding method and laser beam welding apparatus
JPH0847787A (en) Cladding by laser beam welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees