JP5224440B2 - Three-dimensional cultured elastic fiber tissue and method for producing three-dimensional cultured elastic fiber tissue - Google Patents

Three-dimensional cultured elastic fiber tissue and method for producing three-dimensional cultured elastic fiber tissue Download PDF

Info

Publication number
JP5224440B2
JP5224440B2 JP2007291136A JP2007291136A JP5224440B2 JP 5224440 B2 JP5224440 B2 JP 5224440B2 JP 2007291136 A JP2007291136 A JP 2007291136A JP 2007291136 A JP2007291136 A JP 2007291136A JP 5224440 B2 JP5224440 B2 JP 5224440B2
Authority
JP
Japan
Prior art keywords
elastic fiber
porous substrate
fiber tissue
tissue
fibroblasts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007291136A
Other languages
Japanese (ja)
Other versions
JP2009112277A (en
Inventor
茂彦 鈴木
素子 内藤
智之 中邨
賢司 富畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Kyoto University
Original Assignee
Gunze Ltd
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd, Kyoto University filed Critical Gunze Ltd
Priority to JP2007291136A priority Critical patent/JP5224440B2/en
Priority to PCT/JP2008/070126 priority patent/WO2009060864A1/en
Publication of JP2009112277A publication Critical patent/JP2009112277A/en
Application granted granted Critical
Publication of JP5224440B2 publication Critical patent/JP5224440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3895Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0656Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/56Fibrin; Thrombin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biophysics (AREA)
  • Rheumatology (AREA)
  • Urology & Nephrology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、三次元的な厚みを有し、エラスチン、フィブリリン等の弾性線維組織に不可欠な弾性線維成分が発現している三次元培養弾性線維組織、及び、該三次元培養弾性線維組織の製造方法に関する。 The present invention relates to a three-dimensional cultured elastic fiber tissue having a three-dimensional thickness and expressing an elastic fiber component essential for the elastic fiber tissue such as elastin and fibrillin, and production of the three-dimensional cultured elastic fiber tissue. Regarding the method.

近年の細胞工学技術の進展によって、数々の動物細胞の培養が可能となり、また、それらの細胞を用いてヒトの組織や器官を再構築しようとする、いわゆる再生医療の研究が急速に進んでおり、皮膚や血管等の種々の組織の再生が試みられている。ところで、皮膚や血管の生体組織の柔軟性は弾性線維により保たれており、充分な柔軟性を有する生体組織の再生のためには、弾性線維組織の構築も重要である。 Recent advances in cell engineering technology have enabled the culturing of numerous animal cells, and research on regenerative medicine that uses these cells to reconstruct human tissues and organs is rapidly progressing. Attempts have been made to regenerate various tissues such as skin and blood vessels. By the way, the flexibility of the skin and blood vessels of the living tissue is maintained by elastic fibers, and in order to regenerate the living tissue having sufficient flexibility, the construction of the elastic fiber tissue is also important.

in vitroにおいてはシャーレ上で血清添加培地を用いて高密度に線維芽細胞を培養することにより、線維芽細胞が弾性線維成分を産生することが知られている。しかしながら、このようにして得られた弾性線維組織は組織形状を保ったままシャーレから剥離することが困難であった。
これに対して、感温性応答培養皿等の特殊な培養基材を用いて、培養された組織をシート状に剥離する方法が提案されている(特許文献1等)。この方法を応用すれば、シャーレ上に形成された弾性線維組織をシート状に剥離することができる。
In vitro, it is known that fibroblasts produce elastic fiber components by culturing fibroblasts at high density using a serum-added medium on a petri dish. However, it was difficult to peel the elastic fiber tissue thus obtained from the petri dish while maintaining the tissue shape.
In contrast, a method has been proposed in which a cultured tissue is peeled into a sheet using a special culture substrate such as a thermosensitive response culture dish (Patent Document 1, etc.). If this method is applied, the elastic fiber tissue formed on the petri dish can be peeled into a sheet.

しかしながら、このようにして得られた弾性線維組織シートは単層の細胞シートにすぎない。再生医療分野での応用を考えると、皮膚や血管等の組織を構築するためには、単層の細胞シートでは組織としての強度が不足し、また移植のための取り扱いも困難である。仮に移植が可能であったとしても、ほとんど厚さのない弾性線維組織シートを移植しても、柔軟性を付与するという弾性線維組織本来の性能を発揮することはできない。このような方法で作製された細胞シートを用いて厚みのある組織を構築するためには、作製した細胞シートを何枚も剥がして細胞シート同士を接着させるという操作が必要であり、また、作製された組織が厚くなると内部まで栄養供給ができずに作製した再生組織が壊死してしまうという問題点がある。 However, the elastic fiber tissue sheet thus obtained is only a single-layer cell sheet. Considering application in the field of regenerative medicine, in order to construct tissues such as skin and blood vessels, a single-layer cell sheet is insufficient in strength as a tissue and is difficult to handle for transplantation. Even if transplantation is possible, even if an elastic fiber tissue sheet having almost no thickness is transplanted, the inherent performance of the elastic fiber tissue that imparts flexibility cannot be exhibited. In order to construct a thick tissue using the cell sheet produced by such a method, an operation of peeling off the produced cell sheets and bonding the cell sheets together is necessary. When the formed tissue becomes thick, there is a problem in that the regenerated tissue produced cannot be fed to the inside and necrotized.

また、細胞の三次元的な培養方法としてはコラーゲンゲル中で細胞を培養する方法が知られている。しかしながらこれまでのところ、いかに高密度に線維芽細胞をコラーゲンゲル中で培養しても、弾性線維成分が発現されるという報告はなかった。
国際公開第2002/010349号パンフレット
As a three-dimensional cell culture method, a method of culturing cells in a collagen gel is known. However, so far, there has been no report that even if fibroblasts are cultured in a collagen gel at a high density, elastic fiber components are expressed.
International Publication No. 2002/010349 Pamphlet

本発明は、上記現状に鑑み、三次元的な厚みを有し、エラスチン、フィブリリン等の弾性線維組織に不可欠な弾性線維成分が発現している三次元培養弾性線維組織、及び、該三次元培養弾性線維組織の製造方法を提供することを目的とする。 In view of the above-described situation, the present invention has a three-dimensional culture elastic fiber tissue having a three-dimensional thickness and expressing an elastic fiber component indispensable for elastic fiber tissue such as elastin and fibrillin, and the three-dimensional culture It aims at providing the manufacturing method of elastic fiber tissue.

本発明は、熱架橋されたコラーゲンからなる平均孔径が1〜30μmである多孔性基材に対して、1×10/cm以上の密度で線維芽細胞のみを播種する工程1と、前記工程1で得られた線維芽細胞が播種された多孔性基材を血清添加培地中で培養する工程2とを有する製造方法により製造される三次元培養弾性線維組織であって、前記多孔性基材は、濃度0.5units/mLのコラゲナーゼ水溶液中に37℃、100分間浸漬した後の重量残存率が40〜60%であり、厚さが5μm以上であり、エラスチン及びフィブリリンを含有する三次元培養弾性線維組織である。
以下に本発明を詳述する。
The present invention includes a step 1 of seeding only fibroblasts at a density of 1 × 10 3 / cm 2 or more with respect to a porous base material having an average pore diameter of 1 to 30 μm made of heat-crosslinked collagen; a three-dimensional culture elastic fibrous tissue fibroblasts obtained in step 1 were seeded porous substrate produced by the production method and a step 2 of culturing in serum-containing medium, wherein the porous base The material has a residual weight ratio of 40-60% after being immersed in an aqueous collagenase solution at a concentration of 0.5 units / mL at 37 ° C. for 100 minutes, has a thickness of 5 μm or more, and contains elastin and fibrillin. It is a cultured elastic fiber tissue.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、コラーゲンからなり平均孔径が1〜30μmである多孔性基材に対して高密度に線維芽細胞を播種した後、一定期間血清添加培地中で培養することにより、線維芽細胞からエラスチン、フィブリリン等の弾性線維成分が分泌され、更に培養を続けることにより三次元的な厚みを持った弾性線維組織が形成されることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors seeded fibroblasts with high density on a porous substrate made of collagen and having an average pore size of 1 to 30 μm, and then cultured in a serum-supplemented medium for a certain period. Thus, elastic fiber components such as elastin and fibrillin are secreted from fibroblasts, and an elastic fiber tissue having a three-dimensional thickness is formed by further culturing, and the present invention has been completed. It was.

線維芽細胞から弾性線維成分が分泌されるためには、線維芽細胞同士が充分に近接した高密度な状態で培養される必要があるものと考えられる。例えばシャーレ上の平板培養の場合では、このような高密度培養が可能となり、これにより弾性線維組織が形成されていたものと思われる。一方、コラーゲンゲル中の培養や、従来の再生医療に一般的に用いられている孔径の比較的大きなコラーゲンスポンジに線維芽細胞を播種して培養する方法では、いかに培養を続けても線維芽細胞同士が充分に近接した状態にはならず、従って弾性線維組織が形成されないと考えられる。
これに対して、平均孔径が1〜30μmである多孔性基材は、スポンジの性質とフィルムの性質を有するものである。即ち、平均孔径が1〜30μmである多孔性基材に線維芽細胞を播種した場合、フィルム上(シャーレ上)に細胞を播種した場合と同様に、線維芽細胞同士が充分に近接した高密度な状態で培養することができ、弾性線維組織が形成される。一方、細胞自身が分泌する分解酵素により基材が分解されて基材の孔が徐々に大きくなり、播種された線維芽細胞の一部が分解により大きくなった多孔性基材の孔に侵入して三次元的に広がっていくこともできる。更に多孔性基材は、培地成分の透過性に優れることから、高密度に大量に培養されている線維芽細胞に充分に栄養を供給することができる。かくして、培養を継続すると、三次元的な厚みを持った弾性線維組織が形成される。
In order for the elastic fiber component to be secreted from the fibroblasts, it is considered that the fibroblasts need to be cultured in a high density state sufficiently close to each other. For example, in the case of plate culture on a petri dish, such high-density culture is possible, and it seems that an elastic fiber tissue was formed. On the other hand, in the culture method in collagen gel or the method of seeding and culturing fibroblasts on a collagen sponge having a relatively large pore diameter, which is generally used in conventional regenerative medicine, fibroblasts can be used no matter how the culture is continued. It is considered that they are not sufficiently close to each other, and therefore elastic fiber tissue is not formed.
In contrast, a porous substrate having an average pore diameter of 1 to 30 μm has a sponge property and a film property. That is, when fibroblasts are seeded on a porous substrate having an average pore size of 1 to 30 μm, the density is high enough that fibroblasts are sufficiently close to each other as in the case of seeding cells on a film (on a petri dish). Can be cultured in a stable state, and an elastic fiber tissue is formed. On the other hand, the base material is degraded by the degrading enzyme secreted by the cell itself, and the pores of the base material gradually increase, and some of the seeded fibroblasts enter the pores of the porous base material that has become larger due to the degradation. Can spread in three dimensions. Furthermore, since the porous substrate is excellent in the permeability of the medium components, it can sufficiently supply nutrients to fibroblasts cultured in high density and in large quantities. Thus, when the culture is continued, an elastic fiber tissue having a three-dimensional thickness is formed.

本発明の三次元培養弾性線維組織は、コラーゲンからなる平均孔径が1〜30μmである多孔性基材に対して、1×10/cm以上の密度で線維芽細胞を播種する工程1と、上記工程1で得られた線維芽細胞が播種された多孔性基材を血清添加培地中で培養する工程2とを有する製造方法により製造される。 The three-dimensional elastic fiber tissue of the present invention comprises a step 1 of seeding fibroblasts at a density of 1 × 10 3 / cm 2 or more on a porous base material having an average pore diameter of 1 to 30 μm made of collagen. And a step 2 of culturing the porous substrate seeded with the fibroblasts obtained in the above step 1 in a serum-added medium.

上記工程1において用いられる多孔性基材は、コラーゲンからなる。コラーゲンは線維芽細胞の接着性に優れることから、大量の線維芽細胞を接着して高密度に培養することができる。また、コラーゲンからなる多孔性基材は、培養とともに徐々に分解され、その一部が線維芽細胞から分泌された弾性線維成分と置き換わることにより、弾性線維組織が形成される。
また、上記多孔性基材としては線維芽細胞が接着する材料であればよく、コラーゲン以外にも、例えば、ゼラチン等のタンパク質、ヒアルロン酸等の多糖類等の天然高分子;脂肪族ポリエルテル等生体内で分解吸収され得る合成高分子等も用いることができる。
The porous substrate used in the above step 1 is made of collagen. Since collagen is excellent in fibroblast adhesion, it can be cultured with high density by attaching a large amount of fibroblasts. In addition, the porous base material made of collagen is gradually decomposed along with the culture, and a part thereof is replaced with the elastic fiber component secreted from the fibroblasts, thereby forming an elastic fiber tissue.
The porous substrate may be any material to which fibroblasts adhere. For example, in addition to collagen, natural polymers such as proteins such as gelatin and polysaccharides such as hyaluronic acid; Synthetic polymers that can be decomposed and absorbed in the body can also be used.

上記多孔性基材は、平均孔径の下限が1μm、上限が30μmである。1μm未満であると、播種した線維芽細胞が多孔性基材中に侵入することができず、三次元的な厚みを持った弾性線維組織が得られない。ヒト線維芽細胞の長径はおおよそ50〜70μmであるので、基材の孔径が30μm程度を超えると、播種した線維芽細胞の大部分が多孔性基材中に落ち込んでしまい、線維芽細胞の密度が不充分となって弾性線維成分が分泌されない。好ましい下限は5μm、好ましい上限は25μmである。 The above-mentioned porous base material has a lower limit of the average pore diameter of 1 μm and an upper limit of 30 μm. If it is less than 1 μm, the seeded fibroblasts cannot enter the porous substrate, and an elastic fiber tissue having a three-dimensional thickness cannot be obtained. Since the major diameter of human fibroblasts is approximately 50 to 70 μm, when the pore diameter of the substrate exceeds about 30 μm, most of the seeded fibroblasts fall into the porous substrate, and the density of fibroblasts Becomes insufficient and the elastic fiber component is not secreted. A preferred lower limit is 5 μm and a preferred upper limit is 25 μm.

上記多孔性基材の厚さとしては特に限定されないが、好ましい下限は0.1mm、好ましい上限は3mmである。0.1mm未満であると、充分な厚さをもった弾性線維組織が形成されなかったり、移植時の取扱い性等に劣ることがあり、3mmを超えると、播種した線維芽細胞への栄養供給に劣ることがある。 Although it does not specifically limit as thickness of the said porous base material, A preferable minimum is 0.1 mm and a preferable upper limit is 3 mm. If the thickness is less than 0.1 mm, an elastic fiber tissue having a sufficient thickness may not be formed, or the handleability at the time of transplantation may be inferior. If it exceeds 3 mm, nutrition supply to the seeded fibroblasts May be inferior.

上記多孔性基材は、濃度0.5units/mLのコラゲナーゼ水溶液中に37℃、100分間浸漬した後の重量残存率の好ましい下限が40%、好ましい上限が60%である。40%未満であると、線維芽細胞播種後に細胞の分泌する酵素により早期に多孔性基材が分解してしまい、三次元構造を形成する前に細胞の足場が存在しなくなってしまうこととなり組織の構築が不可能となることがある。60%を超えると、線維芽細胞が培養基材の孔に侵入することができず、シャーレ上で培養するのと同様に単層の細胞シートとなってしまうことがある。このような多孔性基材の分解性は、架橋処理を行う際の温度や時間を工夫することにより制御することが可能になる。
なお、本明細書において重量残存率とは、コラゲナーゼ水溶液に浸漬後に残存した多孔性基材をフィルターを用いて濾取し、これを充分に乾燥させた後に測定した重量を、コラゲナーゼ水溶液浸漬前に予め測定しておいた多孔性基材の重量に対する割合として算出したものである。
The porous base material has a preferred lower limit of 40% and a preferred upper limit of 60% of the residual weight after being immersed in an aqueous collagenase solution with a concentration of 0.5 units / mL at 37 ° C. for 100 minutes. If it is less than 40%, the porous substrate is quickly decomposed by the enzyme secreted by the cells after seeding of fibroblasts, and the cell scaffold is lost before the three-dimensional structure is formed. May not be possible. If it exceeds 60%, the fibroblasts cannot penetrate into the pores of the culture substrate, and may become a single-layer cell sheet as in the case of culturing on a petri dish. The decomposability of such a porous substrate can be controlled by devising the temperature and time when performing the crosslinking treatment.
In the present specification, the weight residual ratio means the weight measured after the porous substrate remaining after being immersed in the collagenase aqueous solution is filtered using a filter and sufficiently dried, before the collagenase aqueous solution is immersed. It is calculated as a ratio to the weight of the porous substrate measured in advance.

上記多孔性基材を製造する方法としては特に限定されず、例えば、コラーゲン水溶液に脂溶性有機溶媒を添加し、ホモジナイズして発泡させた後、真空凍結乾燥して得る方法等により得たコラーゲンスポンジを用いてもよく、また、このようにして得られたコラーゲンスポンジを更にプレスして孔径を調整したものを用いてもよい。 The method for producing the porous substrate is not particularly limited. For example, a collagen sponge obtained by adding a fat-soluble organic solvent to a collagen aqueous solution, homogenizing and foaming, and then vacuum lyophilizing the sponge. Alternatively, a collagen sponge obtained in this way may be further pressed to adjust the pore diameter.

上記工程1においては、上記多孔性基材に対して線維芽細胞を播種する。播種密度の下限は1×10/cmである。1×10/cm未満であると、線維芽細胞の密度が不充分となって弾性線維成分が分泌されない。好ましい下限は1×10/cmである。播種密度の上限については特に限定されないが、1×10/cmを超えて播種しても、上記多孔性基材に接着できない細胞が増えるばかりで、実質的な効果は少ない。 In the said process 1, a fibroblast is seed | inoculated with respect to the said porous base material. The lower limit of the seeding density is 1 × 10 3 / cm 2 . If it is less than 1 × 10 3 / cm 2 , the density of fibroblasts is insufficient and elastic fiber components are not secreted. A preferred lower limit is 1 × 10 4 / cm 2 . Although there is no particular limitation on the upper limit of the seeding density, seeding exceeding 1 × 10 7 / cm 2 only increases the number of cells that cannot adhere to the porous substrate and has little substantial effect.

上記工程2では、工程1で得られた線維芽細胞が播種された多孔性基材を血清添加培地中で培養する。
上記血清添加培地としては特に限定されず、例えば、MEM、DMEM等の一般的な培養液に、1〜10重量%程度のウシ胎児血清を添加したもの等が挙げられる。
培養期間については、多孔性基材の孔径、細胞の播種密度、血清添加培地の種類等により異なり特に限定されないが、1〜4週間程度の期間培養することにより弾性線維組織が形成される。
In step 2, the porous substrate seeded with the fibroblasts obtained in step 1 is cultured in a serum-added medium.
The serum-added medium is not particularly limited, and examples thereof include those obtained by adding about 1 to 10% by weight of fetal bovine serum to a common culture solution such as MEM and DMEM.
The culture period varies depending on the pore size of the porous substrate, the cell seeding density, the type of the serum-added medium, and the like, but is not particularly limited, but an elastic fiber tissue is formed by culturing for about 1 to 4 weeks.

このような製造方法により製造された本発明の三次元培養弾性線維組織は、少なくともエラスチン、フィブリリン等の弾性線維成分を含有するものである。エラスチン、フィブリリン等の存在は、免疫染色法等により確認することができる。
本発明の三次元培養弾性線維組織を製造する製造方法もまた、本発明の1つである。
The three-dimensional cultured elastic fiber tissue of the present invention manufactured by such a manufacturing method contains at least elastic fiber components such as elastin and fibrillin. Presence of elastin, fibrillin, etc. can be confirmed by immunostaining.
The production method for producing the three-dimensional cultured elastic fiber tissue of the present invention is also one aspect of the present invention.

本発明の三次元培養弾性線維組織の厚さの下限は5μmである。5μm未満であると、移植の際に組織としての強度が不足し取り扱いが困難であり、移植しても柔軟性を付与するという弾性線維組織本来の性能を発揮することができない。好ましい下限は10μm、より好ましい下限は30μmである。 The lower limit of the thickness of the three-dimensional cultured elastic fiber tissue of the present invention is 5 μm. When the thickness is less than 5 μm, the strength as a tissue is insufficient at the time of transplantation and handling is difficult, and even if transplanted, the inherent performance of an elastic fiber tissue that imparts flexibility cannot be exhibited. A preferred lower limit is 10 μm, and a more preferred lower limit is 30 μm.

本発明の三次元培養弾性線維組織は、強度を高める目的で生体吸収性材料からなる補強材を複合化させてもよい。
上記補強材としては、ポリ−L−ラクチド、ポリグリコリド、L−ラクチド−ε−カプロラクトン共重合体等の合成生体吸収性高分子、特に脂肪族ポリエステルやコラーゲン、ゼラチン等の天然高分子からなる不織布、スポンジ等が挙げられる。
The three-dimensional cultured elastic fiber tissue of the present invention may be combined with a reinforcing material made of a bioabsorbable material for the purpose of increasing strength.
Non-woven fabric made of synthetic bioabsorbable polymers such as poly-L-lactide, polyglycolide, L-lactide-ε-caprolactone copolymer, especially natural polymers such as aliphatic polyester, collagen and gelatin as the reinforcing material And sponge.

本発明の三次元培養弾性線維組織は、エラスチン、フィブリリン等の弾性線維成分を含みながら、三次元的な厚みを有するものである。これにより移植等の際にも充分な強度を有し、取扱い性に優れる。更に、生体に移植した後には、組織に柔軟性を付与するという弾性線維組織本来の性能を発揮することができる。 The three-dimensional cultured elastic fiber tissue of the present invention has a three-dimensional thickness while containing elastic fiber components such as elastin and fibrillin. Thereby, it has sufficient strength even during transplantation and the like, and is excellent in handleability. Furthermore, after transplanting into a living body, the inherent performance of elastic fiber tissue, which imparts flexibility to the tissue, can be exhibited.

本発明によれば、三次元的な厚みを有し、エラスチン、フィブリリン等の弾性線維組織に不可欠な弾性線維成分が発現している三次元培養弾性線維組織、及び、該三次元培養弾性線維組織の製造方法を提供することができる。 According to the present invention, a three-dimensional cultured elastic fiber tissue having a three-dimensional thickness and expressing an elastic fiber component essential for the elastic fiber tissue such as elastin and fibrillin, and the three-dimensional cultured elastic fiber tissue The manufacturing method of can be provided.

以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(1)多孔性基材の調製
0.3%水溶液(pH3)のTypeIコラーゲンを、15%エタノールで3倍希釈し、0.1%コラーゲン、10%エタノール水溶液とした。更にこの溶液を直径9cmのシャーレに15g流し込み、−135℃で凍結し、真空度:0.1、乾燥温度:40℃、乾燥時間:24時間の条件で凍結乾燥を行い、コラーゲンスポンジを得た。その後、真空下で105℃、24時間熱架橋を行うことにより、多孔性基材を得た。
得られた多孔性基材の平均孔径は15μm、厚さは1mmであった。
Example 1
(1) Preparation of porous substrate Type I collagen in a 0.3% aqueous solution (pH 3) was diluted 3-fold with 15% ethanol to obtain a 0.1% collagen and 10% ethanol aqueous solution. Further, 15 g of this solution was poured into a petri dish having a diameter of 9 cm, frozen at −135 ° C., and freeze-dried under the conditions of vacuum degree: 0.1, drying temperature: 40 ° C., drying time: 24 hours to obtain a collagen sponge. . Then, the porous base material was obtained by performing thermal crosslinking at 105 degreeC for 24 hours under vacuum.
The obtained porous substrate had an average pore diameter of 15 μm and a thickness of 1 mm.

得られた多孔性基材の酵素分解試験を以下の手順により行った。
トリスバッファー(pH7.4)にコラゲナーゼを0.5units/mLとなるように加えた溶液に、作製した多孔性基材を37℃にて浸漬させた。一定時間後に多孔性基材を取り出して蒸留水で洗浄して乾燥させた。乾燥させた多孔性基材の重量を測定し、試験前の重量と比較することにより重量残存率を計算した。
試験結果を図5に示した。得られた多孔性基材は本試験条件においては直線的に重量減少が観察され、100分後の重量残存率は約50%であった。
The resulting porous substrate was subjected to an enzymatic degradation test according to the following procedure.
The produced porous substrate was immersed in a solution obtained by adding collagenase to Tris buffer (pH 7.4) so as to be 0.5 units / mL at 37 ° C. After a certain time, the porous substrate was taken out, washed with distilled water and dried. The weight of the dried porous substrate was measured, and the weight residual ratio was calculated by comparing with the weight before the test.
The test results are shown in FIG. Under the present test conditions, the obtained porous substrate showed a linear decrease in weight, and the residual weight ratio after 100 minutes was about 50%.

(2)細胞の播種と培養
得られた多孔性基材上に1×10/cmの播種密度となるようにヒト包皮由来線維芽細胞を播種し、その後10%ウシ血清添加DMEM/F12培地中で培養した。培養開始後4週間培養を続けた。
(2) Cell seeding and culture Human foreskin-derived fibroblasts are seeded on the resulting porous substrate to a seeding density of 1 × 10 5 / cm 2 , and then 10% bovine serum-added DMEM / F12 Cultured in medium. The culture was continued for 4 weeks after the start of the culture.

(3)弾性線維組織の検出
培養開始後4週間後に培養組織をホルマリン固定し、パラフィンブロックを作製した。得られたパラフィン切片を用いて、免疫染色法によりエラスチン、フィブリリン1の存在を確認した。各々の免疫染色像を図1、2に示した。図1、2より、弾性線維組織が約50μmの厚さで形成されていることが確認された。
(3) Detection of elastic fiber tissue Four weeks after the start of the culture, the cultured tissue was fixed in formalin to prepare a paraffin block. The presence of elastin and fibrillin 1 was confirmed by immunostaining using the obtained paraffin sections. The respective immunostained images are shown in FIGS. 1 and 2, it was confirmed that the elastic fiber tissue was formed with a thickness of about 50 μm.

(比較例1)
(1)多孔性基材の調製
0.3%水溶液(pH3)のTypeIコラーゲンをホモジナイザーで攪拌した後に、−40℃にて凍結した。更に真空度:0.1、乾燥温度:40℃、乾燥時間:24時間の条件で凍結乾燥を行い、コラーゲンスポンジを得た。その後、真空下で105℃、24時間熱架橋を行い、更に0.2%グルタルアルデヒド水溶液中で24時間化学架橋反応を行った。得られた架橋コラーゲンスポンジを水で充分に洗浄してグルタルアルデヒドを除去した後に15%エタノール中に浸漬し、−135℃にて凍結した。更に真空度:0.1、乾燥温度:40℃、乾燥時間:24時間の条件で凍結乾燥を行い、多孔質基材を得た。
得られた多孔性基材の平均孔径は90μm、厚さは3mmであった。
(Comparative Example 1)
(1) Preparation of porous substrate Type I collagen in 0.3% aqueous solution (pH 3) was stirred with a homogenizer and then frozen at -40 ° C. Furthermore, freeze-drying was performed under the conditions of vacuum degree: 0.1, drying temperature: 40 ° C., drying time: 24 hours, and a collagen sponge was obtained. Thereafter, thermal crosslinking was performed at 105 ° C. for 24 hours under vacuum, and further, chemical crosslinking reaction was performed in a 0.2% glutaraldehyde aqueous solution for 24 hours. The obtained cross-linked collagen sponge was sufficiently washed with water to remove glutaraldehyde, and then immersed in 15% ethanol and frozen at -135 ° C. Furthermore, freeze-drying was performed under the conditions of vacuum degree: 0.1, drying temperature: 40 ° C., drying time: 24 hours, and a porous substrate was obtained.
The obtained porous substrate had an average pore diameter of 90 μm and a thickness of 3 mm.

(2)細胞の播種と培養
得られた多孔性基材上に1×10/cmの播種密度となるようにヒト包皮由来線維芽細胞を播種し、その後10%ウシ血清添加DMEM/F12培地中で培養した。培養開始後4週間培養を続けた。
(2) Cell seeding and culture Human foreskin-derived fibroblasts are seeded on the resulting porous substrate to a seeding density of 1 × 10 5 / cm 2 , and then 10% bovine serum-added DMEM / F12 Cultured in medium. The culture was continued for 4 weeks after the start of the culture.

(3)弾性線維組織の検出
培養開始後4週間後に培養組織をホルマリン固定し、パラフィンブロックを作製した。得られたパラフィン切片を用いて、免疫染色法によりエラスチン、フィブリリン1の存在を確認した。各々の免疫染色像を図3、4に示した。図3、4より、本比較例においては、弾性線維組織は形成されていないことを確認した。
(3) Detection of elastic fiber tissue Four weeks after the start of the culture, the cultured tissue was fixed in formalin to prepare a paraffin block. The presence of elastin and fibrillin 1 was confirmed by immunostaining using the obtained paraffin sections. The respective immunostained images are shown in FIGS. 3 and 4, it was confirmed that no elastic fiber tissue was formed in this comparative example.

本発明によれば、三次元的な厚みを有し、エラスチン、フィブリリン等の弾性線維組織に不可欠な弾性線維成分が発現している三次元培養弾性線維組織、及び、該三次元培養弾性線維組織の製造方法を提供することができる。 According to the present invention, a three-dimensional cultured elastic fiber tissue having a three-dimensional thickness and expressing an elastic fiber component essential for the elastic fiber tissue such as elastin and fibrillin, and the three-dimensional cultured elastic fiber tissue The manufacturing method of can be provided.

実施例1で作製した組織のエラスチン染色像である。2 is an elastin-stained image of the tissue prepared in Example 1. 実施例1で作製した組織のフィブリリン1染色像である。2 is a fibrillin 1 stained image of the tissue prepared in Example 1. FIG. 比較例1で作製した組織のエラスチン染色像である。2 is an elastin-stained image of the tissue prepared in Comparative Example 1. 比較例1で作製した組織のフィブリリン1染色像である。2 is a fibrillin 1 stained image of a tissue prepared in Comparative Example 1. 実施例1で作製した多孔性基材の酵素分解試験の結果を示すグラフである。2 is a graph showing the results of an enzymatic degradation test of a porous substrate produced in Example 1. FIG.

Claims (2)

熱架橋されたコラーゲンからなる平均孔径が1〜30μmである多孔性基材に対して、1×10/cm以上の密度で線維芽細胞のみを播種する工程1と、前記工程1で得られた線維芽細胞が播種された多孔性基材を血清添加培地中で培養する工程2とを有する製造方法により製造される三次元培養弾性線維組織であって、
前記多孔性基材は、濃度0.5units/mLのコラゲナーゼ水溶液中に37℃、100分間浸漬した後の重量残存率が40〜60%であり、
厚さが5μm以上であり、エラスチン及びフィブリリンを含有する
ことを特徴とする三次元培養弾性線維組織。
Obtained in Step 1 in which only a fibroblast is seeded at a density of 1 × 10 3 / cm 2 or more with respect to a porous substrate having an average pore diameter of 1 to 30 μm made of thermally cross-linked collagen, and obtained in Step 1 above. A three-dimensional cultured elastic fiber tissue produced by a production method comprising culturing a porous substrate seeded with the obtained fibroblasts in a serum-added medium,
The porous substrate has a residual weight ratio of 40-60% after being immersed in an aqueous collagenase solution having a concentration of 0.5 units / mL at 37 ° C. for 100 minutes,
A three-dimensional cultured elastic fiber tissue having a thickness of 5 μm or more and containing elastin and fibrillin.
熱架橋されたコラーゲンからなる平均孔径が1〜30μmである多孔性基材に対して、1×10/cm以上の密度で線維芽細胞のみを播種する工程1と、
前記工程1で得られた線維芽細胞が播種された多孔性基材を血清添加培地中で培養する工程2とを有する三次元培養弾性線維組織の製造方法であって、
前記多孔性基材は、濃度0.5units/mLのコラゲナーゼ水溶液中に37℃、100分間浸漬した後の重量残存率が40〜60%である
ことを特徴とする三次元培養弾性線維組織の製造方法。
Step 1 of seeding only fibroblasts at a density of 1 × 10 3 / cm 2 or more with respect to a porous substrate having an average pore diameter of 1 to 30 μm made of heat-crosslinked collagen;
A step of culturing the porous substrate seeded with fibroblasts obtained in step 1 in a serum-added medium, and a method for producing a three-dimensional cultured elastic fiber tissue,
The three-dimensional culture elasticity characterized in that the porous substrate has a residual weight ratio of 40-60% after being immersed in an aqueous collagenase solution having a concentration of 0.5 units / mL at 37C for 100 minutes. A method for producing fibrous tissue.
JP2007291136A 2007-11-08 2007-11-08 Three-dimensional cultured elastic fiber tissue and method for producing three-dimensional cultured elastic fiber tissue Expired - Fee Related JP5224440B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007291136A JP5224440B2 (en) 2007-11-08 2007-11-08 Three-dimensional cultured elastic fiber tissue and method for producing three-dimensional cultured elastic fiber tissue
PCT/JP2008/070126 WO2009060864A1 (en) 2007-11-08 2008-11-05 Three-dimensionally cultured elastic fiber tissue and method of producing three-dimensionally cultured elastic fiber tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291136A JP5224440B2 (en) 2007-11-08 2007-11-08 Three-dimensional cultured elastic fiber tissue and method for producing three-dimensional cultured elastic fiber tissue

Publications (2)

Publication Number Publication Date
JP2009112277A JP2009112277A (en) 2009-05-28
JP5224440B2 true JP5224440B2 (en) 2013-07-03

Family

ID=40625752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291136A Expired - Fee Related JP5224440B2 (en) 2007-11-08 2007-11-08 Three-dimensional cultured elastic fiber tissue and method for producing three-dimensional cultured elastic fiber tissue

Country Status (2)

Country Link
JP (1) JP5224440B2 (en)
WO (1) WO2009060864A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252538B2 (en) * 2007-11-09 2013-07-31 グンゼ株式会社 Method for producing cultured blood vessel having elastic fiber tissue and cultured blood vessel having elastic fiber tissue
JP6029102B2 (en) * 2012-11-14 2016-11-24 グンゼ株式会社 Method for producing three-dimensional cultured elastic fiber tissue
RU2019116084A (en) * 2016-11-04 2020-11-24 Аллерган Фармасьютикалз Интернэшнл Лимитед BIOSYNTHETIC DEVICES

Also Published As

Publication number Publication date
WO2009060864A1 (en) 2009-05-14
JP2009112277A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
Chaudhuri et al. Biomaterials and cells for cardiac tissue engineering: current choices
Moschouris et al. The application of cell sheet engineering in the vascularization of tissue regeneration
Huyer et al. Biomaterial based cardiac tissue engineering and its applications
Park et al. The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs
Atala Tissue engineering of human bladder
Tang et al. Recent development of temperature-responsive surfaces and their application for cell sheet engineering
Kinikoglu et al. Tissue engineering of oral mucosa: a shared concept with skin
Mazzola et al. Toward cardiac regeneration: combination of pluripotent stem cell-based therapies and bioengineering strategies
JP2003010309A (en) Transplant body for regeneration of cartilage tissue
US10106776B2 (en) Energetic three-dimensional artificial cardiac patch and uses thereof
CA2874527C (en) Collagenous foam materials
CN109793934B (en) Tissue-engineered myocardial patch and preparation and application thereof
JP5224440B2 (en) Three-dimensional cultured elastic fiber tissue and method for producing three-dimensional cultured elastic fiber tissue
CN107349456B (en) Preparation method of collagen sponge with pore size self-adaptive adjusting capacity and collagen sponge
Sharma An examination of regenerative medicine-based strategies for the urinary bladder
CN101204592B (en) Process for fabricating engineering esophagus imitating biochemistry tissue
KR20210042827A (en) A Novel Porous Scaffold and Methods for Preparing the Same
Vu et al. Biomaterials and cells for cardiac tissue engineering
US20150297795A1 (en) Carrier for transferring cell sheet for transplantation
JP5360869B2 (en) Method for producing cultured skin and cultured skin having elastic fiber tissue layer
JP2005261292A (en) Cell sheet and method for producing the same
Papuga et al. Different types of biotechnological wound coverages created with the application of alive human cells
Pushp et al. Cardiac tissue engineering: A role for natural biomaterials
JP6029102B2 (en) Method for producing three-dimensional cultured elastic fiber tissue
JP3686068B2 (en) Separation and decellularization method of skin, decellularized dermal matrix and production method thereof, and composite cultured skin using decellularized dermal matrix

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

R150 Certificate of patent or registration of utility model

Ref document number: 5224440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees