JP5226989B2 - POSITION ESTIMATION DEVICE, ITS METHOD, ITS PROGRAM, AND RECORDING MEDIUM - Google Patents

POSITION ESTIMATION DEVICE, ITS METHOD, ITS PROGRAM, AND RECORDING MEDIUM Download PDF

Info

Publication number
JP5226989B2
JP5226989B2 JP2007217924A JP2007217924A JP5226989B2 JP 5226989 B2 JP5226989 B2 JP 5226989B2 JP 2007217924 A JP2007217924 A JP 2007217924A JP 2007217924 A JP2007217924 A JP 2007217924A JP 5226989 B2 JP5226989 B2 JP 5226989B2
Authority
JP
Japan
Prior art keywords
sound
distance
delay time
time difference
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007217924A
Other languages
Japanese (ja)
Other versions
JP2009052928A (en
Inventor
和則 小林
賢一 古家
章俊 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007217924A priority Critical patent/JP5226989B2/en
Publication of JP2009052928A publication Critical patent/JP2009052928A/en
Application granted granted Critical
Publication of JP5226989B2 publication Critical patent/JP5226989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

この発明は、例えば、複数の収音手段を用いた雑音抑圧収音や話者位置に自動追従するテレビカメラ制御に利用するための位置推定装置、その方法、そのプログラム、およびその記録媒体に関する。   The present invention relates to, for example, a position estimation apparatus, a method thereof, a program thereof, and a recording medium thereof for use in noise suppression sound collection using a plurality of sound collection means and television camera control that automatically follows a speaker position.

図1に従来の位置推定装置10の機能構成例を示す。位置推定装置10は、収音間遅延時間差測定部13と推定部161とで構成され、必要に応じて収音手段間距離入力部61も備える。従来の位置推定装置10は、N個(Nは1以上の整数)の信号源17(n=1,...,N)の位置と、信号源よりの信号源信号を収音するM個(Mは1以上の整数)の収音手段11(m=1,...,M)の位置を推定する。ここで、信号源とは例えば、音源のことである。音源とは、例えばTV会議での音声を発する人間のことであり、信号源信号とは、例えば音源信号であり、収音手段とは、音声を収音するマイクロホンなどである。なお、以下の説明では、収音手段11をマイクロホン11として説明する。また、複数のマイクロホンがフレームで固定されている場合は、それら固定されているマイクロホンの間の距離は既知である。2個のマイクロホンの間の距離を収音手段間距離とし、Q個(Qは1以上の整数)の収音手段間距離が既知である場合は、収音手段間距離入力部61が備えられ、収音手段間距離は事前に収音手段間距離入力部61に入力される。以下の説明では、Q個の収音手段間距離が既知であり、収音手段間距離入力部61が備えられている場合を説明する。 FIG. 1 shows a functional configuration example of a conventional position estimation apparatus 10. The position estimation apparatus 10 includes a sound collection delay time difference measurement unit 13 and an estimation unit 161, and also includes a sound input means distance input unit 61 as necessary. The conventional position estimating apparatus 10 collects the positions of N (N is an integer of 1 or more) signal sources 17 n (n = 1,..., N) and the signal source signals from the signal sources. The positions of the sound collecting means 11 m (m = 1,..., M) are estimated (M is an integer of 1 or more). Here, the signal source is, for example, a sound source. The sound source is, for example, a person who emits sound in a TV conference, the signal source signal is, for example, a sound source signal, and the sound collection means is a microphone that collects sound. In the following description, the sound collecting unit 11 m is described as the microphone 11 m . When a plurality of microphones are fixed with a frame, the distance between the fixed microphones is known. If the distance between the two microphones is the distance between the sound pickup means and Q (Q is an integer of 1 or more) distances between the sound pickup means are known, a distance input section 61 between the sound pickup means is provided. The distance between the sound collecting means is input to the sound collecting means distance input unit 61 in advance. In the following description, a case where the distance between the Q sound collecting means is known and the sound collecting means distance input unit 61 is provided will be described.

まず、収音間遅延時間差測定部13はM個のマイクロホン11で収音されたMチャネルの収音信号間の遅延時間差である測定収音間遅延時間差を測定する。ここで、音源17から発せられた音源信号について、i番目(i=1,...,M−1)のマイクロホン11とj番目(i=1,...,M)のマイクロホン11との間で、収音間遅延時間差測定部13により測定される遅延時間差である測定収音間遅延時間差をτijnとする。収音間遅延時間差測定部13はN個の全ての音源について、測定収音間遅延時間差τijnを求める。収音間遅延時間差測定部13による測定収音間遅延時間差τijnの求め方は[発明の実施をするための最良の形態]で詳細に説明する。 First, the inter-sound-collection delay time difference measuring unit 13 measures a measured inter-sound-collection delay time difference, which is a delay time difference between M-channel sound-collected signals collected by M microphones 11 m . Here, regarding the sound source signal emitted from the sound source 17 n , the i-th (i = 1,..., M−1) microphone 11 i and the j-th (i = 1,..., M) microphone 11 are used. A delay time difference between measured sound collections, which is a delay time difference measured by the delay time difference measuring unit 13 between j and j , is denoted by τijn . The inter-sound collection delay time difference measuring unit 13 obtains the measured inter-sound collection delay time difference τ ijn for all N sound sources. The method of obtaining the delay time difference τ ijn between the measured sound collections by the delay time difference measuring unit 13 between sound collections will be described in detail in [Best Mode for Carrying Out the Invention].

推定部161は、M個のマイクロホンの位置とN個の音源の位置を推定する。ここで、求めるべきマイクロホンの推定位置を(x^、y^、z^)(m=1,...,M)とし、求めるべき音源の推定位置を(X^、Y^、Z^)(=1,...,N)する。ここで、全てのマイクロホンの位置、全ての音源の位置が未知であるので、座標の基準位置を設ける。ここでは、1番目のマイクロホン11を原点(0、0、0)とし2番目のマイクロホン11と3番目のマイクロホン11を通る平面をxy平面として座標を定義する。このように設定すれば、x^=0、y^=0、z^=0、y^=0、z^=0、z^=0となり、これらを定数とすることが出来る。マイクロホンの推定位置、音源の推定位置から求められる推定収音間遅延時間差τ^ijn(P)は以下のように表される。 The estimation unit 161 estimates the positions of M microphones and N sound sources. Here, the estimated position of the microphone to be obtained is (x ^ m , y ^ m , z ^ m ) (m = 1,..., M), and the estimated position of the sound source to be obtained is (X ^ n , Y ^). n , Z ^ n ) ( n = 1,..., N). Here, since the positions of all microphones and the positions of all sound sources are unknown, a coordinate reference position is provided. Here, we define the coordinate of the first microphone 11 1 the origin (0, 0, 0) and the second microphone 11 2 and the third microphone 11 3 plane passing through the xy plane. With this setting, x ^ 1 = 0, y ^ 1 = 0, z ^ 1 = 0, y ^ 2 = 0, z ^ 2 = 0, z ^ 3 = 0, and these should be constants. I can do it. A delay time difference τ ^ ijn (P) between estimated sound collections obtained from the estimated position of the microphone and the estimated position of the sound source is expressed as follows.

Figure 0005226989
ただしcは音速であり、Pは3M+3N−6個の要素を持つマイクロホンと音源との推定位置のベクトルであり、
P=(x^,...,x^,y^,...,y^,z^,...,x^
X^,...,X^,Y^,...,Y^,Z^,...,Z^)で表される。
Figure 0005226989
Where c is the speed of sound, P is a vector of estimated positions of a microphone and a sound source having 3M + 3N-6 elements,
P = (x ^ 2 , ..., x ^ M , y ^ 3 , ..., y ^ M , z ^ 4 , ..., x ^ M ,
X ^ 1 ,. . . , X ^ N , Y ^ 1 ,. . . , Y ^ N , Z ^ 1 ,. . . , Z ^ N ).

また、イメージで記載した式では(例えば式(1))、記号(例えば、x)の真上に「^」を付しており、テキストで記載した式では記号の右上に「^」を付しているが、これらは同値であることに留意されたい。 In addition, in the expression described in the image (for example, Expression (1)), “^” is added immediately above a symbol (for example, x i ), and in the expression described in text, “^” is added at the upper right of the symbol. Note that these are equivalent.

収音間遅延時間差測定部13で求められた測定収音間遅延時間差をτijnと式(1)で表される推定収音間遅延時間差τ^ijn(P)に音速cを乗じ距離に換算したものをそれぞれ測定収音手段間距離dijnと推定収音手段間距離d^ijn(P)との二乗誤差の和e’(P)を求めれば、式(2)となる。なお、推定収音手段間距離d^ijn(P)は推定収音間遅延時間差τ^ijn(P)にcを乗算するのではなく、直接、推定収音手段間距離d^ijn(P)を求めても良い。 The measured delay time difference between sound collections obtained by the delay time difference measuring unit 13 is converted into a distance by multiplying τijn and the estimated delay time difference between sound collections τ ^ ijn (P) represented by the equation (1) by the sound velocity c. If the sum e ′ (P) of the square error between the distance d ijn between the measured sound collecting means and the estimated distance d ijn (P) between the measured sound collecting means is obtained, Equation (2) is obtained. The estimated sound pickup means distance d ^ ijn (P) is not directly multiplied by c between the estimated sound pickup delay time difference τ ^ ijn (P), but directly between the estimated sound pickup means distances d ^ ijn (P). You may ask for.

Figure 0005226989
また、上述のように、収音手段間距離入力部61に収音手段間距離が入力される。ここで、マイクロホン番号F(q)であるマイクロホン11F(q)と、マイクロホン番号G(q)であるマイクロホン11G(q)との測定された距離を収音手段間距離DF(q)G(q)とする。DF(q)G(q)の測定の仕方として、人間が測定などをすれば良い。推定位置ベクトルPから計算される推定収音手段間距離をD^F(q)G(q)(P)とする。DF(q)G(q)とD^F(q)G(q)(P)との関係は以下の式(3)で表される。
Figure 0005226989
Further, as described above, the distance between the sound pickup means is input to the distance input portion 61 between the sound pickup means. Here, the microphone 11 F (q) is a microphone number F (q), the distance between the measured distance sound pickup means and the microphone 11 G is a microphone number G (q) (q) D F (q) Let G (q) . As a method of measuring DF (q) G (q) , a human may perform the measurement. The distance between the estimated sound collecting means calculated from the estimated position vector P is D ^ F (q) G (q) (P). The relationship between DF (q) G (q) and D ^ F (q) G (q) (P) is expressed by the following equation (3).

Figure 0005226989
ここで、マイクロホンの位置を音源の位置を推定するには、式(3)の制約条件下で式(2)を最小化すればよい。そこで、式(2)と式(3)を変形して、1つの最小化問題に置き換えれば、式(4)になる。
Figure 0005226989
Here, in order to estimate the position of the sound source and the position of the microphone, Equation (2) may be minimized under the constraint condition of Equation (3). Therefore, if equation (2) and equation (3) are modified and replaced with one minimization problem, equation (4) is obtained.

Figure 0005226989
ただし、λは重み係数であり、事前に設定される。λが大きいほど、式(4)が厳密に満たされるPが求められる。e(P)を最小化するPを求めることで、測定収音間遅延時間差τijnと推定収音間遅延時間差τ^ijn(P)との誤差が最小となる推定音源位置、推定されるマイクロホンの位置を求めることができる。ただし、式(4)は非線形連立方程式であり、解析的に解くことは困難である。ここでは、逐次修正を用いた数値解析で求める。式(4)を最小化する推定されるマイクロホンの位置(x^、y^、z^)と推定音源位置(X^、Y^、z^)を求めるには、ある点における勾配を求め、誤差e(P)が小さくなる方向に、推定されるマイクロホンの位置、推定音源位置を修正していき、勾配が0になる点を求めればよい。従って、修正式は式(5)のようになる。
Figure 0005226989
However, λ q is a weighting factor and is set in advance. The larger λ q is, the more P is required to satisfy the expression (4). By obtaining P that minimizes e (P), the estimated sound source position where the error between the measured delay time difference τ ijn and the estimated delay time difference τ ^ ijn (P) is minimized, and the estimated microphone Can be determined. However, equation (4) is a nonlinear simultaneous equation and is difficult to solve analytically. Here, it is obtained by numerical analysis using sequential correction. To find the estimated microphone position (x ^ a , y ^ a , z ^ a ) and the estimated sound source position (X ^ a , Y ^ a , z ^ a ) that minimizes Equation (4): The gradient at the point is obtained, and the position of the estimated microphone and the estimated sound source position are corrected in the direction in which the error e (P) decreases, and the point at which the gradient becomes 0 may be obtained. Therefore, the correction formula is as shown in Formula (5).

Figure 0005226989
Figure 0005226989

Figure 0005226989
Figure 0005226989

Figure 0005226989
以上、示した方法により、音源の位置(x^、y^、z^)とマイクロホンの位置(X^、Y^、z^)を推定できる。
特開2007−81455号
Figure 0005226989
As described above, the position of the sound source (x ^ a , y ^ a , z ^ a ) and the position of the microphone (X ^ a , Y ^ a , z ^ a ) can be estimated by the method described above.
JP 2007-81455 A

従来の位置推定装置10では、マイクロホン11の配置が1箇所に集中している場合に収音間遅延時間差測定部13で生じる推定誤差の影響を受けやすく、収音手段の位置と信号源(音源)の位置の推定を大きく誤る。何故なら、マイクロホンの配置が1箇所に集中しているということは、dijn、d^ijn(P)が小さいということであり、誤った点で式(5)による勾配が0になってしまうからである。 In the conventional position estimation device 10, sensitive to estimation errors caused by sound pickup between the delay time difference measuring unit 13 when the arrangement of the microphones 11 m are concentrated in one place, the position of the sound pickup means and the signal source ( The position of the (sound source) is estimated incorrectly. This is because the fact that the microphones are concentrated in one place means that d ijn and d ^ ijn (P) are small, and the gradient according to equation (5) becomes zero at the wrong point. Because.

本発明は、マイクロホンの配置が1箇所に集中している場合であっても、収音手段、信号源の位置を正しく推定する位置推定装置、その方法、そのプログラム、およびその記録媒体を提供することを目的とする。   The present invention provides a sound collection means, a position estimation device that correctly estimates the position of a signal source, a method thereof, a program thereof, and a recording medium thereof even when the arrangement of microphones is concentrated in one place. For the purpose.

この発明は、信号発生部と、収音間遅延時間差測定部と、収音放出間遅延時間差測定部と、推定部と、を備える位置推定装置。信号発生部は、K(Kは1以上の整数)チャネルの信号を発生する。収音間遅延時間差測定部は、信号発生部が出力するKチャネルの信号のそれぞれを入力信号とする個の放出手段から放出される放出信号とN個(Nは1以上の整数)の信号源から発せられる信号源信号とをM個(Mは2以上の整数)の収音手段が収音したMチャネルの収音信号を用いて、当該Mチャネルの収音信号間の遅延時間差である測定収音間遅延時間差を測定する。収音放出間遅延時間差測定部は、K個の放出手段に入力されるKチャネルの入力信号とMチャネルの収音信号を用いて、Kチャネルの放出信号のそれぞれとMチャネルの収音信号のそれぞれとの間の遅延時間差である測定収音放出間遅延時間差を測定する。推定部は、測定収音間遅延時間差と、測定収音放出間遅延時間差と、を用いて、収音手段の位置、放出手段の位置、信号源の位置を推定する。 The present invention relates to a position estimation device including a signal generation unit, a delay time difference measuring unit between sound collection, a delay time difference measuring unit between sound collection and emission, and an estimation unit. The signal generation unit generates a K channel signal (K is an integer of 1 or more). The delay time difference measuring unit between sound collection units emits N signals (N is an integer equal to or greater than 1) emitted from K number of emission means , each of which has K channel signals output from the signal generator as input signals. This is a delay time difference between M channel sound pickup signals using M channel sound pickup signals picked up by M (M is an integer of 2 or more) sound pickup means from signal source signals emitted from the source. Measure the delay time difference between the collected sound. The delay time difference measurement unit between sound collection and emission uses the K channel input signal and the M channel sound collection signal input to the K emission means, and uses the K channel emission signal and the M channel sound collection signal respectively. The delay time difference between the measured sound collection and emission, which is the delay time difference between them, is measured. The estimation unit estimates the position of the sound collection means, the position of the emission means, and the position of the signal source using the delay time difference between the measurement sound collection and the delay time difference between the measurement sound collection and emission.

上記の構成により、更にK個の放出手段を設け、K個の放出手段に入力されるKチャネルの入力信号とMチャネルの収音信号を用いて、Kチャネルの放出信号のそれぞれとMチャネルの収音信号のそれぞれとの間の遅延時間差である測定収音放出間遅延時間差を測定する。そして収音間遅延時間差のみではなく測定収音放出間遅延時間差も用いる。こうすることで、信号源の位置推定、収音手段の位置推定に用いる情報量を増加させることができる。従って、どのような環境下にあっても、収音手段、信号源の位置を高精度に推定でき、更には、拡声手段の位置も推定できる。   According to the above configuration, K emission means are further provided, and each of the K channel emission signals and the M channel emission signals are input using the K channel input signal and the M channel sound pickup signal input to the K emission means. A delay time difference between measured sound pickup and emission, which is a delay time difference between each of the sound pickup signals, is measured. And not only the delay time difference between sound collection but also the delay time difference between measured sound collection and emission is used. By doing so, it is possible to increase the amount of information used for signal source position estimation and sound collection means position estimation. Therefore, the position of the sound pickup means and the signal source can be estimated with high accuracy in any environment, and further, the position of the loudspeaker means can be estimated.

以下に、発明を実施するための最良の形態を示す。なお、同じ機能を持つ構成部や同じ処理を行う過程には同じ番号を付し、重複説明を省略する。   The best mode for carrying out the invention will be described below. In addition, the same number is attached | subjected to the process which performs the structure part which has the same function, and the same process, and duplication description is abbreviate | omitted.

図2に位置推定装置50−1の機能構成例を示し、図3に位置推定装置50−1の主な処理の流れを示す。以下の説明では、信号源を音源とし、信号源信号を音源信号とし、収音手段をマイクロホンとし、拡声手段をスピーカとする。また、スピーカの数はK個(Kは1以上の整数)であり、12(k=1,...,K)と示し、M個(Mは1以上の整数)のマイクロホンを11(m=1,...,M)と示し、N個(Nは1以上の整数)の音源を17(n=1,...,N)と示す。位置推定装置50−1は、信号発生部14、収音間遅延時間差測定部13、収音放出間遅延時間差測定部15、推定部16、により構成される。 FIG. 2 shows a functional configuration example of the position estimation apparatus 50-1, and FIG. 3 shows a main processing flow of the position estimation apparatus 50-1. In the following description, it is assumed that the signal source is a sound source, the signal source signal is a sound source signal, the sound collection means is a microphone, and the loudspeaker means is a speaker. The number of speakers is K (K is an integer equal to or greater than 1), which is indicated as 12 k (k = 1,..., K), and M (M is an integer equal to or greater than 1) microphones are 11 m. (M = 1,..., M), and N (N is an integer of 1 or more) sound sources are denoted by 17 n (n = 1,..., N). The position estimation device 50-1 includes a signal generation unit 14, a delay time difference measuring unit 13 between sound collections, a delay time difference measuring unit 15 between sound collection releases, and an estimation unit 16.

信号発生部14は、スピーカ12とマイクロホン11の間の距離を測定するための信号を発生する。当該信号のチャネル数は、スピーカの数Kと同じである。また信号発生部14よりの信号は、同時刻には1チャネルしか存在しないようにチャネル毎に順番に発生される。信号の種類は、例えば、白色雑音、TSP(Time stretched pulse)信号、M系列信号などである。信号発生部14で発生された信号は入力信号Eとして、スピーカ12に入力され、スピーカ12から放出信号Cとして、放出される。 Signal generating unit 14 generates a signal for measuring the distance between the speaker 12 1 and the microphone 11 m. The number of channels of the signal is the same as the number K of speakers. The signal from the signal generator 14 is generated in order for each channel so that only one channel exists at the same time. Examples of the signal type include white noise, a TSP (Time stretched pulse) signal, and an M-sequence signal. Generated signal by the signal generating section 14 as an input signal E k, are inputted to the speaker 12 k, as emission signal C k from the speaker 12 k, it is released.

M個のマイクロホン11は、スピーカ12よりの放出信号Cと音源17よりの音源信号AとをMチャネルの収音信号Bとして収音する。収音間遅延時間差測定部13は、Mチャネルの収音信号Bを用いて、当該Mチャネルの収音信号間の遅延時間差である測定収音間遅延時間差τijnを測定する(ステップS2)。ここで、測定収音間遅延時間差τijnは、n番目の音源17よりの音源信号Aについて、i番目(i=1,...,M−1)のマイクロホン11とj番目(i=1,...,M)のマイクロホン11との間の遅延時間差である。測定収音間遅延時間差τijnの測定の仕方の一例を示す。 M microphones 11 m is picking up the sound signal A n of from emission signal C k and the sound source 17 n of the speaker 12 k as collected signal B m of M channels. The inter-sound-collection delay time difference measurement unit 13 measures the inter-sound-collection delay time difference τ ijn , which is the delay time difference between the M-channel sound-collected signals, using the M-channel sound-collected signal B m (step S2). . Here, the delay time difference τ ijn between measured sound collections is the i-th (i = 1,..., M−1) microphone 11 i and j-th ( n −1) of the sound source signal An from the n-th sound source 17 n. i = 1,..., M) is the delay time difference from the microphone 11 j . An example of how to measure the delay time difference τ ijn between measured sound collections is shown.

図4に、収音間遅延時間差測定部13の機能構成例を示す。収音間遅延時間差測定部13は、M個のFFT手段21と、M個の白色化手段22と、収音手段対選択手段23、共役化手段40、乗算手段24、IFFT手段25、最大ピーク検出手段26、により構成される。M個のFFT手段21は対応するマイクロホン11に接続されている。マイクロホン11よりの収音信号Bは対応するFFT手段21に入力される。FFT手段21は時間領域の収音信号Bから周波数領域の収音信号B’に変換する。周波数領域への変換の手法は、例えば公知のフーリエ変換などで行えばよい。白色化手段22は、収音信号B’を白色化(フラット)して白色化収音信号WB’を生成する。次に、収音手段対選択手段23は、スイッチを切替えて、白色化収音信号WB’のうち2つを選択する。このとき、全てのマイクロホンのペアの組み合わせについて以下の処理が実施されるように、収音手段対選択手段23のスイッチの切り替えが行われる。この2つの白色化収音信号をWB’とWB’とする。選択された2つの白色化収音信号WB’とWB’のうち、WB’が共役化手段40により共役がとられる。そして、乗算手段24は、共役をとられた白色化収音信号WB’ と共役をとられていない白色化収音信号WB’とを周波数領域ごとに乗算してクロススペクトルを求める。そして、乗算手段24よりの出力信号は、IFFT手段25により時間領域に変換され。白色化相互相関が求められる。次に、最大ピーク検出手段26で、IFFT手段25よりの白色化相互相関の最大ピークを検出し、最大ピークの地点の時間差が測定収音間遅延時間差τijnとして、出力される。 FIG. 4 shows an example of a functional configuration of the delay time difference measuring unit 13 between sound collections. The delay time difference measuring unit 13 between sound collections includes M FFT means 21 m , M whitening means 22 m , sound collection means pair selection means 23, conjugation means 40, multiplication means 24, IFFT means 25, The maximum peak detecting means 26 is configured. The M FFT means 21 m are connected to the corresponding microphone 11 m . Collected sound signal B m of a microphone 11 m is input to the corresponding FFT unit 21 m. The FFT means 21 m converts the time domain sound collected signal B m to the frequency domain sound collected signal B ′ m . The method of transforming to the frequency domain may be performed by, for example, a known Fourier transform. Whitening means 22 m is collected signals B 'and m are whitened (flat) whitening collected sound signal WB' generates a m. Next, the sound collection means pair selection means 23 switches the switch to select two of the whitened sound collection signals WB ′ m . At this time, the switches of the sound collection means pair selection means 23 are switched so that the following processing is performed for all combinations of microphone pairs. These two whitened sound pickup signals are designated as WB ′ i and WB ′ j . Of the two selected whitened sound pickup signals WB ′ i and WB ′ j , WB ′ j is conjugated by the conjugate means 40. Then, the multiplying unit 24 multiplies the whitened sound collected signal WB ′ * j, which is conjugated, and the whitened sound collected signal WB ′ i , which is not conjugated, for each frequency domain to obtain a cross spectrum. The output signal from the multiplication means 24 is converted into the time domain by the IFFT means 25. Whitening cross-correlation is required. Next, the maximum peak detection means 26 detects the maximum peak of the whitening cross-correlation from the IFFT means 25, and the time difference at the point of the maximum peak is output as the delay time difference τ ijn between measured sound collections.

収音放出間遅延時間差測定部15は、K個のスピーカ12に入力されるKチャネルの入力信号EとMチャネルの収音信号Bを用いて、Kチャネルの放出信号CのそれぞれとMチャネルの収音信号Bのそれぞれとの間の遅延時間差である測定収音放出間遅延時間差δkmを測定する(ステップS4)。換言すれば、測定収音放出間遅延時間差δkmは、k番目のスピーカ12からm番目のマイクロホン11までの音が到達するのにかかる時間である。測定収音放出間遅延時間差δkmの測定の手法の一例を説明する。 The delay time difference measuring unit 15 between sound collection and emission uses the K channel input signal E k and the M channel sound collection signal B m input to the K speakers 12 k to respectively output the K channel emission signal C k . Measured sound collection delay time δ km , which is a delay time difference between each of the M channel sound collection signals B m and the M channel sound collection signals B m (step S4). In other words, the delay time difference δ km between measured sound collection and emission is the time taken for the sound from the kth speaker 12 k to the mth microphone 11 m to arrive. An example of a method for measuring the delay time difference δ km between measured sound emission and emission will be described.

図5に収音放出間遅延時間差測定部15の機能構成例を示す。収音放出間遅延時間差測定部15は、M個のFFT手段21(m=1,...,M)、M個の白色化手段32(m=1,...,M)、収音手段選択手段33、K個のFFT手段34(k=1,...,K)、K個の白色化手段35(k=1,...,K)、放出手段選択手段36、共役化手段40、乗算手段37、IFFT手段38、最大ピーク検出手段39、により構成される。 FIG. 5 shows an example of the functional configuration of the delay time difference measuring unit 15 between sound collection and emission. The delay time difference measuring unit 15 between sound collection and emission includes M FFT means 21 m (m = 1,..., M), M whitening means 32 m (m = 1,..., M), Sound collection means selection means 33, K FFT means 34 k (k = 1,..., K), K whitening means 35 k (k = 1,..., K), discharge means selection means 36, a conjugating means 40, a multiplying means 37, an IFFT means 38, and a maximum peak detecting means 39.

マイクロホン11よりの収音信号Bは対応するFFT手段31に入力される。FFT手段31は、時間領域の収音信号Bを、例えばフーリエ変換などにより、周波数領域の収音信号B’に変換する。白色化手段32は、周波数領域の収音信号B’を白色化(フラット)して白色化収音信号WB’を生成する。 Collected sound signal B m of a microphone 11 m is input to the corresponding FFT means 31 for m. The FFT means 31 m converts the time domain sound collection signal B m into a frequency domain sound collection signal B ′ m by, for example, Fourier transform. The whitening means 32 m whitens (flats) the sound collected signal B ′ m in the frequency domain to generate a whitened sound collected signal WB ′ m .

一方、スピーカ12に入力される入力信号Eは、対応するFFT手段34に入力される。FFT手段34は、時間領域の入力信号Eを、例えばフーリエ変換などにより、周波数領域の入力信号E’に変換する。白色化手段35は、周波数領域の入力信号E’を白色化(フラット)して白色化入力信号WD’を生成する。次に、収音手段選択手段33は白色化手段32の出力信号のうち1つを選択する。また、放出手段選択手段36は白色化手段35の出力信号のうち1つを選択する。このとき、全てのM個のマイクロホン11と全てのK個のスピーカ12の組み合わせについて、以下の処理が実施されるように収音手段選択手段33と放出手段選択手段36のスイッチの切り替えは行われる
そして、収音手段選択手段33で選択された白色化収音信号WB’は、共役化手段40により、共役をとられ、WB’ が生成される。乗算手段37は、共役をとられた白色化収音信号WB’ と共役をとられていない白色化入力信号WD’を周波数領域毎に乗算させ、クロススペクトルを求める。IFFT手段38は、乗算手段37の出力信号を、逆フーリエ変換などで、周波数領域から時間領域に戻して、白色化相関関を求める。最大ピーク検出手段39は、IFFT手段38よりの白色化相関関の最大ピークを検出し、その最大ピークの時間差を測定収音放出間遅延時間差δkmとして出力する。
On the other hand, the input signal E k input to the speaker 12 k is input to the corresponding FFT means 34 k . The FFT unit 34 k converts the time domain input signal E k into a frequency domain input signal E ′ k by, for example, Fourier transform. Whitening means 35 k generates the k input signal E of the frequency domain 'whitened input signal WD to k and whitened (flat)'. Then, the sound collection unit selection means 33 selects one of the output signal of the whitening means 32 m. Also, discharge means selecting unit 36 selects one of the output signal of the whitening means 35 k. At this time, the switches of the sound collection means selection means 33 and the emission means selection means 36 are switched so that the following processing is performed for the combinations of all M microphones 11 m and all K speakers 12 k. Then, the whitened sound pickup signal WB ′ m selected by the sound pickup means selection means 33 is conjugated by the conjugation means 40, and WB ′ * m is generated. Multiplying means 37, a k 'whitened input signal WD is not taken * m is conjugate' whitened collected signal WB 6,147,531 conjugated to multiply each frequency domain, obtaining the cross spectrum. The IFFT unit 38 returns the output signal of the multiplication unit 37 from the frequency domain to the time domain by inverse Fourier transform or the like, and obtains a whitening correlation. The maximum peak detecting means 39 detects the maximum peak of the whitening correlation from the IFFT means 38 and outputs the time difference between the maximum peaks as a delay time difference δ km between measured sound collection releases.

説明を図2に戻す。推定部16は、収音間遅延時間差測定部13よりの測定収音間遅延時間差τijnと、収音放出間遅延時間差測定部15よりの測定収音放出間遅延時間差δkmと、を用いて、位置推定装置50−1の目的である、マイクロホン11の位置、音源17の位置、スピーカ12の位置を推定する(ステップS6)。ここで推定されるマイクロホン11の位置を(x^、y^、z^)とし、推定される音源17の位置を(X^、Y^、Z^)とし、推定されるスピーカ12の位置を(X’^、Y’^、Z’^)とする。ただし、全てのマイクロホンの位置、全ての音源の位置、全てのスピーカの位置が未知であるので、座標の基準位置を設ける。ここでは、1番目のマイクロホン11を原点(0、0、0)とし2番目のマイクロホン11と3番目のマイクロホン11を通る平面をxy平面として座標を定義する。このように設定すれば、x^=0、y^=0、z^=0、y^=0、z^=0、z^=0となり、これらを定数とすることが出来る。マイクロホンの推定位置、音源の推定位置から求められる推定収音間遅延時間差τ^ijn(P)は以下のように表される。 Returning to FIG. The estimation unit 16 uses the measured delay time difference τ ijn between the collected sound delay times from the collected sound delay time difference measurement unit 13 and the measured delayed delay time difference δ km between the collected sound emission from the delayed sound collection / release time measurement unit 15. The position of the microphone 11 m , the position of the sound source 17 n , and the position of the speaker 12 k , which are the purposes of the position estimation device 50-1, are estimated (step S6). The position of the microphone 11 m is estimated here to (x ^ m, y ^ m , z ^ m) and to the position of the sound source 17 n to be estimated (X ^ n, Y ^ n , Z ^ n) and, Assume that the estimated position of the speaker 12 k is (X ′ ^ k , Y ′ ^ k , Z ′ ^ k ). However, since the positions of all microphones, the positions of all sound sources, and the positions of all speakers are unknown, a coordinate reference position is provided. Here, we define the coordinate of the first microphone 11 1 the origin (0, 0, 0) and the second microphone 11 2 and the third microphone 11 3 plane passing through the xy plane. With this setting, x ^ 1 = 0, y ^ 1 = 0, z ^ 1 = 0, y ^ 2 = 0, z ^ 2 = 0, z ^ 3 = 0, and these should be constants. I can do it. A delay time difference τ ^ ijn (P) between estimated sound collections obtained from the estimated position of the microphone and the estimated position of the sound source is expressed as follows.

Figure 0005226989
ただしcは音速であり、Pは3M+3N+3K−6個の要素を持つマイクロホンと音源との推定位置のベクトルであり、
P=(x^,...,x^,y^,...,y^,z^,...,x^
X^,...,X^,Y^,...,Y^,Z^,...,Z^
X’^,...,X’^,Y’^,...,Y’^,Z’^,...,Z’^)で表される。
Figure 0005226989
Where c is the speed of sound, P is a vector of estimated positions of a microphone and a sound source having 3M + 3N + 3K-6 elements,
P = (x ^ 2 , ..., x ^ M , y ^ 3 , ..., y ^ M , z ^ 4 , ..., x ^ M ,
X ^ 1 ,. . . , X ^ N , Y ^ 1 ,. . . , Y ^ N , Z ^ 1 ,. . . , Z ^ N ,
X ′ ^ 1 ,. . . , X ′ ^ K , Y ′ ^ 1 ,. . . , Y ′ ^ K , Z ′ ^ 1 ,. . . , Z ′ ^ K ).

次に、推定されるスピーカの位置と推定されるマイクロホンの位置から推定される推定収音放出間遅延時間差δ^km(P)は以下の式(21)になる。 Next, the estimated delay time δ ^ km (P) between sound collection and emission estimated from the estimated speaker position and estimated microphone position is expressed by the following equation (21).

Figure 0005226989
測定収音間遅延時間差τijn、推定収音間遅延時間差τ^ijn(P)に音速cを乗じたものをそれぞれ測定収音手段間距離dijn、推定収音手段間距離d^ijn(P)とする。そして、測定収音手段間距離dijn、推定収音手段間距離d^ijn(P)の二乗誤差の和e’(P)を求めれば、以下の式(22)になる。
Figure 0005226989
The measured sound pickup delay time difference τ ijn , the estimated sound pickup delay time difference τ ^ ijn (P) multiplied by the speed of sound c, the measured sound pickup means distance d ijn , and the estimated sound pickup means distance d ^ ijn (P ). Then, the sum of squared errors e ′ (P) of the measured distance between sound collecting means d ijn and the estimated distance between sound collecting means d ^ ijn (P) is obtained as the following expression (22).

Figure 0005226989
次に、測定収音放出間遅延時間差δkm、推定収音放出間遅延時間差δ^km(P)に音速cを乗じ、距離に換算したものをそれぞれ測定収音放出間距離Lkm、推定収音放出間距離L^km(P)とし、測定収音放出間距離Lkm、推定収音放出間距離L^km(P)の二乗誤差の和e’’(P)を求めれば、以下の式(23)になる。なお、推定収音手段間距離d^ijn(P)を求める際に、推定収音間遅延時間差τ^ijn(P)にcを乗算するのではなく、直接、推定収音手段間距離d^ijn(P)を求めても良い。
Figure 0005226989
The measurement sound collection release the delay time difference between [delta] miles, multiplied by the speed of sound c in the estimated sound pickup release the delay time difference between δ ^ km (P), the distance each measured sound pickup release distance L miles those terms, the estimated yield If the distance between sound emission L ^ km (P) is taken and the sum of squared errors e '' (P) of the distance L km between measured sound collection and emission and the distance L ^ km (P) between estimated sound collection and emission is obtained, Equation (23) is obtained. It should be noted that, when the estimated sound pickup means distance d ^ ijn (P) is obtained, the estimated sound pickup means distance d ^ is not directly multiplied by c, but the estimated sound pickup delay time difference τ ^ ijn (P) is not multiplied by c. ijn (P) may be obtained.

Figure 0005226989
ここで、マイクロホンの位置、音源の位置、スピーカの位置、を推定するには、式(22)と式(23)を重みつきして結合させて、1つの最小化問題に置き換えればよい。置き換えた結果は以下の式(24)である。
Figure 0005226989
Here, in order to estimate the position of the microphone, the position of the sound source, and the position of the speaker, the equations (22) and (23) may be combined by weighting and replaced with one minimization problem. The result of the replacement is the following equation (24).

Figure 0005226989
ただし、βは重み係数であり、事前に設定される。βが大きいほど、式(23)の誤差を最小化する重みが大きくなる。Lkmの測定誤差がdijnの測定誤差に比べ小さい場合は、βを1よりも大きな値に設定すると、より精度の高い推定値に対する重みを大きくでき、より高精度な位置の推定をできる。
Figure 0005226989
Here, β is a weighting factor and is set in advance. The larger β is, the larger the weight for minimizing the error in equation (23) is. When the measurement error of L km is smaller than the measurement error of dijn , setting β to a value larger than 1 makes it possible to increase the weight for the estimated value with higher accuracy and estimate the position with higher accuracy.

式(24)に示したe(P)を最小化する解を求めることで、dijnとd^ijn(P)との誤差、Lkm、とL^km(P)との誤差が最小となるマイクロホン11の位置、音源17の位置、スピーカ12の位置を求めることができる。ただし、式(24)は非線形連立方程式であり、解析的に解くことは困難である。ここでは、逐次修正を用いた数値解析で求める。式(24)を最小化する推定収音手段位置(x^、y^、z^)(a=1,...,M)と推定音源位置(X^、Y^、Z^)(b=1,...,N)と推定音源位置(X’^、Y’^、Z’^)(c=1,...,K)を求めるには、ある点における勾配を求め、誤差e(P)が小さくなる方向に、推定される収音手段の位置、推定される音源の位置、推定されるスピーカの位置を修正していき、勾配が0になる点を求めればよい。従って、修正式は式(25)のようになる。ただし、逐次修正では、勾配が完全に0にはならないので、勾配が事前に設定した十分小さい値の閾値以下となった場合に推定位置の修正を停止する。閾値については後述する。 By finding a solution that minimizes e 1 (P) shown in Equation (24), the error between d ijn and d ^ ijn (P), and the error between L km and L ^ km (P) are minimized. The position of the microphone 11 m, the position of the sound source 17 n , and the position of the speaker 12 k can be obtained. However, equation (24) is a nonlinear simultaneous equation and is difficult to solve analytically. Here, it is obtained by numerical analysis using sequential correction. Estimated sound pickup means positions (x ^ a , y ^ a , z ^ a ) (a = 1, ..., M) that minimize Equation (24) and estimated sound source positions (X ^ b , Y ^ b , To obtain Z ^ b ) (b = 1,..., N) and the estimated sound source position (X ′ ^ c , Y ′ ^ c , Z ′ ^ c ) (c = 1,..., K) Then, the gradient at a certain point is obtained, and the position of the estimated sound pickup means, the estimated position of the sound source, and the estimated position of the speaker are corrected in a direction in which the error e (P) becomes smaller. Find the point that becomes. Therefore, the correction formula is as shown in Formula (25). However, since the gradient does not completely become zero in the successive correction, the correction of the estimated position is stopped when the gradient is equal to or smaller than a sufficiently small threshold value set in advance. The threshold will be described later.

Figure 0005226989
Figure 0005226989

Figure 0005226989
式(25)を用いた位置推定処理の詳細を説明する。図6に推定部16の機能構成例を示し、図7に推定部16の主な処理の流れを示す。図6の例では、推定部16は、更新手段41、初期値設定手段42、信号源位置記憶手段43、収音手段位置記憶手段44、放出手段位置記憶手段45、判定手段46により構成されている。以下の説明では、u回修正後の推定されるマイクロホンの位置をA(u)=(x^(u)、y^(u)、z^(u))とし、推定される音源の位置をB(u)=(X^(u)、Y^(u)、Z^(u))とし、推定されるスピーカの位置をC(u)=(X’^(u)、Y’^(u)、Z’^(u))とする。
Figure 0005226989
Details of the position estimation processing using Expression (25) will be described. FIG. 6 shows a functional configuration example of the estimation unit 16, and FIG. 7 shows a main processing flow of the estimation unit 16. In the example of FIG. 6, the estimation unit 16 includes update means 41, initial value setting means 42, signal source position storage means 43, sound collection means position storage means 44, discharge means position storage means 45, and determination means 46. Yes. In the following description, the estimated microphone position after being corrected u times is assumed to be A (u) = (x ^ a (u), y ^ a (u), z ^ a (u)), and the estimated sound source. And B (u) = (X ^ b (u), Y ^ b (u), Z ^ b (u)), and the estimated speaker position is C (u) = (X '^ c ( u), Y ′ ^ c (u), Z ′ ^ c (u)).

まず、更新手段41は、測定収音放出間遅延時間差δkmと、測定収音間遅延時間差τijnとを読み込む(ステップS100)。そして、初期値設定手段42は、推定収音手段位置の初期値、推定音源位置の初期値、推定放出手段位置の初期値、つまり、0回修正後のそれぞれの値A(0)=(x^(0)、y^(0)、z^(0))、B(0)=(X^(0)、Y^(0)、Z^(0))、C(0)=(X’^(0)、Y’^(0)、Z’^(0))を設定する。これらの初期値は任意の値でよい。次に、A(0)は収音手段位置記憶手段44に、B(0)は信号源位置記憶手段に、C(0)は放出手段位置記憶手段45に、記憶される。そして、式(25)により、A(0)、B(0)、C(0)、δkm、τijn、とを用いて、ベクトルP、つまり、N個の信号源の位置、M個の収音手段の位置、K個の放出手段の位置を式(25)により更新する(ステップS104)。更新後の推定収音手段位置、推定音源位置、推定音源位置は更新の都度、収音手段位置記憶手段44に、信号源位置記憶手段43に、放出手段位置記憶手段45に、記憶される。 First, the update means 41 reads the delay time difference δ km between measured sound pickup and the delay time difference τ ijn between measured sound pickup (step S100). Then, the initial value setting means 42 sets the initial value of the estimated sound pickup means position, the initial value of the estimated sound source position, the initial value of the estimated emission means position, that is, the respective values A (0) = (x ^ a (0), y ^ a (0), z ^ a (0)), B (0) = (X ^ b (0), Y ^ b (0), Z ^ b (0)), C (0) = (X ′ ^ c (0), Y ′ ^ c (0), Z ′ ^ c (0)) is set. These initial values may be arbitrary values. Next, A (0) is stored in the sound pickup means position storage means 44, B (0) is stored in the signal source position storage means, and C (0) is stored in the discharge means position storage means 45. Then, according to Equation (25), using A (0), B (0), C (0), δ km , τ ijn , the vector P, that is, the positions of N signal sources, M The position of the sound collection means and the positions of the K emission means are updated by the equation (25) (step S104). The updated estimated sound collection means position, estimated sound source position, and estimated sound source position are stored in the sound collection means position storage means 44, the signal source position storage means 43, and the emission means position storage means 45 each time they are updated.

また、逐次修正では、勾配が完全に0にはならない。従って、判定手段46が、これら更新が終了したと判定すると(ステップS106)、例えば、更新停止信号を生成し、更新処理を停止させる。以下に、判定手段46の判定処理の一例を説明する。   In addition, the gradient is not completely zero in the successive correction. Accordingly, when the determination unit 46 determines that these updates have been completed (step S106), for example, an update stop signal is generated to stop the update process. Below, an example of the determination process of the determination means 46 is demonstrated.

判定手段46が、更新手段41の更新処理に用いる式(25)中の更新量grad e(P)が十分に小さいか否かを判定し、十分小さければ、更新が終了したと判定する。例えば、更新量grad e(P)の総和Σ│grad e(P)│と、事前に設定された閾値Tcとを比較し、Tc>Σ│grad e(P)│になれば、判定手段46が更新が終了したと判定する。ここで、Σ│grad e(P)│は、ベクトルPで規定される全ての位置についての「grad e(P)」の合計である。その他、Tc≧Σ│grad e(P)│になった場合や、修正回数uが予め定められた閾値以上になった場合に、判定手段46が更新が終了したと判定するようにしても良い。そして、修正後の音源の位置、マイクロホンの位置、スピーカの位置が推定された音源の位置、推定されたマイクロホンの位置、推定されたスピーカの位置として、推定部16から出力される(ステップS108)。 The determination unit 46 determines whether or not the update amount grad e 1 (P) in the equation (25) used for the update process of the update unit 41 is sufficiently small. If it is sufficiently small, it is determined that the update is completed. For example, the sum Σ P | grad e 1 (P) | of the update amount grad e 1 (P) is compared with a preset threshold value Tc, and Tc> Σ P | grad e 1 (P) | In this case, the determination unit 46 determines that the update has been completed. Here, Σ P | grad e 1 (P) | is the sum of “grad e 1 (P)” for all positions defined by the vector P. In addition, when Tc ≧ Σ P | grad e 1 (P) |, or when the number of corrections u is equal to or greater than a predetermined threshold, the determination unit 46 determines that the update has been completed. Also good. Then, the position of the sound source after correction, the position of the microphone, the position of the sound source from which the position of the speaker is estimated, the position of the estimated microphone, and the position of the estimated speaker are output from the estimation unit 16 (step S108). .

従来の位置推定装置10は、測定収音間遅延時間差τijnを用いて、位置を推定していた。マイクロホンが1箇所に集中している等の場合、式(2)に示すe’(P)が小さくなる。また、式(3)に示す値DF(q)G(q)は、固定値である。従って、式(4)に示すe(P)の値は小さくなり、結果として、式(5)による逐次修正において、誤った点で勾配が0になってしまい、正しい位置を推定できなかった。 The conventional position estimation apparatus 10 estimates the position using the delay time difference τ ijn between measured sound pickups. When the microphones are concentrated at one place, e ′ (P) shown in Expression (2) becomes small. Further, the value DF (q) G (q) shown in Expression (3 ) is a fixed value. Therefore, the value of e (P) shown in the equation (4) becomes small. As a result, in the successive correction according to the equation (5), the gradient becomes 0 at an incorrect point, and the correct position cannot be estimated.

しかし、位置推定装置50−1は、測定収音間遅延時間差τijnのみではなく、測定収音放出間遅延時間差δkmをも用いて、音源の位置、マイクロホンの位置、スピーカの位置を推定する。従って、マイクロホンが1箇所に集中している等の場合、式(22)に示すe’(P)は小さくなるが、式(23)に示すe’’(P)は小さくはならない。よって、式(24)に示すe(P)は小さくならず、式(25)による逐次修正において、正しい点で勾配が0に近づき、正しい位置を推定できるようになった。 However, the position estimation apparatus 50-1 estimates the position of the sound source, the position of the microphone, and the position of the speaker using not only the delay time difference τ ijn between measured sound collections but also the delay time difference δ km between measured sound pickups. . Therefore, when the microphones are concentrated at one place, e ′ (P) shown in the equation (22) is small, but e ″ (P) shown in the equation (23) is not small. Therefore, e 1 (P) shown in Expression (24) is not reduced, and in the successive correction according to Expression (25), the gradient approaches 0 at the correct point, and the correct position can be estimated.

また、信号発生部14は、上述の通り、同時刻には1チャネルしか存在しない入力信号Eを発生する。もし、信号発生部14がG(G≧2)チャネルの入力信号Eを発生すると、Gチャネルの放出信号が放出され、G−1チャネルの放出信号が雑音信号として収音信号Bに混ざってしまい、収音間遅延時間差測定部13、収音放出間遅延時間差測定部15の処理が正確に行われなくなる。また、G−1チャネルの入力信号Eが収音放出間遅延時間差測定部15に入力されると、収音放出間遅延時間差測定部15の処理が正確に行われなくなる。従って、信号発生部14が同時刻には1チャネルしか存在しない入力信号Eを発生することで、収音間遅延時間差測定部13、収音放出間遅延時間差測定部15は処理を正確に行うことができる。 Further, as described above, the signal generator 14 generates the input signal E k that has only one channel at the same time. If the signal generator 14 generates an input signal E k of G (G ≧ 2) channels, release signals G channel is released, mixed with the collected sound signal B m-release signal of G-1 channel as noise signal Therefore, the processing of the delay time difference measuring unit 13 between sound collection and the delay time difference measuring unit 15 between sound collection and discharge is not accurately performed. Further, the input signal E k of G-1 channel is input to the sound collection discharge between the delay time difference measuring unit 15, the processing of the collected sound emission between the delay time difference measuring unit 15 is not performed accurately. Therefore, when the signal generator 14 generates the input signal E k having only one channel at the same time, the delay time difference measurement unit 13 between sound collection and the delay time difference measurement unit 15 between sound collection and discharge accurately perform processing. be able to.

なお、いくつかのスピーカやマイクロホンがフレーム等で固定されている場合は、(1)2つのマイクロホンの間の距離である収音手段間距離、(2)2つのスピーカの間の距離である放出手段間距離、(3)マイクロホンとスピーカの間の距離である収音手段放出手段間距離、が既知である。また、音源がテープレコーダーの場合など、固定されており、当該音源がフレームで固定されている場合は、(4)2つの音源の間の距離である信号源間距離、(5)信号源とマイクロホンとの間の距離である信号源収音手段間距離、(6)信号源とスピーカとの間の距離である信号源放出手段間距離、が既知である。   When several speakers or microphones are fixed by a frame or the like, (1) a distance between sound collecting means that is a distance between two microphones, and (2) a discharge that is a distance between two speakers. The distance between the means and (3) the distance between the sound collecting means emitting means, which is the distance between the microphone and the speaker, are known. When the sound source is fixed, such as a tape recorder, and the sound source is fixed by a frame, (4) a distance between signal sources that is a distance between two sound sources, and (5) a signal source The distance between the signal source pickup means that is the distance between the microphones and (6) the distance between the signal source emission means that is the distance between the signal source and the speaker are known.

これら6つの距離の少なくとも1つを固有パラメータと定義する。以下で説明する実施例2〜実施例7の推定部16は、測定収音間遅延時間差τijnと、測定収音放出間遅延時間差δkmの他に、固有パラメータを用いて推定をする。 At least one of these six distances is defined as an intrinsic parameter. The estimation part 16 of Example 2-Example 7 demonstrated below estimates using an intrinsic parameter besides the delay time difference (tau) ijn between measurement sound-collection discharge | releases, and delay time difference (delta) km between measurement sound-collection discharge | releases.

実施例2では、2つのマイクロホンの間の距離である収音手段間距離が既知である場合を説明する。図8に実施例2の位置推定装置50−2の機能構成例を示す。位置推定装置50−2は位置推定装置50−1と比較して、収音手段間距離入力部61を備える点で異なる。収音手段間距離を用いることで、位置推定装置50−1と比較して、情報量が増え、更に、高精度な位置を推定できる。Q個(Qは1以上の整数)の収音手段間距離が既知である場合は、収音手段間距離入力部61が備えられ、収音手段間距離は事前に収音手段間距離入力部61に入力される。マイクロホン番号F(q)(q=1,...,Q)であるマイクロホン11F(q)と、マイクロホン番号G(q)であるマイクロホン11G(q)との測定された距離を収音手段間距離DF(q)G(q)とする。DF(q)G(q)の測定の仕方として、人間が測定などをすれば良い。推定される位置ベクトルPから計算される推定収音手段間距離をD^F(q)G(q)(P)とする。DF(q)G(q)とD^F(q)G(q)(P)との関係は以下の式(38)で表される。 In the second embodiment, a case will be described in which the distance between sound collection means, which is the distance between two microphones, is known. FIG. 8 shows a functional configuration example of the position estimation apparatus 50-2 according to the second embodiment. The position estimation device 50-2 is different from the position estimation device 50-1 in that it includes a sound input means distance input unit 61. By using the distance between the sound collecting means, the amount of information is increased as compared with the position estimation device 50-1, and a highly accurate position can be estimated. When Q distances between sound collecting means are known (Q is an integer equal to or greater than 1), a distance input section 61 between the sound collecting means is provided, and the distance between the sound collecting means is set in advance. 61 is input. Microphone number F (q) (q = 1 , ..., Q) sound pickup and a microphone 11 F (q), the measured distance between the microphone 11 G is a microphone number G (q) (q) The distance between means DF (q) G (q) . As a method of measuring DF (q) G (q) , a human may perform the measurement. The distance between the estimated sound pickup means calculated from the estimated position vector P is D ^ F (q) G (q) (P). The relationship between DF (q) G (q) and D ^ F (q) G (q) (P) is expressed by the following equation (38).

Figure 0005226989
ここで、マイクロホンの位置と音源の位置とスピーカの位置を推定するには、式(38)の制約条件下で式(24)中のeを最小化すればよい。そこで、式(38)を二乗誤差の形式に変形して、式(24)に追加し、1つの最小化問題に置き換えれば、式(39)になる。
Figure 0005226989
Here, in order to estimate the position of the microphone, the position of the sound source, and the position of the speaker, e 1 in Expression (24) may be minimized under the constraint condition of Expression (38). Therefore, if equation (38) is transformed into the square error format and added to equation (24) and replaced with one minimization problem, equation (39) is obtained.

Figure 0005226989
ただし、λは、重み係数であり、事前に設定される。λが大きいほど、式(38)が厳密に満たされる解が求まる。
Figure 0005226989
However, λ q is a weighting factor, is set in advance. as lambda q is large, a solution can be obtained in which the formula (38) is exactly satisfied.

式(39)に示したe(P)を最小化する解を求めることで、dijnとd^ijn(P)との誤差、Lkm、とL^km(P)との誤差が最小となるマイクロホン11の位置、音源17の位置、スピーカ12の位置を求めることができる。ただし、式(39)は非線形連立方程式であり、解析的に解くことは困難である。ここでは、逐次修正を用いた数値解析で求める。式(39)を最小化する推定されるマイクロホンの位置(x^、y^、z^)(a=1,...,M)と推定される音源の位置(X^、Y^、Z^)(b=1,...,N)と推定されるスピーカの位置(X’^、Y’^、Z’^)(c=0,...,K)を求めるには、ある点における勾配を求め、誤差e(P)が小さくなる方向に、推定されるマイクロホンの位置、推定される音源の位置、推定されるスピーカの位置を修正していき、勾配が0になる点を求めればよい。従って、修正式は式(40)のようになる。 By finding a solution that minimizes e 2 (P) shown in Equation (39), the error between d ijn and d ^ ijn (P) and the error between L km and L ^ km (P) are minimized. The position of the microphone 11 m, the position of the sound source 17 n , and the position of the speaker 12 k can be obtained. However, equation (39) is a nonlinear simultaneous equation and is difficult to solve analytically. Here, it is obtained by numerical analysis using sequential correction. Estimated microphone positions (x ^ a , y ^ a , z ^ a ) (a = 1,..., M) that minimize Equation (39) and estimated sound source positions (X ^ b , Y ^ b , Z ^ b ) (b = 1,..., N) estimated speaker position (X ′ ^ c , Y ′ ^ c , Z ′ ^ c ) (c = 0,. , K), the gradient at a certain point is obtained, and the estimated microphone position, estimated sound source position, and estimated speaker position are corrected in the direction in which the error e (P) decreases. What is necessary is just to obtain | require the point from which a gradient becomes zero. Therefore, the correction formula is as shown in formula (40).

Figure 0005226989
Figure 0005226989

Figure 0005226989
Figure 0005226989

Figure 0005226989
推定部16は、式(41)〜式(53)を用いて、音源の位置、マイクロホンの位置、放出手段の位置を推定する。
Figure 0005226989
The estimation unit 16 estimates the position of the sound source, the position of the microphone, and the position of the emission unit using Expressions (41) to (53).

このように、位置推定装置50−2は位置推定装置50−1と比較して、収音手段間距離DF(q)G(q)と推定収音手段間距離をD^F(q)G(q)を用いることで、使用する情報量を更に増やすことができ、結果として、より高精度な位置を推定できる。 Thus, compared position estimation device 50-2 and the position estimation device 50-1, the sound collection unit distance D F (q) G (q ) and the distance between the estimated sound pickup means D ^ F (q) By using G (q) , the amount of information to be used can be further increased, and as a result, a more accurate position can be estimated.

実施例3では、2つのスピーカの間の距離である放出手段間距離が既知である場合を説明する。図9に実施例3の位置推定装置50−3の機能構成例を示す。位置推定装置50−3は位置推定装置50−2と比較して、放出手段間距離入力部71を備える点で異なる。放出手段間距離を用いることで、位置推定装置50−2と比較して、情報量が増え、更に高精度に位置を推定できる。R個(Rは1以上の整数)の放出手段間距離が既知である場合は、放出手段間距離入力部71が備えられ、放出手段間距離は事前に放出手段間距離入力部71に入力される。スピーカ番号V(r)(r=1,...,R)であるスピーカ12V(r)と、スピーカ番号W(r)であるスピーカ12W(r)との測定された距離を放出手段間距離ΨV(r)W(r)とする。ΨV(r)W(r)の測定の仕方として、人間が測定などをすれば良い。推定される位置ベクトルPから計算される推定放出手段間距離をΨ^V(r)W(r)(P)とする。ΨV(r)W(r)とΨ^V(r)W(r)(P)との関係は以下の式(54)で表される。 In the third embodiment, a case where the distance between the emission means, which is the distance between two speakers, is known will be described. FIG. 9 shows a functional configuration example of the position estimation apparatus 50-3 according to the third embodiment. The position estimation device 50-3 is different from the position estimation device 50-2 in that it includes a distance input unit 71 between discharge means. By using the distance between the emission means, the amount of information increases and the position can be estimated with higher accuracy than the position estimation device 50-2. When the distance between R discharge means (R is an integer of 1 or more) is known, a discharge means distance input unit 71 is provided, and the discharge means distance input is input to the discharge means distance input unit 71 in advance. The Speaker number V (r) (r = 1 , ..., R) and a speaker 12 V (r), a speaker 12 W (r) and the measured distance the release means is a speaker ID W (r) The inter-distance distance ψ V (r) W (r) . As a method of measuring Ψ V (r) W (r) , a human may measure. Assume that the estimated distance between the emission means calculated from the estimated position vector P is Ψ ^ V (r) W (r) (P). The relationship between ΨV (r) W (r) and Ψ ^ V (r) W (r) (P) is expressed by the following equation (54).

Figure 0005226989
ここで、マイクロホンの位置と音源の位置とスピーカの位置を推定するには、式(54)の制約条件と式(38)の制約条件を満たすように、式(24)のeを最小化すればよい。そこで、式(38)と式(54)を二乗誤差の形式に変形して、式(24)に追加し、1つの最小化問題に置き換えれば、式(55)になる。
Figure 0005226989
Here, in order to estimate the position of the microphone, the position of the sound source, and the position of the speaker, e 1 of Expression (24) is minimized so as to satisfy the restriction condition of Expression (54) and the restriction condition of Expression (38). do it. Therefore, if equation (38) and equation (54) are transformed into the square error format and added to equation (24) and replaced with one minimization problem, equation (55) is obtained.

Figure 0005226989
ただし、λは、重み係数であり、事前に設定される。λが大きいほど、式(54)が厳密に満たされる解が求まる。
Figure 0005226989
Here, λ r is a weighting factor and is set in advance. as lambda r is large, a solution can be obtained in which the formula (54) is exactly satisfied.

式(55)に示したe(P)を最小化する解を求めることで、dijnとd^ijn(P)との誤差、Lkm、とL^km(P)との誤差が最小となるマイクロホン11の位置、音源17の位置、スピーカ12の位置を求めることができる。ただし、式(55)は非線形連立方程式であり、解析的に解くことは困難である。ここでは、逐次修正を用いた数値解析で求める。式(55)を最小化する推定されるマイクロホンの位置(x^、y^、z^)(a=1,...,M)と推定される音源位置(X^、Y^、Z^)(b=1,...,N)と推定されるスピーカの位置(X’^、Y’^、Z’^)(c=0,...,K)を求めるには、ある点における勾配を求め、誤差e(P)が小さくなる方向に、推定されるマイクロホンの位置、推定される音源の位置、推定されるスピーカの位置を修正していき、勾配が0になる点を求めればよい。従って、修正式は式(56)のようになる。 By finding a solution that minimizes e 3 (P) shown in Equation (55), the error between d ijn and d ^ ijn (P) and the error between L km and L ^ km (P) are minimized. The position of the microphone 11 m, the position of the sound source 17 n , and the position of the speaker 12 k can be obtained. However, Expression (55) is a nonlinear simultaneous equation and is difficult to solve analytically. Here, it is obtained by numerical analysis using sequential correction. Estimated microphone positions that minimize Equation (55) (x ^ a , y ^ a , z ^ a ) (a = 1, ..., M) and estimated sound source positions (X ^ b , Y ^ B , Z ^ b ) (b = 1,..., N) estimated speaker position (X ′ ^ c , Y ′ ^ c , Z ′ ^ c ) (c = 0,. K) is obtained by calculating the gradient at a certain point and correcting the estimated microphone position, estimated sound source position, and estimated speaker position in a direction in which the error e (P) decreases. What is necessary is just to obtain the point where the gradient becomes zero. Therefore, the correction formula is as shown in Formula (56).

Figure 0005226989
Figure 0005226989

Figure 0005226989
Figure 0005226989

Figure 0005226989
推定部16は、式(56)〜式(69)を用いて、音源の位置、マイクロホンの位置、スピーカの位置を推定する。
Figure 0005226989
The estimation unit 16 estimates the position of the sound source, the position of the microphone, and the position of the speaker using Expressions (56) to (69).

このように、位置推定装置50−3は位置推定装置50−2と比較して、放出手段間距離ΨF(q)G(q)と推定放出手段間距離をΨ^F(q)G(q)(P)を用いることで、情報量を更に増やすことができ、結果として、より高精度に位置を推定できる。また、放出手段間距離入力部51を実施例1で説明した位置推定装置50−1(図2参照)に追加しても、実施できる。 In this way, the position estimation device 50-3 compares the distance between discharge means Ψ F (q) G (q) and the distance between estimated discharge means Ψ ^ F (q) G ( q) By using (P), the amount of information can be further increased, and as a result, the position can be estimated with higher accuracy. Further, even if the inter-emission means distance input unit 51 is added to the position estimation device 50-1 (see FIG. 2) described in the first embodiment, the present invention can be implemented.

実施例4では、マイクロホンとスピーカの間の距離である収音手段放出手段間距離が既知である場合を説明する。図10に実施例4の位置推定装置50−4の機能構成例を示す。位置推定装置50−4は位置推定装置50−3と比較して、収音手段放出手段間距離入力部81を備える点で異なる。収音手段放出手段間距離を用いることで、位置推定装置50−3と比較して、情報量が増え、更に、高精度な位置を推定できる。S個(Sは1以上の整数)の収音手段放出手段間距離が既知である場合は、収音手段放出手段間距離入力部81が備えられ、収音手段放出手段間距離は事前に収音手段放出手段間距離入力部81に入力される。スピーカ番号T(s)(s=1,...,S)であるスピーカ12T(s)と、マイクロホン番号U(s)であるスピーカ11U(s)との測定された距離を収音手段放出手段間距離ΦT(s)U(s)とする。ΦT(s)U(s)の測定の仕方として、人間が測定などをすれば良い。推定される位置ベクトルPから計算される推定収音手段放出手段間距離をΦ^T(s)U(s)(P)とする。ΦT(s)U(s)とΦ^T(s)U(s)(P)との関係は以下の式(70)で表される。 In the fourth embodiment, a case will be described in which the distance between the sound collecting means emitting means, which is the distance between the microphone and the speaker, is known. FIG. 10 shows a functional configuration example of the position estimation apparatus 50-4 of the fourth embodiment. The position estimation device 50-4 is different from the position estimation device 50-3 in that it includes a distance input unit 81 between sound collection means and emission means. By using the distance between the sound collecting means emitting means, the amount of information is increased as compared with the position estimating device 50-3, and a highly accurate position can be estimated. When S (S is an integer greater than or equal to 1) distances between sound collecting means emitting means are known, a distance input section 81 between sound collecting means emitting means is provided, and the distance between sound collecting means emitting means is collected in advance. This is input to the sound means emitting means distance input section 81. The measured distance between the speaker 12 T (s) with the speaker number T (s) (s = 1,..., S) and the speaker 11 U (s) with the microphone number U (s) is collected. The distance between means releasing means is Φ T (s) U (s) . As a method of measuring Φ T (s) U (s) , a human may perform measurement. The distance between the estimated sound collecting means emitting means calculated from the estimated position vector P is Φ ^ T (s) U (s) (P). The relationship between ΦT (s) U (s) and Φ ^ T (s) U (s) (P) is expressed by the following equation (70).

Figure 0005226989
ここで、マイクロホンの位置と音源の位置とスピーカの位置を推定するには、式(38)、式(54)、式(70)の制約条件を満たすように、式(24)中のeを最小化すればよい。そこで、式(38)、式(54)、式(70)を二乗誤差の形式に変形して、式(24)に追加し、1つの最小化問題に置き換えれば、式(71)になる。
Figure 0005226989
Here, in order to estimate the position of the microphone, the position of the sound source, and the position of the speaker, e 1 in Expression (24) is satisfied so as to satisfy the constraints of Expression (38), Expression (54), and Expression (70). Should be minimized. Therefore, if Equation (38), Equation (54), and Equation (70) are transformed into the square error format and added to Equation (24) and replaced with one minimization problem, Equation (71) is obtained.

Figure 0005226989
ただし、ξは、重み係数であり、事前に設定される。ξが大きいほど、式(70)が厳密に満たされる解が求まる。
Figure 0005226989
Here, ξ s is a weighting factor and is set in advance. As ξ s increases, a solution that satisfies Equation (70) more precisely is obtained.

式(71)に示したe(P)を最小化する解を求めることで、dijnとd^ijn(P)との誤差、Lkm、とL^km(P)との誤差が最小となるマイクロホン11の位置、音源17の位置、スピーカ12の位置を求めることができる。ただし、式(71)は非線形連立方程式であり、解析的に解くことは困難である。ここでは、逐次修正を用いた数値解析で求める。式(71)を最小化する推定されるマイクロホンの位置(x^、y^、z^)(a=1,...,M)と推定音源位置(X^、Y^、z^)(b=1,...,N)と推定音源位置(X’^、Y’^、z’^)(c=0,...,K)を求めるには、ある点における勾配を求め、誤差e(P)が小さくなる方向に、推定されるマイクロホンの位置、推定される音源の位置、推定されるスピーカの位置を修正していき、勾配が0になる点を求めればよい。従って、修正式は式(72)のようになる。 By finding a solution that minimizes e 4 (P) shown in equation (71), the error between d ijn and d ^ ijn (P), and the error between L km and L ^ km (P) are minimized. The position of the microphone 11 m, the position of the sound source 17 n , and the position of the speaker 12 k can be obtained. However, equation (71) is a nonlinear simultaneous equation and is difficult to solve analytically. Here, it is obtained by numerical analysis using sequential correction. Estimated microphone position (x ^ a , y ^ a , z ^ a ) (a = 1, ..., M) and estimated sound source position (X ^ b , Y ^ b ) that minimizes Equation (71) , Z ^ b ) (b = 1,..., N) and the estimated sound source position (X ′ ^ c , Y ′ ^ c , z ′ ^ c ) (c = 0,..., K). Finds the gradient at a certain point and corrects the estimated microphone position, estimated sound source position, and estimated speaker position in a direction in which the error e (P) becomes smaller, and the gradient becomes zero. What is necessary is just to ask for. Therefore, the correction formula is as shown in formula (72).

Figure 0005226989
Figure 0005226989

Figure 0005226989
Figure 0005226989

Figure 0005226989
Figure 0005226989

Figure 0005226989
推定部16は、式(73)〜式(85)を用いて、音源の位置、マイクロホンの位置、スピーカの位置を推定する。
Figure 0005226989
The estimation unit 16 estimates the position of the sound source, the position of the microphone, and the position of the speaker using Expressions (73) to (85).

このように、位置推定装置50−4は位置推定装置50−3と比較して、収音手段放出手段間距離ΦT(s)U(s)と推定収音手段放出手段間距離Φ^T(s)U(s)(P)を用いることで、情報量を更に増やすことができ、結果として、より高精度な位置を推定できる。また、収音手段放出手段間距離入力部81は、位置推定装置50−1(図2参照)や位置推定装置50−2(図8参照)に設けてもよい。 In this way, the position estimation device 50-4 and the position estimation device 50-3 are compared with the distance Φ T (s) U (s) between the sound collecting means emitting means and the distance Φ ^ T between the estimated sound collecting means emitting means. (S) U (s) By using (P), the amount of information can be further increased, and as a result, a more accurate position can be estimated. Further, the distance input unit 81 between the sound pickup means emission means may be provided in the position estimation device 50-1 (see FIG. 2) or the position estimation device 50-2 (see FIG. 8).

実施例5では、2つの音源の間の距離である信号源間距離が既知である場合を説明する。図11に、実施例5の位置推定装置50−5を示す。位置推定装置50−5は位置推定装置50−4と比較して、信号源間距離入力部91を備える点で異なる。信号源間距離は事前に測定され、信号源間距離入力部91に入力される。そのほかの処理は実施例2〜4で説明したものと同様である。   In the fifth embodiment, a case where the distance between signal sources, which is the distance between two sound sources, is known will be described. FIG. 11 shows a position estimation apparatus 50-5 of the fifth embodiment. The position estimation device 50-5 is different from the position estimation device 50-4 in that a signal source distance input unit 91 is provided. The distance between the signal sources is measured in advance and input to the signal source distance input unit 91. Other processes are the same as those described in the second to fourth embodiments.

このように、信号源間距離を用いることで、位置推定装置50−4と比較して、情報量を更に増やすことができ、結果として、より高精度に位置を推定できる。
また、信号源間距離入力部91は、位置推定装置50−1、50−2、50−3以下で説明する50−6、50−7に備えても良い。
As described above, by using the distance between the signal sources, the amount of information can be further increased as compared with the position estimation device 50-4, and as a result, the position can be estimated with higher accuracy.
Further, the signal source distance input unit 91 may be provided in 50-6 and 50-7, which will be described below in the position estimation devices 50-1, 50-2, and 50-3.

実施例6では、音源とマイクロホンの間の距離である信号源収音手段間距離が既知である場合を説明する。図12に、実施例61の位置推定装置50−6を示す。位置推定装置50−6は位置推定装置50−5と比較して、信号源収音手段間距離入力部101を備える点で異なる。信号源収音手段間距離は事前に測定され、信号源収音手段間距離入力部101に入力される。そのほかの処理は実施例2〜4で説明したものと同様である。   In the sixth embodiment, a case will be described in which the distance between the signal source sound pickup means, which is the distance between the sound source and the microphone, is known. In FIG. 12, the position estimation apparatus 50-6 of Example 61 is shown. The position estimation device 50-6 differs from the position estimation device 50-5 in that it includes a signal source sound pickup means distance input unit 101. The distance between the signal source pickup means is measured in advance and is input to the distance input unit 101 between the signal source pickup means. Other processes are the same as those described in the second to fourth embodiments.

このように、信号源収音手段間距離を用いることで、位置推定装置50−5と比較して、情報量を更に増やすことができ、結果として、より高精度な位置を推定できる。信号源収音手段間距離入力部101は、位置推定装置50−1、50−2、50−3、50−4、に備えても良い。   In this way, by using the distance between the signal source sound collection means, the amount of information can be further increased as compared with the position estimation device 50-5, and as a result, a more accurate position can be estimated. The signal source sound pickup unit distance input unit 101 may be provided in the position estimation devices 50-1, 50-2, 50-3, and 50-4.

実施例7では、音源とスピーカの間の距離である信号源放出手段間距離が既知である場合を説明する。図13に、実施例7の位置推定装置50−7を示す。位置推定装置50−7は位置推定装置50−6と比較して、信号源放出手段間距離入力部111を備える点で異なる。信号源放出手段間距離は事前に測定され、信号源放出手段間距離入力部111に入力される。そのほかの処理は実施例2〜4で説明したものと同様である。   In the seventh embodiment, a case where the distance between the signal source emitting means, which is the distance between the sound source and the speaker, is known will be described. FIG. 13 shows a position estimation apparatus 50-7 of the seventh embodiment. The position estimation device 50-7 differs from the position estimation device 50-6 in that it includes a signal source emission means distance input unit 111. The distance between the signal source emitting means is measured in advance and input to the signal source emitting means distance input unit 111. Other processes are the same as those described in the second to fourth embodiments.

このように、信号源放出手段間距離を用いることで、位置推定装置50−6と比較して、情報量を更に増やすことができ、結果として、より高精度な位置を推定できる。信号源放出手段間距離入力部111は、位置推定装置50−1、50−2、50−3、50−4、50―5に備えても良い。   In this way, by using the distance between the signal source emitting means, it is possible to further increase the amount of information as compared with the position estimation device 50-6, and as a result, it is possible to estimate the position with higher accuracy. The signal source emission means distance input unit 111 may be provided in the position estimation devices 50-1, 50-2, 50-3, 50-4, and 50-5.

図14に、実施例8の位置推定装置50−8の推定部16’の機能構成例を示す。推定部16’は、位置推定装置50−1〜50−7が有する推定部16(図6参照)と比較して、設定手段121を有する点で異なる。また、位置推定装置50−8は、実施例2〜4で説明した式(39)や式(55)や式(71)に示すように、更新手段41が、収音手段間距離、放出手段間距離、収音手段放出手段間距離、のうち少なくとも1つに重み係数(λ、γ、ξ)を乗算したものを用いて、更新量を計算する場合に適用できる。 FIG. 14 illustrates a functional configuration example of the estimation unit 16 ′ of the position estimation device 50-8 according to the eighth embodiment. The estimation unit 16 ′ is different from the estimation unit 16 (see FIG. 6) included in the position estimation devices 50-1 to 50-7 in that it includes a setting unit 121. In addition, as shown in the equations (39), (55), and (71) described in the second to fourth embodiments, the position estimating device 50-8 is configured so that the updating unit 41 includes the distance between the sound collecting units and the emitting unit. The present invention can be applied to the case where the update amount is calculated by using at least one of the distance between the sound pickup means and the distance between the sound pickup means discharge means multiplied by a weighting coefficient (λ q , γ r , ξ s ).

設定手段121は、収音手段間距離、放出手段間距離、収音手段放出手段間距離のうち重み係数が乗算されたものが重視されるように、更新量の値が小さくなるに従って、乗算で用いられる重み係数を大きくする。重み係数(λ、γ、ξ)は設定手段121により、逐次設定される。以下の処理の詳細について説明する。 The setting means 121 performs multiplication as the value of the update amount decreases so that the weight between the sound collection means distance, the emission means distance, and the sound collection means emission means distance multiplied by the weighting factor is emphasized. Increase the weighting factor used. The weighting factors (λ q , γ r , ξ s ) are sequentially set by the setting unit 121. Details of the following processing will be described.

測定収音手段間距離dijn、測定収音放出間距離Lkmは誤差を含むが、測定された収音手段間距離DF(q)G(q)、測定された放出手段間距離ΨV(r)W(r)、測定された収音手段放出手段間距離ΦT(s)U(s)、はフレーム等で固定された距離なので、ほとんど誤差を含まない。従って、式(39)や式(55)や式(71)に含まれる重み係数λ、γ、ξを大きな値に設定して、式(38)、式(54)、式(70)の条件を満たすような推定位置Pを求めることが望ましい。ただし、逐次修正の初期段階からλ、γ、ξを大きな値に設定すると、dijnとd^ijn(P)との誤差、Lkm、とL^km(P)との誤差が最小化することが十分行われないうちに、更新が終了したとみなされてしまう可能性がある。そこで、更新の終了に近づくにつれて、λ、γ、ξを、大きな値に設定するようにすればよい。式(25)、式(40)、式(56)、式(72)記載のe〜eをまとめてeALLとすると、更新量gradeALL(P)の総和Σ│gradeALL(P)│と、複数の閾値T(i)(i=1,...,Iとし、Iは2以上の整数)とを比較して、T(i)>Σ│gradeALL(P)│になった場合に、もしくは、T(i)≧Σ│gradeALL(P)│になった場合に、λ(i)、γ(i)、ξ(i)を設定する。ここで、λ(i)、γ(i)、ξ(i)は、T(i)が小さくなるほど、大きくなるように事前に設定する。 The distance between measured sound collecting means d ijn and the distance between measured sound collecting and emitting L km include errors, but the measured distance between sound collecting means DF (q) G (q) and the measured distance between emitting means Ψ V Since (r) W (r) and the measured distance between sound collecting means and emitting means Φ T (s) U (s) are distances fixed by a frame or the like, there is almost no error. Therefore, the weighting coefficients λ q , γ r , and ξ s included in the equations (39), (55), and (71) are set to large values, and the equations (38), (54), and (70) are set. It is desirable to obtain an estimated position P that satisfies the condition (1). However, if λ q , γ r , and ξ s are set to large values from the initial stage of the successive correction, the error between d ijn and d ^ ijn (P), the error between L km and L ^ km (P) There is a possibility that the update has been completed before the minimization is sufficiently performed. Therefore, λ q , γ r , and ξ s may be set to larger values as the update is approached. When e 1 to e 4 described in Expression (25), Expression (40), Expression (56), and Expression (72) are collectively represented as e ALL , the sum Σ P | grad ALL (P) of the update amount grade ALL (P) ) | And a plurality of threshold values T (i) (i = 1,..., I, where I is an integer equal to or greater than 2), T (i)> Σ P | grade ALL (P) | Λ q (i), γ r (i), ξ s (i) are set when T (i) ≧ Σ P | grade ALL (P) |. Here, λ q (i), γ r (i), and ξ s (i) are set in advance so as to increase as T (i) decreases.

このように、重み係数λ、γ、ξを逐次的に修正することで、正確な情報である収音手段間距離DF(q)G(q)、放出手段間距離ΨV(r)W(r)、収音手段放出手段間距離ΦT(s)U(s)を重視して、位置推定装置50−8は位置を推定でき、結果として推定精度を向上できる。 In this way, by sequentially correcting the weighting coefficients λ q , γ r , and ξ s , accurate information, the distance between sound collection means DF (q) G (q) and the distance between discharge means Ψ V ( The position estimation device 50-8 can estimate the position with emphasis on r) W (r) and the distance Φ T (s) U (s) between the sound collection means and the emission means, and as a result, the estimation accuracy can be improved.

図15に実施例9の位置推定装置50−9の機能構成例を示す。位置推定装置50−9は音源17が大きく移動する場合などに有効である。図15記載の位置推定装置50−9は、位置推定装置50−1と比較して、収音間遅延時間差記憶部131と、第1新信号源検出部132を有する点で異なる。また、以下の説明では、収音間遅延時間差測定部13が、過去に測定した収音間遅延時間差をτijn、OLDとし、現在、測定した収音間遅延時間差をτijn、NEWとする。収音間遅延時間差記憶部131は、新たな位置にある(移動した)音源の測定収音間遅延時間差を記憶する。新たな位置にある音源の認定は第1新信号源検出部132が行う。新たな位置にある音源の認定の方法として、収音間遅延時間差測定部が測定した現在の測定収音間遅延時間差τijn、NEWと、収音間遅延時間差記憶部131に記憶されている過去の測定収音間遅延時間差τijn、OLDと、の距離を求める。そして当該距離が予め定められた閾値以上もしくは閾値を超えれば新たな位置にある音源と認定する。ここで、距離とは、τijn、NEWやτijn、OLDとを引き数とする距離関数の関数値や、τijn、NEWやτijn、OLDとの類似度などのことである。距離関数とは、X=τijn、NEWとY=τijn、OLDとすると、X−Y、X/Y、(X−Y)の2乗平均などである。そしてこの関数値が大きいということは、過去の測定収音間遅延時間差τijn、OLDについての音源と、現在の測定収音間遅延時間差τijn、NEWについての音源とが離れているということである。また、類似度が小さい場合も同様のことが言える。従って、τijn、OLDについての音源とτijn、NEWについての音源とが離れている場合に、第1新信号源検出部132はτijn、NEWについての音源を、新たな位置にある音源と認定する。以下の説明では、「距離に関する関数」とは、(X−Y)の2乗平均の場合を説明する。 FIG. 15 shows a functional configuration example of the position estimation apparatus 50-9 according to the ninth embodiment. Position estimation device 50-9 is effective when the sound source 17 n moves greatly. The position estimation device 50-9 illustrated in FIG. 15 differs from the position estimation device 50-1 in that it includes a delay time difference storage unit 131 between sound collection units and a first new signal source detection unit 132. In the following description, the inter-sound collection delay time difference measurement unit 13 sets τ ijn and OLD as the delay times between sound collections measured in the past, and τ ijn and NEW as the currently measured delay times between sound collections. The inter-sound collection delay time difference storage unit 131 stores a measured inter-sound collection delay time difference of a sound source at a new position (moved). The first new signal source detector 132 identifies the sound source at the new position. As a method for certifying a sound source at a new position, the current measured delay time difference τ ijn, NEW measured by the delay time difference measurement unit between sound collections and the past stored in the delay time difference storage unit 131 between sound collections The distance between the measured sound pickup delay time difference τijn and OLD is obtained. And if the said distance is more than a predetermined threshold value or exceeds a threshold value, it will recognize as the sound source in a new position. Here, the distance refers to a function value of a distance function having τ ijn, NEW , τ ijn, and OLD as arguments , and a similarity to τ ijn, NEW , τ ijn, and OLD . The distance function is the mean square of XY, X / Y, and (XY), where X = τijn, NEW and Y = τijn, OLD . The large function value means that the sound source for the past measured sound pickup delay time difference τ ijn, OLD and the sound source for the current measured sound pickup delay time difference τ ijn, NEW are separated from each other. is there. The same can be said when the degree of similarity is small. Therefore, when the sound source for τ ijn and OLD is separated from the sound source for τ ijn and NEW , the first new signal source detection unit 132 sets the sound source for τ ijn and NEW as the sound source at a new position. Authorize. In the following description, the “function related to distance” will be described as the case of the mean square of (XY).

図16に第1新信号源検出部132の機能構成例を示す。第1新信号源検出部132は、二乗誤差計算手段141、閾値比較手段142で構成されている。例えば、二乗誤差計算手段141は、収音間遅延時間差測定部13よりの現在の収音間遅延時間差τijn、NEWから、収音間遅延時間差記憶部131に記憶されている過去の収音間遅延時間差τijn、OLDを減算して二乗平均する。二乗誤差計算手段141は、例えば以下の式を演算する。 FIG. 16 shows a functional configuration example of the first new signal source detector 132. The first new signal source detection unit 132 includes a square error calculation unit 141 and a threshold comparison unit 142. For example, the square error calculation means 141 uses the current sound pickup delay time difference τ ijn and NEW from the sound pickup delay time difference measurement unit 13 to calculate the past sound pickup interval stored in the sound pickup delay time difference storage unit 131. Subtract the delay time difference τ ijn and OLD and average the squares. The square error calculation unit 141 calculates, for example, the following expression.

Figure 0005226989
閾値比較手段142の比較によりe<Tの場合は、τijn、NEWについての音源が新たな位置にある音源でない、つまり、音源が(あまり)移動していないと認識する。また、e<Tではなくe≦Tの場合でも、τijn、NEWについての音源は新たな位置にある音源ではない、つまり、音源が(あまり)移動していないと認識してもよい。
Figure 0005226989
If e f <T f by comparison by the threshold comparison means 142, it is recognized that the sound source for τ ijn and NEW is not a sound source at a new position, that is, the sound source has not moved (too much). Even if e f <T f and not e f ≦ T f , the sound source for τ ijn and NEW is not a sound source at a new position, that is, the sound source is recognized as not moving (too much). Also good.

また、閾値比較手段142の比較により、e≧Tの場合もしくはe>Tの場合、τijn、NEWについての音源を新た位置にある音源でない、つまり、音源が移動していると認識する。そして、閾値比較手段142が、音源が移動していると認識すると、記憶命令信号を生成出力して、現在の収音間遅延時間差τijn、NEWを収音間遅延時間差記憶部131に記憶させる
そして、推定部16は、収音間遅延時間差記憶部131に記憶されている全ての収音間遅延時間差と、測定収音放出間遅延時間差とを用いて推定する。
Furthermore, by comparing the threshold value comparison means 142, in the case of e fT if f or e f> T f, tau ijn, not a sound source in a new position the sound source for NEW, i.e., when the sound source is moving recognize. When the threshold comparison unit 142 recognizes that the sound source is moving, it generates and outputs a storage command signal, and stores the current delay time difference between sound collections τ ijn and NEW in the sound delay time difference storage unit 131. Then, the estimation unit 16 estimates using all the delay times between sound collections stored in the sound collection delay time difference storage unit 131 and the delay times difference between measured sound collection releases.

位置推定装置50−9のような構成にして、現在の収音間遅延時間差τijn、NEWを用いることで、音源が移動したとても、高精度に位置を推定できる。また、過去の収音間遅延時間差τijn、OLDを用いることで、移動する前の音源の位置を推定することもできる。なお、収音間遅延時間差記憶部131と第1新信号源検出部132は位置推定装置50−2〜8に追加しても良い。 By using a configuration such as the position estimation device 50-9 and using the current delay time τ ijn between sound collections and NEW , the position of the sound source can be estimated with very high accuracy. Moreover, the position of the sound source before moving can also be estimated by using the past delay time difference τ ijn OLD, OLD . Note that the delay time difference storage unit 131 between sound collections and the first new signal source detection unit 132 may be added to the position estimation devices 50-2 to 50-8.

次に、実施例10の位置推定装置50−10を図15を用いて説明する。位置推定装置50−10は、第1新信号源検出部132が第1新信号源検出部132’に代替されている点で、位置推定装置50−9と異なる。図17に、第1新信号源検出部132’の機能構成例を示す。第1新信号源検出部132’は、平均計算手段143を有する点で、第1新信号源検出部132’と異なる。式(86)記載のeについて、e<Tの場合もしくはe≦Tは、上述したとおり、音源位置が(あまり)移動していないと、第1新信号源検出部132中の閾値比較手段142が認識する。この場合は、平均計算手段143が、収音間遅延時間差τijn、NEWと過去の収音間遅延時間差τijn、OLDの平均収音間遅延時間差τijn、AVGを計算する。そして過去の収音間遅延時間差τijn、OLDが平均収音間遅延時間差τijn、AVGに更新される。 Next, the position estimation apparatus 50-10 of Example 10 is demonstrated using FIG. The position estimation device 50-10 is different from the position estimation device 50-9 in that the first new signal source detection unit 132 is replaced with a first new signal source detection unit 132 ′. FIG. 17 shows a functional configuration example of the first new signal source detection unit 132 ′. The first new signal source detection unit 132 ′ is different from the first new signal source detection unit 132 ′ in that it includes an average calculation unit 143. For e f of formula (86) wherein, when or e fT f of e f <T f, as described above, the sound source position (so) if not moved, the first new signal source detector in 132 Are recognized by the threshold value comparison means 142. In this case, the average calculation means 143 calculates the delay time difference τ ijn between the sound collections , NEW and the delay time difference τ ijn between the past sound collections , and the average delay time difference τ ijn, AVG between the old sound collections. Then, the past delay time difference τ ijn and OLD between the collected sounds is updated to the average delay time difference τ ijn and AVG between the collected sounds .

このように、音源が移動していないと認識された場合に、収音間遅延時間差τijn、OLDを平均収音間遅延時間差τijn、AVGに更新することで、記憶されていた収音間遅延時間差の正確性が増すので、位置推定装置50−10は、より高精度に位置を推定できる。なお、位置推定装置50−1〜9に第1新信号源検出部132’と収音間遅延時間差記憶部131とを追加してもよい。 As described above, when it is recognized that the sound source is not moving, by updating the delay time difference τ ijn, OLD between sound pickups to the average delay time difference τ ijn, AVG between sound pickups, Since the accuracy of the delay time difference is increased, the position estimation device 50-10 can estimate the position with higher accuracy. In addition, you may add 1st new signal source detection part 132 'and the delay time difference memory | storage part 131 between sound collections to the position estimation apparatuses 50-1-9.

次に、実施例11の位置推定装置50−11を図15を用いて説明する。位置推定装置50−11は、収音間遅延時間差記憶部131が収音間遅延時間差記憶部131’に代替されている点で、位置推定装置50−9と異なる。収音間遅延時間差記憶部131’は記憶する収音間遅延時間差τijnの個数について、上限が与えられる。上限をG個とすると、収音間遅延時間差記憶部131’はG個の収音間遅延時間差τijnを記憶する。そして、G+1個目の収音間遅延時間差τijnを記憶する際に、最も古く記憶された収音間遅延時間差τijnは破棄される。このようにして、収音間遅延時間差記憶部131’が、G+1個以上の収音間遅延時間差τijnを記憶しないことで、収音間遅延時間差記憶部131を少ないメモリで構成できる。 Next, the position estimation apparatus 50-11 of Example 11 is demonstrated using FIG. The position estimation device 50-11 is different from the position estimation device 50-9 in that the inter-acquisition delay time difference storage unit 131 is replaced with an inter-acquisition delay time difference storage unit 131 ′. The inter-sound collection delay time difference storage unit 131 ′ is given an upper limit for the number of inter-sound collection delay time differences τ ijn stored. Assuming that the upper limit is G, the inter-sound-collection delay time difference storage unit 131 ′ stores G inter-sound-collection delay time differences τijn . Then, when storing the (G + 1) th delay time difference between sound collections τ ijn , the earliest stored delay time difference between sound collections τ ijn is discarded. In this way, since the delay time difference storage unit 131 ′ between sound collections does not store G + 1 or more delay time differences τ ijn between sound collections, the delay time difference storage unit 131 between sound collections can be configured with a small amount of memory.

図18に、変形例4の位置推定装置50−12の機能構成例を示す。位置推定装置50−12は、収音放出間遅延時間差記憶部133と第2新信号源検出部134を有する点で位置推定装置50−1と異なる。位置推定装置50−9中の第1新信号源検出部132は、実施例8で説明したように、現在の収音間遅延時間差τijn、NEWと、過去の収音間遅延時間差τijn、OLDとを用いる。位置推定装置50−10中の第2新信号源検出部134は、現在の収音放出間遅延時間差δkm、NEWと、過去の収音放出間遅延時間差δkm、OLDとを用いて、音源の移動を検出する。過去の収音放出間遅延時間差δkm、OLDは収音放出間遅延時間差記憶部133に記憶される。収音放出間遅延時間差記憶部133、第2新信号源検出部134の処理はそれぞれ、収音間遅延時間差記憶部131、第1新信号源検出部132と同様なので、ここでは省略する。 In FIG. 18, the functional structural example of the position estimation apparatus 50-12 of the modification 4 is shown. The position estimation device 50-12 is different from the position estimation device 50-1 in that it includes a delay time difference storage unit between sound collection and emission 133 and a second new signal source detection unit 134. As described in the eighth embodiment, the first new signal source detection unit 132 in the position estimation apparatus 50-9 includes the current delay time difference τ ijn between sound collections and the new delay time difference τ ijn between past sound collections , OLD is used. The second new signal source detection unit 134 in the position estimation apparatus 50-10 uses the current delay between the sound pickup and emission delays δ km and NEW and the past delay between the sound pickup and emission delays δ km and OLD to generate a sound source. Detecting movement. The past delay time difference δ km between sound collection releases and OLD are stored in the delay time difference storage unit 133 between sound collection releases. The processing of the delay time difference storage unit between sound collection and emission 133 and the second new signal source detection unit 134 is the same as the processing of the delay time difference storage unit 131 and the first new signal source detection unit 132, respectively, and is therefore omitted here.

また、第2新信号源検出部134を第2新信号源検出部134’と代替してもよい。第2新信号源検出部134’は、音源があまり移動していないと認定すると、収音間遅延時間差τijn、NEWと過去の収音間遅延時間差τijn、OLDの平均収音間遅延時間差τijn、AVGを計算し、τijn、OLDをτijn、AVGに更新するようにしてもよい(第1新信号源検出部132’の構成と同様)。また、収音放出間遅延時間差記憶部133を収音放出間遅延時間差記憶部133’と代替してもよい。収音放出間遅延時間差記憶部133’は記憶する測定収音放出間遅延時間差の個数について上限を有する(収音間遅延時間差記憶部131’と同様)。
なお、収音放出間遅延時間差記憶部133と新信号源検出部134とを位置推定装置50−2〜12に追加させても良い。
The second new signal source detection unit 134 may be replaced with the second new signal source detection unit 134 ′. When the second new signal source detection unit 134 ′ recognizes that the sound source has not moved much, the delay time difference between sound collections τ ijn, NEW and the delay time difference between previous sound collections τ ijn, the average delay time difference between sound collections of OLD τ ijn and AVG may be calculated, and τ ijn and OLD may be updated to τ ijn and AVG (similar to the configuration of the first new signal source detection unit 132 ′). Further, the delay time difference storage unit between sound collection releases 133 may be replaced with a delay time difference storage unit 133 ′ between sound collection releases. The delay time difference storage unit between sound collection releases 133 ′ has an upper limit for the number of delay time differences between measurement sound collection releases stored (similar to the delay time difference storage unit 131 ′ between sound collections).
In addition, you may make the position estimation apparatus 50-2-12 add the delay time difference memory | storage part 133 between sound collection discharge | releases, and the new signal source detection part 134. FIG.

図19に、実施例13の位置推定装置50−13の機能構成例を示す。位置推定装置50−13は、有音区間検出部151を有する点で、位置推定装置50−1と異なる。   FIG. 19 illustrates a functional configuration example of the position estimation device 50-13 according to the thirteenth embodiment. The position estimation apparatus 50-13 is different from the position estimation apparatus 50-1 in that it includes a sound section detection unit 151.

有音区間検出部151は、収音信号B中の有音区間を検出する。検出方法の一例を示す。収音信号B(m=1,...,M)を全て加算した信号を加算信号x(t)とする。tは時間を示す。この加算信号を短時間平均したものをX(t)とする。X(t)の雑音信号N(t)のレベルはX(t)に対してディップホールド処理することで推定でき、例えば、以下の式(87)を用いて、計算される。
N(t)=X(t) N(t−1)≧X(t)
N(t)=u・N(t−1)+(1−u)X(t) N(t−1)<X(t)
(87)
ここで、uは推定される雑音信号N(t)のレベル上昇時の平滑化定数であり、0<u<1の値をとる。uが1に近いと緩やかな雑音信号のレベルの上昇となり、ディップホールドの効果が得られる。
Sound interval detecting unit 151 detects the voiced interval in the collected signal B m. An example of a detection method is shown. A signal obtained by adding all the collected sound signals B m (m = 1,..., M) is defined as an addition signal x (t). t indicates time. Let X (t) be the average of this sum signal for a short time. The level of the noise signal N (t) of X (t) can be estimated by performing dip hold processing on X (t), and is calculated using, for example, the following equation (87).
N (t) = X (t) N (t−1) ≧ X (t)
N (t) = u.N (t-1) + (1-u) X (t) N (t-1) <X (t)
(87)
Here, u is a smoothing constant when the level of the estimated noise signal N (t) rises, and takes a value of 0 <u <1. When u is close to 1, the level of the noise signal gradually increases, and a dip hold effect is obtained.

次に、有音区間検出部151は、有音区間と雑音区間の検出は、雑音信号N(t)のレベルに予め設定した定数を乗じた閾値TN(t)とX(t)を比較することで行う。有音区間検出部151は、TN(t)≦X(t)であれば、雑音区間と検出し、TN(t)>X(t)であれば、有音区間と検出する。ここで雑音区間とは、音源以外の雑音源が存在した場合に、当該雑音源よりの雑音信号を含む区間である。   Next, the voiced section detecting unit 151 detects the voiced section and the noise section by comparing a threshold TN (t) obtained by multiplying the level of the noise signal N (t) with a preset constant and X (t). Do that. The sound section detection unit 151 detects a noise section if TN (t) ≦ X (t), and detects a sound section if TN (t)> X (t). Here, the noise section is a section including a noise signal from the noise source when there is a noise source other than the sound source.

収音間遅延時間差測定部13は、有音区間と検出された収音信号について測定収音間遅延時間差τijnを測定する。このような構成にすることで、より正確に測定収音間遅延時間差τijnを測定できるという効果と雑音の位置を推定しなくなるという効果を得ることができる。 The inter-sound collection delay time difference measuring unit 13 measures a measured inter-sound collection delay time difference τ ijn with respect to the sounded section and the detected sound collection signal. By adopting such a configuration, it is possible to obtain the effect that the delay time difference τ ijn between measured sound collections can be measured more accurately and the effect that the position of noise is not estimated.

なお、図19に破線で示すように、収音放出間遅延時間差測定部15は、入力信号Eと収音信号B中の検出された有音区間とを用いて処理を行うこともできる。このようにすることで、収音放出間遅延時間差測定部15は、より正確に、測定収音放出間遅延時間差δkmを測定できる。有音区間検出部151は、位置推定装置50−2〜12に追加することもできる。 As indicated by a broken line in FIG. 19, the sound collection released between the delay time difference measuring unit 15 may also perform processing by using the detected sound period input signal E k and the collected signal B in m . By doing in this way, the delay time difference measurement part 15 between sound collection discharge | releases can measure the delay time difference (delta) km between measurement sound pickup discharge | releases more correctly. The voiced section detection unit 151 can also be added to the position estimation devices 50-2 to 50-12.

図20に実施例14の位置推定装置50−14の機能構成例を示す。位置推定装置50−14は、信号発生部14がない点で位置推定装置50−1と異なる。TV会議などで位置推定装置50−14を使用する場合、遠隔地からの音声が受信される。この遠隔地からの音声をスピーカ12の入力信号Eとする。このような構成にすることで、信号発生部14を省略できる。信号発生部14を省略する構成は、位置推定装置50−2〜13にも適用できる。 FIG. 20 shows a functional configuration example of the position estimation apparatus 50-14 of the fourteenth embodiment. The position estimation apparatus 50-14 is different from the position estimation apparatus 50-1 in that the signal generation unit 14 is not provided. When the position estimation device 50-14 is used in a TV conference or the like, audio from a remote place is received. The sound from this remote place is used as the input signal E k of the speaker 12 k . With this configuration, the signal generator 14 can be omitted. The configuration in which the signal generation unit 14 is omitted can be applied to the position estimation devices 50-2 to 13-13.

[実験結果]
図21に、実験を行ったときのマイクロホン、スピーカ、音源の配置を示す。ただし、グループ1とグループ2(破線で囲まれている)は、マイクロホンとスピーカがフレームで固定されており、マイクロホン間の距離(収音手段間距離)、スピーカ間の距離(放出手段間距離)、マイクロホンとスピーカとのの間の距離(収音手段放出手段間距離)は既知である。この配置はTV会議を想定しており、グループ1がテレビカメラなどが設置されているTV会議装置を想定していて、グループ2が収音用のテーブル置きマイクである。図22は実験のグループ1のマイク数、グループ2のマイク数、グループ1のスピーカ数、話者数を示したものである。以下の説明では、(グループ1のマイク数、グループ2のマイク数、グループ1のスピーカ数、話者数)とする。従来技術1〜4は、位置推定装置10を用いた場合であり、従来技術1は(4、0、0、1)、従来技術2は(8、0、0、1)、従来技術3は(4、5、0、1)、従来技術4は(4、4、0、2)である。また、本発明1とは位置推定装置50−2を用いた場合であり、本発明1は(4、4、1、1)、本発明2は(4、4、2、1)である。図23は実験結果を示した折れ線グラフを示す。横軸は、収音間遅延時間差の実測値に含まれる誤差の標準偏差と収音放出手段間遅延時間の実測値に含まれる誤差の標準偏差である。ただし誤差はガウス分布するように与えた。縦軸は位置推定結果の推定誤差であり、誤差が小さいほど高精度な推定が行われているということである。この結果より、どの従来技術よりも本発明の位置推定装置のほうが推定誤差が大幅に小さく、精度良い推定が行われていることが確認できる。
[Experimental result]
FIG. 21 shows the arrangement of microphones, speakers, and sound sources when the experiment was performed. However, in Group 1 and Group 2 (enclosed by broken lines), the microphone and the speaker are fixed by a frame, the distance between the microphones (distance between the sound collecting means), the distance between the speakers (distance between the emitting means) The distance between the microphone and the speaker (distance between the sound collecting means emitting means) is known. This arrangement assumes a TV conference, group 1 assumes a TV conference device in which a TV camera or the like is installed, and group 2 is a microphone for placing a table for sound collection. FIG. 22 shows the number of microphones in group 1 of the experiment, the number of microphones in group 2, the number of speakers in group 1, and the number of speakers. In the following description, it is assumed that (the number of microphones in group 1, the number of microphones in group 2, the number of speakers in group 1, and the number of speakers). Prior arts 1 to 4 are cases where the position estimation device 10 is used, the prior art 1 is (4, 0, 0, 1), the prior art 2 is (8, 0, 0, 1), and the prior art 3 is (4, 5, 0, 1) and the prior art 4 is (4, 4, 0, 2). The present invention 1 is a case where the position estimation device 50-2 is used, the present invention 1 is (4, 4, 1, 1), and the present invention 2 is (4, 4, 2, 1). FIG. 23 shows a line graph showing experimental results. The horizontal axis represents the standard deviation of the error included in the actually measured value of the delay time difference between the sound collecting and the standard deviation of the error included in the actually measured value of the delay time between the sound collecting and emitting means. However, the error was given to be Gaussian. The vertical axis represents the estimation error of the position estimation result, and the smaller the error, the higher the accuracy of the estimation. From this result, it can be confirmed that the position estimation apparatus of the present invention has a significantly smaller estimation error than any prior art, and that the estimation is performed with high accuracy.

従来の位置推定装置の機能構成例を示す図。The figure which shows the function structural example of the conventional position estimation apparatus. 実施例1の位置推定装置の機能構成例を示す図。FIG. 3 is a diagram illustrating a functional configuration example of the position estimation apparatus according to the first embodiment. 位置推定装置の主な処理の流れを示す図。The figure which shows the flow of the main processes of a position estimation apparatus. 収音間遅延時間差測定部の機能構成例を示す図。The figure which shows the function structural example of the delay time difference measurement part between sound collections. 収音放出間遅延時間差測定部の機能構成例を示す図。The figure which shows the function structural example of the delay time difference measurement part between sound collection discharge | releases. 推定部の機能構成例を示す図。The figure which shows the function structural example of an estimation part. 推定部の主な処理の流れを示す図。The figure which shows the flow of the main processes of an estimation part. 実施例2の位置推定装置の機能構成例を示す図。FIG. 6 is a diagram illustrating a functional configuration example of a position estimation device according to a second embodiment. 実施例3の位置推定装置の機能構成例を示す図。FIG. 10 is a diagram illustrating a functional configuration example of a position estimation device according to a third embodiment. 実施例4の位置推定装置の機能構成例を示す図。FIG. 10 is a diagram illustrating a functional configuration example of a position estimation device according to a fourth embodiment. 実施例5の位置推定装置の機能構成例を示す図。FIG. 10 is a diagram illustrating a functional configuration example of a position estimation device according to a fifth embodiment. 実施例6の位置推定装置の機能構成例を示す図。FIG. 10 is a diagram illustrating a functional configuration example of a position estimation device according to a sixth embodiment. 実施例7の位置推定装置の機能構成例を示す図。FIG. 10 is a diagram illustrating a functional configuration example of a position estimation device according to a seventh embodiment. 実施例8の位置推定装置の推定部の機能構成例を示す図。FIG. 10 is a diagram illustrating a functional configuration example of an estimation unit of a position estimation apparatus according to an eighth embodiment. 実施例9〜11の位置推定装置の機能構成例を示す図。The figure which shows the function structural example of the position estimation apparatus of Examples 9-11. 第1新信号源検出部の機能構成例を示す図。The figure which shows the function structural example of a 1st new signal source detection part. 実施例11の第1新信号源検出部の機能構成例を示す図。FIG. 20 is a diagram illustrating a functional configuration example of a first new signal source detection unit according to an eleventh embodiment. 実施例12の位置推定装置の機能構成例を示す図。FIG. 20 is a diagram illustrating a functional configuration example of a position estimation device according to a twelfth embodiment. 実施例13の位置推定装置の機能構成例を示す図。The figure which shows the function structural example of the position estimation apparatus of Example 13. FIG. 実施例14の位置推定装置の機能構成例を示す図。The figure which shows the function structural example of the position estimation apparatus of Example 14. FIG. シミュレーションの配置を示す図。The figure which shows arrangement | positioning of simulation. シミュレーションの条件を示す図。The figure which shows the conditions of simulation. シミュレーション結果を示す図。The figure which shows a simulation result.

Claims (22)

K(Kは1以上の整数)チャネルの信号を発生する信号発生部と、
前記信号発生部が出力するKチャネルの信号のそれぞれを入力信号とする個の放出手段から放出される放出信号と
前記放出手段以外のN個(Nは1以上の整数)の信号源から発せられる信号源信号とをM個(Mは2以上の整数)の収音手段が収音したMチャネルの収音信号を用いて、当該Mチャネルの収音信号間の遅延時間差である測定収音間遅延時間差を測定する収音間遅延時間差測定部と、
前記K個の放出手段に入力されるKチャネルの入力信号と前記Mチャネルの収音信号を用いて、前記Kチャネルの放出信号のそれぞれと前記Mチャネルの収音信号のそれぞれとの間の遅延時間差である測定収音放出間遅延時間差を測定する収音放出間遅延時間差測定部と、
前記収音手段の位置を(x^ 、y^ 、z^ )(m=1,…,M)とし、前記信号原の位置を(X^ 、Y^ 、Z^ )(n=1,…,N)とし、前記放出手段の位置を(X’^ 、Y’^ 、Z’^ )(k=1,…,K)とし、前記測定収音間遅延時間差に音速を乗じた測定収音手段間距離をd ijn とし、推定収音手段間距離d^ ijn (P)を
Figure 0005226989
とし、
前記測定収音手段間距離d ijn と前記推定収音手段間距離d^ ijn (P)との二乗誤差の和を
Figure 0005226989

とし、
前記測定収音放出間遅延時間差に音速を乗じた測定収音放出間距離をL km とし、推定収音放出間距離L^ km (P)を
Figure 0005226989

とし、
前記測定収音放出間距離L km と前記推定収音放出間距離L^ km (P)との二乗誤差の和を
Figure 0005226989

とし、前記e’(P)と前記e”(P)の和をe (P)として、逐次修正を用いた数値解析により、前記e (P)が最小となるときの前記収音手段の位置(x^ 、y^ 、z^ 前記信号源の位置(X^ 、Y^ 、Z^ 、前記放出手段の位置(X’^ 、Y’^ 、Z’^ を推定する推定部と、を有する位置推定装置。
A signal generator for generating a signal of a K channel (K is an integer of 1 or more);
A release signal emitted from the K-emitting means for the input signal to each of the signals of K channels by the signal generating unit outputs,
M channel sound collection signals obtained by M (M is an integer greater than or equal to 2) sound collection means collected from N signal sources other than the emission means (N is an integer greater than or equal to 1). A delay time difference measuring unit between sound pickups for measuring a delay time difference between sound pickups which is a delay time difference between the sound pickup signals of the M channel,
Delay between each of the K channel emission signal and each of the M channel sound pickup signals using the K channel input signal and the M channel sound pickup signal input to the K emission means. A delay time difference measuring unit for measuring the delay time between the sound collection and emission to measure the delay time difference between the measurement and the sound emission being a time difference;
The position of the sound pickup means is (x ^ m , y ^ m , z ^ m ) (m = 1,..., M), and the position of the signal source is (X ^ n , Y ^ n , Z ^ n ). (N = 1,..., N), and the position of the emitting means is (X ′ ^ k , Y ′ ^ k , Z ′ ^ k ) (k = 1,. The distance between measured sound collecting means obtained by multiplying the time difference by the speed of sound is defined as dijn , and the estimated distance between sound collecting means d ^ ijn (P) is
Figure 0005226989
age,
The sum of square errors of the measured distance between sound collecting means d ijn and the estimated distance between sound collecting means d ^ ijn (P)
Figure 0005226989

age,
The distance between measured sound collection and emission, which is obtained by multiplying the delay time difference between measured sound collection and emission by the speed of sound, is L km , and the estimated distance between sound collection and emission L ^ km (P) is
Figure 0005226989

age,
The sum of squared errors between the measured sound pickup and emission distance L km and the estimated sound pickup and discharge distance L ^ km (P)
Figure 0005226989

And the sum of e ′ (P) and e ″ (P) is represented by e 1 (P), and the sound collecting means when e 1 (P) is minimized by numerical analysis using sequential correction. Position (x ^ m , y ^ m , z ^ m ) , the position of the signal source (X ^ n , Y ^ n , Z ^ n ) , the position of the emitting means (X '^ k , Y' ^ k) , Z ′ ^ k ) , and an estimation unit.
請求項1に記載の位置推定装置であって、The position estimation apparatus according to claim 1,
前記推定部は、前記e  The estimation unit is configured to execute the e 1 (P)の代わりに、前記e’(P)と、重み係数βを乗算した前記e”(P)との和をeInstead of (P), the sum of e ′ (P) and e ″ (P) multiplied by the weighting coefficient β is e 1 (P)として、逐次修正を用いた数値解析により、前記eAs (P), by the numerical analysis using sequential correction, the e 1 (P)が最小となるときの前記収音手段の位置(x^The position of the sound collecting means when (P) is minimized (x ^ m 、y^, Y ^ m 、z^, Z ^ m )、前記信号源の位置(X^), The position of the signal source (X ^ n 、Y^, Y ^ n 、Z^, Z ^ n )、前記放出手段の位置(X’^), The position of the discharge means (X ′ ^ k 、Y’^, Y ’^ k 、Z’^, Z ’^ k )を推定するものであることを特徴とする位置推定装置。) For estimating position).
請求項1または2に記載の位置推定装置であって、
更に、
同時刻には1チャネルしか存在しない信号を前記入力信号を発生する信号発生部と、を備えることを特徴とする位置推定装置。
The position estimation apparatus according to claim 1 or 2 ,
Furthermore,
And a signal generation unit for generating the input signal for a signal having only one channel at the same time.
請求項1〜3何れかに記載の位置推定装置であって、
2つの前記収音手段の間の距離である収音手段間距離、
2つの前記放出手段の間の距離である放出手段間距離、
2つの前記信号源の間の距離である信号源間距離、
収音手段と放出手段の間の距離である収音手段放出手段間距離、
信号源と収音手段との間の距離である信号源収音手段間距離、
信号源と放出手段との間の距離である信号源放出手段間距離のそれぞれを固有パラメータとしたとき、
少なくとも1つの前記固有パラメータが入力される入力部を備え、
前記推定部は、入力された前記固有パラメータごとに、前記収音手段の位置(x^ 、y^ 、z^ )、前記信号源の位置(X^ 、Y^ 、Z^ )、前記放出手段の位置(X’^ 、Y’^ 、Z’^ )を用いた前記固有パラメータの推定値と前記固有パラメータとの二乗誤差の和を求め、求めた二乗誤差の和と、前記e’(P)と前記e”(P)とを加算したものを、前記e (P)の代わりにe (P)として、逐次修正を用いた数値解析により、前記e1(P)が最小となるときの前記収音手段の位置(x^ 、y^ 、z^ )、前記信号源の位置(X^ 、Y^ 、Z^ )、前記放出手段の位置(X’^ 、Y’^ 、Z’^ )を推定するものであることを特徴とする位置推定装置。
It is a position estimation apparatus in any one of Claims 1-3,
A distance between the sound collecting means, which is a distance between the two sound collecting means;
The distance between the discharge means, which is the distance between the two discharge means,
The distance between the signal sources, which is the distance between the two signal sources,
The distance between the sound collecting means emitting means, which is the distance between the sound collecting means and the emitting means,
The distance between the signal source and the sound collecting means, which is the distance between the signal source and the sound collecting means,
When each of the distances between the signal source emitting means, which is the distance between the signal source and the emitting means, is an intrinsic parameter,
An input unit for inputting at least one of the specific parameters;
For each of the input eigen parameters, the estimation unit determines the position of the sound collecting means (x ^ m , y ^ m , z ^ m ) and the position of the signal source (X ^ n , Y ^ n , Z ^). n ), the sum of square errors of the estimated values of the eigenparameters using the positions (X ′ ^ k , Y ′ ^ k , Z ′ ^ k ) of the emission means and the eigen parameters, and the obtained square error And the sum of e ′ (P) and e ″ (P) as e 1 (P) instead of e 1 (P), by numerical analysis using sequential correction, The position of the sound pickup means (x ^ m , y ^ m , z ^ m ) when e1 (P) is minimized, the position of the signal source (X ^ n , Y ^ n , Z ^ n ), A position estimation device for estimating the position (X ′ ^ k , Y ′ ^ k , Z ′ ^ k ) of the discharge means .
請求項に記載の位置推定装置であって、
前記推定部は、
前記N個の信号源の位置の初期値、前記M個の収音手段の位置の初期値、前記K個の放出手段の位置の初期値、を設定する初期値設定手段と、
前記測定収音間遅延時間差と、前記測定収音放出間遅延時間差と、を用いて、前記N個の信号源の位置、前記M個の収音手段の位置、前記K個の放出手段の位置、を更新する更新手段と、
前記N個の信号源の位置の初期値と前記更新された前記N個の信号源の位置とを記憶する信号源位置記憶手段と、
前記M個の収音手段の位置の初期値と前記更新された前記M個の収音手段の位置とを記憶する収音手段位置記憶手段と、
前記K個の放出手段の位置の初期値と前記更新された前記K個の放出手段の位置とを記憶する放出手段位置記憶手段と、
前記更新が終了したと判定すると、前記更新を停止させる判定手段と、
を有することを特徴とする位置推定装置。
The position estimation device according to claim 4 ,
The estimation unit includes
Initial value setting means for setting initial values of the positions of the N signal sources, initial values of the positions of the M sound pickup means, and initial values of the positions of the K emission means;
The position of the N signal sources, the position of the M sound collecting means, and the position of the K emission means are calculated using the delay time difference between the measured sound collection times and the delay time difference between the measured sound collection and emission times. Updating means for updating
Signal source position storage means for storing an initial value of the positions of the N signal sources and the updated positions of the N signal sources;
Sound pickup means position storage means for storing the initial values of the positions of the M sound pickup means and the updated positions of the M sound pickup means;
Discharge means position storage means for storing an initial value of the positions of the K discharge means and the updated positions of the K discharge means;
When it is determined that the update is completed, a determination unit that stops the update;
A position estimation apparatus comprising:
請求項記載の位置推定装置であって、
前記更新手段は、前記収音手段間距離、前記放出手段間距離、前記収音手段放出手段間距離、のうち少なくとも1つに重み係数を乗算したものを用いて、前記更新をするものであり、
前記推定部は、前記収音手段間距離、前記放出手段間距離、前記収音手段放出手段間距離のうち前記重み係数が乗算されたものが重視されるように、前記更新量の値が小さくなるに従って、前記乗算で用いられる重み係数を大きくする設定手段を有することを特徴とする位置推定装置。
The position estimation device according to claim 5 ,
The updating means performs the updating by using a weighting factor multiplied by at least one of the distance between the sound collecting means, the distance between the emitting means, and the distance between the sound collecting means emitting means. ,
The estimation unit decreases the value of the update amount so that importance is given to the distance between the sound collecting means, the distance between the emitting means, and the distance between the sound collecting means and emitting means multiplied by the weight coefficient. A position estimation apparatus characterized by comprising setting means for increasing the weighting coefficient used in the multiplication.
請求項1〜何れかに記載の位置推定装置であって、
更に、
新たな位置にある音源の前記測定収音間遅延時間差を記憶する収音間遅延時間差記憶部と、
前記収音間遅延時間差測定部が測定した現在の測定収音間遅延時間差と、前記収音間遅延時間差記憶部に記憶されている過去の測定収音間遅延時間差と、の距離が予め定められた閾値以上もしくは閾値を超えれば、現在の測定収音間遅延時間差についての音源を前記新たな位置にある音源と認定する第1新信号源検出部と、を有し、
前記推定部は、前記収音間遅延時間差記憶部に記憶されている全ての測定収音間遅延時間差と、前記測定収音放出間遅延時間差とを用いて推定するものであることを特徴とする位置推定装置。
The position estimation device according to any one of claims 1 to 6 ,
Furthermore,
A delay time difference storage unit between sound collections for storing a delay time difference between the measurement sound collections of the sound source at a new position;
A distance between a current measured delay time difference between sound collections measured by the delay time difference measurement unit between sound collections and a past delay time difference between sound collections stored in the delay time difference storage unit between sound collections is determined in advance. A first new signal source detection unit that certifies a sound source for a delay time difference between the current measured sound collections as a sound source at the new position if the threshold value exceeds or exceeds the threshold value,
The estimation unit is configured to estimate using all the delay times between measured sound collections stored in the delay time difference storage unit between sound collections and the delay time differences between the measured sound collection releases. Position estimation device.
請求項1〜何れかに記載の位置推定装置であって、
更に、
前記測定収音放出間遅延時間差を記憶する収音放出間遅延時間差記憶部と、
前記収音放出間遅延時間差測定部が測定した現在の測定収音放出間遅延時間差と、前記収音放出間遅延時間差記憶部に記憶されている過去の測定収音放出間遅延時間差との距離が予め定められた閾値以上もしくは閾値を超えれば、現在の測定収音間遅延時間差についての音源を前記新たな位置にある音源と認定する第2新信号源検出部と、を有し、
前記推定部は、前記収音放出間遅延時間差記憶部に記憶されている全ての測定収音放出間遅延時間差と、前記測定収音間遅延時間差とを用いて推定するものであることを特徴とする位置推定装置。
The position estimation device according to any one of claims 1 to 7 ,
Furthermore,
A delay time difference storage unit between the sound collection and emission for storing the delay time difference between the measurement and sound collection; and
The distance between the current measured delay time between sound collection and emission measured by the delay time difference measurement unit between the sound collection and emission and the past measured delay time difference between the sound collection and emission stored in the delay time difference storage unit between the sound collection and emission is calculated. A second new signal source detection unit that recognizes a sound source for the current measured sound pickup delay time difference as a sound source at the new position if a predetermined threshold value or more or exceeds a threshold value;
The estimation unit is configured to estimate using all the delay times between measured sound collection and emission stored in the storage delay time difference storage unit and the delay times between measured sound collection and storage. Position estimation device.
請求項または記載の位置推定装置であって、
前記収音間遅延時間差記憶部と前記収音放出間遅延時間差記憶部のうち少なくとも1つは、記憶する測定収音間遅延時間差の個数もしくは記憶する測定収音放出間遅延時間差の個数について上限を有することを特徴とする位置推定装置。
The position estimation apparatus according to claim 7 or 8 ,
At least one of the delay time difference storage unit between the sound pickups and the delay time difference storage unit between the sound pickups and discharges has an upper limit on the number of delay times difference between the measured sound pickups to be stored or the number of delay time differences between the measurement sound pickups to be stored. A position estimation device comprising:
請求項1〜いずれかに記載の位置推定装置であって、
更に、
前記収音信号中の有音区間を検出する有音区間検出部を有し、
前記収音間遅延時間差測定部と前記収音放出間遅延時間差測定部のうち少なくとも一方は、前記有音区間と検出された収音信号について、収音間遅延時間差もしくは、収音放出間遅延時間差を測定するものであることを特徴とする位置推定装置。
The position estimation device according to any one of claims 1 to 9 ,
Furthermore,
A voiced section detector for detecting a voiced section in the collected sound signal;
At least one of the delay time difference measuring unit between sound collection and the delay time difference measuring unit between sound collection and emission is a delay time difference between sound collections or a delay time difference between sound collection and emission with respect to the sound collection signal detected as the sound period. A position estimation device for measuring the position.
信号発生部が出力するK(Kは1以上の整数)チャネルの信号のそれぞれを入力とする個の放出手段から放出される放出信号と、前記放出手段以外のN個(Nは1以上の整数)の信号源から発せられる信号源信号とをM個(Mは2以上の整数)の収音手段が収音したMチャネルの収音信号を用いて、当該Mチャネルの収音信号間の遅延時間差である測定収音間遅延時間差を測定する収音間遅延時間差測定過程と、
前記K個の放出手段に入力されるKチャネルの入力信号と前記Mチャネルの収音信号を用いて、前記Kチャネルの放出信号のそれぞれと前記Mチャネルの収音信号のそれぞれとの間の遅延時間差である測定収音放出間遅延時間差を測定する収音放出間遅延時間差測定過程と、
前記収音手段の位置を(x^ 、y^ 、z^ )(m=1,…,M)とし、前記信号原の位置を(X^ 、Y^ 、Z^ )(n=1,…,N)とし、前記放出手段の位置を(X’^ 、Y’^ 、Z’^ )(k=1,…,K)とし、前記測定収音間遅延時間差に音速を乗じた測定収音手段間距離をd ijn とし、推定収音手段間距離d^ ijn (P)を
Figure 0005226989
とし、
前記測定収音手段間距離d ijn と前記推定収音手段間距離d^ ijn (P)との二乗誤差の和を
Figure 0005226989

とし、
前記測定収音放出間遅延時間差に音速を乗じた測定収音放出間距離をL km とし、推定収音放出間距離L^ km (P)を
Figure 0005226989

とし、
前記測定収音放出間距離L km と前記推定収音放出間距離L^ km (P)との二乗誤差の和を
Figure 0005226989

とし、前記e’(P)と前記e”(P)の和をe (P)として、逐次修正を用いた数値解析により、前記e1(P)が最小となるときの前記収音手段の位置(x^ 、y^ 、z^ 前記信号源の位置(X^ 、Y^ 、Z^ 、前記放出手段の位置(X’^ 、Y’^ 、Z’^ 、を推定する推定過程と、を有する位置推定方法。
A release signal (the K being an integer number of 1 ore more) K the signal generating unit outputs emitted from the K-emitting means for receiving the respective channel signals, N number other than the release means (N is 1 or more The M channel sound pickup signals picked up by M (M is an integer equal to or greater than two) sound pickup means are used as signal source signals emitted from (integer) signal sources. A process for measuring a delay time difference between sound collections for measuring a delay time difference between measurement sound pickups which is a delay time difference;
Delay between each of the K channel emission signal and each of the M channel sound pickup signals using the K channel input signal and the M channel sound pickup signal input to the K emission means. The process of measuring the delay time difference between the sound collection and emission to measure the delay time difference between the sound collection and emission, which is the time difference,
The position of the sound pickup means is (x ^ m , y ^ m , z ^ m ) (m = 1,..., M), and the position of the signal source is (X ^ n , Y ^ n , Z ^ n ). (N = 1,..., N), and the position of the emitting means is (X ′ ^ k , Y ′ ^ k , Z ′ ^ k ) (k = 1,. The distance between measured sound collecting means obtained by multiplying the time difference by the speed of sound is defined as dijn , and the estimated distance between sound collecting means d ^ ijn (P) is
Figure 0005226989
age,
The sum of square errors of the measured distance between sound collecting means d ijn and the estimated distance between sound collecting means d ^ ijn (P)
Figure 0005226989

age,
The distance between measured sound collection and emission, which is obtained by multiplying the delay time difference between measured sound collection and emission by the speed of sound, is L km , and the estimated distance between sound collection and emission L ^ km (P) is
Figure 0005226989

age,
The sum of squared errors between the measured sound pickup and emission distance L km and the estimated sound pickup and discharge distance L ^ km (P)
Figure 0005226989

And the sum of the e ′ (P) and the e ″ (P) is e 1 (P), and the sound collecting means when the e1 (P) is minimized by the numerical analysis using the sequential correction . Position (x ^ m , y ^ m , z ^ m ) , position of the signal source (X ^ n , Y ^ n , Z ^ n ) , position of the emitting means (X '^ k , Y' ^ k , Z ′ ^ k ) , and an estimation process.
請求項11に記載の位置推定方法であって、The position estimation method according to claim 11, comprising:
前記推定過程は、前記e  The estimation process includes the e 1 (P)の代わりに、前記e’(P)と、重み係数βを乗算した前記e”(P)との和をeInstead of (P), the sum of e ′ (P) and e ″ (P) multiplied by the weighting coefficient β is e 1 (P)として、逐次修正を用いた数値解析により、前記eAs (P), by the numerical analysis using sequential correction, the e 1 (P)が最小となるときの前記収音手段の位置(x^The position of the sound collecting means when (P) is minimized (x ^ m 、y^, Y ^ m 、z^, Z ^ m )、前記信号源の位置(X^), The position of the signal source (X ^ n 、Y^, Y ^ n 、Z^, Z ^ n )、前記放出手段の位置(X’^), The position of the discharge means (X ′ ^ k 、Y’^, Y ’^ k 、Z’^, Z ’^ k )を推定する過程であることを特徴とする位置推定方法。) Is a process of estimating the position.
請求項11または12記載の位置推定方法であって、
更に、
同時刻には1チャネルしか存在しない信号を前記入力信号を発生する信号発生過程と、を備えることを特徴とする位置推定方法。
A position estimation method according to claim 11 or 12 , comprising:
Furthermore,
And a signal generating process for generating the input signal for a signal having only one channel at the same time.
請求項1〜1何れかに記載の位置推定方法であって、
2つの前記収音手段の間の距離である収音手段間距離、
2つの前記放出手段の間の距離である放出手段間距離、
2つの前記信号源の間の距離である信号源間距離、
収音手段と放出手段の間の距離である収音手段放出手段間距離、
信号源と収音手段との間の距離である信号源収音手段間距離、
信号源と放出手段との間の距離である信号源放出手段間距離のそれぞれを固有パラメータとしたとき、
少なくとも1つの前記固有パラメータが入力される入力過程を備え、
前記推定過程は、入力された前記固有パラメータごとに、前記収音手段の位置(x^ 、y^ 、z^ )、前記信号源の位置(X^ 、Y^ 、Z^ )、前記放出手段の位置(X’^ 、Y’^ 、Z’^ )を用いた前記固有パラメータの推定値と前記固有パラメータとの二乗誤差の和を求め、求めた二乗誤差の和と、前記e’(P)と前記e”(P)とを加算したものを、前記e (P)の代わりにe (P)として、逐次修正を用いた数値解析により、前記e1(P)が最小となるときの前記収音手段の位置(x^ 、y^ 、z^ )、前記信号源の位置(X^ 、Y^ 、Z^ )、前記放出手段の位置(X’^ 、Y’^ 、Z’^ )を推定する過程であることを特徴とする位置推定方法。
A position estimating method according to any claims 1 1 to 1 3,
A distance between the sound collecting means, which is a distance between the two sound collecting means;
The distance between the discharge means, which is the distance between the two discharge means,
The distance between the signal sources, which is the distance between the two signal sources,
The distance between the sound collecting means emitting means, which is the distance between the sound collecting means and the emitting means,
The distance between the signal source and the sound collecting means, which is the distance between the signal source and the sound collecting means,
When each of the distances between the signal source emitting means, which is the distance between the signal source and the emitting means, is an intrinsic parameter,
An input process in which at least one specific parameter is input;
In the estimation process, the position of the sound pickup means (x ^ m , y ^ m , z ^ m ), the position of the signal source (X ^ n , Y ^ n , Z ^ ) for each of the input intrinsic parameters. n ), the sum of square errors of the estimated values of the eigenparameters using the positions (X ′ ^ k , Y ′ ^ k , Z ′ ^ k ) of the emission means and the eigen parameters, and the obtained square error And the sum of e ′ (P) and e ″ (P) as e 1 (P) instead of e 1 (P), by numerical analysis using sequential correction, The position of the sound pickup means (x ^ m , y ^ m , z ^ m ) when e1 (P) is minimized, the position of the signal source (X ^ n , Y ^ n , Z ^ n ), A position estimation method characterized by being a process of estimating a position (X ′ ^ k , Y ′ ^ k , Z ′ ^ k ) of a discharge means .
請求項1記載の位置推定方法であって、
固有パラメータが入力される入力過程を備え、
前記推定過程は、前記測定収音間遅延時間差と、前記測定収音放出間遅延時間差と、前記固有パラメータと、を用いる過程であり、
前記固有パラメータは、2つの前記収音手段の間の距離である収音手段間距離、2つの前記放出手段の間の距離である放出手段間距離、2つの前記信号源の間の距離である信号源間距離、収音手段と放出手段の間の距離である収音手段放出手段間距離、信号源と収音手段との間の距離である信号源収音手段間距離、信号源と放出手段との間の距離である信号源放出手段間距離、のうち少なくとも1つであることを特徴とする位置推定方法。
A claim 1 4 position estimating method according,
It has an input process in which specific parameters are input,
The estimation process is a process of using the delay time difference between the measured sound collection, the delay time difference between the measured sound collection and emission, and the intrinsic parameter,
The intrinsic parameter is a distance between sound collecting means which is a distance between two sound collecting means, a distance between emitting means which is a distance between two emitting means, and a distance between two signal sources. Distance between signal sources, distance between sound collection means and emission means, which is the distance between sound collection means and emission means, distance between signal sources and collection means, distance between signal source and sound collection means, signal source and emission A position estimation method characterized by being at least one of distances between signal source emitting means, which is a distance between the means.
請求項1記載の位置推定方法であって、
前記更新ステップは、前記収音手段間距離、前記放出手段間距離、前記収音手段放出手段間距離、のうち少なくとも1つに重み係数を乗算したものを用いて、前記更新をする過程であり、
前記推定過程は、
更に、
前記収音手段間距離、前記放出手段間距離、前記収音手段放出手段間距離のうち前記重み係数が乗算されたものが重視されるように、前記更新量の値が小さくなるに従って、前記乗算で用いられる重み係数を大きくする設定ステップを有することを特徴とする位置推定方法。
A position estimating method according to claim 1 5, wherein,
The updating step is a process of performing the updating by using a weighting factor multiplied by at least one of the distance between the sound collecting means, the distance between the emitting means, and the distance between the sound collecting means emitting means. ,
The estimation process includes:
Furthermore,
As the value of the update amount decreases, the multiplication becomes more important so that the weight between the sound collecting means, the distance between the emitting means, and the distance between the sound collecting means emitting means is multiplied. A position estimating method comprising a setting step of increasing a weighting factor used in the method.
請求項1〜1何れかに記載の位置推定方法であって、
更に、
新たな位置にある音源の前記測定収音間遅延時間差を記憶する収音間遅延時間差記憶過程と、
前記収音間遅延時間差測定過程で測定された現在の測定収音間遅延時間差と、前記収音間遅延時間差記憶過程で記憶された過去の測定収音間遅延時間差との距離が予め定められた閾値以上もしくは閾値を超えれば、現在の測定収音間遅延時間差についての音源を前記新たな位置にある音源と認定する第1新信号源検出過程と、を有し、
前記推定過程は、前記収音間遅延時間差記憶過程で記憶された全ての測定収音間遅延時間差と、前記測定収音放出間遅延時間差とを用いて推定する過程であることを特徴とするあることを特徴とする位置推定方法。
A position estimation method according to any one of claims 1 to 16 , comprising:
Furthermore,
A delay time difference storage process between sound collections for storing the delay time difference between the measurement sound pickups of the sound source at a new position;
A distance between a current measurement delay time difference between sound collections measured in the process of measuring delay time difference between sound collections and a past measurement delay time difference between sound collections stored in the process of storing delay times difference between sound collections is predetermined. A first new signal source detection process for certifying a sound source for the current measured sound pickup delay time difference as a sound source at the new position if the threshold value is greater than or equal to the threshold value;
The estimation process is a process of estimating using all the delay times between measured sound collections memorized in the delay time difference storing process between the sound pickups and the delay time difference between the measured sound pickups. A position estimation method characterized by the above.
請求項1〜1何れかに記載の位置推定方法であって、
更に、
前記測定収音放出間遅延時間差を記憶する収音放出間遅延時間差記憶過程と、
前記収音放出間遅延時間差測定過程で測定された現在の測定収音放出間遅延時間差と、前記収音放出間遅延時間差記憶部で記憶された過去の測定収音放出間遅延時間差と、の距離が予め定められた閾値以上もしくは閾値を超えれば、現在の測定収音間遅延時間差についての音源を前記新たな位置にある音源と認定する第2新信号源検出過程と、を有し、
前記推定過程は、前記収音放出間遅延時間差記憶過程で記憶された全ての測定収音放出間遅延時間差と、前記測定収音間遅延時間差とを用いて推定する過程であることを特徴とする位置推定方法。
The position estimation method according to any one of claims 1 to 17 , comprising:
Furthermore,
A process of storing a delay time difference between sound collection and emission to store a delay time difference between the measured sound collection and emission;
A distance between a current measured delay time difference between sound collection and emission measured in the process of measuring a delay time difference between sound collection and emission and a delay time difference between the past measured sound collection and emission stored in the storage delay time difference storage unit. A second new signal source detection process for certifying a sound source for the current measured sound pickup delay time difference as a sound source at the new position if is equal to or greater than a predetermined threshold value or exceeds a threshold value;
The estimation step is a step of estimating using all the delay times between measured sound collection and emission stored in the storage time delay storing step and the difference between the delay times between measured sound collections. Position estimation method.
請求項1または1記載の位置推定方法であって、
前記収音間遅延時間差記憶過程と前記収音放出間遅延時間差記憶過程のうち少なくとも1つは、記憶する測定収音間遅延時間差もしくは記憶する測定収音放出間遅延時間差について上限を有することを特徴とする位置推定方法。
The position estimation method according to claim 17 or 18 , comprising:
At least one of the inter-acquisition delay time difference storing process and the inter-acquisition delay time difference storing process has an upper limit for the memorized delay time difference between the measured sound collections or the memorized delay period between the collected sound collections. A position estimation method.
請求項1〜1いずれかに記載の位置推定方法であって、
更に、
前記収音信号中の有音区間を検出する有音区間検出過程を有し、
前記収音間遅延時間差測定部と前記収音放出間遅延時間差測定部のうち少なくとも一方は、前記有音区間と検出された収音信号について、収音間遅延時間差もしくは、収音放出間遅延時間差を測定する過程であることを特徴とする位置推定方法。
The position estimation method according to any one of claims 1 to 19 , comprising:
Furthermore,
A voiced section detection process for detecting a voiced section in the collected sound signal;
At least one of the delay time difference measuring unit between sound collection and the delay time difference measuring unit between sound collection and emission is a delay time difference between sound collections or a delay time difference between sound collection and emission with respect to the sound collection signal detected as the sound period. A position estimation method characterized by being a process of measuring.
請求項120何れかに記載の位置推定方法の各過程をコンピュータに実行させるための位置推定プログラム。 A position estimation program for causing a computer to execute each step of the position estimation method according to any one of claims 1 to 20 . 請求項21記載の位置推定プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the position estimation program according to claim 21 is recorded.
JP2007217924A 2007-08-24 2007-08-24 POSITION ESTIMATION DEVICE, ITS METHOD, ITS PROGRAM, AND RECORDING MEDIUM Expired - Fee Related JP5226989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217924A JP5226989B2 (en) 2007-08-24 2007-08-24 POSITION ESTIMATION DEVICE, ITS METHOD, ITS PROGRAM, AND RECORDING MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217924A JP5226989B2 (en) 2007-08-24 2007-08-24 POSITION ESTIMATION DEVICE, ITS METHOD, ITS PROGRAM, AND RECORDING MEDIUM

Publications (2)

Publication Number Publication Date
JP2009052928A JP2009052928A (en) 2009-03-12
JP5226989B2 true JP5226989B2 (en) 2013-07-03

Family

ID=40504147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217924A Expired - Fee Related JP5226989B2 (en) 2007-08-24 2007-08-24 POSITION ESTIMATION DEVICE, ITS METHOD, ITS PROGRAM, AND RECORDING MEDIUM

Country Status (1)

Country Link
JP (1) JP5226989B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306132B2 (en) * 2009-04-16 2012-11-06 Advantest Corporation Detecting apparatus, calculating apparatus, measurement apparatus, detecting method, calculating method, transmission system, program, and recording medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433369B2 (en) * 1997-03-07 2003-08-04 株式会社沖コムテック Speaker location estimation method
JPH11304906A (en) * 1998-04-20 1999-11-05 Nippon Telegr & Teleph Corp <Ntt> Sound-source estimation device and its recording medium with recorded program
JP4154486B2 (en) * 2003-11-21 2008-09-24 独立行政法人産業技術総合研究所 Three-dimensional position identification processing method, three-dimensional position identification processing program, and recording medium recorded with three-dimensional position identification processing program
JP2005181088A (en) * 2003-12-19 2005-07-07 Advanced Telecommunication Research Institute International Motion-capturing system and motion-capturing method
JP4422662B2 (en) * 2005-09-09 2010-02-24 日本電信電話株式会社 Sound source position / sound receiving position estimation method, apparatus thereof, program thereof, and recording medium thereof

Also Published As

Publication number Publication date
JP2009052928A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP5702685B2 (en) Sound source direction estimating apparatus and sound source direction estimating method
JP6335985B2 (en) Multi-sensor sound source localization
JP6584930B2 (en) Information processing apparatus, information processing method, and program
US9378752B2 (en) Sound processing device, sound processing method, and sound processing program
JP5724125B2 (en) Sound source localization device
JP5931661B2 (en) Sound source direction estimating apparatus, sound source direction estimating method, and sound source direction estimating program
JP2010232717A (en) Pickup signal processing apparatus, method, and program
JP2017044916A (en) Sound source identifying apparatus and sound source identifying method
JP2012512413A (en) Estimation of sound source position using particle filtering
US20150256928A1 (en) Control device and control method
JP2009535674A (en) Method and apparatus for speech dereverberation based on stochastic model of sound source and room acoustics
JP6078461B2 (en) Sound processing apparatus, sound processing method, and sound processing program
JP4422662B2 (en) Sound source position / sound receiving position estimation method, apparatus thereof, program thereof, and recording medium thereof
JP2008236077A (en) Target sound extracting apparatus, target sound extracting program
JP6888627B2 (en) Information processing equipment, information processing methods and programs
JP3878892B2 (en) Sound collection method, sound collection device, and sound collection program
EP2745293B1 (en) Signal noise attenuation
JP5226989B2 (en) POSITION ESTIMATION DEVICE, ITS METHOD, ITS PROGRAM, AND RECORDING MEDIUM
JP2004325127A (en) Sound source detection method, sound source separation method, and apparatus for executing them
JP3588576B2 (en) Sound pickup device and sound pickup method
JP3720795B2 (en) Sound source receiving position estimation method, apparatus, and program
JP5235723B2 (en) Utterance direction estimation apparatus, method and program
JP6961545B2 (en) Sound signal processor, sound signal processing method, and program
JP5235722B2 (en) Utterance direction estimation apparatus, method and program
JP2009200569A (en) Method and device for estimating sound source direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees