JP5227858B2 - Vaporizer for measuring the content of hydrocarbon components in soil - Google Patents

Vaporizer for measuring the content of hydrocarbon components in soil Download PDF

Info

Publication number
JP5227858B2
JP5227858B2 JP2009059024A JP2009059024A JP5227858B2 JP 5227858 B2 JP5227858 B2 JP 5227858B2 JP 2009059024 A JP2009059024 A JP 2009059024A JP 2009059024 A JP2009059024 A JP 2009059024A JP 5227858 B2 JP5227858 B2 JP 5227858B2
Authority
JP
Japan
Prior art keywords
sample
sample holder
soil
mixed gas
vaporizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009059024A
Other languages
Japanese (ja)
Other versions
JP2010133918A5 (en
JP2010133918A (en
Inventor
真二 齋藤
和宏 鷲津
あゆみ 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP2009059024A priority Critical patent/JP5227858B2/en
Publication of JP2010133918A publication Critical patent/JP2010133918A/en
Publication of JP2010133918A5 publication Critical patent/JP2010133918A5/ja
Application granted granted Critical
Publication of JP5227858B2 publication Critical patent/JP5227858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本願発明は、炭化水素成分を含む土壌を気化装置のサンプル室内に充填し加熱処理して土壌中に含有される該成分を気化させると共に、上記サンプル室に酸素と窒素の混合ガスを導入し気化させた該成分を反応管に送り込んで燃焼させ、これにより発生した二酸化炭素量を測定し、土壌中に含まれる該成分の含有量を測定する方法に使用する気化装置に関するものである。   The invention of the present application fills the sample chamber of the vaporizer with the soil containing the hydrocarbon component and heat-treats it to vaporize the component contained in the soil, and introduces a gas mixture of oxygen and nitrogen into the sample chamber and vaporizes the sample chamber. The present invention relates to a vaporizer used in a method for measuring the content of the component contained in soil by measuring the amount of carbon dioxide generated by sending the burned component into a reaction tube and burning it.

炭化水素とは、炭素と水素を含む有機物であるが、土壌汚染の汚染物質としては、例えば液体燃料、固体燃料、バイオマス燃料、潤滑油類、溶剤などの化学製品などである。
この中でも土壌汚染に特に多く見られる汚染物質の1つは石油系炭化水素である。以下、石油系炭化水素を例に説明する。
Hydrocarbon is an organic substance containing carbon and hydrogen, and examples of soil contamination include chemical products such as liquid fuel, solid fuel, biomass fuel, lubricating oil, and solvent.
Among these, one of the pollutants that are particularly common in soil contamination is petroleum hydrocarbons. Hereinafter, explanation will be given by taking petroleum hydrocarbon as an example.

石油系炭化水素とは、石油関連施設で扱っている石油製品に由来するものであり、ガソリン、灯油、軽油、A重油、C重油、潤滑油類(鉱油、合成油)、原油等を構成する炭化水素化合物類である。現在、土壌汚染対策法が施行され、土地の用途変更などの際に土壌汚染調査の結果の報告が義務付けられており、その一環として土壌中の石油系炭化水素成分の含有量を調べることが多い。   Petroleum hydrocarbons are derived from petroleum products handled at petroleum-related facilities and constitute gasoline, kerosene, light oil, heavy oil A, heavy fuel oil, lubricating oils (mineral oil, synthetic oil), crude oil, etc. Hydrocarbon compounds. Currently, the Soil Contamination Countermeasures Law has been enacted, and it is mandatory to report the results of soil contamination surveys when changing the use of land, and as part of this, the content of petroleum hydrocarbon components in the soil is often examined. .

これまでの石油系炭化水素の分析法としては、土壌中の石油系炭化水素成分をn−ヘキサンで抽出・分離し、n−ヘキサンを加熱により蒸発させ、残渣物の重量を測定する方法(n−ヘキサン抽出−重量法)、土壌中の石油系炭化水素成分を四塩化炭素にて抽出・分離し、四塩化炭素抽出液の赤外吸収分光分析(IR)を行ない成分含有量を測定する方法(四塩化炭素抽出−IR法)、土壌中の石油系炭化水素成分を二硫化炭素にて抽出・分離し、二硫化炭素抽出液をガスクロマトグラフィー(GC、検出装置FID)にて分析し、クロマトグラムの面積比より成分含有量を測定する方法(二硫化炭素抽出−GC法)等が知られている。(石油汚染土壌の浄化に関する技術開発報告書 平成15年3月財団法人石油産業活性化センター発行)。また、土壌中の石油系炭化水素成分をテトラクロロエチレンにて抽出し、その抽出液のIR分析を行ない成分含有量を測定する方法(テトラクロロエチレン抽出−IR法)等も知られている。(特開2003-294617) As a conventional method for analyzing petroleum hydrocarbons, a method of extracting and separating petroleum hydrocarbon components in soil with n-hexane, evaporating n-hexane by heating, and measuring the weight of the residue (n -Hexane extraction-gravimetric method), extraction and separation of petroleum hydrocarbon components in the soil with carbon tetrachloride, and infrared absorption spectroscopic analysis (IR) of the carbon tetrachloride extract to measure the component content (Carbon tetrachloride extraction-IR method), petroleum hydrocarbon components in the soil are extracted and separated with carbon disulfide, and the carbon disulfide extract is analyzed by gas chromatography (GC, detection device FID). A method of measuring the component content from the area ratio of the chromatogram (carbon disulfide extraction-GC method) is known. (Technology development report on purification of oil-contaminated soil, published in March 2003 by the Petroleum Industry Activation Center). Also known is a method (tetrachloroethylene extraction-IR method) in which petroleum hydrocarbon components in the soil are extracted with tetrachloroethylene and the extract is subjected to IR analysis to measure the component content. (JP 2003-294617)

また、土壌中の炭化水素簡易分析器として、採取した土壌の炭化水素を抽出溶媒で抽出し、抽出液の濁度から炭化水素含有量を測定する器具が市販されている。   In addition, as a simple analyzer for hydrocarbons in soil, instruments for extracting hydrocarbons in collected soil with an extraction solvent and measuring the hydrocarbon content from the turbidity of the extract are commercially available.

他に、水中の油分を測定する方法として、水中の油分を抽出溶媒で抽出した後、油分抽出液から抽出溶媒を揮散させ、残留分を燃焼させることにより発生した二酸化炭素から油分を測定する方法が開示されている(特開2003-302316)。   In addition, as a method of measuring the oil content in water, after extracting the oil content in water with an extraction solvent, volatilizing the extraction solvent from the oil extract and measuring the oil content from carbon dioxide generated by burning the residue Is disclosed (Japanese Patent Laid-Open No. 2003-302316).

しかし、これらの方法は何れも大気汚染或いは土壌汚染の原因となる抽出液を使用するものであり、したがってこれらの抽出液をそのまま排出すると、環境汚染の原因となり、またこれらの抽出液を無害化するには、多くの費用と労力を必要とする。   However, these methods all use extracts that cause air pollution or soil contamination. Therefore, if these extracts are discharged as they are, environmental pollution will occur and these extracts will be rendered harmless. It takes a lot of money and effort.

これに対して抽出液を使用しない方法として、土壌中の軽質の炭化水素留分を加熱により蒸発させ、トラップし(パージアンドトラップ、PT)、それをガスクロマトグラフィーにて分析し、チャートの面積比より油分量を測定する方法(PT−GC法)が知られている(石油汚染土壌の浄化に関する技術開発報告書 平成15年3月財団法人石油産業活性化センター発行)。   On the other hand, as a method that does not use an extract, light hydrocarbon fractions in the soil are evaporated by heating, trapped (purge and trap, PT), analyzed by gas chromatography, and the area of the chart The method of measuring the oil content from the ratio (PT-GC method) is known (Technology Development Report on Purification of Petroleum-Contaminated Soil Issued by the Oil Industry Activation Center in March 2003).

しかし、この方法は土壌中に含まれる石油系炭化水素成分が軽質留分である場合に適用される方法であり、軽質留分以外に中重質留分を含む場合、前記した抽出液を使用する二硫化炭素抽出−GC法を適用する方法(PEC法)が採用され(前記非特許文献1)、したがって軽質留分から中重質留分まで幅広い石油系炭化水素成分を含む土壌に対しては従来法では何れも大気汚染或いは土壌汚染の原因となる有機溶媒による抽出操作が用いられていた。   However, this method is applied when the petroleum hydrocarbon component contained in the soil is a light fraction. When the medium heavy fraction is included in addition to the light fraction, the above-described extract is used. The carbon disulfide extraction-GC method (PEC method) is employed (Non-Patent Document 1), and therefore, for soil containing a wide range of petroleum hydrocarbon components from light to medium heavy fractions. In any of the conventional methods, extraction with an organic solvent that causes air pollution or soil pollution has been used.

そこで、本願発明者は軽質留分から中重質留分まで幅広い石油系炭化水素成分を含む土壌に対して有機溶媒による抽出操作を必要とせず、且つ簡便に石油系炭化水素成分の含有量を測定する方法として、石油系炭化水素成分を含む土壌を加熱部のサンプル室内に充填して加熱処理して土壌中に含有される該成分を気化させると共に、サンプル室に酸素と窒素の混合ガスを導入し気化させた該成分を反応管に送り込んで燃焼させ、これにより発生した二酸化炭素量を測定し、土壌中に含まれる該成分の含有量を測定することを特徴とする土壌中の石油系炭化水素成分含有量を測定する方法を提案したが(特開2007-171049)、この方法において、分析時間を短縮するためには、土壌中に含まれる石油系炭化水素成分を瞬時に気化して短時間の中に分析を完了することができる気化装置の開発が不可欠である。   Therefore, the present inventor does not require extraction operation with an organic solvent for soil containing a wide range of petroleum hydrocarbon components from light fractions to medium heavy fractions, and simply measures the content of petroleum hydrocarbon components. As a method to do this, the soil containing petroleum hydrocarbon components is filled in the sample chamber of the heating section and heat-treated to vaporize the components contained in the soil, and a mixed gas of oxygen and nitrogen is introduced into the sample chamber Petroleum carbonization in soil, characterized in that the vaporized component is fed into a reaction tube and burned, the amount of carbon dioxide generated thereby is measured, and the content of the component contained in the soil is measured A method for measuring the hydrogen content has been proposed (Japanese Patent Laid-Open No. 2007-171049). In this method, in order to shorten the analysis time, the petroleum hydrocarbon components contained in the soil are instantly vaporized and shortened. Minute in time Development of gasifier can be completed is essential.

なお、特開平5-126699には固体試料を加熱し、揮発性成分を吸着剤に捕集濃縮したものを、熱脱着により、試料を測定装置に導入する方法が開示され、特表2003-510558にはガスクロマトグラフィーの注入口部のライナーを自動的に交換する方法が開示されるが、これらは何れもガスクロマトグラフィーに関するものであり、先に特開2007-171049で提案した土壌中の石油系炭化水素成分含有量を測定する方法に使用することができない。   Japanese Patent Application Laid-Open No. 5-126699 discloses a method of heating a solid sample and collecting and concentrating a volatile component in an adsorbent and introducing the sample into a measuring device by thermal desorption. Discloses a method for automatically replacing the liner of the gas chromatography inlet, both of which relate to gas chromatography, and previously proposed petroleum oil in soil proposed in Japanese Patent Application Laid-Open No. 2007-171049. It cannot be used in a method for measuring the content of hydrocarbon-based hydrocarbon components.

そこで、本願発明者は先に上記方法に使用するための気化装置として図10に示すように、加熱炉2と、サンプルホルダー3と、加熱炉2内に装着されるサンプルホルダー装着部4とからなり、サンプルホルダー装着部4には上端に混合ガス導入路9と下端に開口部5を設け、更に反応管への連通路10を設け、一方サンプルホルダー3の内部には混合ガス導入路9に対応してサンプル室6の下方出口側には気化成分を含む混合ガスの排出路10aを形成した気化装置を提案した(特開2008-281412)。 Therefore, the inventor of the present application, as shown in FIG. 10 as a vaporizer for use in the above method, includes a heating furnace 2, a sample holder 3, and a sample holder mounting portion 4 mounted in the heating furnace 2. The sample holder mounting part 4 is provided with a mixed gas introduction path 9 at the upper end and an opening 5 at the lower end, and further provided with a communication path 10 to the reaction tube. Correspondingly, a vaporizer was proposed in which a mixed gas discharge passage 10a containing vaporized components was formed on the lower outlet side of the sample chamber 6 (Japanese Patent Laid-Open No. 2008-281412).

特開2003-294617JP2003-294617 特開2003-302316JP2003-302316 特開2007-171049JP2007-171049 特開平5-126699Japanese Patent Laid-Open No. 5-126699 特表2003-510558Special table 2003-510558 特開2008-281412JP2008-281412

石油汚染土壌の浄化に関する技術開発報告書 平成15年3月財団法人石油産業活性化センター発行Technical Development Report on Purification of Oil-Contaminated Soil Issued by the Oil Industry Revitalization Center in March 2003

図10の気化装置ではサンプルホルダー装着部4の上端より導入された混合ガスとサンプル室6に充填された土壌試料は加熱炉2により加熱され、これにより土壌試料中の石油系炭化水素は気化し、混合ガスに伴われて排出路10より反応管に送られ、燃焼され発生した二酸化炭素量を測定し、土壌中に含まれる該成分の含有量を測定するものであり、ガス加熱ラインで加熱された混合ガスとサンプル室6内に充填された土壌サンプルを直接接触させることができ、効果的に土壌試料中の油分を気化させることができる。     In the vaporizer shown in FIG. 10, the mixed gas introduced from the upper end of the sample holder mounting portion 4 and the soil sample filled in the sample chamber 6 are heated by the heating furnace 2, whereby the petroleum hydrocarbons in the soil sample are vaporized. The amount of carbon dioxide that is sent to the reaction tube 10 along with the mixed gas, sent to the reaction tube, and combusted and generated is measured, and the content of the component contained in the soil is measured and heated by the gas heating line. Thus, the mixed gas and the soil sample filled in the sample chamber 6 can be brought into direct contact with each other, and the oil content in the soil sample can be effectively vaporized.

しかし、上記方法に使用するための気化装置には、装置の小型化や熱効率を上げるための工夫が不可欠であるが、図10の気化装置ではサンプルホルダー3はサンプルホルダー装着部4の下端部に形成された開口部5より装着されるため、サンプルホルダー装着部4の下方に大きなスペースを必要とし、このため作業性が悪く、且つ装置が大型化し、構成材料も肉厚のものが使用され、その結果構成各部の熱効率が悪く、土壌試料中の炭化水素の気化に時間を要するという欠点がある。 However, in order to reduce the size of the apparatus and increase the thermal efficiency, it is indispensable for the vaporizing apparatus to be used in the above method. However, in the vaporizing apparatus of FIG. Since it is mounted from the formed opening 5, a large space is required below the sample holder mounting portion 4, so that workability is poor, the apparatus is enlarged, and the constituent material is thick, As a result, the thermal efficiency of each component is poor, and there is a drawback that it takes time to vaporize hydrocarbons in the soil sample.

そこで、本願発明は上記の土壌中に含まれる炭化水素成分の含有量を測定する方法において、装置の小型化や使用材料の薄膜化を可能にし、且つ簡易な測定作業を実現できる気化装置を開発することを目的とするものである。   Therefore, the present invention develops a vaporization apparatus that can reduce the size of the apparatus and reduce the thickness of the material used in the method for measuring the content of the hydrocarbon component contained in the soil, and can realize a simple measurement work. It is intended to do.

上記実情に鑑み、本願第1発明として炭化水素成分を含む土壌試料を気化装置のサンプル室内に充填し加熱処理して土壌中に含有される該成分を気化させると共に、上記サンプル室に酸素と窒素の混合ガスを導入し気化させた該成分を反応管に送り込んで燃焼させ、これにより発生した二酸化炭素量を測定し、該二酸化炭素量より土壌中に含まれる該成分の含有量を測定する方法に使用する気化装置であって、該気化装置は加熱炉と、サンプルホルダーと、上記加熱炉内に装着されるサンプルホルダー装着部とからなり、
該サンプルホルダー装着部には上端に上記サンプルホルダーを装着するための開口部を有し、一方サンプルホルダーの底部にはサンプル室を設け、サンプルホルダーの上端部には土壌試料の充填口を設け、該充填口には気密栓を設け、更にサンプルホルダーとサンプルホルダー装着部の側部には上記サンプル室の上方にそれぞれ混合ガスの導入路と反応管に連通する気化成分を含む混合ガスの排出路を形成した気化装置を提案するものである。
In view of the above situation, as a first invention of the present application, a soil sample containing a hydrocarbon component is filled in a sample chamber of a vaporizer and heat-treated to vaporize the component contained in the soil, and oxygen and nitrogen are contained in the sample chamber. A method of measuring the content of the component contained in the soil from the amount of carbon dioxide, by measuring the amount of carbon dioxide generated by sending the component vaporized by introducing the gas mixture into the reaction tube and burning it A vaporizer used for the heating, the vaporizer comprises a heating furnace, a sample holder, and a sample holder mounting portion mounted in the heating furnace,
The sample holder mounting portion has an opening for mounting the sample holder at the upper end, while a sample chamber is provided at the bottom of the sample holder, and a soil sample filling port is provided at the upper end of the sample holder, The filling port is provided with an airtight stopper, and further on the side of the sample holder and the sample holder mounting part, above the sample chamber, a mixed gas introduction path and a mixed gas discharge path containing vaporized components communicating with the reaction tube, respectively. The vaporizer which formed this is proposed.

本願第2発明として炭化水素成分を含む土壌試料を気化装置のサンプル室内に充填し加熱処理して土壌中に含有される該成分を気化させると共に、上記サンプル室に酸素と窒素の混合ガスを導入し気化された該成分を反応管に送り込んで燃焼させ、これにより発生した二酸化炭素量を測定し、該二酸化炭素量より土壌中に含まれる該成分の含有量を測定する方法に使用する気化装置であって、該気化装置は加熱炉と、サンプルホルダーと、上記加熱炉内に装着されるサンプルホルダー装着部とからなり、
該サンプルホルダー装着部には上端に上記サンプルホルダーを装着するための開口部と、下端に酸素と窒素の混合ガスの導入路を設け、その側部には上記気化成分を排出する排出路を設け、
上記サンプルホルダーには、その上端には土壌サンプルの充填口を設け、その内部にはサンプル室を設け、サンプル室の底部にはサンプルホルダー装着部に設けられた混合ガスの導入路に連通する混合ガスの導入路を設け、更にサンプル室の上部にあたるサンプルホルダーの側部にはサンプルホルダー装着部に設けられた気化成分の排出路に連通する排出口を設け、上記サンプルの充填口には気密栓を設けた気化装置を提案するものである。
As a second invention of the present application, a soil sample containing a hydrocarbon component is filled in a sample chamber of a vaporizer and heated to vaporize the component contained in the soil, and a mixed gas of oxygen and nitrogen is introduced into the sample chamber. The vaporized apparatus used in the method of sending the vaporized component to the reaction tube and burning it, measuring the amount of carbon dioxide generated thereby, and measuring the content of the component contained in the soil from the amount of carbon dioxide The vaporizer comprises a heating furnace, a sample holder, and a sample holder mounting portion mounted in the heating furnace.
The sample holder mounting part is provided with an opening for mounting the sample holder at the upper end, and an inlet for introducing a mixed gas of oxygen and nitrogen at the lower end, and a discharge path for discharging the vaporized component at the side. ,
The sample holder is provided with a soil sample filling port at its upper end, a sample chamber is provided in its interior, and a mixing gas communicating with a mixed gas introduction path provided in the sample holder mounting portion is provided at the bottom of the sample chamber. A gas introduction path is provided, and a side of the sample holder at the top of the sample chamber is provided with a discharge port communicating with a vaporization component discharge path provided in the sample holder mounting portion. The vaporization apparatus provided with is proposed.

則ち、本願第1発明と本願第2発明においてはサンプルホルダー装着部の上端に開口部を設け、これよりサンプルホルダーの装着を行うため、先の特許出願(特開2008-281412)のようにサンプルホルダー装着のためのスペースを設けることなく、したがって装置の小型化、使用材料の薄型化を図ることができる。 In other words, in the first and second inventions of the present application, an opening is provided at the upper end of the sample holder mounting part, and the sample holder is mounted from this, as in the previous patent application (Japanese Patent Laid-Open No. 2008-281412). Without providing a space for mounting the sample holder, the apparatus can be reduced in size and the material used can be reduced in thickness.

また、本願第1発明と第2発明においてはサンプルホルダーはサンプルホルダー装着部の上端部より装着されるために測定作業を簡易に行うことができる。 In the first and second inventions of the present application, since the sample holder is mounted from the upper end of the sample holder mounting portion, the measurement work can be easily performed.

このうち、本願第1発明においてはガス加熱ラインで加熱された混合ガスを土壌試料に直接接触させずに土壌試料中の炭化水素を気化させるため、中質油より低沸点の炭化水素については短時間に完全な気化を行うことができる等の利点ある。 Among these, in the first invention of the present application, hydrocarbons in the soil sample are vaporized without directly contacting the mixed gas heated in the gas heating line with the soil sample. There are advantages such as complete vaporization in time.

また、本願第1発明においてはサンプルホルダー側部における混合ガスの導入口と気化成分を含む混合ガスの排出口の高さを変えたり、或いは導入路の径よりも排出路の径を小さくすることによりサンプルホルダー内で混合ガスが程よく乱気流を起こすようにすれば土壌試料中の油分を効率よく気化させることができる等の利点もある。 In the first invention of the present application, the height of the mixed gas inlet and the mixed gas outlet including the vaporized component at the side of the sample holder is changed, or the diameter of the discharge path is made smaller than the diameter of the introduction path. Therefore, if the mixed gas moderately generates turbulence in the sample holder, the oil content in the soil sample can be efficiently vaporized.

なお、本願第1発明はサンプルホルダーとサンプルホルダー装着部の側部にそれぞれ形成された導入路と排出路より混合ガスの導入と気化成分を含む混合ガスを排出する構造であるため、サンプルホルダーと気密栓の間に気密リングを設け、気密栓を土壌試料の充填口に設ける際に、サンプルホルダーと気密栓との間を気密に保つことが好ましい。 Since the first invention of the present application is a structure for introducing the mixed gas and discharging the mixed gas containing the vaporized component from the introduction path and the discharge path respectively formed on the side of the sample holder and the sample holder mounting portion, It is preferable that an airtight ring is provided between the airtight plugs, and the airtight plug is kept airtight between the sample holder and the airtight plug when the airtight plug is provided at the filling port of the soil sample.

更に、サンプルホルダーとサンプルホルダー装着部との間に気密リングを設け、サンプルホルダーとサンプルホルダーの装着部壁面との気密性を保つことが好ましい。 Furthermore, it is preferable to provide an airtight ring between the sample holder and the sample holder mounting portion to maintain the airtightness between the sample holder and the wall surface of the mounting portion of the sample holder.

なお、気密リングはサンプルホルダー外周に嵌合溝を形成し、該嵌合溝には嵌合するようにすれば、サンプルホルダーを小型化して気密性を保持できる。 Note that if the airtight ring is formed with a fitting groove on the outer periphery of the sample holder and fitted in the fitting groove, the sample holder can be reduced in size and airtightness can be maintained.

一方、本願第1発明においてはガス加熱ラインで加熱された混合ガスを土壌試料に直接接触させずに土壌試料中の炭化水素を気化させるため、中質油より低沸点の炭化水素については短時間に完全な気化を行うことができるが、重質油等の炭化水素については気化効率が低下し、9割程度しか気化しないという実験結果を得ている。 On the other hand, in the first invention of the present application, hydrocarbons in the soil sample are vaporized without directly contacting the mixed gas heated in the gas heating line with the soil sample. However, for hydrocarbons such as heavy oil, the vaporization efficiency is reduced and only about 90% of the vapor is obtained.

そこで、本願第2発明は第1発明の改良として、土壌試料中に含まれる軽質留分から中重質留分まで幅広い炭化水素成分の短時間における完全気化を実現できるような気化装置を提供するものである。   Accordingly, the second invention of the present application provides, as an improvement of the first invention, a vaporizer capable of realizing complete vaporization of a wide range of hydrocarbon components from light fractions to medium heavy fractions contained in soil samples in a short time. It is.

則ち、本願第2発明においてはサンプル室に充填された土壌試料には、加熱ラインを通って混合ガス導入路より送り込まれた混合ガスが直接接触して土壌試料中に含まれる軽質留分から中重質留分まで幅広い炭化水素成分を短時間の中に完全に気化させることができるようにしてある。 In other words, in the second invention of the present application, the soil sample filled in the sample chamber is directly contacted with the mixed gas fed from the mixed gas introduction path through the heating line, and is mixed with the light fraction contained in the soil sample. A wide range of hydrocarbon components up to the heavy fraction can be completely vaporized in a short time.

なお、本願第2発明ではサンプル室に充填された土壌試料には、加熱ラインを通って混合ガス導入路より送り込まれた混合ガスが直接接触する構造を採用するため、サンプル室の底部に設けられた混合ガスの導入路とサンプル室の間にフィルターを設け、更にサンプル室上部にもフィルターを設けることにより、混合ガスの吹き上げ流によっても土壌試料が固定されることが好ましい。   In the second invention of the present application, the soil sample filled in the sample chamber employs a structure in which the mixed gas fed from the mixed gas introduction path through the heating line is in direct contact with the soil sample, so that it is provided at the bottom of the sample chamber. It is preferable that a soil sample is fixed by a blow-up flow of the mixed gas by providing a filter between the mixed gas introduction path and the sample chamber, and further providing a filter in the upper portion of the sample chamber.

また、本願第2発明ではサンプルホルダーとサンプルホルダー装着部の排出口より下部の内周壁面との間に気密リングを設け、サンプルホルダーとサンプルホルダー装着部の排出口より下部の内周壁面との気密性を保つ、これによりサンプルホルダー装着部に設けられた導入口から送られる混合ガスをサンプル室のみに導入してサンプル室内に充填された土壌試料とは確実に直接接触させ、土壌試料内の炭化水素を効率的に気化させることが好ましい。 In the second invention of the present application, an airtight ring is provided between the sample holder and the inner peripheral wall surface below the discharge port of the sample holder mounting part, and the inner peripheral wall surface below the discharge port of the sample holder and the sample holder mounting part. Maintains airtightness, so that the mixed gas sent from the inlet provided in the sample holder mounting part is introduced only into the sample chamber to ensure direct contact with the soil sample filled in the sample chamber. It is preferable to efficiently vaporize the hydrocarbon.

更に、本願第2発明ではサンプルの充填口と気密栓との間、サンプルホルダーとサンプルホルダー装着部上部内周壁面との間にそれぞれ気密リングを設け、これにより土壌試料から排出される気化成分は排出路を通ってのみ排出させることが好ましい。 Furthermore, in the second invention of the present application, an airtight ring is provided between the sample filling port and the airtight stopper, and between the sample holder and the upper inner peripheral wall surface of the sample holder mounting portion, whereby the vaporized component discharged from the soil sample is It is preferable to discharge only through the discharge path.

なお、サンプルホルダーとサンプルホルダー装着部の上部と下部に設けられる気密リングはサンプルホルダーの上部と下部の外周に嵌合溝を形成し、これに嵌合するようにすれば、サンプルホルダーを小型化して気密性を保持できる。 Note that the airtight rings provided at the upper and lower parts of the sample holder and the sample holder mounting part form fitting grooves on the outer periphery of the upper and lower parts of the sample holder. And airtightness can be maintained.

これまで土壌中に含まれる、主に石油系炭化水素成分の測定について説明したが、本願発明は石油系炭化水素の測定に限らず、これと同類の土壌中に含まれる炭化水素成分、例えばバイオエタノール、バイオブタノール、植物油のエステル化油、植物油水素化処理油、BTL(Biomass To Liquids)などのバイオマス燃料、石油系炭化水素とバイオマス燃料の混合物など、土地の使用履歴から汚染物質が推定できる場合、汚染物質の分子式、あるいは代表的な汚染物質の分子式を推測できるため、測定に適用できることは勿論である。 The measurement of mainly petroleum-based hydrocarbon components contained in soil has been described so far, but the present invention is not limited to the measurement of petroleum-based hydrocarbons, but hydrocarbon components contained in the same kind of soil, such as biotechnology When pollutants can be estimated from land use history such as ethanol, biobutanol, esterified oil of vegetable oil, vegetable oil hydrotreated oil, biomass fuel such as BTL (Biomass To Liquids), mixture of petroleum hydrocarbon and biomass fuel Of course, the molecular formula of the pollutant or the molecular formula of the representative pollutant can be estimated, and it can be applied to the measurement.

例えば、石油系炭化水素が完全燃焼する場合には、下記反応式(1)が適用でき、二酸化炭素の発生量により炭化水素成分の量を算出できる。例えば汚染油種が軽油、A重油などの中質油の場合は、m=1、n=1.8として式1を使えば炭化水素成分の量を算出できる。 For example, when petroleum hydrocarbons are completely burned, the following reaction formula (1) can be applied, and the amount of hydrocarbon components can be calculated from the amount of carbon dioxide generated. For example, when the contaminated oil type is medium oil such as light oil or heavy oil A, the amount of hydrocarbon components can be calculated by using Equation 1 with m = 1 and n = 1.8.

+ (m+n/4)O →mCO +n/2HO・・・・・(1) C m H n + (m + n / 4) O 2 → mCO 2 + n / 2H 2 O (1)

例えば、酸素を含んでいるバイオマス燃料の場合は、下記反応式(2)を同時に使用できる。履歴調査などにより主な汚染油種を推測し、これにm、n、kの値を特定し、式(2)を使用すれば炭化水素成分の量を算出できる。 For example, in the case of biomass fuel containing oxygen, the following reaction formula (2) can be used simultaneously. The amount of hydrocarbon components can be calculated by estimating main polluted oil species by history survey, specifying the values of m, n, and k, and using equation (2).

+ (m+n/4 − k/2)O →nCO +m/2HO・・・・・・(2) C m H n O k + ( m + n / 4 - k / 2) O 2 → nCO 2 + m / 2H 2 O ······ (2)

以上要するに、本願発明は炭化水素成分を含む土壌試料を気化装置のサンプル室内に充填し加熱処理して土壌中に含有される該成分を気化させると共に、上記サンプル室に酸素と窒素の混合ガスを導入し気化された該成分を反応管に送り込んで燃焼させ、これにより発生した二酸化炭素量を測定し、該二酸化炭素量より土壌中に含まれる該成分の含有量を測定する方法に使用する気化装置において、加熱炉と、サンプルホルダーと、上記加熱炉内に装着されるサンプルホルダー装着部とからなり、該サンプルホルダー装着部には上端にサンプルホルダーの装着のための開口部を設けることにより、充填された試料中の炭化水素の気化促進に必要な装置の小型化と使用材料の薄型化を図ることができ、同時に測定作業の簡易化を図ることができる。   In short, the present invention fills a soil sample containing a hydrocarbon component into the sample chamber of the vaporizer and heat-treats it to vaporize the component contained in the soil, and a mixed gas of oxygen and nitrogen into the sample chamber. Vaporization used in a method of measuring the amount of carbon dioxide generated by sending the vaporized component introduced into the reaction tube and burning it, and measuring the content of the component contained in the soil from the amount of carbon dioxide The apparatus comprises a heating furnace, a sample holder, and a sample holder mounting part mounted in the heating furnace, and the sample holder mounting part is provided with an opening for mounting the sample holder at the upper end. The equipment required for promoting the vaporization of hydrocarbons in the packed sample can be reduced in size and the materials used can be reduced, and at the same time the measurement work can be simplified. .

また、本願第1発明においてはガス加熱ラインで加熱された混合ガスを土壌試料に直接接触させずに土壌試料中の炭化水素を気化させるため、中質油より低沸点の炭化水素については短時間に完全な気化を行うことができる。 In the first invention of the present application, hydrocarbons in the soil sample are vaporized without directly contacting the mixed gas heated in the gas heating line with the soil sample. Full vaporization can be performed.

本願第2発明においてはサンプル室に充填された土壌試料には、加熱ラインを通って混合ガス導入路より送り込まれた混合ガスが直接接触して中質油より低沸点の炭化水素に限らず、土壌試料中に含まる軽質留分から中重質留分まで幅広い炭化水素成分を短時間の中に完全に気化させることができる。 In the second invention of the present application, the soil sample filled in the sample chamber is not limited to hydrocarbons having a boiling point lower than that of medium oil by directly contacting the mixed gas fed from the mixed gas introduction path through the heating line, A wide range of hydrocarbon components from light fractions to medium heavy fractions contained in soil samples can be completely vaporized in a short time.

本願第1発明に係る気化装置の分解状態を示す図The figure which shows the decomposition | disassembly state of the vaporization apparatus which concerns on this invention 1st invention 同上の気化装置を組み込んで構成される土壌中の炭化水素成分の含有量測定装置の説明図Explanatory drawing of the content measuring device of hydrocarbon components in the soil constructed by incorporating the above vaporizer 軽油添加量換算TPH(mg/kg)と本願第1発明に係る気化装置を用いた完全燃焼式によるTPH濃度(mg/kg)との関係を示す図Figure showing the relationship between TPH (mg / kg) in terms of diesel oil addition and TPH concentration (mg / kg) by the complete combustion method using the vaporizer according to the first invention of the present application 本願第2発明に係る気化装置の説明図Explanatory drawing of the vaporization apparatus which concerns on this invention 2nd invention. 本願第2発明に係わる気化装置を用い発生した二酸化炭素量を測定し、該二酸化炭素量より土壌中に含まれる該成分の含有量を測定する方法装置の説明図Explanatory drawing of the method apparatus which measures the carbon dioxide amount generated using the vaporization apparatus concerning this invention 2nd invention, and measures content of this component contained in soil from this carbon dioxide amount 本願第2発明に係わる気化装置に用いるサンプルホルダーの他の実施例を示す図The figure which shows the other Example of the sample holder used for the vaporization apparatus concerning this invention 2nd invention. 清浄土に軽油を添加して調製した模擬汚染土壌を使用して行われた本願第1発明による気化装置(図1)と本願第2発明による気化装置(図4)による気化性能比較実験結果を示す図Results of the vaporization performance comparison experiment using the vaporizer according to the first invention of the present application (FIG. 1) and the vaporizer according to the second invention of the present application (FIG. 4) performed using simulated contaminated soil prepared by adding light oil to clean soil. Illustration C重油含有実土壌を使用して行われた本願第1発明による気化装置(図1)と本願第2発明による気化装置(図4)による気化性能比較実験結果を示す図The figure which shows the vaporization performance comparison experiment result by the vaporizer by this invention 1 invention (FIG. 1) and the vaporizer by this invention 2 invention (FIG. 4) performed using C heavy oil containing real soil 清浄土に潤滑油を添加して調製された模擬汚染土壌を使用して行われた本願第1発明による気化装置(図1)と本願第2発明による気化装置(図4)による気化性能比較実験結果を示す図Vaporization performance comparison experiment using the vaporizer according to the first invention of the present invention (FIG. 1) and the vaporizer according to the second invention of the present invention (FIG. 4), which was performed using simulated contaminated soil prepared by adding lubricating oil to clean soil Figure showing the results 特開2008-281412に係る気化装置の説明図Explanatory drawing of the vaporizer according to JP2008-281412

加熱炉と、サンプルホルダーと、上記加熱炉内に装着されるサンプルホルダー装着部とからなり、該サンプルホルダー装着部には上端に上記サンプルホルダーを装着するための開口部と、下端に酸素と窒素の混合ガスの導入路を設け、その側部には上記気化成分を排出する排出路を設け、上記サンプルホルダーには、その上端には土壌試料の充填口を設け、その内部にはサンプル室を設け、サンプル室の底部にはサンプルホルダー装着部に設けられた混合ガスの導入路に連通する混合ガスの導入路を設け、更にサンプル室の上部に当たるサンプルホルダーの側部にはサンプルホルダー装着部に設けられた気化成分の排出路に連通する排出口を設け、上記サンプルの充填口には気密栓を設けた気化装置 It comprises a heating furnace, a sample holder, and a sample holder mounting part mounted in the heating furnace. The sample holder mounting part has an opening for mounting the sample holder at the upper end, and oxygen and nitrogen at the lower end. A mixed gas introduction path, a discharge path for discharging the vaporized component on the side, a soil sample filling port at the upper end of the sample holder, and a sample chamber inside the sample holder. Provided at the bottom of the sample chamber is a mixed gas introduction path that communicates with the mixed gas introduction path provided in the sample holder mounting section, and further on the side of the sample holder that contacts the top of the sample chamber. Vaporizing device provided with a discharge port communicating with the provided vaporization component discharge passage, and provided with an airtight plug at the sample filling port

以下、本願第1発明を図示の実施例に基づいて説明すると、図1はこの発明に係る気化装置で、気化装置1は加熱炉2とサンプルホルダー3と、加熱炉2の内部にあるサンプルホルダー3のサンプルホルダー装着部4が設けられ、サンプルホルダー装着部4の上端には開口部5が設けられる。   Hereinafter, the first invention of the present application will be described based on the illustrated embodiment. FIG. 1 is a vaporizer according to the present invention. The vaporizer 1 includes a heating furnace 2, a sample holder 3, and a sample holder inside the heating furnace 2. 3 is provided, and an opening 5 is provided at the upper end of the sample holder mounting part 4.

一方、サンプルホルダー3にはその底部にサンプル室6が設けられ、その上端部には土壌試料の充填口7が設けられ、土壌試料の充填口7は気密栓8で気密に保持できるようにしてある。   On the other hand, the sample holder 3 is provided with a sample chamber 6 at the bottom, and a soil sample filling port 7 is provided at the upper end of the sample holder 3 so that the soil sample filling port 7 can be held airtight by an airtight plug 8. is there.

また、サンプルホルダー3とサンプルホルダー装着部4の側部にはサンプル室6の上方にそれぞれ混合ガスの導入路9、導入口9aと反応管に連通する気化成分を含む混合ガスの排出路10、排出口10aが形成される。   Further, on the sides of the sample holder 3 and the sample holder mounting portion 4, a mixed gas introduction path 9 is provided above the sample chamber 6, and a mixed gas discharge path 10 containing a vaporized component communicating with the introduction port 9 a and the reaction tube, A discharge port 10a is formed.

なお、サンプルホルダー3の側部における混合ガスの導入口9a及びそれに連通するサンプルホルダー装着部4における混合ガス導入路9と気化成分を含む混合ガスの排出口10a及びそれに連通するサンプルホルダー装着部4における気化成分を含む混合ガス排出路10の高さを変え、更にサンプルホルダー装着部4の側部における混合ガス導入口9a及びそれに連通するサンプルホルダー装着部4における混合ガス導入路9の径よりも気化成分を含む混合ガスの排出口10a及びそれに連通するサンプルホルダー装着部4における気化成分を含む混合ガス排出路10の径を小さくすることによりサンプルホルダー内で混合ガスが程よく乱流を起こすようにしてある。   Note that the mixed gas inlet 9a in the side portion of the sample holder 3 and the mixed gas introduction path 9 in the sample holder mounting portion 4 communicating therewith and the mixed gas discharge port 10a containing the vaporized component and the sample holder mounting portion 4 communicating therewith. The height of the mixed gas discharge path 10 containing the vaporized component in the sample is changed, and the mixed gas inlet 9a in the side portion of the sample holder mounting portion 4 and the diameter of the mixed gas inlet path 9 in the sample holder mounting portion 4 communicating therewith are changed. By reducing the diameter of the mixed gas discharge port 10a containing the vaporized component and the diameter of the mixed gas discharge path 10 containing the vaporized component in the sample holder mounting portion 4 communicating therewith, the mixed gas causes moderate turbulence in the sample holder. It is.

また、サンプルホルダー3はサンプルホルダー装着部4の開口部5よりサンプルホルダー装着部4内に装着されるが、サンプルホルダー3の上部外周に気密リング11が設けられ、サンプルホルダー3とサンプルホルダー装着部4壁面との気密性を保つようにしてある。   The sample holder 3 is mounted in the sample holder mounting portion 4 through the opening 5 of the sample holder mounting portion 4, and an airtight ring 11 is provided on the outer periphery of the sample holder 3, so that the sample holder 3 and the sample holder mounting portion are provided. The airtightness with the four wall surfaces is maintained.

土壌試料は土壌試料の充填口7よりサンプル室6に充填され、充填後サンプルホルダー3の外周に形成された螺子溝12に気密栓8を螺着させて土壌試料の充填口7を施栓するが、上端外周に気密リング13が設けられ、サンプルホルダー3と気密栓8壁面との気密性を保つようにしてある。   The soil sample is filled into the sample chamber 6 through the soil sample filling port 7, and after the filling, the hermetic plug 8 is screwed into the screw groove 12 formed on the outer periphery of the sample holder 3 to plug the soil sample filling port 7. An airtight ring 13 is provided on the outer periphery of the upper end so as to keep the airtightness between the sample holder 3 and the wall surface of the airtight stopper 8.

以上のような、気化装置1は混合ガスの導入路9をガスライン14に接続し、更に気化成分を含む混合ガスの排出路10を、燃焼触媒を充填した反応管15に接続することにより土壌中の炭化水素成分の含有量測定装置に組み込むことができる。(図2)   As described above, the vaporizer 1 connects the mixed gas introduction path 9 to the gas line 14 and further connects the mixed gas discharge path 10 containing the vaporized component to the reaction tube 15 filled with the combustion catalyst. It can be incorporated into a content measuring device for hydrocarbon components therein. (Figure 2)

この測定装置を用いて土壌中の炭化水素成分の含有量を測定するに際しては加熱炉2の内部に設けられたサンプルホルダー装着部4とサンプルホルダー3を切り離して加熱炉2は所定温度150℃〜350℃程度、好ましくは、250℃〜350℃程度、より好ましくは、280℃〜320℃程度に加熱し、サンプルホルダー3のサンプル室6には所定量の土壌試料を充填する。   When measuring the content of hydrocarbon components in the soil using this measuring apparatus, the sample holder mounting part 4 and the sample holder 3 provided inside the heating furnace 2 are separated, and the heating furnace 2 has a predetermined temperature of 150 ° C. to The sample chamber 6 of the sample holder 3 is filled with a predetermined amount of soil sample by heating to about 350 ° C., preferably about 250 ° C. to 350 ° C., more preferably about 280 ° C. to 320 ° C.

次に、加熱炉2の内部に設けられたサンプルホルダー装着部4内にサンプルホルダー3を装着すると、サンプル室6内に装着された土壌試料中に含まれる炭化水素成分は直ちに気化される。   Next, when the sample holder 3 is mounted in the sample holder mounting portion 4 provided inside the heating furnace 2, the hydrocarbon component contained in the soil sample mounted in the sample chamber 6 is immediately vaporized.

これと同時に、ガスライン14より混合ガスを加熱炉2内に設けられたサンプルホルダー装着部4の中へ導入すると、上述の気化成分は混合ガスに伴われてサンプル室6から排出される。   At the same time, when the mixed gas is introduced from the gas line 14 into the sample holder mounting portion 4 provided in the heating furnace 2, the vaporized component is discharged from the sample chamber 6 along with the mixed gas.

サンプル室6から排出された気化成分を含む混合ガスは排出路10を通って例えばPt0.3wt%-アルミナ担持触媒で構成される燃焼触媒を充填した反応管15に送り込んで燃焼させ、これにより発生した二酸化炭素量を測定し、該二酸化炭素量より土壌中に含まれる該成分の含有量を測定するものである。   The mixed gas containing vaporized components discharged from the sample chamber 6 is sent through a discharge passage 10 to a reaction tube 15 filled with a combustion catalyst composed of, for example, Pt 0.3 wt% -alumina-supported catalyst, and burned. The measured carbon dioxide amount is measured, and the content of the component contained in the soil is measured from the carbon dioxide amount.

次に、この発明に係る気化装置を用いた気化実験例を示す。
気化実験例1
清浄土壌に軽油を添加して模擬汚染土壌を調製した。この土壌を本願第1発明に係る気化装置を用いて完全燃焼式による石油系炭化水素測定を行い、模擬汚染土壌との石油系炭化水素濃度の相関から本願気化装置の性能を評価した。二酸化炭素からの換算には下記反応式(1)を用い、この場合m=1、n=1.8とした。この実施例において二酸化炭素測定は、ガステック社製二酸化炭素用検知管を用いて測定した。
Next, a vaporization experiment example using the vaporizer according to the present invention will be described.
Vaporization experiment example 1
Simulated contaminated soil was prepared by adding light oil to clean soil. This soil was subjected to petroleum combustion measurement by a complete combustion type using the vaporizer according to the first invention of the present application, and the performance of the vaporizer of the present application was evaluated from the correlation of the petroleum hydrocarbon concentration with the simulated contaminated soil. The following reaction formula (1) was used for conversion from carbon dioxide, and in this case, m = 1 and n = 1.8. In this example, carbon dioxide was measured using a detector tube for carbon dioxide manufactured by Gastec.

+(m+n/4)O→mCO+n/2HO・・・・・(1) C m H n + (m + n / 4) O 2 → mCO 2 + n / 2H 2 O (1)

結果、軽油の添加量から計算した石油系炭化水素濃度(TPH濃度)と完全燃焼式による石油系炭化水素濃度がほぼ一致して高い相関が得られた(図3参照)。   As a result, the petroleum hydrocarbon concentration (TPH concentration) calculated from the added amount of light oil almost coincided with the petroleum hydrocarbon concentration by the complete combustion formula, and a high correlation was obtained (see FIG. 3).

このことから、土壌試料中の炭化水素は本願に係る気化装置を用いることにより完全に気化され、更に完全に燃焼したものと考えられる。したがって、土壌中の炭化水素の完全気化が本願に係る気化装置により可能であることが証明された。   From this, it is considered that the hydrocarbon in the soil sample was completely vaporized by using the vaporizer according to the present application, and further completely burned. Therefore, it was proved that the complete vaporization of hydrocarbons in the soil is possible with the vaporizer according to the present application.

以下、本願第2発明を図4の実施例に基づいて詳細に説明すると、1はこの発明に係る気化装置で、気化装置1は加熱炉2とサンプルホルダー3と、加熱炉2の内部にあるサンプルホルダー3のサンプルホルダー装着部4が設けられる。   Hereinafter, the second invention of the present application will be described in detail based on the embodiment of FIG. 4, wherein 1 is a vaporizer according to the present invention, and the vaporizer 1 is inside the heating furnace 2, the sample holder 3, and the heating furnace 2. A sample holder mounting portion 4 of the sample holder 3 is provided.

サンプルホルダー装着部4の上端にはサンプルホルダー3を装着するための開口部5が設けられ、下端には酸素と窒素の混合ガスの導入路9が設けられ、その側部には上記気化成分を排出する排出路10が設けられる。 An opening 5 for mounting the sample holder 3 is provided at the upper end of the sample holder mounting portion 4, and an introduction path 9 for a mixed gas of oxygen and nitrogen is provided at the lower end. A discharge path 10 for discharging is provided.

サンプルホルダー3には、その上端には土壌試料の充填口7を設け、その内部にはサンプル室6を設け、サンプル室6の底部にはサンプルホルダー装着部4に設けられた混合ガスの導入路9に連通する混合ガスの導入口9aが設けられ、更にサンプル室6の上部にあたるサンプルホルダー3の側部にはサンプルホルダー装着部4に設けられた気化成分の排出路10に連通する排出口10aが設けられる。   The sample holder 3 is provided with a soil sample filling port 7 at its upper end, a sample chamber 6 is provided therein, and a mixed gas introduction path provided in the sample holder mounting portion 4 is provided at the bottom of the sample chamber 6. 9 is provided with a mixed gas inlet 9a that communicates with the gas chamber 9, and a discharge port 10a that communicates with the vaporization component discharge passage 10 provided in the sample holder mounting portion 4 at the side of the sample holder 3 that is the upper portion of the sample chamber 6. Is provided.

一方、土壌試料の充填口7には気密栓8が設けられ、更に土壌サンプルは充填口7より挿入してサンプル室6に充填されるが、サンプル室6の底部に設けられた混合ガスの導入口9aとサンプル室6の間にフィルター16aが設けられ、サンプル室6の上部にはフィルター16bが設けられ、土壌試料が固定されるようにしてある。 On the other hand, an airtight stopper 8 is provided at the soil sample filling port 7, and the soil sample is further inserted into the sample chamber 6 through the filling port 7, but the mixed gas provided at the bottom of the sample chamber 6 is introduced. A filter 16a is provided between the mouth 9a and the sample chamber 6, and a filter 16b is provided in the upper portion of the sample chamber 6 so that the soil sample is fixed.

また、サンプルホルダー3は開口部5よりサンプルホルダー装着部4内に装着されるが、サンプルホルダー3の排出口10aより下部の外周には気密リング17が設けられ、サンプルホルダー3とサンプルホルダー装着部4の排出口より下部の内周壁面との気密性を保つようにしてある。   The sample holder 3 is mounted in the sample holder mounting portion 4 through the opening 5, but an airtight ring 17 is provided on the outer periphery below the discharge port 10 a of the sample holder 3, so that the sample holder 3 and the sample holder mounting portion are provided. The airtightness with the inner peripheral wall surface below the discharge port 4 is maintained.

これにより、導入路9から送られる混合ガスは導入口9aからのみサンプル室6に導入されるため、サンプル室6内に充填された土壌試料とは確実に直接接触させられるので、土壌試料内の炭化水素を効率的に気化させることができる。 Thereby, since the mixed gas sent from the introduction path 9 is introduced into the sample chamber 6 only from the introduction port 9a, it is surely brought into direct contact with the soil sample filled in the sample chamber 6, so Hydrocarbons can be efficiently vaporized.

一方、サンプルホルダー3の充填口外周に気密リング13が設けられ、気密栓8を施栓する際の充填口7の気密性を保つ、且つサンプルホルダー3の上部外周には気密リング11が設けられ、サンプルホルダー3を装着部4に装着する際のサンプルホルダー3とサンプルホルダー装着部4上部内周壁面との気密性を保つようにしてあり、このため土壌試料から排出される気化成分は排出路10、10aからのみ反応管に送られる。   On the other hand, an airtight ring 13 is provided on the outer periphery of the filling port of the sample holder 3 to maintain the airtightness of the filling port 7 when the airtight stopper 8 is plugged, and an airtight ring 11 is provided on the outer periphery of the upper portion of the sample holder 3. The airtightness between the sample holder 3 and the upper inner wall surface of the sample holder mounting portion 4 when the sample holder 3 is mounted on the mounting portion 4 is maintained. Therefore, the vaporized component discharged from the soil sample is discharged from the discharge path 10. 10a is sent to the reaction tube only.

なお、サンプルホルダー3は図6に示すように、サンプルホルダー3の上部外周と下部外周に嵌合溝18と19を形成し、これに気密リング11と17を嵌め込むようにすれば、サンプルホルダー3を小型化して気密性を保つことができる。 As shown in FIG. 6, the sample holder 3 is formed by forming fitting grooves 18 and 19 on the upper outer periphery and the lower outer periphery of the sample holder 3, and fitting the airtight rings 11 and 17 in the grooves. 3 can be miniaturized to maintain hermeticity.

以上のような、気化装置1は混合ガスの導入路9をガスライン14に接続し、更に気化成分を含む混合ガスの排出路10を、燃焼触媒を充填した反応管15に接続することにより土壌中の炭化水素成分の含有量測定装置に組み込むことができる。 As described above, the vaporizer 1 connects the mixed gas introduction path 9 to the gas line 14 and further connects the mixed gas discharge path 10 containing the vaporized component to the reaction tube 15 filled with the combustion catalyst. It can be incorporated into a content measuring device for hydrocarbon components therein.

この測定装置を用いて土壌中の炭化水素成分の含有量を測定するに際しては加熱炉2の内部に設けられたサンプルホルダー装着部4とサンプルホルダー3を切り離して加熱炉2は所定温度150℃〜350℃程度、好ましくは250℃〜350℃程度、より好ましくは280℃〜320℃程度に加熱し、サンプルホルダー3のサンプル室6には所定量の土壌試料を充填する。 When measuring the content of hydrocarbon components in the soil using this measuring apparatus, the sample holder mounting part 4 and the sample holder 3 provided inside the heating furnace 2 are separated, and the heating furnace 2 has a predetermined temperature of 150 ° C. to Heat to about 350 ° C., preferably about 250 ° C. to 350 ° C., more preferably about 280 ° C. to 320 ° C., and the sample chamber 6 of the sample holder 3 is filled with a predetermined amount of soil sample.

次に、加熱炉2の内部に設けられたサンプルホルダー装着部4内にサンプルホルダー3を装着し、これと同時にガス加熱ライン14と混合ガス導入路9、9aより混合ガスを導入すると、混合ガスは、サンプル室6に充填された土壌試料と直接接触するので、土壌試料中に含まれる重質油等の炭化水素成分が直ちに気化される。   Next, when the sample holder 3 is mounted in the sample holder mounting portion 4 provided inside the heating furnace 2, and simultaneously with this, the mixed gas is introduced from the gas heating line 14 and the mixed gas introduction paths 9, 9a, the mixed gas Since it is in direct contact with the soil sample filled in the sample chamber 6, hydrocarbon components such as heavy oil contained in the soil sample are immediately vaporized.

サンプル室6から排出された気化成分を含む混合ガスは排出路10、10aを通って例えばPt 0.3wt%-アルミナ担持触媒で構成される燃焼触媒を充填した反応管15に送り込んで燃焼させ、これより発生した二酸化炭素量を測定し、該二酸化炭素量より土壌中に含まれる該成分の含有量を測定するものである。 The mixed gas containing the vaporized component discharged from the sample chamber 6 passes through the discharge passages 10 and 10a and is sent to the reaction tube 15 filled with a combustion catalyst composed of, for example, Pt 0.3 wt% -alumina-supported catalyst for combustion. The amount of carbon dioxide generated is measured, and the content of the component contained in the soil is measured from the amount of carbon dioxide.

気化器性能比較実験例1
清浄土に軽油を添加して模擬汚染土壌を調製した。前記記載の土壌を約1gを、本願第1発明による気化装置(図1)を用いた油分測定装置と、本願第2発明による気化装置(図4)を用いた土壌中油分の完全燃焼式による油分測定装置を使用して、土壌中の炭化水素成分の含有量(TPH測定濃度)測定を行い、それらの値を、平成15年3月財団法人石油産業活性化センター発行 石油汚染土壌の浄化に関する技術開発報告書記載の二硫化炭素抽出−GC法と比較し、それぞれの気化器の性能を評価した結果を図7に示す。
Vaporizer performance comparison experiment example 1
Simulated contaminated soil was prepared by adding light oil to clean soil. About 1 g of the soil described above is based on an oil content measuring device using the vaporizer according to the first invention of the present application (FIG. 1) and a complete combustion type of oil in soil using the vaporizer according to the second invention of the present application (FIG. 4). Using oil content measuring equipment, measure the content of hydrocarbon components in soil (TPH measured concentration), and issue these values for the purification of oil-contaminated soil issued by the Japan Petroleum Industry Activation Center in March 2003. FIG. 7 shows the results of evaluating the performance of each vaporizer in comparison with the carbon disulfide extraction-GC method described in the technical development report.

図7の結果は、本願第1発明による気化装置(図1)と本願第2発明による気化装置(図4)を用いた土壌中油分の完全燃焼式による油分測定装置を使用してTPH濃度測定で得られた値を前記記載の二硫化炭素抽出−GC法の測定によって得られた値で割ったものであり、前記記載の土壌中の油分を完全燃焼させ、発生した二酸化炭素量から油分測定する方法において、(1)は本願第1発明による気化装置(図1)を使用したもの、(2)は本願第2発明による気化装置(図4)を使用したものを示し、図の値が1.0に近いほど測定精度が高いことになる。 The result of FIG. 7 shows that the TPH concentration was measured using a complete combustion type oil content measuring device using the vaporizer according to the first invention of the present application (FIG. 1) and the vaporizer according to the second invention of the present application (FIG. 4). Divided by the value obtained by the carbon disulfide extraction-GC method described above, and the oil content in the soil is completely burned, and the oil content is measured from the amount of generated carbon dioxide. In this method, (1) shows the one using the vaporizer according to the first invention of the present application (FIG. 1), (2) shows the one using the vaporizer according to the second invention of the present application (FIG. 4), and the value of the figure is The closer to 1.0, the higher the measurement accuracy.

この結果、軽油模擬汚染土壌では、本願第1発明による気化装置(図1)を用いた場合、本願第2発明による気化装置(図4)を用いた場合、前記記載の二硫化炭素抽出−GC法の測定を比較し、何れも1.0程度となっている。これは、中質油までは前記記載の土壌中の油分を完全燃焼させ、発生した二酸化炭素量から油分測定する方法において、気化器の性能に差が無く、何れも真値に近い測定が可能であることが分かる。 As a result, in the light oil simulated contaminated soil, when the vaporizer according to the first invention of the present application (FIG. 1) is used, when the vaporizer according to the second invention of the present application (FIG. 4) is used, the above-described carbon disulfide extraction-GC Comparing the measurement of the method, both are about 1.0. This is because there is no difference in the performance of the vaporizer in the method of measuring the oil content from the amount of carbon dioxide generated by completely burning the oil content in the soil as described above until medium oil, and it is possible to measure almost all of them It turns out that it is.

気化器性能比較実験例2
C重油含有実土壌約1g供した土壌試料を、本願第1発明による気化装置(図1)を用いた油分測定装置と、本願第2発明による気化装置(図4)を用いた土壌中油分の完全燃焼式による油分測定装置を使用して、土壌中の炭化水素成分の含有量(TPH測定濃度)測定を行い、それらの値を、平成15年3月財団法人石油産業活性化センター発行 石油汚染土壌の浄化に関する技術開発報告書記載の二硫化炭素抽出−GC法と比較し、それぞれの気化器の性能を評価した結果を図8に示す。
Vaporizer performance comparison example 2
About 1 g of C heavy oil-containing real soil, the oil content measuring device using the vaporizer (Fig. 1) according to the first invention of the present application and the oil content in the soil using the vaporizer (Fig. 4) of the second invention of the present application. Using a complete combustion type oil content measuring device, measure the content of hydrocarbon components in soil (TPH measured concentration), and issue these values to the Oil Industry Activation Center in March 2003. Oil pollution FIG. 8 shows the results of evaluating the performance of each vaporizer in comparison with the carbon disulfide extraction-GC method described in the technical development report on soil purification.

図8の結果は、前記気化器性能比較実験例1と同様な値であり、記載の土壌中の油分を完全燃焼させ、発生した二酸化炭素量から油分測定する方法において、本願第1発明による気化装置(図1)と本願第2発明による気化装置(図4)を用いた土壌中油分の完全燃焼式による油分測定装置を使用してTPH濃度測定で得られた値を、前記記載の二硫化炭素抽出−GC法の測定によって得られた値で割ったものであり、(1)は前記記載の土壌中の油分を完全燃焼させ、発生した二酸化炭素量から油分測定する方法において、本願第1発明による気化装置(図1)を使用したもの、(2)は本願第2発明による気化装置(図4)を使用したものを示すものである。 The results of FIG. 8 are the same values as those of the vaporizer performance comparison experimental example 1, and the vaporization according to the first invention of the present application is performed in the described method for completely burning the oil in the soil and measuring the oil from the amount of generated carbon dioxide. The value obtained by measuring the TPH concentration using the oil content measuring device based on the complete combustion type of oil content in the soil using the device (FIG. 1) and the vaporization device according to the second invention of the present application (FIG. 4) (1) is a method in which the oil content in the soil is completely burned and the oil content is measured from the amount of generated carbon dioxide. The apparatus using the vaporizer according to the invention (FIG. 1), (2) shows the apparatus using the vaporizer according to the second invention of the present application (FIG. 4).

なお、前記記載の二硫化炭素抽出−GC法は、n−C44成分までを測定対象とし、n−C44成分以上を含む高沸点の炭化水素は、実際の添加量より少ない値として測定される。 In addition, the carbon disulfide extraction-GC method described above measures up to the n-C44 component, and high boiling point hydrocarbons containing the n-C44 component or more are measured as a value smaller than the actual addition amount.

図8より明らかなように、本願第1発明による気化装置を用いた場合0.80程度であったが、本願第2発明による気化装置を用いた場合1.4程度なっている。 As is apparent from FIG. 8, when the vaporizer according to the first invention of the present application is used, it is about 0.80, but when the vaporizer according to the second invention of the present application is used, it is about 1.4.

このことからC重油のようにn−C44成分以上を含む高沸点の炭化水素では、本願第1発明による気化装置では、気化が完全に起らず、結果的に得られたTPH濃度は、前記記載の二硫化炭素抽出−GC法よりも低い値となった。それとは逆に本願第2発明による気化装置を用いた場合、n−C44成分以上の高沸点の炭化水素を気化させることが可能であり、結果的に前記記載の二硫化炭素抽出−GC法では得られないn−C44相当留分以上の留分もあわせた値が得られ、前記記載の二硫化炭素抽出−GC法より高い値が得られた。 Therefore, in the high boiling point hydrocarbon containing n-C44 component or more like C heavy oil, the vaporization apparatus according to the first invention of the present application does not completely vaporize, and the resulting TPH concentration is The value was lower than the carbon disulfide extraction-GC method described. On the contrary, when the vaporizer according to the second invention of the present application is used, it is possible to vaporize hydrocarbons having a high boiling point higher than the n-C44 component, and as a result, the carbon disulfide extraction-GC method described above is used. A value was also obtained for fractions of n-C44 equivalent fraction or more that could not be obtained, and a value higher than that of the carbon disulfide extraction-GC method described above was obtained.

したがって、本願第2発明を用いることにより、高沸点の炭化水素も高い気化効率が得られることが証明され、また土壌中の油分を完全燃焼させ、発生した二酸化炭素量から油分測定する方法は前記硫化炭素抽出−GC法では、測定することの出来ない高沸点の炭化水素まで測定することが可能となることが分かった。 Therefore, by using the second invention of the present application, it is proved that high boiling point hydrocarbons can also have high vaporization efficiency, and the method for measuring oil content from the amount of generated carbon dioxide by completely burning oil content in soil is described above. It was found that the high-boiling hydrocarbons that cannot be measured can be measured by the carbon sulfide extraction-GC method.

気化器性能比較実験例3
清浄土に潤滑油を添加して模擬汚染土壌を調製した土壌を約1gを、本願第1発明による気化装置(図1)を用いた土壌中油分の完全燃焼式による油分測定装置と、本願第2発明による気化装置(図4)を用いた土壌中油分の完全燃焼式による油分測定装置を使用して、土壌中の炭化水素成分の含有量(TPH測定濃度)測定を行い、それらの値を、平成15年3月財団法人石油産業活性化センター発行 石油汚染土壌の浄化に関する技術開発報告書記載の二硫化炭素抽出−GC法と比較し、それぞれの気化器の性能を評価した結果を図9に示す。
Vaporizer performance comparison example 3
About 1 g of soil prepared by adding lubricating oil to clean soil to prepare a simulated contaminated soil, a device for measuring oil content in a complete combustion type of oil in soil using the vaporizer (Fig. 1) according to the first invention of the present application, 2 Using a device for measuring oil content in the soil (TPH measured concentration) using a complete combustion type oil content measuring device using the vaporizer according to the invention (Fig. 4), and measuring these values , Issued by the Petroleum Industry Activation Center in March 2003. Figure 9 shows the results of evaluating the performance of each vaporizer compared to the carbon disulfide extraction-GC method described in the technical development report on purification of oil-contaminated soil. Shown in

図9の結果は、前記気化器性能比較実験例1と同様な値であり、(1)は前記記載の土壌中の油分を完全燃焼させ、発生した二酸化炭素量から油分測定する方法において、本願第1発明による気化装置(図1)使用したもの、(2)は本願第2発明による気化装置(図4)したものを示し、図の値が1.0に近いほど測定精度が高いことになる。 The results of FIG. 9 are the same values as in the vaporizer performance comparison experimental example 1, and (1) is a method for measuring the oil content from the amount of generated carbon dioxide by completely burning the oil content in the soil as described above. The vaporizer according to the first invention (FIG. 1) is used, and (2) shows the vaporizer according to the second invention of the present application (FIG. 4). The closer the value of the figure is to 1.0, the higher the measurement accuracy.

図9に示したように、この結果、潤滑油模擬汚染土壌では、本願第1発明による気化装置(図1)を用いた場合、本願第2発明による気化装置(図4)を用いた場合、前記記載の二硫化炭素抽出−GC法の測定とを比較し、何れも1.0程度となっていることから、中質油までは前記記載の土壌中の油分を完全燃焼させ、発生した二酸化炭素量から油分測定する方法において、気化器の性能に差が無く、何れも真値に近い測定が可能であることが分かる。則ち、潤滑油については本願第1、第2発明による気化装置何れを用いても高い気化効率が得られることが証明された。 As shown in FIG. 9, as a result, in the lubricating oil simulated contaminated soil, when using the vaporizer according to the first invention of the present application (FIG. 1), when using the vaporizer according to the second invention of the present application (FIG. 4), Compared to the carbon disulfide extraction-GC method measurement described above, both are about 1.0, so the oil content in the soil described above is completely burned up to medium oil, and the amount of carbon dioxide generated From the above, it can be seen that there is no difference in the performance of the vaporizer in the method of measuring the oil content, and all of them can be measured close to true values. In other words, it has been proved that high vaporization efficiency can be obtained for the lubricating oil by using any of the vaporizers according to the first and second inventions of the present application.

以上要するに、本発明によれば炭化水素成分を含む土壌試料を気化装置のサンプル室内に充填し加熱処理して土壌中に含有される該成分を気化させると共に、上記サンプル室に酸素と窒素の混合ガスを導入し気化された該成分を反応管に送り込んで燃焼させ、これにより発生した二酸化炭素量を測定し、該二酸化炭素量より土壌中に含まれる該成分の含有量を測定する方法に使用する気化装置であって、該気化装置は加熱炉と、サンプルホルダーと、上記加熱炉内に装着されるサンプルホルダー装着部とからなり、該サンプルホルダー装着部には上端に上記サンプルホルダーを装着するための開口部と、下端に酸素と窒素の混合ガスの導入路を設け、その側部には上記気化成分を排出する排出路を設け、上記サンプルホルダーには、その上端には土壌試料の充填口を設け、その内部にはサンプル室を設け、サンプル室の底部にはサンプルホルダー装着部に設けられた混合ガスの導入路に連通する混合ガスの導入路を設け、更にサンプル室の上部に当たるサンプルホルダーの側部にはサンプルホルダー装着部に設けられた気化成分の排出路に連通する排出口を設け、上記土壌試料の充填口には気密栓を設けることにより、装置の小型化や使用材料の薄型化、且つ簡易な測定作業を可能にするとともに、土壌試料中に含まれる軽質留分から中重質留分まで幅広い炭化水素成分の短時間における完全気化を実現できる。   In short, according to the present invention, a soil sample containing a hydrocarbon component is filled in the sample chamber of the vaporizer and heat-treated to vaporize the component contained in the soil, and the sample chamber is mixed with oxygen and nitrogen. Introduce gas and vaporize the component into the reaction tube to burn, measure the amount of carbon dioxide generated by this, and use it in the method of measuring the content of the component contained in the soil from the amount of carbon dioxide The vaporizer comprises a heating furnace, a sample holder, and a sample holder mounting portion mounted in the heating furnace, and the sample holder is mounted on the upper end of the sample holder mounting portion. An opening for introducing a mixed gas of oxygen and nitrogen at the lower end, a discharge passage for discharging the vaporized component at the side, and an upper end of the sample holder. Provides a sample sample filling port, a sample chamber inside, a sample gas chamber at the bottom of the sample chamber, and a gas mixture introduction channel communicating with the gas mixture introduction channel provided at the sample holder mounting part. The side of the sample holder that hits the upper part of the chamber is provided with a discharge port communicating with the vaporization component discharge path provided in the sample holder mounting portion, and an airtight plug is provided at the soil sample filling port, thereby reducing the size of the apparatus. And thinning of the materials used and simple measurement work are possible, and complete vaporization of a wide range of hydrocarbon components from light fractions to medium heavy fractions contained in soil samples can be realized in a short time.

1は気化装置
2は加熱炉
3はサンプルホルダー
4はサンプルホルダー装着部
5は開口部
6はサンプル室
7は充填口
8は気密栓
9は混合ガスの導入路
9aは混合ガスの導入口
10は気化成分を含む混合ガスの排出路
10aは気化成分を含む混合ガスの排出口
11,13,17は気密リング
12は螺子溝
14はガスライン
15は反応管
16a,16bはフィルター
18,19は嵌合溝
1 is a vaporizer 2 a heating furnace 3 a sample holder 4 a sample holder mounting portion 5 an opening 6 a sample chamber 7 a filling port 8 an airtight plug 9 a mixed gas introduction path 9 a is a mixed gas introduction port 10 A mixed gas discharge passage 10a containing a vaporized component is provided with gas mixture outlets 11, 13, 17 containing a vaporized component, an airtight ring 12, a screw groove 14, a gas line 15 and a reaction tube 16a, and 16b fitted with filters 18 and 19. Groove

Claims (15)

炭化水素成分を含む土壌試料を気化装置のサンプル室内に充填し加熱処理して土壌中に含有される該成分を気化させると共に、上記サンプル室に酸素と窒素の混合ガスを導入し気化させた該成分を反応管に送り込んで燃焼させ、これにより発生した二酸化炭素量を測定し、該二酸化炭素量より土壌中に含まれる該成分の含有量を測定する方法に使用する気化装置であって、該気化装置は加熱炉と、サンプルホルダーと、上記加熱炉内に装着されるサンプルホルダー装着部とからなり、
該サンプルホルダー装着部には上端に上記サンプルホルダーを装着するための開口部を有し、一方サンプルホルダーの底部にはサンプル室を設け、サンプルホルダーの上端部には土壌試料の充填口を設け、該充填口には気密栓を設け、更にサンプルホルダーとサンプルホルダー装着部の側部には上記サンプル室の上方にそれぞれ混合ガスの導入路と反応管に連通する気化成分を含む混合ガスの排出路を形成したことを特徴とする気化装置。
A soil sample containing a hydrocarbon component is filled in a sample chamber of a vaporizer and heat-treated to vaporize the component contained in the soil, and the mixed gas of oxygen and nitrogen is vaporized by introducing the mixed gas into the sample chamber. A vaporizer used in a method of sending a component into a reaction tube and burning it, measuring the amount of carbon dioxide generated thereby, and measuring the content of the component contained in soil from the amount of carbon dioxide, The vaporizer comprises a heating furnace, a sample holder, and a sample holder mounting part mounted in the heating furnace,
The sample holder mounting portion has an opening for mounting the sample holder at the upper end, while a sample chamber is provided at the bottom of the sample holder, and a soil sample filling port is provided at the upper end of the sample holder, The filling port is provided with an airtight stopper, and further on the side of the sample holder and the sample holder mounting part, above the sample chamber, a mixed gas introduction path and a mixed gas discharge path containing vaporized components communicating with the reaction tube, respectively. A vaporizing device characterized by forming
サンプルホルダー側部における混合ガスの導入口と気化成分を含む混合ガスの排出口の高さを変えることによりサンプルホルダー内で混合ガスの乱気流を起こすようにした請求項1記載の気化装置。 The vaporizer according to claim 1, wherein a turbulent flow of the mixed gas is generated in the sample holder by changing a height of the mixed gas introduction port and a mixed gas discharge port including a vaporized component at a side portion of the sample holder. 導入路の径よりも排出路の径を小さくすることによりサンプルホルダー内で混合ガスの乱気流を起こすようにした請求項1記載の気化装置。 2. The vaporizer according to claim 1, wherein a turbulent flow of the mixed gas is caused in the sample holder by making the diameter of the discharge path smaller than the diameter of the introduction path. サンプルホルダーと気密栓の間に気密リングを設けた請求項1記載の気化装置。 The vaporizer according to claim 1, wherein an airtight ring is provided between the sample holder and the airtight stopper. サンプルホルダーとサンプルホルダー装着部との間に気密リングを設けた請求項1記載の気化装置。 The vaporizer according to claim 1, wherein an airtight ring is provided between the sample holder and the sample holder mounting portion. サンプルホルダー外周に嵌合溝を形成し、該嵌合溝には気密リングを嵌合する請求項5記載の気化装置。 6. The vaporizer according to claim 5, wherein a fitting groove is formed on the outer periphery of the sample holder, and an airtight ring is fitted into the fitting groove. 炭化水素成分を含む土壌試料を気化装置のサンプル室内に充填し加熱処理して土壌中に含有される該成分を気化させると共に、上記サンプル室に酸素と窒素の混合ガスを導入し気化させた該成分を反応管に送り込んで燃焼させ、これにより発生した二酸化炭素量を測定し、該二酸化炭素量より土壌中に含まれる該成分の含有量を測定する方法に使用する気化装置であって、該気化装置は加熱炉と、サンプルホルダーと、上記加熱炉内に装着されるサンプルホルダー装着部とからなり、
該サンプルホルダー装着部には上端に上記サンプルホルダーを装着するための開口部と、下端に酸素と窒素の混合ガスの導入路を設け、その側部には上記気化成分を排出する排出路を設け、
上記サンプルホルダーには、その上端には土壌サンプルの充填口を設け、その内部にはサンプル室を設け、サンプル室の底部にはサンプルホルダー装着部に設けられた混合ガスの導入路に連通する混合ガスの導入路を設け、更にサンプル室の上部にあたるサンプルホルダーの側部にはサンプルホルダー装着部に設けられた気化成分の排出路に連通する排出口を設け、
上記サンプルの充填口には気密栓を設けたことを特徴とする気化装置。
A soil sample containing a hydrocarbon component is filled in a sample chamber of a vaporizer and heat-treated to vaporize the component contained in the soil, and the mixed gas of oxygen and nitrogen is vaporized by introducing the mixed gas into the sample chamber. A vaporizer used in a method of sending a component into a reaction tube and burning it, measuring the amount of carbon dioxide generated thereby, and measuring the content of the component contained in soil from the amount of carbon dioxide, The vaporizer comprises a heating furnace, a sample holder, and a sample holder mounting part mounted in the heating furnace,
The sample holder mounting part is provided with an opening for mounting the sample holder at the upper end, and an inlet for introducing a mixed gas of oxygen and nitrogen at the lower end, and a discharge path for discharging the vaporized component at the side. ,
The sample holder is provided with a soil sample filling port at its upper end, a sample chamber is provided in its interior, and a mixing gas communicating with a mixed gas introduction path provided in the sample holder mounting portion is provided at the bottom of the sample chamber. A gas introduction path is provided, and a discharge port communicating with a vaporization component discharge path provided in the sample holder mounting portion is provided on the side of the sample holder corresponding to the upper portion of the sample chamber.
A vaporizer characterized in that an airtight stopper is provided at the filling port of the sample.
サンプル室の底部に設けられた混合ガスの導入路とサンプル室の間に土壌サンプルを固定するためのフィルターを設けた請求項7記載の気化装置。 The vaporizer according to claim 7, wherein a filter for fixing the soil sample is provided between the mixed gas introduction path provided at the bottom of the sample chamber and the sample chamber. サンプル室の底部に設けられた混合ガスの導入路とサンプル室の間に土壌サンプルを固定するためのフィルターを設けるとともに、サンプル室上部には土壌サンプルを固定するためのフィルターを設けた請求項7記載の気化装置。 8. A filter for fixing a soil sample is provided between the introduction path of the mixed gas provided at the bottom of the sample chamber and the sample chamber, and a filter for fixing the soil sample is provided above the sample chamber. The vaporizer described. サンプルの充填口と気密栓との間、サンプルホルダーとサンプルホルダー装着部上部の排出口より上部内壁面との間、サンプルホルダーとサンプルホルダー装着部下部の排出口より下部で、混合ガス導入路より上部内周壁面との間にそれぞれ気密リングを設けた請求項7記載の気化装置。 Between the sample filling port and the airtight plug, between the sample holder and the upper part of the sample holder mounting part to the upper inner wall surface, below the sample holder and the lower part of the sample holder mounting part, from the mixed gas introduction path The vaporizer according to claim 7, wherein an airtight ring is provided between each of the upper inner peripheral wall surfaces. サンプルホルダー上部外周と下部外周に嵌合溝を形成し、該嵌合溝には気密リングを嵌合する請求項10記載の気化装置。 The vaporizer according to claim 10, wherein fitting grooves are formed in an upper outer periphery and a lower outer periphery of the sample holder, and an airtight ring is fitted in the fitting groove. 土壌試料中に含まれる炭化水素成分が石油系炭化水素である請求項1又は7記載の気化装置。 The vaporizer according to claim 1 or 7, wherein the hydrocarbon component contained in the soil sample is petroleum hydrocarbon. 土壌試料中に含まれる炭化水素成分がバイオマス燃料である請求項1又は7記載の気化装置。 The vaporizer according to claim 1 or 7, wherein the hydrocarbon component contained in the soil sample is biomass fuel. 土壌試料中に含まれる炭化水素成分が石油系炭化水素とバイオマス燃料の混合である請求項1又は7記載の気化装置。 The vaporizer according to claim 1 or 7, wherein the hydrocarbon component contained in the soil sample is a mixture of petroleum hydrocarbon and biomass fuel. バイオマス燃料がバイオエタノール、バイオブタノール、植物油のエステル化油、植物油水素化処理油、BTLである請求項13又は14記載の気化装置。 The vaporizer according to claim 13 or 14, wherein the biomass fuel is bioethanol, biobutanol, esterified oil of vegetable oil, vegetable oil hydrotreated oil, or BTL.
JP2009059024A 2008-04-10 2009-03-12 Vaporizer for measuring the content of hydrocarbon components in soil Expired - Fee Related JP5227858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059024A JP5227858B2 (en) 2008-04-10 2009-03-12 Vaporizer for measuring the content of hydrocarbon components in soil

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008102397 2008-04-10
JP2008102397 2008-04-10
JP2008287295 2008-11-10
JP2008287295 2008-11-10
JP2009059024A JP5227858B2 (en) 2008-04-10 2009-03-12 Vaporizer for measuring the content of hydrocarbon components in soil

Publications (3)

Publication Number Publication Date
JP2010133918A JP2010133918A (en) 2010-06-17
JP2010133918A5 JP2010133918A5 (en) 2012-03-29
JP5227858B2 true JP5227858B2 (en) 2013-07-03

Family

ID=42345341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059024A Expired - Fee Related JP5227858B2 (en) 2008-04-10 2009-03-12 Vaporizer for measuring the content of hydrocarbon components in soil

Country Status (1)

Country Link
JP (1) JP5227858B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702791B2 (en) 2011-11-10 2017-07-11 Universal Analyzers Inc. Fluid flow sampling device
US9625356B2 (en) 2011-11-10 2017-04-18 Universal Analyzers Inc. Fluid flow sampling device
CN114280216B (en) * 2021-12-24 2023-04-07 中国石油大学(北京) Oil sand oil content determination method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222054A (en) * 1993-01-22 1994-08-12 Shimizu Corp Method and apparatus for field investigation of contaminated soil containing volatile compound
JP4056759B2 (en) * 2002-02-21 2008-03-05 株式会社Nippoコーポレーション Sample measuring device
JP4905823B2 (en) * 2005-12-22 2012-03-28 昭和シェル石油株式会社 Method for measuring petroleum hydrocarbon content in soil and measuring device used therefor
JP4994104B2 (en) * 2007-05-10 2012-08-08 昭和シェル石油株式会社 Vaporizer used to measure the content of petroleum hydrocarbon components in soil
JP4928656B2 (en) * 2007-06-07 2012-05-09 昭和シェル石油株式会社 Method for measuring the content of the component contained in soil
JP5227748B2 (en) * 2008-11-10 2013-07-03 昭和シェル石油株式会社 A method for determining the content of a component having a boiling point lower than that of n-hexadecane in a soil sample and a method for determining an oily odor intensity using the content.

Also Published As

Publication number Publication date
JP2010133918A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
Strosher Characterization of emissions from diffusion flare systems
Xie et al. Light absorption of organic carbon emitted from burning wood, charcoal, and kerosene in household cookstoves
Gab-Allah et al. Critical review on the analytical methods for the determination of sulfur and trace elements in crude oil
Sadiktsis et al. Particulate associated polycyclic aromatic hydrocarbon exhaust emissions from a portable power generator fueled with three different fuels–A comparison between petroleum diesel and two biodiesels
Bedjanian et al. Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with the OH radicals
Brandão et al. Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media
Jones et al. Effects of air/fuel combustion ratio on the polycyclic aromatic hydrocarbon content of carbonaceous soots from selected fuels
Popovicheva et al. Microstructure and chemical composition of particles from small-scale gas flaring
JP5227858B2 (en) Vaporizer for measuring the content of hydrocarbon components in soil
JP4994104B2 (en) Vaporizer used to measure the content of petroleum hydrocarbon components in soil
Roth et al. Evaluating the relationships between aromatic and ethanol levels in gasoline on secondary aerosol formation from a gasoline direct injection vehicle
Zhang et al. Primary organic gas emissions in vehicle cold start events: Rates, compositions and temperature effects
JP4905823B2 (en) Method for measuring petroleum hydrocarbon content in soil and measuring device used therefor
JP4928656B2 (en) Method for measuring the content of the component contained in soil
Khijwania et al. A fiber optic Raman sensor for hydrocarbon detection
Miersch et al. Composition of carbonaceous fine particulate emissions of a flexible fuel DISI engine under high velocity and municipal conditions
Munyeza et al. Development and optimization of a plunger assisted solvent extraction method for polycyclic aromatic hydrocarbons sampled onto multi-channel silicone rubber traps
Szewczyńska et al. Study on individual PAHs content in ultrafine particles from solid fractions of diesel and biodiesel exhaust fumes
Mason et al. Comparative sampling of gas phase volatile and semi-volatile organic fuel emissions from a combustion aerosol standard system
Horvat et al. Solid phase adsorption method for tar sampling–How post sampling treatment affects tar yields and volatile tar compounds?
Sloss et al. Organic compounds from coal utilisation
Mitsakis et al. Optical measurement of tars in a fluidized bed gasifier: influence of fuel type and gasification parameters on their formation
Yin et al. Gas-particle partitioning of polycyclic aromatic hydrocarbons from oil combustion involving condensate, diesel and heavy oil
Niri et al. Monitoring BTEX and aldehydes in car exhaust from a gasoline engine during the use of different chemical cleaners by solid phase microextraction-gas chromatography
Métivier et al. Biogas

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

R150 Certificate of patent or registration of utility model

Ref document number: 5227858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees