JP5224338B2 - Optical pulse train converter, optical pulse train generator, and optical pulse train converter - Google Patents

Optical pulse train converter, optical pulse train generator, and optical pulse train converter Download PDF

Info

Publication number
JP5224338B2
JP5224338B2 JP2008105002A JP2008105002A JP5224338B2 JP 5224338 B2 JP5224338 B2 JP 5224338B2 JP 2008105002 A JP2008105002 A JP 2008105002A JP 2008105002 A JP2008105002 A JP 2008105002A JP 5224338 B2 JP5224338 B2 JP 5224338B2
Authority
JP
Japan
Prior art keywords
optical pulse
pulse train
phase modulation
repetition frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008105002A
Other languages
Japanese (ja)
Other versions
JP2009258235A (en
Inventor
崇 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2008105002A priority Critical patent/JP5224338B2/en
Publication of JP2009258235A publication Critical patent/JP2009258235A/en
Application granted granted Critical
Publication of JP5224338B2 publication Critical patent/JP5224338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光パルス列変換装置、光パルス列発生装置及び光パルス列変換方法に関する。   The present invention relates to an optical pulse train converter, an optical pulse train generator, and an optical pulse train conversion method.

従来、時間幅が数ピコ秒(ps)の光パルス列は、ビットレートが数十Gbit/s以上の超高速通信に必須である。時間幅が数ピコ秒の光パルス列を生成する方法としては、モードロックレーザを用いて直接発生する方法や、パルス圧縮を適用する方法(例えば、非特許文献1参照)が知られているが、光増幅機構が必要であり、光パルス発生器としての構造が複雑になるという欠点がある。これに対して、電気信号を印加した光強度変調器に連続光を入力し、光の振幅を変調することで光パルスを生成する方法は、簡潔かつ安定である。実際、リチウムナイオベート(LN:LithiumNiobate)結晶をマッハツェンダー干渉計に組み込んだLN強度変調器や、電界吸収型強度変調器(EAM:Electro Absorption Modulator)に40GHzの正弦波電気信号を印加し、パルス幅が5〜10psの光パルス列を得る方法がよく知られている。   Conventionally, an optical pulse train with a time width of several picoseconds (ps) is indispensable for ultrahigh-speed communication with a bit rate of several tens of Gbit / s or more. As a method for generating an optical pulse train having a time width of several picoseconds, a method that directly generates using a mode-locked laser and a method that applies pulse compression (for example, see Non-Patent Document 1) are known. There is a disadvantage that an optical amplification mechanism is required and the structure as an optical pulse generator is complicated. On the other hand, a method of generating a light pulse by inputting continuous light to a light intensity modulator to which an electric signal is applied and modulating the amplitude of the light is simple and stable. Actually, a 40 GHz sine wave electrical signal is applied to an LN intensity modulator incorporating a lithium niobate (LN) crystal into a Mach-Zehnder interferometer or an electroabsorption modulator (EAM), and a pulse is applied. A method for obtaining an optical pulse train having a width of 5 to 10 ps is well known.

一方、データを付加した信号を生成する上で、ビットレートとして現在最も普及している値は、OC-192/STM-64などの規格に代表される、約10Gbit/sである。ところが、LN強度変調器やEAMに10GHzの正弦波電気信号を印加しても、得られる光パルスの時間幅は一般に十数psから数十psであり、幅が数psの光パルスを得ることはできない。これは、強度変調器を用いた光パルス発生においては、印加する電気信号の時間幅と、得られる光パルスの時間幅との間に一定の割合があるためで、10GHzの正弦波電気信号入力に対して、幅が数psの光パルスを直接発生させることは原理的に難しい。ただし繰り返し周波数が10GHzであり、帯域が40GHz相当で、十数psの時間幅を持つパルス形状の電気信号を強度変調器に印加すれば、繰り返し周波数が10GHzで時間幅が数psの光パルスを直接発生させることは可能であるが、そのような電気信号を発生させることは容易ではなく、高速で複雑な電気信号処理器を必要とする。以上の理由により、繰り返し周波数が10GHzで、幅が数psの光パルス列を容易に発生させる技術が求められている。   On the other hand, when generating a signal with added data, the most popular value as a bit rate at present is about 10 Gbit / s typified by standards such as OC-192 / STM-64. However, even when a 10 GHz sine wave electrical signal is applied to an LN intensity modulator or EAM, the time width of the obtained optical pulse is generally from a dozen ps to a few tens ps, and an optical pulse having a width of several ps is obtained. I can't. This is because, in optical pulse generation using an intensity modulator, there is a fixed ratio between the time width of the applied electrical signal and the time width of the obtained optical pulse. On the other hand, it is theoretically difficult to directly generate an optical pulse with a width of several ps. However, if a pulse-shaped electrical signal with a repetition frequency of 10 GHz, a bandwidth equivalent to 40 GHz, and a time width of several tens of ps is applied to the intensity modulator, an optical pulse with a repetition frequency of 10 GHz and a time width of several ps can be obtained. Although it can be generated directly, it is not easy to generate such an electrical signal, and a high-speed and complicated electrical signal processor is required. For the above reasons, a technique for easily generating an optical pulse train having a repetition frequency of 10 GHz and a width of several ps is required.

繰り返し周波数が10GHzで時間幅が数psの光パルス列を得る方法として、高い周波数の正弦波電気信号を強度変調器に印加して短パルス列を発生させた後、光パルスの繰り返し周波数を下げる手法が考えられる。例えば、40GHzの正弦波電気信号をLN強度変調器もしくはEAMに印加して、繰り返し周波数が40GHzかつ時間幅が数psの光パルスを発生した後、時間的に隣接した四つの光パルスのうち三つを強度変調により間引くことで、10GHz繰り返しの光パルス列を得ることが可能である。
T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser & Photonics Rev., Vol.2, p.83 (2008).
As a method of obtaining an optical pulse train with a repetition frequency of 10 GHz and a time width of several ps, a method of applying a high frequency sine wave electric signal to the intensity modulator to generate a short pulse train and then lowering the optical pulse repetition frequency is used. Conceivable. For example, a 40 GHz sinusoidal electric signal is applied to an LN intensity modulator or EAM to generate an optical pulse having a repetition frequency of 40 GHz and a time width of several ps, and then three of four temporally adjacent optical pulses. It is possible to obtain an optical pulse train of 10 GHz repetition by thinning out one by intensity modulation.
T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser & Photonics Rev., Vol.2, p.83 (2008).

しかし、従来の高い繰り返し周波数で短パルス列を発生し、強度変調により光パルスを間引くことで繰り返し周波数を下げる方法については、光パルス列に対して本質的に大きな損失を伴っていた。例えば、40GHzの繰り返し周波数を10GHzとなるように間引くと、四つのうち三つの光パルスを消去することになるため、損失は6dB(75%)である。さらにこの場合、光パルスを間引くため強度変調器に印加する電気信号として、繰り返し周波数が10GHzで、幅が25ps以下の電気パルス列を発生する高速電気信号処理器が必要であった。   However, the conventional method of generating a short pulse train at a high repetition frequency and reducing the repetition frequency by thinning out the optical pulse by intensity modulation is accompanied by a substantial loss with respect to the optical pulse train. For example, if the repetition frequency of 40 GHz is thinned out to 10 GHz, three of the four optical pulses are erased, so the loss is 6 dB (75%). Furthermore, in this case, a high-speed electric signal processor that generates an electric pulse train having a repetition frequency of 10 GHz and a width of 25 ps or less as an electric signal to be applied to the intensity modulator for thinning out the optical pulses is required.

本発明の課題は、本質的に無損失で繰り返し周波数を低い値に変換した光パルス列を出力することである。   An object of the present invention is to output an optical pulse train which is essentially lossless and whose repetition frequency is converted to a low value.

上記課題を解決するために、本発明に係る光パルス列変換装置は、
位相変調信号に応じて、入力される光パルス列に位相変調を施す位相変調部と、
前記位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えて、繰り返し周波数が減じられた光パルス列を出力する群速度分散部と、を備える。
In order to solve the above-described problems, an optical pulse train converter according to the present invention includes:
A phase modulation unit that performs phase modulation on the input optical pulse train in accordance with the phase modulation signal;
A group velocity dispersion unit that gives the group pulse dispersion necessary for the partial temporal Talbot effect to the optical pulse train subjected to the phase modulation, and outputs an optical pulse train with a reduced repetition frequency.

好ましくは、前記位相変調は、前記減じられた繰り返し周波数を持つ光パルス列に対して、前記群速度分散と絶対値が同じで符号が逆の群速度分散を与えた場合に生じる光パルス列の各光パルスの位相への変調である。   Preferably, the phase modulation is performed for each light of the optical pulse train generated when the optical pulse train having the reduced repetition frequency is given the group velocity dispersion having the same absolute value and the opposite sign as the group velocity dispersion. Modulation to the phase of the pulse.

好ましくは、前記群速度分散部は、分散補償ファイバである。   Preferably, the group velocity dispersion unit is a dispersion compensating fiber.

好ましくは、前記位相変調信号は、立ち上がり時間が前記入力される光パルスの間隔と同程度以下の矩形波からなる。 Preferably, the phase modulation signal is a rectangular wave whose rise time is approximately equal to or less than the interval between the input optical pulses .

好ましくは、前記入力される光パルス列の繰り返し周波数が2Δfであり、
前記群速度分散は、大きさが 1/(4πΔf2) 又は-1/(4πΔf2)であり、
前記位相変調信号は、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπ/2である。
Preferably, the repetition frequency of the input optical pulse train is 2Δf,
The group velocity dispersion has a magnitude of 1 / (4πΔf 2 ) or -1 / (4πΔf 2 ),
The phase modulation signal has a repetition frequency of Δf, a minimum phase modulation degree of 0, and a maximum value of π / 2.

好ましくは、前記位相変調信号は、前記矩形波からなる位相変調信号を複数組み合わせたものである。
好ましくは、前記入力される光パルス列の繰り返し周波数が4Δfであり、
前記群速度分散は、大きさが1/(8πΔf2)であり、
前記位相変調信号は、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値が3π/4である矩形波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである矩形波信号と、の合波信号である。
Preferably, the phase modulation signal is a combination of a plurality of phase modulation signals composed of the rectangular waves.
Preferably, the repetition frequency of the input optical pulse train is 4Δf,
The group velocity dispersion has a magnitude of 1 / (8πΔf 2 ),
The phase modulation signal has a repetition frequency of 2Δf, a rectangular wave signal having a minimum phase modulation degree of 0 and a maximum value of 3π / 4, and a repetition frequency of Δf and a minimum value of the phase modulation degree. This is a combined signal with a rectangular wave signal having a maximum value of 0 and π.

好ましくは、前記位相変調信号は、正弦波である。
好ましくは、前記位相変調信号は、複数の正弦波が組み合わされてなる。
好ましくは、前記入力される光パルス列の繰り返し周波数が4Δfであり、
前記群速度分散は、大きさが1/(8πΔf2)であり、
前記位相変調信号は、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値がπ/4である正弦波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである正弦波信号と、の合波信号である。
好ましくは、入力光パルス列の平均パワーに対し、出力される光パルス列の平均パワーが保たれている。
Preferably, the phase modulation signal is a sine wave.
Preferably, the phase modulation signal is a combination of a plurality of sine waves.
Preferably, the repetition frequency of the input optical pulse train is 4Δf,
The group velocity dispersion has a magnitude of 1 / (8πΔf 2 ),
The phase modulation signal has a repetition frequency of 2Δf, a phase modulation degree minimum value of 0 and a maximum value of π / 4, a repetition frequency of Δf, and a phase modulation degree minimum value of This is a combined signal with a sine wave signal having a maximum value of 0 and π.
Preferably, the average power of the output optical pulse train is maintained with respect to the average power of the input optical pulse train.

本発明に係る光パルス列発生装置は、
前記光パルス列変換装置と、
短パルスの光パルス列を発生して前記位相変調部に出力する光パルス列発生部と、
前記位相変調信号を発生して前記位相変調部に出力する位相変調信号発生部と、を備える。
好ましくは、前記光パルス列発生部は、
連続光を発生するレーザ光源と、
電気信号を印加することで該連続光を強度変調する強度変調部と、を備える。
The optical pulse train generator according to the present invention is
The optical pulse train converter;
An optical pulse train generator that generates an optical pulse train of a short pulse and outputs the optical pulse train to the phase modulator;
A phase modulation signal generation unit that generates the phase modulation signal and outputs the phase modulation signal to the phase modulation unit.
Preferably, the optical pulse train generator is
A laser light source that generates continuous light;
An intensity modulation unit that modulates the intensity of the continuous light by applying an electric signal.

本発明に係る光パルス列変換方法は、
位相変調信号に応じて、入力される光パルス列に位相変調を施す工程と、
前記位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えて、繰り返し周波数が減じられた光パルス列を出力する工程と、を含む。
An optical pulse train conversion method according to the present invention includes:
Applying phase modulation to the input optical pulse train in accordance with the phase modulation signal;
And applying a group velocity dispersion necessary for a partial temporal Talbot effect to the optical pulse train subjected to the phase modulation, and outputting an optical pulse train with a reduced repetition frequency.

本発明によれば、本質的に無損失で繰り返し周波数を低い値に変換した光パルス列を出力できる。   According to the present invention, it is possible to output an optical pulse train which is essentially lossless and whose repetition frequency is converted to a low value.

以下、図面を参照して本発明に係る実施の形態を説明する。但し、本発明は図示例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the illustrated examples.

本実施の形態では、光パルス列を発生し、その光パルス列に位相変調を施し、さらに群速度分散を与えることにより、本質的に無損失で、繰り返し周波数を減じて光パルス列を出力する光パルス列発生装置1及びその光パルス列発生方法を提案する。   In this embodiment, an optical pulse train is generated that generates an optical pulse train, performs phase modulation on the optical pulse train, and further gives group velocity dispersion, thereby essentially reducing the repetition frequency and outputting the optical pulse train with no loss. The apparatus 1 and its optical pulse train generation method are proposed.

先ず、図1を参照して本実施の形態の装置構成を説明する。図1に、本実施の形態の光パルス列発生装置1の構成を示す。なお、図1において、光信号が伝搬される光経路を太線で表し、電気信号が伝搬される電気経路を細線で表す。また、光パルス列発生装置1における光経路は、光ファイバ等により構成され、電気経路が導線等により構成される。   First, the apparatus configuration of the present embodiment will be described with reference to FIG. FIG. 1 shows a configuration of an optical pulse train generator 1 according to the present embodiment. In FIG. 1, an optical path through which an optical signal is propagated is represented by a bold line, and an electrical path through which an electrical signal is propagated is represented by a thin line. Moreover, the optical path in the optical pulse train generator 1 is configured by an optical fiber or the like, and the electrical path is configured by a conducting wire or the like.

図1に示すように、光パルス列発生装置1は、光パルス列発生部10と、光パルス列変換装置20と、位相変調信号発生部30と、を備えて構成される。光パルス列発生部10は、レーザ光源11と、強度変調部12と、強度変調信号発生部13と、を備えて構成される。光パルス列変換装置20は、位相変調部21と、群速度分散部22と、を備えて構成される。   As shown in FIG. 1, the optical pulse train generator 1 includes an optical pulse train generator 10, an optical pulse train converter 20, and a phase modulation signal generator 30. The optical pulse train generator 10 includes a laser light source 11, an intensity modulator 12, and an intensity modulation signal generator 13. The optical pulse train conversion device 20 includes a phase modulation unit 21 and a group velocity dispersion unit 22.

光パルス列発生部10は、繰り返し周波数が高く短パルス(パルス幅(時間幅)が短い光パルス)の光パルス列を発生して出力する。また、光パルス列発生部10から出力される光パルス列は、パルスごとで位相がそろっているものとする。   The optical pulse train generator 10 generates and outputs an optical pulse train having a high repetition frequency and a short pulse (an optical pulse having a short pulse width (time width)). In addition, it is assumed that the optical pulse train output from the optical pulse train generator 10 has the same phase for each pulse.

レーザ光源11は、連続(CW:Continuous Wave)光を発生するレーザ光源である。レーザ光源11には、DFB−LD(Distributed Feedback-LASER Diode)等が用いられる。強度変調信号発生部13は、強度変調部12の強度変調用の電気信号(強度変調信号)を発生して出力する。強度変調部12は、レーザ光源11から出力された連続光と、強度変調信号発生部13から出力された強度変調信号とが入力され、その強度変調信号に応じて、連続光を繰り返し周波数の高い短パルスの光パルス列に変換して出力する。強度変調部12には、LN強度変調器やEAM等が用いられる。例えば、強度変調信号発生部13が発生する強度変調信号の繰り返し周波数が40GHzである場合に、強度変調部12は、繰り返し周波数が40GHzの光パルス列を出力する。   The laser light source 11 is a laser light source that generates continuous wave (CW) light. For the laser light source 11, a DFB-LD (Distributed Feedback-LASER Diode) or the like is used. The intensity modulation signal generator 13 generates and outputs an electric signal (intensity modulation signal) for intensity modulation of the intensity modulator 12. The intensity modulation unit 12 receives the continuous light output from the laser light source 11 and the intensity modulation signal output from the intensity modulation signal generation unit 13, and repeats the continuous light with a high frequency according to the intensity modulation signal. It is converted into a short pulse optical pulse train and output. For the intensity modulator 12, an LN intensity modulator, EAM, or the like is used. For example, when the repetition frequency of the intensity modulation signal generated by the intensity modulation signal generation unit 13 is 40 GHz, the intensity modulation unit 12 outputs an optical pulse train having a repetition frequency of 40 GHz.

位相変調信号発生部30は、光パルス列変換装置20の位相変調用の電気信号である位相変調信号を発生して出力する。この位相変調信号については、詳細に後述する。光パルス列変換装置20は、光パルス列発生部10から出力された光パルス列を、繰り返し周波数が低く短パルスの光パルス列に変換して出力する。   The phase modulation signal generator 30 generates and outputs a phase modulation signal that is an electrical signal for phase modulation of the optical pulse train converter 20. This phase modulation signal will be described later in detail. The optical pulse train converter 20 converts the optical pulse train output from the optical pulse train generator 10 into a short pulse optical pulse train with a low repetition frequency and outputs the optical pulse train.

位相変調部21は、光パルス列発生部10(強度変調部12)から出力された繰り返し周波数が高く短パルスの光パルス列と、位相変調信号発生部30から出力された位相変調信号とが入力され、その位相変調信号に応じて前記入力された光パルス列に位相変調を施して出力する。位相変調部21には、例えば、LNやPLZT(lead Lanthanum Zirconate Titanate)などの非線形結晶にもとづく位相変調器が用いられる。この位相変調については、詳細に後述する。   The phase modulation unit 21 receives an optical pulse train having a high repetition frequency and a short pulse output from the optical pulse train generation unit 10 (intensity modulation unit 12) and a phase modulation signal output from the phase modulation signal generation unit 30. According to the phase modulation signal, the input optical pulse train is subjected to phase modulation and output. For the phase modulator 21, for example, a phase modulator based on a nonlinear crystal such as LN or PLZT (lead Lanthanum Zirconate Titanate) is used. This phase modulation will be described later in detail.

群速度分散部22は、位相変調部21により位相変調された光パルス列が入力され、その光パルス列に群速度分散を与え、繰り返し周波数を減じた光パルス列として出力する。群速度分散部22には、例えば、光ファイバ、ファイバブラッググレーティング、回折格子対、そしてプリズム対が用いられる。群速度分散部22としては、光ファイバの一種である分散補償ファイバ(DCF:Dispersion Compensating Fiber)が好ましい。この群速度分散については、詳細に後述する。   The group velocity dispersion unit 22 receives the optical pulse train that has been phase-modulated by the phase modulator 21, gives group velocity dispersion to the optical pulse train, and outputs the optical pulse train with the repetition frequency reduced. For the group velocity dispersion unit 22, for example, an optical fiber, a fiber Bragg grating, a diffraction grating pair, and a prism pair are used. The group velocity dispersion unit 22 is preferably a dispersion compensating fiber (DCF), which is a kind of optical fiber. This group velocity dispersion will be described later in detail.

次に、図2〜図23を参照して、光パルス列発生装置1の動作原理を述べる。   Next, the operation principle of the optical pulse train generator 1 will be described with reference to FIGS.

光パルス列発生装置1において、光パルス列発生部10が繰り返し周波数の高い短パルスの光パルス列を発生し、光パルス列変換装置20は、光パルス列発生部10により発生された光パルス列を変換して繰り返し周波数の低い短パルスの光パルス列を出力する。このような動作において、光パルス列変換装置20における動作を主として説明する。   In the optical pulse train generator 1, the optical pulse train generator 10 generates a short pulse optical pulse train having a high repetition frequency, and the optical pulse train converter 20 converts the optical pulse train generated by the optical pulse train generator 10 to repeat frequency. A short pulsed optical pulse train is output. In such an operation, the operation in the optical pulse train converter 20 will be mainly described.

先ず、本実施の形態の前提となる技術を説明する。「Temporal self-imaging effect(時間的自己結像効果)」もしくは「Temporal Talbot effect(時間的Talbot効果)」と呼ばれる現象が、
T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. B, Vol. 71, p.1373 (1981).
に示されている。以下、この文献を第1の文献という。
First, the technology that is the premise of the present embodiment will be described. A phenomenon called “Temporal self-imaging effect” or “Temporal Talbot effect”
T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. B, Vol. 71, p. 1373 (1981).
Is shown in Hereinafter, this document is referred to as a first document.

上記現象を用いて、光パルス列の繰り返し周波数を整数倍に増加させる方法が、
J. Azana and M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett., Vol. 24, p.1672 (1999).
などにより知られている。以下、この文献を第2の文献という。
Using the above phenomenon, the method of increasing the repetition frequency of the optical pulse train to an integral multiple is
J. Azana and MA Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett., Vol. 24, p.1672 (1999).
Etc. are known. Hereinafter, this document is referred to as a second document.

一般に、光パルスに群速度分散(GVD:Group Velocity Dispersion。以下、単にGVDともいう)の効果を与えると、光パルスの時間波形が変形する。ここで、GVDを与えるとは、周波数軸上で光パルスのスペクトルに対してexp[iθ(f)] = exp[i2π2θ0f2]なる因子を乗じ、各周波数成分に対してθ(f) = 2π2θ0f2なる位相シフトを与えることを意味する。ただしfは光パルスの中心周波数を0とする周波数、またθ0はGVDの大きさを表す定数であり、例えば分散値β2 [s2/m]、長さL [m]の光ファイバによって与えられるGVDの大きさは、θ02Lと書ける。時間的Talbot効果による時間的自己結像とは、繰り返し周波数がΔfである光パルス列に対して、ある一定量θ0=1/(πΔf2)、もしくはこの整数倍であるGVDを与えても、光パルス列の時間波形が不変となる現象である。この現象は、次のように説明される。図2に時間波形、図3の実線にスペクトルを示すような、時間間隔がΔtで、繰り返し周波数がΔf=1/Δtである光パルス列を考える。 Generally, when the effect of group velocity dispersion (GVD: Group Velocity Dispersion, hereinafter simply referred to as GVD) is applied to an optical pulse, the temporal waveform of the optical pulse is deformed. Here, GVD is given by multiplying the spectrum of an optical pulse on the frequency axis by a factor exp [iθ (f)] = exp [i2π 2 θ 0 f 2 ], and θ ( This means that a phase shift of f) = 2π 2 θ 0 f 2 is given. Where f is a frequency at which the center frequency of the optical pulse is 0, and θ 0 is a constant representing the magnitude of GVD. For example, an optical fiber having a dispersion value β 2 [s 2 / m] and a length L [m] is used. The magnitude of the given GVD can be written as θ 0 = β 2 L. The temporal self-imaging by the temporal Talbot effect means that even if a certain amount θ 0 = 1 / (πΔf 2 ) or a GVD that is an integer multiple of this is given to an optical pulse train having a repetition frequency of Δf, This is a phenomenon in which the time waveform of the optical pulse train remains unchanged. This phenomenon is explained as follows. Consider an optical pulse train having a time interval of Δt and a repetition frequency of Δf = 1 / Δt as shown in FIG. 2 with a time waveform and a solid line in FIG.

なお、時間領域で光パルス列の位相はそろっているものとし、また周波数領域でスペクトルを形成する周波数コム成分も位相がそろっているものとする。この光パルス列に対して、大きさがθ0=1/(πΔf2)で表されるGVDを与えることは、スペクトルに対して、図3の点線で示すようにθ(f)=2π(f/Δf)2なる位相シフトを与えることと等価である。このときmを整数として、スペクトルにおいてコム成分が存在する周波数f=mΔfにおいて、位相シフトの量が2πの整数倍となるから、すべてのコム成分は位相シフトを受けていない場合と等価である。よって光パルス列の時間波形も、図2に示す初期波形と同じ形になるのである。この現象が、時間的Talbot効果として知られているものである。 It is assumed that the optical pulse trains have the same phase in the time domain, and the frequency comb components that form the spectrum in the frequency domain also have the same phase. Giving GVD having a magnitude of θ 0 = 1 / (πΔf 2 ) to this optical pulse train gives θ (f) = 2π (f / Δf) is equivalent to giving a phase shift of 2 . At this time, when m is an integer, the amount of phase shift is an integer multiple of 2π at a frequency f = mΔf where the comb component exists in the spectrum, which is equivalent to the case where all the comb components are not subjected to the phase shift. Therefore, the time waveform of the optical pulse train has the same shape as the initial waveform shown in FIG. This phenomenon is known as the temporal Talbot effect.

次に、「部分的な時間的Talbot効果」と、それを用いて光パルス列の繰り返し周波数を倍増させる方法について示す。図2および図3の実線に波形を示す光パルス列に対して、大きさがθ0=1/(4πΔf2)で表されるGVDを与えると、スペクトルには図4の点線に示すようなθ(f)=(π/2)(f/Δf)2なる位相シフトを受ける。このとき、m=0,1,2,3,4,…として、周波数f=±mΔfに存在する周波数コム成分が受ける位相シフトはそれぞれ0, π/2, 2π, 9π/2, 8π,…となる。すなわち、mが偶数の場合は位相シフトが0であり、奇数の場合はπ/2である。光パルス列のスペクトルにこのような位相シフトが与えられた場合の時間波形を考える上で、周波数f=±mΔfに存在する周波数コムについてmが偶数である成分と、奇数である成分に分解する。それぞれの成分に対応するスペクトルを図5および図7に示し、また各スペクトルに対応するパルス振幅の時間波形を、それぞれ図6および図8に示す。 Next, a “partial temporal Talbot effect” and a method for doubling the repetition frequency of an optical pulse train using the “partial temporal Talbot effect” will be described. When a GVD whose magnitude is represented by θ 0 = 1 / (4πΔf 2 ) is given to the optical pulse train whose waveform is shown by the solid line in FIGS. 2 and 3, the spectrum has a θ as shown by the dotted line in FIG. A phase shift of (f) = (π / 2) (f / Δf) 2 is applied. At this time, as m = 0, 1, 2, 3, 4,..., The phase shifts received by the frequency comb components existing at the frequency f = ± mΔf are 0, π / 2, 2π, 9π / 2, 8π,. It becomes. That is, when m is an even number, the phase shift is 0, and when it is an odd number, π / 2. In considering the time waveform when such a phase shift is given to the spectrum of the optical pulse train, the frequency comb existing at the frequency f = ± mΔf is decomposed into a component where m is an even number and an odd number component. The spectrum corresponding to each component is shown in FIGS. 5 and 7, and the time waveform of the pulse amplitude corresponding to each spectrum is shown in FIGS. 6 and 8, respectively.

図5にスペクトル波形、図6に時間波形が示されている光パルス列は、隣接パルス間相対位相差がなく、繰り返し周波数が2Δfの光パルス列である。一方、図7にスペクトル波形、図8に時間波形が示されている光パルス列は、繰り返し周波数が2Δf、隣接パルス間相対位相差がΔφ=π、の逆位相パルス列で、図5および図6に示した光パルス列に対して、-π/2の相対位相差を持っている。ここで、スペクトルが周波数に対して一律の位相シフトθを持つ場合、光パルス列の時間波形は時間に対して一律に-θの位相シフトを持つことを意味することに注意が必要である。   The optical pulse train whose spectral waveform is shown in FIG. 5 and time waveform is shown in FIG. 6 is an optical pulse train having no relative phase difference between adjacent pulses and having a repetition frequency of 2Δf. On the other hand, the optical pulse train whose spectral waveform is shown in FIG. 7 and time waveform is shown in FIG. 8 is an antiphase pulse train having a repetition frequency of 2Δf and a relative phase difference between adjacent pulses of Δφ = π. The optical pulse train shown has a relative phase difference of −π / 2. Here, it should be noted that when the spectrum has a uniform phase shift θ with respect to the frequency, it means that the time waveform of the optical pulse train has a uniform phase shift of −θ with respect to time.

結局、図6と図8の時間波形を足し合わせると、スペクトルが図4で表される光パルス列の時間波形は図9に示すとおり、繰り返し周波数が2Δfで、隣接パルス間相対位相差Δφが+π/2および-π/2である状態が交互に繰り返されるような光パルス列であることがわかる。なお図2の光パルス列と比較して、図9の光パルス列は振幅の尖塔値が1/√2であり、強度の尖塔値は1/2である。このように、光パルス列に対してθ0=1/(4πΔf2)で表されるGVDを与えることで光パルス列の繰り返し周波数が倍増する効果は、部分的な時間的Talbot効果と呼ばれ、上記第2の文献で開示されている。なお図6、図8、図9においてφは、図6に示す位相のそろった光パルス列を基準とした、光パルスの相対位相差を示している。また、図2の光パルス列に対してθ0=-1/(4πΔf2)で表されるGVDを与えても、θ0=1/(4πΔf2)の場合と同様の結果が得られる。 After all, when the time waveforms of FIG. 6 and FIG. 8 are added, the time waveform of the optical pulse train whose spectrum is represented in FIG. 4 has a repetition frequency of 2Δf and a relative phase difference Δφ between adjacent pulses of + It can be seen that the optical pulse train is such that the states of π / 2 and −π / 2 are alternately repeated. Compared with the optical pulse train shown in FIG. 2, the optical pulse train shown in FIG. Thus, the effect of doubling the repetition frequency of the optical pulse train by giving the GVD represented by θ 0 = 1 / (4πΔf 2 ) to the optical pulse train is called a partial temporal Talbot effect. It is disclosed in the second document. 6, 8, and 9, φ indicates the relative phase difference of the optical pulse with reference to the optical pulse train having the same phase shown in FIG. 6. Further, even if GVD represented by θ 0 = −1 / (4πΔf 2 ) is given to the optical pulse train of FIG. 2, the same result as in the case of θ 0 = 1 / (4πΔf 2 ) can be obtained.

本実施の形態では、上記部分的な時間的Talbot効果によって繰り返し周波数を倍増させる方法と逆の形を用い、光パルス列の繰り返し周波数を半減する手法を提案する。すなわち、光パルス列変換装置20において、位相変調部21は、光パルス列発生部10(強度変調部12)から出力された位相がそろっていて繰り返し周波数が2Δfである光パルス列と、位相変調信号発生部30から出力された位相変調信号とが入力され、その位相変調信号に応じて、その入力された光パルス列に対して、隣接パルス間相対位相差が+π/2および-π/2である状態が交互に繰り返されるように位相変調を施して出力する。群速度分散部22は、位相変調部21から入力された光パルス列に対して、値がθ0=1/(4πΔf2)または-1/(4πΔf2)で表されるGVDを与えて出力する。これにより、群速度分散部22の出力として、位相がそろっていて繰り返し周波数がΔfである光パルス列が得られる。 In the present embodiment, a method is proposed in which the repetition frequency of the optical pulse train is halved by using the opposite form to the method of doubling the repetition frequency by the partial temporal Talbot effect. That is, in the optical pulse train conversion device 20, the phase modulation unit 21 includes an optical pulse train having the same phase output from the optical pulse train generation unit 10 (intensity modulation unit 12) and a repetition frequency of 2Δf, and a phase modulation signal generation unit. The phase modulation signal output from 30 is input, and in accordance with the phase modulation signal, the relative phase difference between adjacent pulses is + π / 2 and −π / 2 with respect to the input optical pulse train Are subjected to phase modulation so as to be alternately repeated. The group velocity dispersion unit 22 gives and outputs a GVD whose value is represented by θ 0 = 1 / (4πΔf 2 ) or −1 / (4πΔf 2 ) with respect to the optical pulse train input from the phase modulation unit 21. . Thereby, an optical pulse train having the same phase and a repetition frequency of Δf is obtained as the output of the group velocity dispersion unit 22.

位相変調部21に対しては、繰り返し周波数がΔfで位相変調度φの最小値が0、最大値がπ/2 ラジアンとなるように、図10および図11において実線に示すように矩形波あるいは正弦波の電気信号を位相変調信号として位相変調信号発生部30が発生して印加する方法が考えられる。図10および図11における点線は、位相変調部21に入力される光パルス列である。また図10および図11における破線は、理想的な位相変調信号の波形であり、これに極力近い波形をファンクションジェネレータなどにより直接発生させられることが望ましい。位相変調とGVDを与える操作は本質的には無損失で実行することができる。その結果として、光パルス列の繰り返し周波数を減じる手法に関して、本実施の形態で提案した方法は、本質的に無損失で実現できるという大きな利点があり、背景技術で述べたような強度変調器で光パルスを間引く方法とは根本的な差異があると言える。   For the phase modulation unit 21, a rectangular wave or as shown by a solid line in FIGS. 10 and 11 so that the repetition frequency is Δf, the minimum value of the phase modulation degree φ is 0, and the maximum value is π / 2 radians. A method is conceivable in which the phase modulation signal generator 30 generates and applies a sine wave electrical signal as a phase modulation signal. A dotted line in FIGS. 10 and 11 is an optical pulse train input to the phase modulation unit 21. The broken lines in FIGS. 10 and 11 are ideal phase modulation signal waveforms, and it is desirable that a waveform as close as possible to this be generated directly by a function generator or the like. The operation of providing phase modulation and GVD can be performed essentially lossless. As a result, regarding the method of reducing the repetition frequency of the optical pulse train, the method proposed in this embodiment has a great advantage that it can be realized essentially without loss. It can be said that there is a fundamental difference from the method of thinning out pulses.

上記の光パルス列変換装置20による光パルス列変換方法を繰り返し適用することにより、光パルス列の繰り返し周波数をΔfからΔf/2、Δf/4、Δf/8、…と半減させていくことができる。例えば、光パルス列の繰り返し周波数をΔf/4に減じたい場合は、先ず、上記光パルス列変換装置20の光パルス列変換方法で光パルス列の繰り返し周波数をΔfからΔf/2に減じる。その後、別の光パルス列変換装置の位相変調部が、前記繰り返し周波数をΔf/2に減じた光パルス列に対して、図10または図11のような位相変調をするよう繰り返し周波数ΔfをΔf/2に変更し、さらにその別の光パルス列変換装置の群速度分散部が、値がθ0=-1/(πΔf2)で表されるGVDを与えられるように、前記光パルス列変換方法を適用すればよい。 By repeatedly applying the optical pulse train conversion method by the optical pulse train converter 20 described above, the repetition frequency of the optical pulse train can be halved from Δf to Δf / 2, Δf / 4, Δf / 8,. For example, when it is desired to reduce the repetition frequency of the optical pulse train to Δf / 4, first, the optical pulse train repetition frequency is reduced from Δf to Δf / 2 by the optical pulse train conversion method of the optical pulse train converter 20. Thereafter, the phase modulation unit of another optical pulse train conversion device sets the repetition frequency Δf to Δf / 2 so as to perform phase modulation as shown in FIG. 10 or FIG. 11 on the optical pulse train with the repetition frequency reduced to Δf / 2. In addition, the optical pulse train conversion method is applied so that the group velocity dispersion unit of the other optical pulse train converter is given a GVD whose value is represented by θ 0 = −1 / (πΔf 2 ). That's fine.

一方、部分的な時間的Talbot効果の別の条件を用いれば、光パルス列に対してそれぞれ一度の位相変調とGVDを与えることにより、光パルス列の繰り返し周波数を直接四分の一に減じることができる。つまり、1台の光パルス列変換装置20により実現できる。以下にその手法を示す。   On the other hand, if another condition of the partial temporal Talbot effect is used, the repetition frequency of the optical pulse train can be directly reduced to a quarter by applying one phase modulation and GVD to the optical pulse train, respectively. . That is, it can be realized by one optical pulse train converter 20. The method is shown below.

図2および図3に波形を示す光パルス列に対して、大きさがθ0=1/(8πΔf2)で表されるGVDを与えると、スペクトルは図12の点線に示すようなθ(f)=(π/4)(f/Δf)2なる位相シフトを受ける。このとき、m=0,1,2,3,4,…として、周波数f=±mΔfに存在する周波数コム成分が受ける位相シフトはそれぞれ0,π/4,π,9π/4, 4π,…となる。光パルス列のスペクトルにこのような位相シフトが与えられた場合の時間波形を考える上で、周波数f=±mΔfに存在する周波数コムについて、nを整数としてm=4n(0,±4,±8,…)に対応する成分、m=4n+2(±2,±6,±10,…)に対応する成分、そしてm=2n+1(奇数)に対応する成分に分解する。それぞれの成分に対応するスペクトルを図13、図15、および図17に示し、また各スペクトルに対応するパルス振幅の時間波形を、それぞれ図14、図16、および図18に示す。 When a GVD whose magnitude is represented by θ 0 = 1 / (8πΔf 2 ) is given to the optical pulse train whose waveforms are shown in FIGS. 2 and 3, the spectrum is θ (f) as shown by the dotted line in FIG. A phase shift of = (π / 4) (f / Δf) 2 is applied. At this time, as m = 0,1,2,3,4,..., The phase shifts received by the frequency comb components existing at the frequency f = ± mΔf are 0, π / 4, π, 9π / 4, 4π,. It becomes. In considering the time waveform when such a phase shift is given to the spectrum of the optical pulse train, m = 4n (0, ± 4, ± 8), where n is an integer, for the frequency comb existing at the frequency f = ± mΔf. ,..., A component corresponding to m = 4n + 2 (± 2, ± 6, ± 10,...), And a component corresponding to m = 2n + 1 (odd number). The spectrum corresponding to each component is shown in FIG. 13, FIG. 15, and FIG. 17, and the time waveform of the pulse amplitude corresponding to each spectrum is shown in FIG. 14, FIG. 16, and FIG.

図13にスペクトル波形、図14に時間波形が示されている光パルス列は、隣接パルス間相対位相差がなく、繰り返し周波数が4Δfの光パルス列である。また図15にスペクトル波形、図16に時間波形が示されている光パルス列は、隣接パルス間相対位相差がΔφ=π、繰り返し周波数が4Δfの光パルス列で、図13および図14に示した光パルス列に対して、+πの相対位相差を持っている。一方、図17にスペクトル波形、図18に時間波形が示されている光パルス列は、隣接パルス間相対位相差がΔφ=π、繰り返し周波数が2Δfの光パルス列で、図13および図14に示した光パルス列に対して、-π/4の相対位相差を持っている。   The optical pulse train whose spectral waveform is shown in FIG. 13 and the time waveform is shown in FIG. 14 is an optical pulse train having no relative phase difference between adjacent pulses and having a repetition frequency of 4Δf. Further, the optical pulse train whose spectral waveform is shown in FIG. 15 and time waveform is shown in FIG. 16 is an optical pulse train having a relative phase difference between adjacent pulses of Δφ = π and a repetition frequency of 4Δf, and the optical pulses shown in FIGS. It has a relative phase difference of + π with respect to the pulse train. On the other hand, the optical pulse train having the spectral waveform shown in FIG. 17 and the time waveform shown in FIG. 18 is an optical pulse train having a relative phase difference between adjacent pulses of Δφ = π and a repetition frequency of 2Δf, and is shown in FIGS. It has a relative phase difference of −π / 4 with respect to the optical pulse train.

結局、図14、図16、そして図18の時間波形を足し合わせると、スペクトルが図12で表される光パルス列の時間波形は図19に示すとおり、繰り返し周波数が4Δfで、隣接パルス間相対位相差Δφが+π/4、+3π/4、-3π/4、-π/4というパターンで繰り返されるような光パルス列であることがわかる。なお図2の光パルス列と比較して、図19の光パルス列は振幅の尖塔値が1/2であり、強度の尖塔値は1/4である。このように、光パルス列に対してθ0=1/(8πΔf2)で表されるGVDを与えることで、光パルス列の繰り返し周波数が4倍になる効果は、部分的な時間的Talbot効果のひとつである。一方、図2の光パルス列に対してθ0=-1/(8πΔf2)で表されるGVDを与えると、得られる結果は図19とは異なり、図20のようになる。 After all, when the time waveforms of FIG. 14, FIG. 16, and FIG. 18 are added, the time waveform of the optical pulse train whose spectrum is represented in FIG. 12 has a repetition frequency of 4Δf and a relative position between adjacent pulses as shown in FIG. It can be seen that the optical pulse train is such that the phase difference Δφ is repeated in a pattern of + π / 4, + 3π / 4, −3π / 4, and −π / 4. Compared with the optical pulse train of FIG. 2, the optical pulse train of FIG. 19 has a spier value of amplitude of 1/2 and a spier value of intensity of 1/4. Thus, by giving GVD represented by θ 0 = 1 / (8πΔf 2 ) to the optical pulse train, the effect that the repetition frequency of the optical pulse train is quadrupled is one of the partial temporal Talbot effects. It is. On the other hand, when GVD represented by θ 0 = −1 / (8πΔf 2 ) is given to the optical pulse train of FIG. 2, the obtained result is different from FIG. 19 and becomes as shown in FIG.

本実施の形態では、この部分的な時間的Talbot効果を逆の形で用い、位相変調とGVDを一度ずつ与えることで、光パルス列の繰り返し周波数を四分の一にする手法を提案する。すなわち、1台の光パルス列変換装置20において、位相変調部21は、光パルス列発生部10(強度変調部12)から出力された位相がそろっていて繰り返し周波数が4Δfである光パルス列と、位相変調信号発生部30から出力された位相変調信号とが入力され、その位相変調信号に応じて、その入力された光パルス列に対して、位相変調度φが図21で表されるような位相変調を施して出力する。図21の実線は、理想的な位相変調信号波形であり、極力これに近い波形をファンクションジェネレータなどにより発生させられることが望ましい。群速度分散部22は、位相変調部21から入力された光パルス列に対して、値がθ0=1/(8πΔf2)で表されるGVDを与え出力する。これにより、群速度分散部22の出力として、位相がそろっていて繰り返し周波数がΔfである光パルス列が得られる。このプロセスは、図2の光パルス列にθ0= -1/(8πΔf2)なるGVDを与えた際、図20の光パルス列が得られるプロセスを逆に用いたものである。 In the present embodiment, a method is proposed in which the partial frequency Talbot effect is used in the opposite form, and phase modulation and GVD are applied once, thereby making the repetition frequency of the optical pulse train a quarter. That is, in one optical pulse train converter 20, the phase modulator 21 includes an optical pulse train having the same phase output from the optical pulse train generator 10 (intensity modulator 12) and a repetition frequency of 4Δf, and phase modulation. The phase modulation signal output from the signal generation unit 30 is input, and phase modulation such that the phase modulation degree φ is expressed in FIG. 21 is applied to the input optical pulse train in accordance with the phase modulation signal. And output. The solid line in FIG. 21 is an ideal phase modulation signal waveform, and it is desirable that a waveform close to this is generated by a function generator or the like as much as possible. The group velocity dispersion unit 22 gives a GVD whose value is represented by θ 0 = 1 / (8πΔf 2 ) to the optical pulse train input from the phase modulation unit 21 and outputs the GVD. Thereby, an optical pulse train having the same phase and a repetition frequency of Δf is obtained as the output of the group velocity dispersion unit 22. This process reversely uses the process of obtaining the optical pulse train of FIG. 20 when a GVD of θ 0 = −1 / (8πΔf 2 ) is given to the optical pulse train of FIG.

現実的な条件の元で、図21で示される位相変調を行うには、位相変調信号発生部30が、繰り返し周波数が2ΔfおよびΔfで、立ち上がり時間が元の光パルス列の間隔Δt/4=1/(4Δf)と同程度の矩形波電気信号を発生し、合波してから位相変調信号として出力して、位相変調部21に印加すればよい。具体的には、位相変調部21に、電圧がVπのときに入力光の位相変調度がπとなる位相変調器を用いた場合、図22の実線に示すように繰り返し周波数が2Δfでピーク電圧がV=3Vπ/4の矩形波電気信号aと、繰り返し周波数がΔfでピーク電圧がV=Vπの矩形波電気信号bとを用い、図22の点線に示す位相変調部21に入力される光パルス列に対する矩形波電気信号a,bそれぞれのタイミングを合わせ、合波した結果が図23に示す位相変調信号cになるよう位相変調信号発生部30を調整すればよい。なお図22および図23で、破線は図21の理想的な位相変調信号の波形を示していて、図23では各光パルスの中心部で理想に近い位相変調信号が得られていることが分かる。 In order to perform the phase modulation shown in FIG. 21 under realistic conditions, the phase modulation signal generation unit 30 has the repetition frequency of 2Δf and Δf and the rise time of the original optical pulse train interval Δt / 4 = 1. A rectangular wave electric signal of the same level as / (4Δf) may be generated, combined, output as a phase modulation signal, and applied to the phase modulation unit 21. Specifically, when a phase modulator having a phase modulation degree of π when the voltage is V π is used as the phase modulation unit 21, the repetition frequency peaks at 2Δf as shown by the solid line in FIG. A rectangular wave electric signal a having a voltage of V = 3V π / 4 and a rectangular wave electric signal b having a repetition frequency of Δf and a peak voltage of V = V π are input to the phase modulation unit 21 indicated by a dotted line in FIG. The phase-modulated signal generator 30 may be adjusted so that the timings of the rectangular-wave electrical signals a and b with respect to the optical pulse train to be matched and the combined result become the phase-modulated signal c shown in FIG. 22 and 23, the broken line indicates the ideal phase modulation signal waveform of FIG. 21, and in FIG. 23, it can be seen that a near-ideal phase modulation signal is obtained at the center of each optical pulse. .

以上、本実施の形態によれば、光パルス列変換装置20において、位相変調部21が、位相変調信号発生部30から出力される位相変調信号に応じて、光パルス列発生部10から入力される光パルス列に位相変調を施し、群速度分散部22が、その位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えることで、繰り返し周波数の減じられたパルス列を出力し、さらに、位相変調部21の位相変調が、前記減じられた繰り返し周波数を持ち、位相のそろった光パルス列に対して、群速度分散部22の群速度分散と絶対値が同じで逆符号の値である群速度分散を直接与える場合に変化する各光パルスの位相への変調である。このため、繰り返し周波数を増加する部分的な時間的Talbot効果を逆方向に行うことになり、本質的に無損失で、パルス列の繰り返し周波数を低い値に変換した光パルス列を出力できる。   As described above, according to the present embodiment, in the optical pulse train conversion device 20, the phase modulation unit 21 receives the light input from the optical pulse train generation unit 10 according to the phase modulation signal output from the phase modulation signal generation unit 30. The pulse train is subjected to phase modulation, and the group velocity dispersion unit 22 gives the group velocity dispersion necessary for the partial temporal Talbot effect to the optical pulse train subjected to the phase modulation, whereby the pulse train with a reduced repetition frequency is provided. Furthermore, the phase modulation of the phase modulation unit 21 has the same repetition rate as the group velocity dispersion of the group velocity dispersion unit 22 for the optical pulse train having the reduced repetition frequency and the same phase. This is modulation to the phase of each optical pulse that changes when the group velocity dispersion, which is the sign value, is directly given. For this reason, a partial temporal Talbot effect for increasing the repetition frequency is performed in the opposite direction, and an optical pulse train in which the repetition frequency of the pulse train is converted to a low value can be output without loss.

また、光パルス列発生部10が発生する光パルス列の繰り返し周波数が2Δfであり、群速度分散部22の群速度分散の大きさが 1/(4πΔf2) 又は-1/(4πΔf2)であり、位相変調信号発生部30が発生する位相変調信号が、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπ/2であるものとする。この場合に、1台の光パルス列変換装置20により、本質的に無損失で繰り返し周波数をΔfに減じた(1/2に減じた)光パルス列を出力できる。 Further, the repetition frequency of the optical pulse train generated by the optical pulse train generator 10 is 2Δf, and the magnitude of the group velocity dispersion of the group velocity dispersion unit 22 is 1 / (4πΔf 2 ) or −1 / (4πΔf 2 ), It is assumed that the phase modulation signal generated by the phase modulation signal generation unit 30 has a repetition frequency of Δf, a minimum phase modulation degree of 0, and a maximum value of π / 2. In this case, the single optical pulse train conversion device 20 can output an optical pulse train in which the repetition frequency is reduced to Δf (reduced to 1/2) with essentially no loss.

また、光パルス列発生部10が発生する光パルス列の繰り返し周波数が4Δfであり、群速度分散部22の群速度分散の大きさが 1/(8πΔf2)であり、位相変調信号発生部30が発生する位相変調信号が、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値が3π/4である矩形波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである矩形波信号と、の合波信号であるものとする。この場合に、1台の光パルス列変換装置20により、本質的に無損失で繰り返し周波数をΔfに減じた(1/4に減じた)光パルス列を出力できる。 Further, the repetition frequency of the optical pulse train generated by the optical pulse train generator 10 is 4Δf, the group velocity dispersion of the group velocity dispersion unit 22 is 1 / (8πΔf 2 ), and the phase modulation signal generator 30 is generated. The phase modulation signal has a repetition frequency of 2Δf, a minimum phase modulation degree of 0 and a maximum value of 3π / 4, a rectangular wave signal, a repetition frequency of Δf, and a minimum phase modulation degree of It is assumed that the combined signal is a rectangular wave signal having a maximum value of 0 and π. In this case, an optical pulse train in which the repetition frequency is reduced to Δf (subtracted to 1/4) with essentially no loss can be output by one optical pulse train converter 20.

また、光パルス列発生装置1により、強度変調部12で光パルス列を出力した後は本質的に無損失の処理を行うことで、繰り返し周波数が低い光パルス列を発生できる。特に、光パルス列発生部10は、短パルスの光パルス列を発生し、その光パルス列を光パルス列変換装置20が変換する。このため、強度変調部12で光パルス列を出力した後は本質的に無損失で繰り返し周波数が低い短パルスの光パルス列を発生できる。   In addition, the optical pulse train generator 1 can generate an optical pulse train having a low repetition frequency by performing essentially lossless processing after outputting the optical pulse train from the intensity modulator 12. In particular, the optical pulse train generator 10 generates a short pulse optical pulse train, and the optical pulse train converter 20 converts the optical pulse train. For this reason, after output of the optical pulse train by the intensity modulator 12, it is possible to generate a short pulse optical pulse train that is essentially lossless and has a low repetition frequency.

図24〜図28を参照して、上記実施の形態の実施例1を説明する。本実施例では、計算機シミュレーションを用い、光パルス列発生部10が発生した繰り返し周波数が4Δf=40GHzである光パルス列に対して、上記実施の形態の光パルス列変換装置20による光パルス列変換方法を適用し、位相変調信号発生部30が発生した矩形波からなる位相変調信号を用いて、繰り返し周波数がΔf=10GHzである光パルス列を発生させた結果を示す。   Example 1 of the above embodiment will be described with reference to FIGS. In this example, the optical pulse train conversion method by the optical pulse train converter 20 of the above embodiment is applied to an optical pulse train with a repetition frequency of 4Δf = 40 GHz generated by the optical pulse train generator 10 using computer simulation. The result of generating an optical pulse train having a repetition frequency of Δf = 10 GHz using a phase modulation signal composed of a rectangular wave generated by the phase modulation signal generation unit 30 is shown.

レーザ光源11が、波長が1552.5nm(193.1THz)の連続光を発生し、強度変調部12としてのEAMで強度変調することを想定し、この光パルス列発生部10により生成された光パルス列は、繰り返し周波数が40GHz、光パルスが幅5ps、そしてピークパワーが1mWであるとする。図24および図25に、この光パルス列の電力密度スペクトル波形および強度の時間波形を示す。この光パルス列を位相変調部21に入力し、位相変調を行う。位相変調部21は、電圧Vπが印加されると、光の位相がπシフトされるものとする。位相変調信号発生部30は、波形の模式図が図22で示されるような、繰り返し周波数が2Δf=20GHzでピーク電圧が3Vπ/4である矩形波電気信号aと、繰り返し周波数がΔf=10GHzでピーク電圧がVπである矩形波電気信号bとを合波し、波形が図23に示されている位相変調信号cを生成して位相変調部21に印加する。 Assuming that the laser light source 11 generates continuous light having a wavelength of 1552.5 nm (193.1 THz) and intensity-modulates with the EAM as the intensity modulator 12, the optical pulse train generated by the optical pulse train generator 10 is Suppose that the repetition frequency is 40 GHz, the optical pulse is 5 ps wide, and the peak power is 1 mW. 24 and 25 show the power density spectrum waveform and the intensity time waveform of this optical pulse train. This optical pulse train is input to the phase modulation unit 21 to perform phase modulation. The phase modulator 21 is assumed to shift the phase of light by π when a voltage is applied. Phase modulation signal generator 30, as schematic diagram of a waveform is shown in Figure 22, a rectangular wave electrical signal a peak voltage at a repetition frequency 2.DELTA.f = 20 GHz is 3V [pi / 4, repetition frequency Delta] f = 10 GHz in peak voltage City multiplexes the square wave electrical signal b is V [pi, waveform applied to the phase modulating section 21 generates a phase modulated signal c shown in FIG. 23.

また、群速度分散部22に分散媒体としてDCFを用いることを想定し、GVDの値がβ2=204.737ps2/km (-160ps/nm/km)、分散スロープ値が-0.6ps/nm2/km、長さがL= 1.943 kmのDCFとする。なおこれらの数値は、先に述べた部分的な時間的Talbot効果に関する条件θ02L=1/(8πΔf2)を満足する。簡単のため、位相変調部21と群速度分散部22との挿入損失は無視しているが、損失を考慮しても、得られる結果に本質的な影響は及ぼさない。 Further, assuming that the group velocity dispersion unit 22 uses DCF as a dispersion medium, the GVD value is β 2 = 204.737 ps 2 / km (−160 ps / nm / km), and the dispersion slope value is −0.6 ps / nm 2. DCF with / km and length L = 1.943 km. These numerical values satisfy the condition θ 0 = β 2 L = 1 / (8πΔf 2 ) related to the partial temporal Talbot effect described above. For the sake of simplicity, the insertion loss between the phase modulation unit 21 and the group velocity dispersion unit 22 is ignored, but even if the loss is taken into consideration, the obtained result is not substantially affected.

図26は、位相変調された光パルス列の電力密度スペクトルを示す。図24のスペクトルと比較して包絡線は変化しておらず、周波数軸上で周波数コム成分の数が4倍になって、コム成分どうしの間隔が40GHzから10GHzとなっている。図27は、群速度分散部22を通過して得られた光パルス列の強度の時間波形を示していて、図25と比較して光パルスひとつの波形は変わっていないが、パルス間隔が100psとなっていて、繰り返し周波数が40GHzから10GHzに変化している。さらにパワーの尖塔値が1mWから4倍の4mWになっていて、入力光の平均パワーが損失を受けることなく保たれていて、パルスの数が四分の一になった分、パワーの尖塔値が4倍の増大したことがわかる。   FIG. 26 shows a power density spectrum of a phase-modulated optical pulse train. The envelope does not change compared to the spectrum of FIG. 24, the number of frequency comb components is four times on the frequency axis, and the interval between the comb components is 40 GHz to 10 GHz. FIG. 27 shows a time waveform of the intensity of the optical pulse train obtained by passing through the group velocity dispersion unit 22, and the waveform of one optical pulse is not changed as compared with FIG. 25, but the pulse interval is 100 ps. The repetition frequency has changed from 40 GHz to 10 GHz. Furthermore, the spire value of the power has been increased from 1mW to 4mW, and the average power of the input light has been maintained without loss, and the number of pulses has been reduced to a quarter, so that the spire value of the power It can be seen that there has been a fourfold increase.

図27の波形を対数軸上で表示したものを図28に示す。繰り返し周波数が10GHzのパルス列のピーク強度と、繰り返し周波数が40GHzの残留成分強度との比は40dBであり、残留成分はほぼ無視できると言える。つまり、図21に示した理想的な位相変調を行わずとも、図23に示した現実的な位相変調方法を適用することで、十分な精度の10GHz繰り返し周波数の光パルス列が得られるのである。   FIG. 28 shows the waveform of FIG. 27 displayed on the logarithmic axis. The ratio of the peak intensity of a pulse train with a repetition frequency of 10 GHz to the residual component intensity with a repetition frequency of 40 GHz is 40 dB, and it can be said that the residual components are almost negligible. That is, even if the ideal phase modulation shown in FIG. 21 is not performed, an optical pulse train having a sufficiently accurate 10 GHz repetition frequency can be obtained by applying the realistic phase modulation method shown in FIG.

以上、本実施例によれば、1台の光パルス列変換装置20により、本質的に無損失で繰り返し周波数をΔfに減じた(1/4に減じた)光パルス列を出力できることが確かめられた。   As described above, according to the present embodiment, it was confirmed that one optical pulse train converter 20 can output an optical pulse train that is essentially lossless and whose repetition frequency is reduced to Δf (reduced to 1/4).

また、位相変調部21は、位相変調信号発生部30により発生される矩形波からなる位相変調信号に応じて光パルス列に位相変調を施す。このため、理想的な状態に近い位相変調信号により、精度良く本質的に無損失で繰り返し周波数を低い値に変換した光パルス列を出力できる。   Further, the phase modulation unit 21 performs phase modulation on the optical pulse train in accordance with the phase modulation signal composed of a rectangular wave generated by the phase modulation signal generation unit 30. For this reason, an optical pulse train in which the repetition frequency is converted to a low value with high accuracy and essentially no loss can be output with a phase modulation signal close to an ideal state.

また、群速度分散部22は、DCFを用いて構成される。このため、単位長さあたりの分散効果が高く、群速度分散部22に用いる光ファイバの長さを短くできる。   Moreover, the group velocity dispersion | distribution part 22 is comprised using DCF. For this reason, the dispersion effect per unit length is high, and the length of the optical fiber used for the group velocity dispersion unit 22 can be shortened.

図29〜図33を参照して、上記実施の形態の実施例2を説明する。本実施例では、上記実施例1と同様に、計算機シミュレーションを用い、光パルス列発生部10が発生した繰り返し周波数が4Δf=40GHzである光パルス列に対して、上記実施の形態の光パルス列変換装置20による光パルス列変換方法を適用し、位相変調信号発生部30が発生した正弦波からなる位相変調信号を用いて、繰り返し周波数がΔf=10GHzである光パルス列を発生させた結果を示す。計算機シミュレーションの条件は、上記実施例1と同様であるものとする。   Example 2 of the above embodiment will be described with reference to FIGS. In the present embodiment, similarly to the first embodiment, the optical pulse train conversion device 20 of the above embodiment is used for the optical pulse train having the repetition frequency of 4Δf = 40 GHz generated by the optical pulse train generator 10 using computer simulation. 2 shows a result of generating an optical pulse train having a repetition frequency of Δf = 10 GHz using a phase modulation signal composed of a sine wave generated by the phase modulation signal generation unit 30 by applying the optical pulse train conversion method according to FIG. The computer simulation conditions are the same as those in the first embodiment.

一般に、帯域が数十GHzの高周波電気信号を扱う上では、矩形波よりも正弦波を出力する方が容易である。上記実施の形態の光パルス列変換装置20による光パルス列変換方法では、図21に示した矩形波位相変調信号を組み合わせて図23の位相変調信号を用いる代わりに、周波数がΔfおよび2Δfで、しかるべき振幅、バイアス、そしてタイミングを与えた正弦波電気信号を、図29のピーク電圧がVπ/4で繰り返し周波数が2Δfの正弦波電気信号dの波形と、ピーク電圧がVπで繰り返し周波数がΔfの正弦波電気信号eの波形とのように組み合わせても、動作が可能である。図30に、図29に示した二つの正弦波電気信号d,eを合波した結果の位相変調信号gを実線で示す。図30で破線は、図21に示した理想的な位相変調信号波形を表すが、実線で示されている位相変調信号gの一次および二次の傾きを無視すると、光パルス列の各光パルスに対して、所望の位相変調度が得られていることがわかる。 In general, it is easier to output a sine wave than a rectangular wave when handling a high-frequency electric signal with a bandwidth of several tens of GHz. In the optical pulse train conversion method by the optical pulse train converter 20 of the above embodiment, instead of using the phase modulation signal of FIG. 23 by combining the rectangular wave phase modulation signals shown in FIG. 21, the frequencies should be Δf and 2Δf. amplitude, bias, and a sine wave electric signal given timing, the waveform of the sine wave electric signal d of the peak voltage of 29 repetition frequency in the V [pi / 4 2.DELTA.f, peak voltage repetition frequency at V [pi Delta] f Even when combined with the waveform of the sine wave electric signal e, the operation is possible. FIG. 30 shows the phase modulation signal g as a result of combining the two sine wave electric signals d and e shown in FIG. 29 with a solid line. The broken line in FIG. 30 represents the ideal phase modulation signal waveform shown in FIG. 21, but if the primary and secondary slopes of the phase modulation signal g shown by the solid line are ignored, each optical pulse in the optical pulse train On the other hand, it can be seen that a desired degree of phase modulation is obtained.

図24および図25で示される光パルス列に対して、図30のような位相変調を行った場合に得られるスペクトルの波形を図31に示す。図26で得られた結果と同じく、図31では周波数コムの間隔が10GHzとなっているが、図24のスペクトル波形と比較すると、包絡線は若干ひずんだ形状をしている。群速度分散部22を通過した後の光パルス列のパルス強度の時間波形を図32に示す。図32では、図27で得られた結果と同様に、繰り返し周波数が10GHzに減じられた光パルス列が得られていることがわかる。また、図33は図32の波形を対数軸上で表示したものであるが、繰り返し周波数10GHzの光パルス列のピーク強度と、残留成分の強度の比は約20dBであり、図28の結果と比較すると消光比が劣化していることがわかる。しかし、光時分割信号の逆多重処理等の光信号処理向けのクロックパルス列に応用することを考えると、得られた光パルス列の消光比の劣化が許容範囲内の程度であり、得られる光パルス列が実用可能であることが分かる。   FIG. 31 shows a spectrum waveform obtained when the phase modulation as shown in FIG. 30 is performed on the optical pulse train shown in FIGS. As in the result obtained in FIG. 26, the frequency comb interval is 10 GHz in FIG. 31, but the envelope has a slightly distorted shape as compared with the spectrum waveform in FIG. FIG. 32 shows a time waveform of the pulse intensity of the optical pulse train after passing through the group velocity dispersion unit 22. In FIG. 32, it can be seen that, similarly to the result obtained in FIG. 27, an optical pulse train having a repetition frequency reduced to 10 GHz is obtained. FIG. 33 shows the waveform of FIG. 32 on the logarithmic axis. The ratio of the peak intensity of the optical pulse train having a repetition frequency of 10 GHz and the intensity of the residual component is about 20 dB, which is compared with the result of FIG. Then, it turns out that the extinction ratio has deteriorated. However, considering application to a clock pulse train for optical signal processing such as demultiplexing of optical time division signals, the deterioration of the extinction ratio of the obtained optical pulse train is within an allowable range, and the obtained optical pulse train It can be seen that is practical.

以上、本実施例によれば、実施例1と同様に、光パルス列発生部10が発生する光パルス列の繰り返し周波数が4Δfであり、群速度分散部22の群速度分散の大きさが 1/(8πΔf2)であり、位相変調信号発生部30が発生する位相変調信号が、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値がπ/4である正弦波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである正弦波信号と、の合波信号である。この場合に、1台の光パルス列変換装置20により、本質的に無損失で繰り返し周波数をΔfに減じた(1/4に減じた)光パルス列を出力できることが確かめられた。 As described above, according to the present embodiment, as in the first embodiment, the repetition frequency of the optical pulse train generated by the optical pulse train generator 10 is 4Δf, and the group velocity dispersion of the group velocity dispersion portion 22 is 1 / ( a 8πΔf 2), the phase modulation signal phase-modulated signal generating section 30 generates is the repetition frequency 2.DELTA.f, the sine wave signal is the maximum value and the minimum value of the phase modulation index 0 is [pi / 4, This is a combined signal of a sine wave signal having a repetition frequency of Δf, a minimum phase modulation degree of 0, and a maximum value of π. In this case, it was confirmed that the single optical pulse train converter 20 can output an optical pulse train that is essentially lossless with the repetition frequency reduced to Δf (reduced to 1/4).

また、位相変調部21は、位相変調信号発生部30により発生される正弦波からなる位相変調信号に応じて光パルス列に位相変調を施す。このため、容易に生成可能な位相変調信号により、本質的に無損失で繰り返し周波数を低い値に変換した光パルス列を容易に出力できる。   Further, the phase modulation unit 21 performs phase modulation on the optical pulse train in accordance with the phase modulation signal composed of a sine wave generated by the phase modulation signal generation unit 30. For this reason, an optical pulse train in which the repetition frequency is converted to a low value with essentially no loss can be easily output by a phase modulation signal that can be easily generated.

なお、上記実施の形態及び実施例における記述は、本発明に係る光パルス列変換装置、光パルス列発生装置及び光パルス列変換方法の一例であり、これに限定されるものではない。   Note that the descriptions in the above embodiments and examples are examples of the optical pulse train conversion device, the optical pulse train generation device, and the optical pulse train conversion method according to the present invention, and the present invention is not limited thereto.

例えば、上記実施の形態及び実施例では、位相変調信号を、矩形波又は正弦波からなるものとしたが、これに限定されるものではない。位相変調信号を、矩形波及び正弦波の少なくとも1つからなるものとしてもよい。   For example, in the above embodiments and examples, the phase modulation signal is a rectangular wave or a sine wave. However, the present invention is not limited to this. The phase modulation signal may be composed of at least one of a rectangular wave and a sine wave.

また、上記実施の形態及び実施例では、光パルス列発生部10が、位相がそろった光パルス列を発生し、光パルス列変換装置20が、位相がそろった繰り返し周波数を減じた光パルス列を出力する構成としたが、これに限定されるものではない。例えば、光パルス列発生部が、任意の位相シフトを有する光パルス列を発生し、光パルス列変換装置において、その光パルス列に対して、Talbot効果が発生するような位相順序となるように、位相変調部が位相変調し、群速度分散部がGVDを与えることで、出力する光パルス列の繰り返し周波数を減じる構成としてもよい。つまり、光パルス列発生装置(光パルス列変換装置)から出力される光パルス列の位相がそろっていない構成としてもよい。   Moreover, in the said embodiment and Example, the optical pulse train generation | occurrence | production part 10 generate | occur | produces the optical pulse train with which the phases were equal, and the optical pulse train converter 20 outputs the optical pulse train which reduced the repetition frequency with which the phases were uniform. However, the present invention is not limited to this. For example, the optical pulse train generator generates an optical pulse train having an arbitrary phase shift, and in the optical pulse train converter, the phase modulator so that the Talbot effect is generated with respect to the optical pulse train. May be configured such that the repetition rate of the optical pulse train to be output is reduced by performing phase modulation and the group velocity dispersion unit providing GVD. That is, the optical pulse train output from the optical pulse train generator (optical pulse train converter) may have a configuration in which the phases of the optical pulse trains are not aligned.

また、上記実施の形態及び実施例で説明した光パルス列発生装置の各構成要素の細部構成、及び細部動作に関しては、本発明の趣旨を逸脱することのない範囲で適宜変更可能であることは勿論である。   In addition, the detailed configuration and detailed operation of each component of the optical pulse train generator described in the above embodiments and examples can be appropriately changed without departing from the spirit of the present invention. It is.

本発明に係る実施の形態の光パルス列発生装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical pulse train generator of embodiment which concerns on this invention. 光パルス列の時間波形を示す図である。It is a figure which shows the time waveform of an optical pulse train. 光パルス列のスペクトル波形を示す図である。It is a figure which shows the spectrum waveform of an optical pulse train. 光パルス列にθ0=1/(4πΔf2)なるGVDを与えた際のスペクトル波形と、各周波数コムの位相θとを示す図である。Spectrum waveform when gave GVD consisting θ 0 = 1 / (4πΔf 2 ) the optical pulse train is a diagram showing the phase theta of each frequency comb. nを整数として、図4のスペクトルからf=2nΔfの成分のみを抽出したスペクトル波形と、各周波数コムの位相θとを示す図である。FIG. 5 is a diagram showing a spectrum waveform obtained by extracting only a component of f = 2nΔf from the spectrum of FIG. 4 with n being an integer, and a phase θ of each frequency comb. 図5のスペクトル波形に対応する、光パルス列の時間波形と位相φとを示す図である。It is a figure which shows the time waveform and phase (phi) of an optical pulse train corresponding to the spectrum waveform of FIG. nを整数として、図4のスペクトルからf=(2n+1) Δfの成分のみを抽出したスペクトル波形と、各周波数コムの位相θとを示す図である。FIG. 5 is a diagram showing a spectrum waveform obtained by extracting only a component of f = (2n + 1) Δf from the spectrum of FIG. 4 with n as an integer, and a phase θ of each frequency comb. 図7のスペクトル波形に対応する、光パルス列の時間波形と位相φとを示す図である。It is a figure which shows the time waveform and phase (phi) of an optical pulse train corresponding to the spectrum waveform of FIG. 図4のスペクトル波形に対応する、光パルス列の時間波形と位相φとを示す図である。FIG. 5 is a diagram showing a time waveform and a phase φ of an optical pulse train corresponding to the spectrum waveform of FIG. 4. 繰り返し周波数Δfの矩形波位相変調波形を示す図である。It is a figure which shows the rectangular wave phase modulation waveform of repetition frequency (DELTA) f. 繰り返し周波数Δfの正弦波位相変調波形を示す図である。It is a figure which shows the sine wave phase modulation waveform of repetition frequency (DELTA) f. 光パルス列にθ0 =1/(8πΔf2)なるGVDを与えた際のスペクトル波形と、各周波数コムの位相θとを示す図である。Spectrum waveform when gave GVD consisting θ 0 = 1 / (8πΔf 2 ) the optical pulse train is a diagram showing the phase theta of each frequency comb. nを整数として、図12のスペクトル波形からf=4nΔfの成分のみを抽出したスペクトル波形と、各周波数コムの位相θとを示す図である。FIG. 13 is a diagram showing a spectrum waveform obtained by extracting only a component of f = 4nΔf from the spectrum waveform of FIG. 12, where n is an integer, and a phase θ of each frequency comb. 図13のスペクトルに対応する、光パルス列の時間波形と位相φとを示す図である。It is a figure which shows the time waveform and phase (phi) of an optical pulse train corresponding to the spectrum of FIG. nを整数として、図12のスペクトルからf=(4n+2)Δfの成分のみを抽出したスペクトル波形と、各周波数コムの位相θとを示す図である。It is a figure which shows the spectrum waveform which extracted only the component of f = (4n + 2) (DELTA) f from the spectrum of FIG. 12, and phase (theta) of each frequency comb by making n into an integer. 図15のスペクトルに対応する、光パルス列の時間波形と位相φとを示す図である。It is a figure which shows the time waveform and phase (phi) of an optical pulse train corresponding to the spectrum of FIG. nを整数として、図12のスペクトルからf=(2n+1)Δfの成分のみを抽出したスペクトル波形と、各周波数コムの位相とを示す図である。It is a figure which shows the spectrum waveform which extracted only the component of f = (2n + 1) (DELTA) f from the spectrum of FIG. 12, and the phase of each frequency comb by making n into an integer. 図17のスペクトルに対応する、光パルス列の時間波形と位相φを示す図である。It is a figure which shows the time waveform and phase (phi) of an optical pulse train corresponding to the spectrum of FIG. 図12のスペクトルに対応する、光パルス列の時間波形と位相φを示す図である。It is a figure which shows the time waveform and phase (phi) of an optical pulse train corresponding to the spectrum of FIG. 光パルス列にθ0=-1/(8πΔf2)なるGVDを与えた際の光パルス列の時間波形と位相φを示す図である。Is a diagram showing a time waveform and the phase φ of the optical pulse train at the time of giving the GVD of theta 0 = becomes -1 / (8πΔf 2) the optical pulse train. 光パルス列に加える位相変調波形を示す図である。It is a figure which shows the phase modulation waveform added to an optical pulse train. ピーク電圧が3Vπ/4で繰り返し周波数が2Δfの矩形波電気信号波形と、ピーク電圧がVπで繰り返し周波数がΔfの矩形波電気信号波形とを示す図である。It is a figure which shows the rectangular wave electric signal waveform with a peak voltage of 3V π / 4 and a repetition frequency of 2Δf, and the rectangular wave electric signal waveform with a peak voltage of V π and a repetition frequency of Δf. 図22の二つの矩形波を合波した位相変調信号波形を示す図である。It is a figure which shows the phase modulation signal waveform which combined the two rectangular waves of FIG. 光パルス列の電力密度スペクトル波形を示す図である。It is a figure which shows the power density spectrum waveform of an optical pulse train. 光パルス列の時間波形を示す図である。It is a figure which shows the time waveform of an optical pulse train. 図23の位相変調を施された光パルス列の電力密度スペクトル波形を示す図である。It is a figure which shows the power density spectrum waveform of the optical pulse train which performed the phase modulation of FIG. DCFを通過した光パルス列の時間波形を示す図である。It is a figure which shows the time waveform of the optical pulse train which passed DCF. 図27の光パルス列の時間波形の対数軸表示図である。FIG. 28 is a logarithmic axis display diagram of the time waveform of the optical pulse train of FIG. 27. ピーク電圧がVπ/4で繰り返し周波数が2Δfの正弦波電気信号波形と、ピーク電圧がVπで繰り返し周波数がΔfの正弦波電気信号波形とを示す図である。A sinusoidal electrical signal waveform repetition frequency is 2Δf in peak voltage V π / 4, the peak voltage repetition frequency at V [pi illustrates the sinusoidal electrical signal waveform Delta] f. 図29の二つの正弦波を合波した位相変調信号波形を示す図である。It is a figure which shows the phase modulation signal waveform which combined the two sine waves of FIG. 図30の位相変調を施された光パルス列の電力密度スペクトル波形を示す図である。It is a figure which shows the power density spectrum waveform of the optical pulse train which performed the phase modulation of FIG. DCFを通過した光パルス列の時間波形を示す図である。It is a figure which shows the time waveform of the optical pulse train which passed DCF. 図32の光パルス列の時間波形の対数軸表示図である。FIG. 33 is a logarithmic axis display diagram of the time waveform of the optical pulse train of FIG. 32.

符号の説明Explanation of symbols

1 光パルス列発生装置
10 光パルス列発生部
11 レーザ光源
12 強度変調部
13 強度変調信号発生部
20 光パルス列変換装置
21 位相変調部
22 群速度分散部
30 位相変調信号発生部
DESCRIPTION OF SYMBOLS 1 Optical pulse train generator 10 Optical pulse train generator 11 Laser light source 12 Intensity modulator 13 Intensity modulation signal generator 20 Optical pulse train converter 21 Phase modulator 22 Group velocity dispersion unit 30 Phase modulation signal generator

Claims (14)

位相変調信号に応じて、入力される光パルス列に位相変調を施す位相変調部と、
前記位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えて、繰り返し周波数が減じられた光パルス列を出力する群速度分散部と、を備える光パルス列変換装置。
A phase modulation unit that performs phase modulation on the input optical pulse train in accordance with the phase modulation signal;
An optical pulse train conversion comprising: a group velocity dispersion section that provides the optical pulse train subjected to the phase modulation to the group velocity dispersion necessary for a partial temporal Talbot effect and outputs an optical pulse train with a reduced repetition frequency. apparatus.
前記位相変調は、前記減じられた繰り返し周波数を持つ光パルス列に対して、前記群速度分散と絶対値が同じで符号が逆の群速度分散を与えた場合に生じる光パルス列の各光パルスの位相への変調である請求項1に記載の光パルス列変換装置。   The phase modulation is the phase of each optical pulse of the optical pulse train that is generated when the optical pulse train having the reduced repetition frequency is given the group velocity dispersion having the same absolute value and the opposite sign as the group velocity dispersion. The optical pulse train converter according to claim 1, wherein the optical pulse train converter is a modulated signal. 前記群速度分散部は、分散補償ファイバである請求項1又は2に記載の光パルス列変換装置。   The optical pulse train converter according to claim 1, wherein the group velocity dispersion unit is a dispersion compensating fiber. 前記位相変調信号は、立ち上がり時間が前記入力される光パルスの間隔と同程度以下の矩形波からなる請求項1から3のいずれか一項に記載の光パルス列変換装置。 4. The optical pulse train converter according to claim 1, wherein the phase modulation signal is formed of a rectangular wave whose rise time is approximately equal to or less than the interval between the input optical pulses . 5. 前記入力される光パルス列の繰り返し周波数が2Δfであり、
前記群速度分散は、大きさが 1/(4πΔf2) 又は-1/(4πΔf2)であり、
前記位相変調信号は、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπ/2である請求項4に記載の光パルス列変換装置。
The repetition frequency of the input optical pulse train is 2Δf,
The group velocity dispersion has a magnitude of 1 / (4πΔf 2 ) or -1 / (4πΔf 2 ),
5. The optical pulse train converter according to claim 4, wherein the phase modulation signal has a repetition frequency of Δf, a minimum value of the phase modulation degree is 0, and a maximum value is π / 2.
前記位相変調信号は、前記矩形波からなる位相変調信号を複数組み合わせたものである請求項4に記載の光パルス列変換装置。The optical pulse train converter according to claim 4, wherein the phase modulation signal is a combination of a plurality of phase modulation signals composed of the rectangular waves. 前記入力される光パルス列の繰り返し周波数が4Δfであり、
前記群速度分散は、大きさが1/(8πΔf2)であり、
前記位相変調信号は、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値が3π/4である矩形波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである矩形波信号と、の合波信号である請求項に記載の光パルス列変換装置。
The repetition frequency of the input optical pulse train is 4Δf,
The group velocity dispersion has a magnitude of 1 / (8πΔf 2 ),
The phase modulation signal has a repetition frequency of 2Δf, a rectangular wave signal having a minimum phase modulation degree of 0 and a maximum value of 3π / 4, and a repetition frequency of Δf and a minimum value of the phase modulation degree. The optical pulse train converter according to claim 6 , which is a combined signal of a rectangular wave signal having a maximum value of 0 and π.
前記位相変調信号は、正弦波である請求項1から3のいずれか一項に記載の光パルス列変換装置。The optical pulse train converter according to any one of claims 1 to 3, wherein the phase modulation signal is a sine wave. 前記位相変調信号は、複数の正弦波が組み合わされてなる請求項8に記載の光パルス列変換装置。9. The optical pulse train converter according to claim 8, wherein the phase modulation signal is a combination of a plurality of sine waves. 前記入力される光パルス列の繰り返し周波数が4Δfであり、
前記群速度分散は、大きさが1/(8πΔf2)であり、
前記位相変調信号は、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値がπ/4である正弦波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである正弦波信号と、の合波信号である請求項に記載の光パルス列変換装置。
The repetition frequency of the input optical pulse train is 4Δf,
The group velocity dispersion has a magnitude of 1 / (8πΔf 2 ),
The phase modulation signal has a repetition frequency of 2Δf, a phase modulation degree minimum value of 0 and a maximum value of π / 4, a repetition frequency of Δf, and a phase modulation degree minimum value of The optical pulse train converter according to claim 9 , which is a combined signal of a sine wave signal having a maximum value of 0 and π.
入力光パルス列の平均パワーに対し、出力される光パルス列の平均パワーが保たれている請求項1から10のいずれか一項に記載の光パルス列変換装置。The optical pulse train converter according to any one of claims 1 to 10, wherein the average power of the output optical pulse train is maintained with respect to the average power of the input optical pulse train. 請求項1から11のいずれか一項に記載の光パルス列変換装置と、
短パルスの光パルス列を発生して前記位相変調部に出力する光パルス列発生部と、
前記位相変調信号を発生して前記位相変調部に出力する位相変調信号発生部と、を備える光パルス列発生装置。
The optical pulse train converter according to any one of claims 1 to 11 ,
An optical pulse train generator that generates an optical pulse train of a short pulse and outputs the optical pulse train to the phase modulator;
An optical pulse train generator comprising: a phase modulation signal generation unit that generates the phase modulation signal and outputs the phase modulation signal to the phase modulation unit.
前記光パルス列発生部は、The optical pulse train generator is
連続光を発生するレーザ光源と、A laser light source that generates continuous light;
電気信号を印加することで該連続光を強度変調する強度変調部と、を備える請求項12に記載の光パルス列発生装置。The optical pulse train generator according to claim 12, further comprising: an intensity modulation unit that modulates the intensity of the continuous light by applying an electric signal.
位相変調信号に応じて、入力される光パルス列に位相変調を施す工程と、
前記位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えて、繰り返し周波数が減じられた光パルス列を出力する工程と、を含む光パルス列変換方法。
Applying phase modulation to the input optical pulse train in accordance with the phase modulation signal;
An optical pulse train conversion method including: providing the optical pulse train subjected to the phase modulation to group velocity dispersion necessary for a partial temporal Talbot effect and outputting an optical pulse train with a reduced repetition frequency.
JP2008105002A 2008-04-14 2008-04-14 Optical pulse train converter, optical pulse train generator, and optical pulse train converter Expired - Fee Related JP5224338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105002A JP5224338B2 (en) 2008-04-14 2008-04-14 Optical pulse train converter, optical pulse train generator, and optical pulse train converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105002A JP5224338B2 (en) 2008-04-14 2008-04-14 Optical pulse train converter, optical pulse train generator, and optical pulse train converter

Publications (2)

Publication Number Publication Date
JP2009258235A JP2009258235A (en) 2009-11-05
JP5224338B2 true JP5224338B2 (en) 2013-07-03

Family

ID=41385778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105002A Expired - Fee Related JP5224338B2 (en) 2008-04-14 2008-04-14 Optical pulse train converter, optical pulse train generator, and optical pulse train converter

Country Status (1)

Country Link
JP (1) JP5224338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710248A (en) * 2018-07-25 2018-10-26 中国科学院半导体研究所 The stealthy system of time domain based on time domain Tabo effect
CN111987577A (en) * 2020-06-05 2020-11-24 南京大学 All-fiber laser with flexibly multiplied repetition frequency

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056743B2 (en) * 2008-12-16 2012-10-24 沖電気工業株式会社 Bit rate variable optical pulse signal generating apparatus, optical network communication system, and optical network communication method
DE102010002976A1 (en) * 2010-03-17 2011-09-22 Technische Universität Dresden Method for generating electromagnetic oscillation source used in e.g. communication field, involves making dispersion wavelength of dispersive element smaller with increase of wavelength of light pulse produced by pulse laser
JP6391904B2 (en) * 2011-11-11 2018-09-19 ソニー株式会社 Semiconductor laser device assembly
CN111274533B (en) * 2020-02-24 2023-04-07 杭州电子科技大学 Light domain cross-correlation operation method and device based on Talbot effect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710248A (en) * 2018-07-25 2018-10-26 中国科学院半导体研究所 The stealthy system of time domain based on time domain Tabo effect
CN108710248B (en) * 2018-07-25 2020-09-08 中国科学院半导体研究所 Time domain cloaking system based on time domain Talbot effect
CN111987577A (en) * 2020-06-05 2020-11-24 南京大学 All-fiber laser with flexibly multiplied repetition frequency

Also Published As

Publication number Publication date
JP2009258235A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
van Howe et al. Ultrafast optical signal processing based upon space-time dualities
Thévenaz Slow and fast light in optical fibres
JP4459547B2 (en) Optical pulse compressor, optical function generator, optical pulse compression method, and optical function generation method
JP5224338B2 (en) Optical pulse train converter, optical pulse train generator, and optical pulse train converter
Yamamoto et al. Multicarrier light source with flattened spectrum using phase modulators and dispersion medium
JPH06326387A (en) Optical soliton generator
Huang et al. Spectral line‐by‐line shaping for optical and microwave arbitrary waveform generations
JP4733745B2 (en) Optical signal processor
JP4471666B2 (en) Optical Fourier transform apparatus and method
Gao et al. Experimental demonstration of arbitrary waveform generation by a 4-bit photonic digital-to-analog converter
JP5665038B2 (en) Broadband optical comb generator
US20110188800A1 (en) Optical modulation device and optical modulation method
US20050286108A1 (en) Ultrafast optical delay lines using a time-prism pair
US7076120B2 (en) Optical pulse generator for return-to-zero signaling
GB2567646A (en) Apparatus and method for reducing distortion of an optical signal
JP2007094143A (en) Multi-wavelength light source
Sheveleva et al. Temporal optical besselon waves
JP4463707B2 (en) Optical pulse generator
Connelly et al. Dynamic power and chirp measurements of electroabsorption and Mach-Zehnder modulator pulse generators and chirp factor extraction using a linear pulse characterization technique
US20220390772A1 (en) Arbitrary waveform generation device and arbitrary waveform generation method
Berger Measurement of subpicosecond optical waveforms using a resonator-based phase modulator
EP4303548A1 (en) Dispersion measuring device, and dispersion measuring method
Leven et al. High speed arbitrary waveform generation and processing using a photonic digital-to-analog converter
Li et al. Ultralarge dispersion of microwave signals
Wang et al. Optical Gaussian pulse source based on spectrum slicing and frequency chirp compression

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees