JP5223542B2 - Occupant posture detection device and occupant posture detection method - Google Patents

Occupant posture detection device and occupant posture detection method Download PDF

Info

Publication number
JP5223542B2
JP5223542B2 JP2008219792A JP2008219792A JP5223542B2 JP 5223542 B2 JP5223542 B2 JP 5223542B2 JP 2008219792 A JP2008219792 A JP 2008219792A JP 2008219792 A JP2008219792 A JP 2008219792A JP 5223542 B2 JP5223542 B2 JP 5223542B2
Authority
JP
Japan
Prior art keywords
detection
electrode
capacitance
head
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008219792A
Other languages
Japanese (ja)
Other versions
JP2010054350A (en
Inventor
武 戸倉
興治 ▲崎▼山
孝一 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008219792A priority Critical patent/JP5223542B2/en
Publication of JP2010054350A publication Critical patent/JP2010054350A/en
Application granted granted Critical
Publication of JP5223542B2 publication Critical patent/JP5223542B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、車両の座席に着座した乗員の姿勢を検知する乗員姿勢検知装置および乗員姿勢検知方法に関する。   The present invention relates to an occupant posture detection device and an occupant posture detection method for detecting the posture of an occupant seated in a vehicle seat.

自動車等の車両の高性能化に伴い、例えば衝突時に乗員を保護するためのエアバッグの展開を乗員の姿勢などに基づき制御することが行われつつある。このような乗員の姿勢を検知するものとして、例えば下記特許文献1に開示されている頭部位置検出システムが知られている。   With the improvement in performance of vehicles such as automobiles, for example, the deployment of airbags for protecting passengers in the event of a collision is being controlled based on the posture of the passengers. As a device for detecting such an occupant's posture, for example, a head position detection system disclosed in Patent Document 1 below is known.

この頭部位置検出システムは、シート(座席)に座った乗員と高周波的に電気接続される発振電極をシート座部(着座部)に配し、発振電極と金属枠との間に発振出力を印加する発振部と、発振電極と対向するように車室天井部に受信電極を絶縁配置した距離測定用センサとを備える。   In this head position detection system, an oscillation electrode that is electrically connected in high frequency with an occupant sitting on a seat (seat) is arranged in a seat seat (sitting portion), and an oscillation output is generated between the oscillation electrode and a metal frame. An oscillating unit to be applied and a distance measuring sensor in which a receiving electrode is insulated from the ceiling of the passenger compartment so as to face the oscillating electrode.

また、この頭部位置検出システムは、乗員に電気接続される導体面から既知の距離だけ離れ、導体面と対向して校正用受信電極を絶縁配置して計測するキャリブレーションセンサと、この計測結果に基づき受信電極における各距離と出力電圧に係る特性曲線とを決定し、各出力電圧の値を、該当する特性曲線に当てはめて各距離を求める処理回路とを備える。そして、乗員の頭部と受信電極との間の距離を計測して頭部の位置を検出するとされている。   In addition, the head position detection system includes a calibration sensor that measures a measurement receiving electrode that is separated from a conductor surface that is electrically connected to an occupant by a known distance and that is opposed to the conductor surface and insulates the calibration receiving electrode. And a processing circuit for determining each distance in the receiving electrode and a characteristic curve relating to the output voltage, and applying each output voltage value to the corresponding characteristic curve to obtain each distance. And it is supposed that the position of a head will be detected by measuring the distance between a passenger | crew's head and a receiving electrode.

特開2002−365011号公報JP 2002-365011 A

しかしながら、上述した特許文献1に開示されている頭部位置検出システムでは、発振電極と受信電極がそれぞれ座席の上方や下方に配置されているため、配線長が長くなったりシステム構成が複雑化したりして、コストの削減を図りにくいという問題がある。   However, in the head position detection system disclosed in Patent Document 1 described above, since the oscillation electrode and the reception electrode are respectively disposed above and below the seat, the wiring length becomes long and the system configuration becomes complicated. Therefore, there is a problem that it is difficult to reduce the cost.

この発明は、上述した従来技術の問題点を解消するため、安価に構成可能で高精度に乗員の姿勢を検知することができる乗員姿勢検知装置および乗員姿勢検知方法を提供することを目的とする。   An object of the present invention is to provide an occupant posture detection device and an occupant posture detection method that can be configured at low cost and can detect the posture of an occupant with high accuracy in order to eliminate the above-described problems of the prior art. .

上述した課題を解決し、目的を達成するため、本発明に係る乗員姿勢検知装置は、車両の座席の上方の車室天井部に、所定の平面上の位置を検知可能なように少なくとも三つ配置され、前記座席に着座した人体の頭部と前記車室天井部との間の静電容量を検知する検知電極と、前記検知電極とそれぞれ接続され、各検知電極からの検知信号に基づいて前記人体の頭部の位置を検出する検出回路と、前記検出回路からの検出結果に応じて、前記人体の着座姿勢を判定する姿勢判定回路とを備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, an occupant posture detection device according to the present invention has at least three positions on a ceiling of a passenger compartment above a vehicle seat so that a position on a predetermined plane can be detected. A detection electrode that detects the electrostatic capacitance between the head of the human body seated on the seat and the passenger compartment ceiling, and is connected to the detection electrode, based on detection signals from the detection electrodes A detection circuit that detects a position of the head of the human body and a posture determination circuit that determines a sitting posture of the human body according to a detection result from the detection circuit.

本発明に係る乗員姿勢検知装置は、以上のように構成することにより、従来のものと比べて検知電極を車室天井部に設けるだけで済み、発振電極や受信電極といった構成が不要なシンプルな構成にすることができるとともに、これら電極間の距離の問題も皆無となるので、安価に構成可能で高精度に乗員の姿勢を検知することが可能となる。なお、人体の頭部としては、特に頭頂部を検出することが好ましい。   By configuring the occupant posture detection device according to the present invention as described above, it is only necessary to provide the detection electrode on the ceiling of the passenger compartment as compared with the conventional one, and the configuration such as the oscillation electrode and the reception electrode is not required. In addition to being able to be configured, there is no problem of the distance between these electrodes, so that it can be configured at low cost and can detect the posture of the occupant with high accuracy. As the human head, it is particularly preferable to detect the top of the head.

前記検出回路は、例えば前記検知電極とそれぞれ切替スイッチを介して接続されおり、前記検知電極とそれぞれ前記切替スイッチを介して接続され、各検知電極に対して所定の電圧を出力する駆動回路をさらに備え、前記姿勢判定回路は、例えば前記検知電極のうちの一の検知電極が択一的に前記検出回路と接続されるときに、他の検知電極が前記駆動回路と接続されるように前記切替スイッチの切り替え動作を制御する。   The detection circuit is connected to, for example, the detection electrode via a changeover switch, and is further connected to the detection electrode via the changeover switch, and further includes a drive circuit that outputs a predetermined voltage to each detection electrode. The posture determination circuit includes, for example, the switching so that when one detection electrode of the detection electrodes is alternatively connected to the detection circuit, the other detection electrode is connected to the drive circuit. Controls the switching operation of the switch.

また、前記検出回路は、前記各検知電極の静電容量値から直接前記人体の頭部の位置を検出した後に、該頭部の位置のX方向の補正値と、該頭部の位置のY方向の補正値とを前記各検知電極の静電容量値から求め、それら補正値に基づいてさらに前記姿勢判定回路において前記人体の着座位姿勢を判定するために要する補正演算処理をさらに行う構成としてもよい。   Further, the detection circuit detects the position of the head of the human body directly from the capacitance value of each of the detection electrodes, and then corrects the correction value in the X direction of the position of the head and the Y of the position of the head. A direction correction value is obtained from the capacitance value of each detection electrode, and a correction calculation process required for further determining the sitting posture of the human body in the posture determination circuit based on the correction value is further performed. Also good.

なお、前記姿勢判定回路は、判定した前記人体の着座姿勢に関する情報を、前記車両に搭載されたエアバッグの展開を制御する機能を含むECUに出力する構成とされていてもよい。   The posture determination circuit may be configured to output information regarding the determined sitting posture of the human body to an ECU including a function of controlling deployment of an airbag mounted on the vehicle.

また、前記検知電極は、例えば前記車両の前方側に一つの頂点が存するような三角形平面状、あるいは前記車両の後方側に一つの頂点が存するような三角形平面状に前記車室天井部に配置されてもよく、さらに四つ配置された場合は、例えば前記車両の前後方向および左右方向においてそれぞれ辺を形成するような四角形平面状に配置されるとよい。   In addition, the detection electrode is arranged on the ceiling of the passenger compartment, for example, in a triangular plane shape with one apex on the front side of the vehicle, or in a triangular plane shape with one apex on the rear side of the vehicle. In the case where four more are arranged, for example, they may be arranged in a rectangular plane shape that forms sides in the front-rear direction and the left-right direction of the vehicle, for example.

前記検知電極の裏面側および周囲の両方またはいずれかに、該検知電極と電気的に絶縁されたシールド部をさらに備えてもよく、前記シールド部は、例えば前記検知電極と同電位が与えられているとよい。   A shield part that is electrically insulated from the detection electrode may be further provided on the back side and / or the periphery of the detection electrode, and the shield part is provided with the same potential as the detection electrode, for example. It is good to be.

また、前記検出回路は、例えばあらかじめ前記座席に人体が着座していないときの静電容量値を記憶する記憶手段を備え、前記人体が着座した場合に該記憶手段に記憶された該静電容量値からの増加量を検出値として検出結果を出力するようにしてもよい。   Further, the detection circuit includes, for example, storage means for storing a capacitance value when a human body is not seated in the seat in advance, and the capacitance stored in the storage means when the human body is seated. The detection result may be output using the increment from the value as the detection value.

前記検出回路は、例えば各検知電極により検知された静電容量を電圧に変換するC−V変換型の静電容量検知回路を有する構成としてもよい。   For example, the detection circuit may include a CV conversion type capacitance detection circuit that converts capacitance detected by each detection electrode into a voltage.

また、前記検出回路は、例えば差動動作型の静電容量検知回路を有し、各検知電極の近傍に該検知電極とは逆相の該静電容量検知回路の入力端子に接続された補助電極が配置されていてもよい。   In addition, the detection circuit has, for example, a differential operation type capacitance detection circuit, and is connected to an input terminal of the capacitance detection circuit having a phase opposite to the detection electrode in the vicinity of each detection electrode. An electrode may be disposed.

本発明に係る乗員姿勢検知方法は、車両の座席の上方の車室天井部に、平面上の位置を検知可能なように少なくとも三つ設けられた検知電極によって、前記座席に着座した人体の頭部と前記車室天井部との間の静電容量を検知し、検知された静電容量を示す各検知電極からの検知信号に基づいて、前記人体の頭部の位置を検出し、検出された前記頭部の位置を基準として、前記人体の着座姿勢を判定することを特徴とする。   According to the occupant posture detection method of the present invention, the head of the human body seated on the seat is provided by at least three detection electrodes provided on the ceiling of the passenger compartment above the seat of the vehicle so that the position on the plane can be detected. And detecting the position of the head of the human body based on the detection signal from each detection electrode indicating the detected capacitance. The seating posture of the human body is determined with reference to the position of the head.

本発明によれば、安価に構成可能で高精度に乗員の姿勢を検知することができる乗員姿勢検知装置および乗員姿勢検知方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the passenger | crew attitude | position detection apparatus and passenger | crew attitude | position detection method which can be comprised cheaply and can detect a passenger | crew's attitude | position with high precision can be provided.

以下に、添付の図面を参照して、この発明に係る乗員姿勢検知装置および乗員姿勢検知方法の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of an occupant posture detection device and an occupant posture detection method according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る乗員姿勢検知装置の全体構成の一例を示す説明図、図2は同乗員姿勢検知装置の検知電極の一例を示す説明図、図3は同乗員姿勢検知装置の動作原理の一例を説明するための説明図、図4は同乗員姿勢検知装置の左右方向の判定動作を説明するための説明図、図5は同乗員姿勢検知装置の前後方向の判定動作を説明するための説明図である。   FIG. 1 is an explanatory diagram illustrating an example of the overall configuration of an occupant posture detection device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram illustrating an example of detection electrodes of the occupant posture detection device, and FIG. FIG. 4 is an explanatory diagram for explaining an example of the operation principle of the detection device, FIG. 4 is an explanatory diagram for explaining a determination operation in the left-right direction of the passenger posture detection device, and FIG. 5 is a front-rear direction determination of the passenger posture detection device. It is explanatory drawing for demonstrating operation | movement.

また、図6は、本発明の一実施形態に係る乗員姿勢検知装置の静電容量検知回路の一例を示すブロック図、図7は同乗員姿勢検知装置の回路部の動作波形の一例を示す動作波形図である。   FIG. 6 is a block diagram showing an example of a capacitance detection circuit of the occupant posture detection device according to one embodiment of the present invention, and FIG. 7 is an operation showing an example of operation waveforms of the circuit unit of the occupant posture detection device. It is a waveform diagram.

図1に示すように、本実施形態に係る乗員姿勢検知装置100は、例えば車両1の座席40の上方にある車室天井部2に、例えば、座席40に座った乗員(人体)48の頭部49の平面状の位置を検知可能なように配置された三つの検知電極(第1検知電極11,第2検知電極12,第3検知電極13)を有する静電容量センサ部10と、この静電容量センサ部10からの出力を用いて、座席40に着座した乗員48の頭部49の位置に基づく着座姿勢を判定する回路部20とを備えて構成されている。   As shown in FIG. 1, the occupant posture detection device 100 according to the present embodiment is, for example, in the passenger compartment ceiling 2 above the seat 40 of the vehicle 1, for example, the head of an occupant (human body) 48 sitting on the seat 40. A capacitance sensor unit 10 having three detection electrodes (a first detection electrode 11, a second detection electrode 12, and a third detection electrode 13) arranged so as to detect a planar position of the unit 49; The circuit unit 20 is configured to determine the sitting posture based on the position of the head 49 of the occupant 48 seated on the seat 40 using the output from the capacitance sensor unit 10.

静電容量センサ部10の各検知電極11〜13は、例えば第1検知電極11が車両1の前方側の頂点となり、第2および第3検知電極12,13が座席40上の車両1の左右方向に離れて配置され、各検知電極11〜13を直線的に結ぶと三角形平面状(例えば、第1検知電極11を前方側の頂点とする二等辺三角形)となるように車室天井部2の内部あるいは車室内側表面に配置されている。そして、静電容量センサ部10は、乗員48の頭部49と車室天井部2(具体的には検知電極11〜13)との間の静電容量を検知する。より具体的には、静電容量センサ部10は、乗員48の頭部49の頭頂部と検知電極11〜13との間の静電容量を検知する。   In each of the detection electrodes 11 to 13 of the capacitance sensor unit 10, for example, the first detection electrode 11 is a vertex on the front side of the vehicle 1, and the second and third detection electrodes 12 and 13 are on the left and right sides of the vehicle 1 on the seat 40. The vehicle interior ceiling part 2 is arranged so as to be spaced apart in the direction and to form a triangular plane (for example, an isosceles triangle having the first detection electrode 11 as a vertex on the front side) when the detection electrodes 11 to 13 are linearly connected. It is arrange | positioned in the inside of a vehicle or the vehicle interior side surface. And the electrostatic capacitance sensor part 10 detects the electrostatic capacitance between the head 49 of the passenger | crew 48 and the vehicle interior ceiling part 2 (specifically detection electrodes 11-13). More specifically, the capacitance sensor unit 10 detects the capacitance between the top of the head 49 of the occupant 48 and the detection electrodes 11 to 13.

なお、静電容量センサ部10は、部品のモジュール化を促進するために、図示しない基板の一方の面側に、上述したように第1〜第3検知電極11〜13が形成されて車室天井部2に配置されてもよく、回路部20はこの基板の同一面あるいは他方の面側に実装された上で配置されていてもよい。もちろん、配置の態様によっては各部が別体に配置されていてもよい。   In addition, in order to promote modularization of components, the capacitance sensor unit 10 includes the first to third detection electrodes 11 to 13 formed on one surface side of a substrate (not shown) as described above. The circuit unit 20 may be disposed on the same surface or the other surface side of the substrate. Of course, each part may be arrange | positioned separately depending on the aspect of arrangement | positioning.

静電容量センサ部10等が基板に形成された場合は、この基板としては、例えばフレキシブルプリント基板、リジッド基板あるいはリジッドフレキシブル基板などが用いられる。また、各検知電極11〜13は、例えば基板がフレキシブルプリント基板からなる場合は、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)あるいはエポキシ樹脂などの絶縁体からなるベース材上にパターン形成された銅、銅合金またはアルミニウムなどの金属材からなる。その他、各検知電極11〜13は、メンブレン回路に形成されたり、導電性粘着材やその他の導体金属からなるものであってもよい。   When the capacitance sensor unit 10 or the like is formed on a substrate, for example, a flexible printed board, a rigid board, a rigid flexible board, or the like is used as the board. Each of the detection electrodes 11 to 13 is an insulator such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), or epoxy resin when the substrate is made of a flexible printed board. It consists of metal materials, such as copper, copper alloy, or aluminum, which are patterned on a base material made of In addition, each detection electrode 11-13 may be formed in a membrane circuit, or may be made of a conductive adhesive material or other conductive metal.

また、各検知電極11〜13は、例えばそれぞれ切替スイッチSW1,SW2,SW3を介して回路部20の静電容量検知回路21と接続されるとともに、これら各切替スイッチSW1〜SW3を介してシールド駆動回路23と接続されている。なお、図示は省略するが、上記シールド駆動回路23は、回路部20内に備えられていてもよい。   Each of the detection electrodes 11 to 13 is connected to the electrostatic capacitance detection circuit 21 of the circuit unit 20 through, for example, changeover switches SW1, SW2, and SW3, and shield drive is performed through these changeover switches SW1 to SW3. The circuit 23 is connected. Although illustration is omitted, the shield drive circuit 23 may be provided in the circuit unit 20.

一方、回路部20は、例えば検知電極11〜13により検知された静電容量を示す検知信号に基づいて、それぞれの静電容量値を検出する静電容量検知回路21と、この静電容量検知回路21からのアナログ信号をディジタル信号に変換するA/D変換器22と、このA/D変換器22によりディジタル信号化された情報に基づき、乗員姿勢検知装置100の各種動作制御や演算処理などを司るとともに、乗員48の着座姿勢を判定し、この判定した着座姿勢に関する情報(姿勢情報)を、例えば車両1に搭載されたECU(電子制御ユニット)に対して出力するCPU29とを備えて構成されている。   On the other hand, the circuit unit 20 includes, for example, a capacitance detection circuit 21 that detects each capacitance value based on a detection signal indicating the capacitance detected by the detection electrodes 11 to 13, and the capacitance detection. An A / D converter 22 that converts an analog signal from the circuit 21 into a digital signal, and various operation controls and arithmetic processing of the occupant posture detection device 100 based on the information converted into a digital signal by the A / D converter 22 And a CPU 29 that determines the seating posture of the occupant 48 and outputs information on the determined seating posture (posture information) to, for example, an ECU (electronic control unit) mounted on the vehicle 1. Has been.

ECUは、例えば車両1に搭載されたエアバッグの展開を制御(すなわち、エアバッグの開く方向や膨張率などを制御)する機能を備え、本例の乗員姿勢検知装置100からの姿勢情報をも参照して、エアバッグの展開を制御することが可能に構成されている。   The ECU has, for example, a function of controlling the deployment of an airbag mounted on the vehicle 1 (that is, controlling the opening direction of the airbag, the inflation rate, etc.), and also includes attitude information from the occupant attitude detection device 100 of this example. Referring to, it is configured to be able to control the deployment of the airbag.

上記各切替スイッチSW1〜SW3は、例えばマルチプレクサ、アナログスイッチ、FETあるいはリレーなどのユニットからなり、この回路部20のCPU29は、各切替スイッチSW1〜SW3の切り替え動作を切替制御信号を出力して制御する。具体的には、本例の乗員姿勢検知装置100では、次のような切替制御が行われる。   Each of the change-over switches SW1 to SW3 is composed of a unit such as a multiplexer, an analog switch, an FET, or a relay, for example, and the CPU 29 of the circuit unit 20 controls the changeover operation of each of the change-over switches SW1 to SW3 by outputting a switch control signal. To do. Specifically, in the occupant posture detection device 100 of this example, the following switching control is performed.

すなわち、CPU29からの切替制御信号により、例えばSW1が第1検知電極11と静電容量検知回路21とが接続されるように切り替えられた場合、SW2およびSW3は第2検知電極12および第3検知電極13がシールド駆動回路23と接続されるように切り替えられる。   That is, when the switching control signal from the CPU 29 switches, for example, SW1 so that the first detection electrode 11 and the capacitance detection circuit 21 are connected, SW2 and SW3 are the second detection electrode 12 and the third detection signal. Switching is performed so that the electrode 13 is connected to the shield drive circuit 23.

また、例えばSW2が第2検知電極12と静電容量検知回路21とが接続されるように切り替えられた場合は、SW1およびSW3は第1検知電極11および第3検知電極13がシールド駆動回路23と接続されるように切り替えられる。   For example, when SW2 is switched so that the second detection electrode 12 and the capacitance detection circuit 21 are connected, SW1 and SW3 are the first detection electrode 11 and the third detection electrode 13 are the shield drive circuit 23. It is switched to be connected.

さらに、例えばSW3が第3検知電極13と静電容量検知回路21とが接続されるように切り替えられた場合は、SW1およびSW2は第1検知電極11および第2検知電極12がシールド駆動回路23と接続されるように切り替えられる。このように、CPU29は、各検知電極11〜13と静電容量検知回路21とが択一的に接続されたとき(順番に切り替えて接続されたとき)の、それぞれの検出された静電容量値に基づいて、乗員48の着座姿勢を判定する。   Further, for example, when the switch SW3 is switched so that the third detection electrode 13 and the capacitance detection circuit 21 are connected, the first detection electrode 11 and the second detection electrode 12 are connected to the shield drive circuit 23 for SW1 and SW2. It is switched to be connected. As described above, the CPU 29 detects the detected capacitance when each of the detection electrodes 11 to 13 and the capacitance detection circuit 21 are alternatively connected (when switched in order). Based on the value, the sitting posture of the occupant 48 is determined.

なお、シールド駆動回路23は、接続された検知電極に対して、静電容量検知回路21により与えられている電位と同等の電位を与えるように構成されている。これにより、各検知電極11〜13同士の静電容量結合を防止して、各検知電極11〜13ごとに高精度な静電容量の検知を行うことが可能となる。   The shield drive circuit 23 is configured to give a potential equivalent to the potential given by the capacitance detection circuit 21 to the connected detection electrode. Thereby, it is possible to prevent electrostatic capacitance coupling between the detection electrodes 11 to 13 and to detect the electrostatic capacitance with high accuracy for each of the detection electrodes 11 to 13.

また、シールド駆動回路23は、例えば各検知電極11〜13に与えられる電位より高い入力インピーダンスで1倍のアンプ(バッファ)を通して生成された電位を与えてもよいし、後述するように静電容量検知回路21が差動動作型である場合は、オペアンプの非反転入力部分を接続して同等の電位を与えてもよい。   Further, the shield drive circuit 23 may give a potential generated through an amplifier (buffer) having a single input impedance higher than the potential given to each of the detection electrodes 11 to 13, for example. When the detection circuit 21 is of a differential operation type, an equivalent potential may be applied by connecting a non-inverting input portion of an operational amplifier.

各検知電極11〜13は、図2に示すように、例えばそれぞれ矩形状に形成されており、その裏面側(検出範囲側とは反対側)に各検知電極11〜13と電気的に絶縁され、裏面側の検知を抑制するためのシールド部18や、各検知電極11〜13の周囲に同様の効果をもたらすシールド部19が形成された構成であってもよい。これらシールド部18,19は、例えば各検知電極11〜13と同電位が与えられており、これらを備えれば、さらに精度よく車室天井部2と頭部49(具体的には頭頂部)との間の静電容量を検知することが可能となる。   As shown in FIG. 2, each of the detection electrodes 11 to 13 is formed in a rectangular shape, for example, and is electrically insulated from each of the detection electrodes 11 to 13 on the back surface side (the side opposite to the detection range side). The shield part 18 for suppressing the detection on the back surface side and the shield part 19 that provides the same effect around each of the detection electrodes 11 to 13 may be used. These shield portions 18 and 19 are given the same potential as, for example, the respective detection electrodes 11 to 13, and if these are provided, the vehicle compartment ceiling 2 and the head 49 (specifically, the top of the head) are more accurate. Can be detected.

この乗員姿勢検知装置100は、乗員48が各検知電極11〜13と比較して、非常に大きい体積および誘電率を有しているために、ほぼグランド(GND)とみなすことができる原理を利用して、回路部20を各検知電極11〜13とグランド(例えば、乗員48)との間の静電容量を用いて乗員48の着座姿勢を判定することができる構成を採用している。   The occupant posture detection device 100 uses a principle that the occupant 48 has a very large volume and dielectric constant compared to the detection electrodes 11 to 13 and can be regarded as a ground (GND). And the structure which can determine the seating attitude | position of the passenger | crew 48 is employ | adopted for the circuit part 20 using the electrostatic capacitance between each detection electrode 11-13 and a ground (for example, passenger | crew 48).

したがって、このような構成の乗員姿勢検知装置100によれば、従来技術の欄で説明した頭部位置検出システムなどのように、信号の送受信が必要な検知方式のものと比較して、非常にシンプルな構成で精度の高いシステムを構築することができる。よって、本実施形態に係る乗員姿勢検知装置100は、安価に構成することが可能となる。   Therefore, according to the occupant posture detection device 100 having such a configuration, compared with a detection method that requires transmission and reception of signals, such as the head position detection system described in the section of the related art, A highly accurate system can be constructed with a simple configuration. Therefore, the occupant posture detection device 100 according to the present embodiment can be configured at low cost.

この乗員姿勢検知装置100は、例えば図3に示すように動作する。なお、図3におけるグラフの(1),(2),(3)は、それぞれ第1〜第3検知電極11〜13と対応している。図3(a)に示すように、例えば乗員48が座席40に対して車両1の前方右側寄りに着座している場合は、第1検知電極11の(1)の検出値ΔCが、第2検知電極12の(2)の検出値ΔCや第3検知電極13の(3)の検出値ΔCよりも大きいため、乗員48の頭部49(例えば頭頂部、以下同じ。)の位置が第1検知電極11の下方近傍(すなわち、座席40の前方)にあることが分かる。   The occupant posture detection device 100 operates as shown in FIG. 3, for example. Note that (1), (2), and (3) in the graph in FIG. 3 correspond to the first to third detection electrodes 11 to 13, respectively. As shown in FIG. 3A, for example, when the occupant 48 is seated near the front right side of the vehicle 1 with respect to the seat 40, the detection value ΔC of (1) of the first detection electrode 11 is the second value. Since the detection value ΔC of (2) of the detection electrode 12 and the detection value ΔC of (3) of the third detection electrode 13 are larger, the position of the head 49 (for example, the top of the head, the same applies hereinafter) of the occupant 48 is first. It can be seen that it is in the vicinity of the lower side of the detection electrode 11 (that is, in front of the seat 40).

また、第2検知電極12の(2)の検出値ΔCと第3検知電極13の(3)の検出値ΔCを比較すると、第2検知電極12の(2)の検出値ΔCの方が大きいため、乗員48の頭部49の位置は、第2検知電極12の下方近傍(すなわち、右側)に近い位置にあることが分かる。つまり、このように第1〜第3検知電極11〜13の検出値ΔCを比較することで、この場合は、乗員48の着座姿勢が座席40の右側前方にあることが分かる。   Further, when the detection value ΔC of (2) of the second detection electrode 12 and the detection value ΔC of (3) of the third detection electrode 13 are compared, the detection value ΔC of (2) of the second detection electrode 12 is larger. Therefore, it can be seen that the position of the head 49 of the occupant 48 is close to the lower vicinity (that is, the right side) of the second detection electrode 12. That is, by comparing the detection values ΔC of the first to third detection electrodes 11 to 13 in this way, it can be seen that the seating posture of the occupant 48 is in front of the right side of the seat 40 in this case.

一方、図3(b)に示すように、例えば乗員48が座席40に普通の状態で寄りかかって中央に着座している(すなわち、座席40の形状に合った通常基本となる姿勢で着座している)場合は、第2検知電極12の(2)および第3検知電極13の(3)の検出値ΔCが第1検知電極11の(1)の検出値ΔCよりも大きくなる。このため、乗員48の頭部49の位置が第2検知電極12および第3検知電極13の下方側(すなわち、座席40の後方)に近い位置であることが分かる。   On the other hand, as shown in FIG. 3B, for example, an occupant 48 leans against the seat 40 in a normal state and sits in the center (that is, sits in a normal basic posture that matches the shape of the seat 40). The detection value ΔC of (2) of the second detection electrode 12 and (3) of the third detection electrode 13 is larger than the detection value ΔC of (1) of the first detection electrode 11. For this reason, it can be seen that the position of the head 49 of the occupant 48 is close to the lower side of the second detection electrode 12 and the third detection electrode 13 (that is, the rear of the seat 40).

また、第2検知電極12の(2)の検出値ΔCと第3検知電極13の(3)の検出値ΔCとを比較すると、これらの検出値ΔCがほぼ等しい値であるため、乗員48の頭部49の位置は、第2および第3検知電極12,13の中間点下方(すなわち、座席40に寄りかかって中央位置に着座している)にあることが分かる。   Further, when the detection value ΔC of (2) of the second detection electrode 12 and the detection value ΔC of (3) of the third detection electrode 13 are compared, these detection values ΔC are substantially equal to each other. It can be seen that the position of the head 49 is below the midpoint between the second and third detection electrodes 12 and 13 (that is, the head 49 is seated at the center position leaning on the seat 40).

このように、各検知電極11〜13から乗員48の頭部49までの距離は、各検出値ΔCを用いて求めることができるので、周知の三角測量法などを用いて頭部49の位置を算出することができる。しかし、検出値ΔCと頭部49の距離との関係は、乗員48の頭部49の大きさや車室天井部2との間の距離等にも依存するため、本実施形態に係る乗員姿勢検知装置100では、さらに上述した三角測量法の他に以下の処理を行って頭部49の位置を正確に算出するようにしている。   Thus, since the distance from each detection electrode 11-13 to the head 49 of the passenger | crew 48 can be calculated | required using each detection value (DELTA) C, the position of the head 49 is known using a known triangulation method etc. Can be calculated. However, since the relationship between the detected value ΔC and the distance of the head 49 also depends on the size of the head 49 of the occupant 48, the distance to the vehicle interior ceiling 2, and the like, the occupant posture detection according to the present embodiment. In addition to the above-described triangulation method, the apparatus 100 performs the following processing to accurately calculate the position of the head 49.

すなわち、本実施形態の乗員姿勢検知装置100では、例えば頭部49の大きさに変化があったとしても正確に頭部49の位置を検出することができるよう、次のような演算処理を行っている。まず、上述した動作によって得られた、頭部49の前後位置を回路部20に備えられた図示しないRAM,ROM等の記憶手段にパラメータとして記憶しておく。なお、検出値ΔCは、処理の簡素化および正確な位置検出のために、補正値=電極12の検出値/(電極12の検出値+電極13の検出値)とした式を用いた補正演算処理に利用する。   That is, the occupant posture detection device 100 of the present embodiment performs the following arithmetic processing so that the position of the head 49 can be accurately detected even if the size of the head 49 changes, for example. ing. First, the front-rear position of the head 49 obtained by the above-described operation is stored as a parameter in storage means such as a RAM or ROM (not shown) provided in the circuit unit 20. Note that the detection value ΔC is a correction calculation using an equation where correction value = detection value of electrode 12 / (detection value of electrode 12 + detection value of electrode 13) for simplification of processing and accurate position detection. Used for processing.

例えば、図4(a)に示すように、座席40に着座した乗員48の頭部49が左右方向(例えば、X方向)に振れた場合、乗員48の頭部49の左右方向(X方向)の位置と、第2および第3検知電極12,13の検出値ΔCに基づき算出される補正値(規格化検出値(左右))との関係は、図4(b)に示すグラフのように、前後方向の位置の違いによる検出値のずれがあっても近似的に表わされる。図3(a)および図3(b)に示すように、各検知電極11〜13を直線的に結ぶと第1検知電極11を前方側の頂点とする二等辺三角形となるように各検知電極11〜13が配置されている乗員姿勢検知装置では、図4(b)に示すように、上述した規格化検出値(左右)は、頭部49の前後方向の位置の違いによる影響が少ない。   For example, as shown in FIG. 4A, when the head 49 of the occupant 48 seated on the seat 40 swings in the left-right direction (for example, the X direction), the left / right direction (X direction) of the head 49 of the occupant 48 And the correction value (normalized detection value (left and right)) calculated based on the detection value ΔC of the second and third detection electrodes 12 and 13 as in the graph shown in FIG. Even if there is a deviation in the detected value due to a difference in position in the front-rear direction, it is approximately expressed. As shown in FIGS. 3 (a) and 3 (b), when the detection electrodes 11 to 13 are linearly connected, the detection electrodes are formed into an isosceles triangle having the first detection electrode 11 as a vertex on the front side. In the occupant posture detection device in which 11 to 13 are arranged, as shown in FIG. 4B, the above-described normalized detection values (left and right) are less affected by the difference in the position of the head 49 in the front-rear direction.

次に、このようにして判定した左右方向の位置の情報を上述したようにパラメータとして記憶しておき、さらに検出値ΔCを用いて補正値=(電極11の検出値/{電極11の検出値+(電極12の検出値+電極13の検出値)/2})とした式を用いた補正演算処理を行っている。例えば図5(a)に示すように、座席40に着座した乗員48の頭部49が前後方向(例えば、Y方向)に振れた場合、乗員48の頭部49の前後方向(Y方向)の位置と、各検知電極11〜13の検出値ΔCに基づき算出される補正値(規格化検出値(前後))との関係は、図5(b)に示すグラフのように表わされる。図3(a)および図3(b)に示すように、各検知電極11〜13を直線的に結ぶと第1検知電極11を前方側の頂点とする二等辺三角形となるように各検知電極11〜13が配置されている乗員姿勢検知装置では、図5(b)に示すように、上述した規格化検出値(前後)は、頭部49の左右方向の位置の違い(例えば、右方、中央、左方等)により異なってしまう。しかしながら、図4を用いて説明した結果に基づき左右方向の位置を決定した後、規格化検出値(前後)を反映させれば、頭部49の前後方向の位置を正確に判定することができる。   Next, information on the position in the left-right direction determined in this way is stored as a parameter as described above, and correction value = (detection value of electrode 11 / {detection value of electrode 11) using detection value ΔC. + (Detection value of electrode 12 + detection value of electrode 13) / 2}) is performed. For example, as shown in FIG. 5A, when the head 49 of the occupant 48 seated on the seat 40 swings in the front-rear direction (for example, Y direction), the front-rear direction (Y direction) of the head 49 of the occupant 48 The relationship between the position and the correction value (normalized detection value (front and back)) calculated based on the detection value ΔC of each of the detection electrodes 11 to 13 is represented as a graph shown in FIG. As shown in FIGS. 3 (a) and 3 (b), when the detection electrodes 11 to 13 are linearly connected, the detection electrodes are formed into an isosceles triangle having the first detection electrode 11 as a vertex on the front side. In the occupant posture detection device in which 11 to 13 are arranged, as shown in FIG. 5B, the above-described normalized detection value (front and back) is the difference in the horizontal position of the head 49 (for example, rightward). , Center, left side, etc.). However, the position in the front-rear direction of the head 49 can be accurately determined by reflecting the normalized detection value (front-rear) after determining the position in the left-right direction based on the result described with reference to FIG. .

なお、図3を用いて説明した三角測量法によらずに、上述した理論式による補正演算処理を頭部49(頭頂部)の検出の主処理として採用し、直接頭部49の頭頂部の位置を検出するように構成してもよい。このようにすれば、頭部49よりもより「点」に近い頭頂部を直接検出して、処理を少なくしつつさらに正確に位置を得ることができるので好ましい。   Instead of the triangulation method described with reference to FIG. 3, the correction calculation process based on the above-described theoretical formula is adopted as the main process for detecting the head 49 (the head of the head), and the head of the head 49 is directly detected. You may comprise so that a position may be detected. This is preferable because the top of the head closer to the “point” than the head 49 can be directly detected and the position can be obtained more accurately while reducing processing.

なお、本実施形態に係る乗員姿勢検知装置100は、第1〜第3検知電極11〜13を切替スイッチSW1〜SW3を介して一つの静電容量検知回路21に接続し、CPU29からの切替制御により切替スイッチSW1〜SW3を切り替えて、各検知電極11〜13にて検知された静電容量値を用いて乗員48の着座姿勢を判定したが、例えば各検知電極11〜13に対してそれぞれ静電容量検知回路21を具備するように構成してもよい。ただし、この場合は、一の検知電極により静電容量の検知中(測定中)に、他の検知電極の電位が変化するとその影響を受けてしまうため、各静電容量検知回路は同期させる必要がある。   The occupant posture detection device 100 according to the present embodiment connects the first to third detection electrodes 11 to 13 to one capacitance detection circuit 21 via the changeover switches SW1 to SW3, and performs switching control from the CPU 29. The change-over switches SW1 to SW3 are switched by the above, and the sitting posture of the occupant 48 is determined using the capacitance value detected by each of the detection electrodes 11 to 13. For example, each of the detection electrodes 11 to 13 is statically You may comprise so that the capacitance detection circuit 21 may be comprised. However, in this case, each capacitance detection circuit must be synchronized because the potential of other detection electrodes changes when the capacitance is detected (measured) by one detection electrode. There is.

ここで、静電容量検知回路21は、図6に示すように、各検知電極11〜13と頭部49との間の静電容量に応じてデューティー比が変化するパルス信号を生成するとともに平滑化して検知信号を出力する。すなわち、静電容量Cに応じてデューティー比が変化するものであり、例えば一定周期のトリガ信号TGを出力するトリガ信号発生回路101と、入力端に接続された静電容量Cの大きさによってデューティー比が変化するパルス信号Poを出力するタイマー回路102と、このパルス信号Poを平滑化するローパスフィルタ(LPF)103とを備えて構成されている。   Here, as shown in FIG. 6, the capacitance detection circuit 21 generates a pulse signal whose duty ratio changes according to the capacitance between the detection electrodes 11 to 13 and the head 49 and is smooth. Output a detection signal. That is, the duty ratio changes according to the capacitance C. For example, the duty signal depends on the trigger signal generation circuit 101 that outputs a trigger signal TG having a fixed period and the size of the capacitance C connected to the input terminal. A timer circuit 102 that outputs a pulse signal Po whose ratio changes is provided, and a low-pass filter (LPF) 103 that smoothes the pulse signal Po.

タイマー回路102は、例えば2つの比較器201,202と、これら比較器201,202の出力がそれぞれリセット端子Rおよびセット端子Sに入力されるRSフリップフロップ回路(以下、「RS−FF」と呼ぶ。)203と、このRS−FF203の出力DISをLPF103に出力するバッファ204と、RS−FF203の出力DISでオン/オフさせるトランジスタ205とを備えて構成されている。   The timer circuit 102 includes, for example, two comparators 201 and 202, and an RS flip-flop circuit (hereinafter referred to as “RS-FF”) in which outputs of the comparators 201 and 202 are input to a reset terminal R and a set terminal S, respectively. 203), a buffer 204 that outputs the output DIS of the RS-FF 203 to the LPF 103, and a transistor 205 that is turned on / off by the output DIS of the RS-FF 203.

比較器202は、トリガ信号発生回路101から出力される図7に示すようなトリガ信号TGを、抵抗R1,R2,R3によって分割された所定のしきい値Vth2と比較して、トリガ信号TGに同期したセットパルスを出力する。このセットパルスは、RS−FF203のQ出力をセットする。   The comparator 202 compares the trigger signal TG as shown in FIG. 7 output from the trigger signal generation circuit 101 with a predetermined threshold value Vth2 divided by the resistors R1, R2, and R3, and generates a trigger signal TG. Output synchronized set pulse. This set pulse sets the Q output of the RS-FF 203.

このQ出力は、ディスチャージ信号DISとしてトランジスタ205をオフ状態にし、検知電極11(12,13)およびグランドの間を、これら検知電極の対接地静電容量Cおよび入力端と電源ラインとの間に接続された抵抗R4による時定数で決まる速度で充電する。これにより、入力信号Vinの電位が静電容量Cによって決まる速度で上昇する。   This Q output turns off the transistor 205 as a discharge signal DIS, between the detection electrodes 11 (12, 13) and the ground, between the capacitance C to the ground of these detection electrodes and between the input terminal and the power supply line. Charging is performed at a speed determined by the time constant of the connected resistor R4. As a result, the potential of the input signal Vin increases at a speed determined by the capacitance C.

入力信号Vinが、抵抗R1,R2,R3で決まるしきい値Vth1を超えたら、比較器201の出力が反転してRS−FF203の出力を反転させる。この結果、トランジスタ205がオン状態となって、検知電極11(12,13)に蓄積された電荷がトランジスタ205を介して放電される。   When the input signal Vin exceeds the threshold value Vth1 determined by the resistors R1, R2, and R3, the output of the comparator 201 is inverted and the output of the RS-FF 203 is inverted. As a result, the transistor 205 is turned on, and the charge accumulated in the detection electrode 11 (12, 13) is discharged through the transistor 205.

したがって、このタイマー回路102は、図7に示すように、検知電極11(12,13)および接近した人体48の頭部49との間の静電容量Cに基づくデューティー比で発振するパルス信号Poを出力する。LPF103は、この出力を平滑化することにより、図7に示すような直流の検知信号Voutを出力する。なお、この図7中において、実線で示す波形と点線で示す波形は、前者が後者よりも静電容量が小さいことを示しており、例えば後者が物体接近状態を示している。   Therefore, the timer circuit 102, as shown in FIG. 7, has a pulse signal Po that oscillates at a duty ratio based on the capacitance C between the sensing electrode 11 (12, 13) and the head 49 of the approaching human body 48. Is output. The LPF 103 smoothes the output to output a DC detection signal Vout as shown in FIG. In FIG. 7, the waveform indicated by the solid line and the waveform indicated by the dotted line indicate that the former has a smaller capacitance than the latter, and for example, the latter indicates an object approaching state.

なお、上述した実施形態に係る乗員姿勢検知装置100において、検知された静電容量に基づき人体48の頭部49の位置を用いて着座姿勢を判定する回路部20の構成として、静電容量検知回路21が抵抗とコンデンサにより出力パルスのデューティー比が変化する静電容量C(Capacitance)を電圧V(Voltage)に変換するC−V変換型の周知のタイマーICを利用するものを用いて説明したが、これに限定されるものではない。   In the occupant posture detection device 100 according to the above-described embodiment, the capacitance detection is performed as the configuration of the circuit unit 20 that determines the sitting posture using the position of the head 49 of the human body 48 based on the detected capacitance. The circuit 21 is described using a circuit that uses a well-known CV conversion type timer IC that converts a capacitance C (Capacitance) in which a duty ratio of an output pulse is changed by a resistor and a capacitor into a voltage V (Voltage). However, the present invention is not limited to this.

すなわち、例えば正弦波を印加して静電容量値による電圧変化あるいは電流値から直接インピーダンスを測定する方式、測定する静電容量を含めて発振回路を構成して発振周波数を測定する方式、RC充放電回路を構成して充放電時間を測定する方式、既知の電圧で充電した電荷を既知の容量に移動してその電圧を測定する方式、または未知の容量に既知電圧で充電し、その電荷を既知容量に移動させることを複数回行い、既知容量が所定電圧に充電されるまでの回数を測定する方式などがあり、検出した静電容量値にしきい値を設け、または静電容量の信号波形を解析して該当する静電容量波形になったときにトリガとするなどの処理を行うことでスイッチとして機能させたりしてもよい。   That is, for example, a method in which a sine wave is applied to directly measure impedance from a voltage change or current value due to a capacitance value, a method in which an oscillation circuit is configured to include the capacitance to be measured, and a oscillation frequency is measured. Configure the discharge circuit to measure the charge / discharge time, move the charge charged at a known voltage to a known capacity and measure the voltage, or charge an unknown capacity at a known voltage and charge the charge There is a method of measuring the number of times until the known capacity is charged to a predetermined voltage by moving to the known capacity multiple times, and setting a threshold value for the detected capacitance value, or a signal waveform of the capacitance It may be made to function as a switch by performing a process such as triggering when a corresponding capacitance waveform is obtained by analyzing the above.

また、本実施形態では静電容量検知回路21がC−V変換型により静電容量を電圧に変換して静電容量を検出することを前提としたが、電気的にあるいはソフトウェアとして扱いやすいデータに変換できる構成でもよく、例えばパルス幅に変換したり直接ディジタル値に変換したりしてもよい。   In this embodiment, it is assumed that the capacitance detection circuit 21 detects the capacitance by converting the capacitance into a voltage by the CV conversion type. However, the data is easy to handle electrically or as software. For example, it may be converted into a pulse width or directly into a digital value.

さらに、本実施形態では静電容量検知回路21がC−V変換型のものを用いて説明したが、例えば次のようなものであってもよい。   Furthermore, in the present embodiment, the capacitance detection circuit 21 has been described using a CV conversion type, but for example, the following may be used.

図8は、本発明の一実施形態に係る乗員姿勢検知装置の一部構成の他の例を示す説明図である。図8に示すように、この例の静電容量検知回路21は、差動動作型に構成されており、コモンモードノイズを除去しつつ回路内の温度特性などをキャンセルすることができる。ここでは、上述した既知の電圧で充電した電荷を既知の容量に移動してその電圧を測定する方式を採用した差動動作型の回路例を説明する。   FIG. 8 is an explanatory diagram illustrating another example of a partial configuration of the occupant posture detection device according to the embodiment of the present invention. As shown in FIG. 8, the capacitance detection circuit 21 of this example is configured as a differential operation type, and can cancel the temperature characteristics in the circuit while removing common mode noise. Here, an example of a differential operation type circuit that employs a method of measuring the voltage by moving the charge charged at a known voltage to a known capacitance will be described.

まず、例えばプラス側入力端に第1検知電極11を接続し、マイナス側入力端に第2および第3検知電極12,13を接続して、検知電極11の静電容量C1から検知電極12,13の静電容量C2+C3の合計値を減算して、その出力値をコンパレータなどでしきい値と比較して頭部49の位置を検出するようにしてもよい。当然に、プラス側入力端とマイナス側入力端に接続する検知電極の構成を変えれば、頭部49の前後方向および左右方向の位置の検出を行うことができる。   First, for example, the first detection electrode 11 is connected to the plus-side input end, the second and third detection electrodes 12 and 13 are connected to the minus-side input end, and the capacitance C1 of the detection electrode 11 to the detection electrode 12, Alternatively, the total value of the 13 electrostatic capacitances C2 + C3 may be subtracted, and the output value may be compared with a threshold value by a comparator or the like to detect the position of the head 49. Naturally, the position of the head 49 in the front-rear direction and the left-right direction can be detected by changing the configuration of the detection electrodes connected to the plus-side input end and the minus-side input end.

このような静電容量検知回路21の動作の一例としては、例えばスイッチS1がオープン(OFF)で、スイッチS2が接地(GND)され、スイッチS3がクローズ(ON)となっているときに、スイッチS3をオープン(OFF)にし、スイッチS2をVrに切り替え、スイッチS1をオペアンプの反転入力に接続すると、静電容量C1とCfにC1Vrが充電され、静電容量C2,C3とCfに(C2+C3)Vrが充電される。   As an example of the operation of the electrostatic capacitance detection circuit 21, for example, when the switch S1 is open (OFF), the switch S2 is grounded (GND), and the switch S3 is closed (ON), When S3 is opened (OFF), the switch S2 is switched to Vr, and the switch S1 is connected to the inverting input of the operational amplifier, the capacitances C1 and Cf are charged with C1Vr, and the capacitances C2, C3, and Cf are (C2 + C3). Vr is charged.

そして、スイッチS1をオープン(OFF)およびスイッチS2を接地(GND)した後に、スイッチS1を接地(GND)したときの電圧Vを測定する。このときの電圧は、例えばV/Vr={(Cf+C1)/Cf}−{(Cf+C2+C3)/Cf}となり、静電容量C1と静電容量C2+C3の割合に応じた電圧が出力されることとなる。これにより、同様に頭部49の位置を検出することができる。   Then, after the switch S1 is opened (OFF) and the switch S2 is grounded (GND), the voltage V when the switch S1 is grounded (GND) is measured. The voltage at this time is, for example, V / Vr = {(Cf + C1) / Cf} − {(Cf + C2 + C3) / Cf}, and a voltage corresponding to the ratio between the capacitance C1 and the capacitance C2 + C3 is output. . Thereby, the position of the head 49 can be detected similarly.

なお、車両1の車室天井部2の内部や座席40には、金属の部材が用いられている場合が多く、座席40を動かして乗員48が姿勢変化をさせたりすると各検知電極11〜13と乗員48との位置関係が変化し、このような外部環境変化による静電容量値を検出してしまい誤動作に繋がってしまう場合がある。   In many cases, a metal member is used for the interior of the passenger compartment ceiling 2 of the vehicle 1 or the seat 40. When the seat 48 is moved and the occupant 48 changes its posture, each of the detection electrodes 11-13. The positional relationship between the vehicle and the occupant 48 changes, and the capacitance value due to such a change in the external environment may be detected, leading to a malfunction.

このような影響を極力受けないようにするために、図示は省略するが、上述したシールド部18,19とともに、上記静電容量変化を抑制する補助電極(シールド電極)を、各検知電極11〜13の近傍位置に設けるようにしてもよい。   In order to avoid such influence as much as possible, although not shown in the drawing, an auxiliary electrode (shield electrode) that suppresses the change in electrostatic capacitance is provided with each of the detection electrodes 11 to 19 together with the shield portions 18 and 19 described above. You may make it provide in the vicinity position of 13.

この場合、各シールド電極には、それぞれ第1〜第3検知電極11〜13と同等の電位が与えられていればよい。同等の電位は、上記シールド駆動回路23のときと同様に、例えば各検知電極11〜13に加えられる電位から高い入力インピーダンスで1倍のアンプ(バッファ)を通して生成するようにしてもよいし、図8に示した静電容量検知回路21の場合では、オペアンプの非反転入力の部分をシールド電極に接続して与えるようにしてもよい。   In this case, each shield electrode only needs to have a potential equivalent to that of the first to third detection electrodes 11 to 13. Similar to the case of the shield drive circuit 23, the equivalent potential may be generated through a single amplifier (buffer) with a high input impedance from the potential applied to each of the detection electrodes 11 to 13, for example. In the case of the capacitance detection circuit 21 shown in FIG. 8, the non-inverting input portion of the operational amplifier may be connected to the shield electrode.

図9は、本発明の一実施形態に係る乗員姿勢検知装置の一部構成の他の例を説明するための説明図である。なお、以降において、既に説明した部分と重複する箇所には同一の符号を付して説明を省略する。   FIG. 9 is an explanatory diagram for explaining another example of a partial configuration of the occupant posture detection device according to the embodiment of the present invention. In the following description, the same parts as those already described are denoted by the same reference numerals and description thereof is omitted.

図9に示すように、ここでは、右側第1検知電極11aと、左側第1検知電極11bとを備え、各検知電極11a,11b,12,13を直線状に結ぶと、車両1の前後方向および左右方向においてそれぞれ辺を形成するような四角形平面状に車室天井部2に配置した点が、先の例とは相違している。   As shown in FIG. 9, here, a right first detection electrode 11 a and a left first detection electrode 11 b are provided, and when the detection electrodes 11 a, 11 b, 12, 13 are connected in a straight line, the vehicle 1 front-rear direction And the point arrange | positioned in the compartment ceiling part 2 in the rectangular planar shape which forms a side in the left-right direction is different from the previous example.

このようにすれば、さらに高精度に座席40に着座した人体48の頭部49の位置に基づいて、人体48の着座姿勢を判定することが可能となる。なお、ここでは検知電極を四つとしたが、例えば五つにしたりそれ以上配置したりしても、コスト的には多少高くなる程度で検出精度を向上させることが可能となるため、さらに有効である。また、主に図3〜図5を用いて説明した配置態様も、例えば検知電極11が後方側の一つの頂点となるような二等辺三角形となるように変更することも可能である。   In this way, the seating posture of the human body 48 can be determined based on the position of the head 49 of the human body 48 seated on the seat 40 with higher accuracy. Although four detection electrodes are used here, for example, even if the number of detection electrodes is five or more, the detection accuracy can be improved to some extent in terms of cost. is there. Moreover, the arrangement | positioning aspect mainly demonstrated using FIGS. 3-5 can also be changed so that it may become an isosceles triangle so that the detection electrode 11 may become one vertex of the back side, for example.

以上述べたように、本実施形態に係る乗員姿勢検知装置100は、各検知電極11〜13などを有する静電容量センサ部10と回路部20という非常にシンプルで安価な構成によって、高精度に乗員48の姿勢(着座姿勢)を検知し、その姿勢情報をエアバッグの展開制御などに利用することが可能となる。   As described above, the occupant posture detection device 100 according to the present embodiment has a very simple and inexpensive configuration of the capacitance sensor unit 10 and the circuit unit 20 including the detection electrodes 11 to 13 and the like, with high accuracy. The posture (sitting posture) of the occupant 48 can be detected, and the posture information can be used for airbag deployment control and the like.

本発明の一実施形態に係る乗員姿勢検知装置の全体構成の一例を示す説明図である。It is explanatory drawing which shows an example of the whole structure of the passenger | crew attitude | position detection apparatus which concerns on one Embodiment of this invention. 同乗員姿勢検知装置の検知電極の一例を示す説明図である。It is explanatory drawing which shows an example of the detection electrode of the passenger | crew attitude | position detection apparatus. 同乗員姿勢検知装置の動作原理の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the operation principle of the passenger | crew attitude | position detection apparatus. 同乗員姿勢検知装置の左右方向の判定動作を説明するための説明図である。It is explanatory drawing for demonstrating the determination operation | movement of the left-right direction of the passenger | crew attitude | position detection apparatus. 同乗員姿勢検知装置の前後方向の判定動作を説明するための説明図である。It is explanatory drawing for demonstrating the determination operation | movement of the front-back direction of the said passenger | crew attitude | position detection apparatus. 本発明の一実施形態に係る乗員姿勢検知装置の静電容量検知回路の一例を示すブロック図である。It is a block diagram which shows an example of the electrostatic capacitance detection circuit of the passenger | crew attitude | position detection apparatus which concerns on one Embodiment of this invention. 同乗員姿勢検知装置の回路部の動作波形の一例を示す動作波形図である。It is an operation | movement waveform diagram which shows an example of the operation | movement waveform of the circuit part of the passenger | crew attitude | position detection apparatus. 本発明の一実施形態に係る乗員姿勢検知装置の一部構成の他の例を示す説明図である。It is explanatory drawing which shows the other example of a partial structure of the passenger | crew attitude | position detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る乗員姿勢検知装置の一部構成の他の例を説明するための説明図である。It is explanatory drawing for demonstrating the other example of a partial structure of the passenger | crew attitude | position detection apparatus which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1…車両、2…車室天井部、10…静電容量センサ部、11…第1検知電極、11a…右側第1検知電極、11b…左側第1検知電極、12…第2検知電極、13…第3検知電極、18,19…シールド部、20…回路部、21…静電容量検知回路、22…A/D変換器、23…シールド駆動回路、29…CPU、40…座席、48…人体、49…頭部、100…乗員姿勢検知装置。   DESCRIPTION OF SYMBOLS 1 ... Vehicle, 2 ... Vehicle compartment ceiling part, 10 ... Capacitance sensor part, 11 ... 1st detection electrode, 11a ... Right side 1st detection electrode, 11b ... Left side 1st detection electrode, 12 ... 2nd detection electrode, 13 3rd detection electrode 18, 19 ... Shield part, 20 ... Circuit part, 21 ... Capacitance detection circuit, 22 ... A / D converter, 23 ... Shield drive circuit, 29 ... CPU, 40 ... Seat, 48 ... Human body, 49... Head, 100.

Claims (12)

車両の座席の上方の車室天井部に、所定の平面上の位置を検知可能なように少なくとも三つ配置され、前記座席に着座した人体の頭部と前記車室天井部との間の静電容量を検知する検知電極と、
前記検知電極とそれぞれ接続され、各検知電極からの検知信号に基づいて前記人体の頭部の位置を検出する検出回路と、
前記検出回路からの検出結果に応じて、前記人体の着座姿勢を判定する姿勢判定回路とを備え
前記検出回路は、前記各検知電極の静電容量値から直接前記人体の頭部の位置を検出した後に、該頭部の位置のX方向の補正値と、該頭部の位置のY方向の補正値とを前記各検知電極の静電容量値から求め、それら補正値に基づいてさらに前記姿勢判定回路において前記人体の着座姿勢を判定するために要する補正演算処理を行う
ことを特徴とする乗員姿勢検知装置。
At least three are arranged on the ceiling of the passenger compartment above the seat of the vehicle so that a position on a predetermined plane can be detected, and a static space between the head of the human body seated on the seat and the ceiling of the passenger compartment. A sensing electrode for detecting the capacitance;
A detection circuit connected to each of the detection electrodes and detecting the position of the head of the human body based on a detection signal from each detection electrode;
A posture determination circuit for determining a sitting posture of the human body according to a detection result from the detection circuit ;
The detection circuit detects the position of the head of the human body directly from the capacitance value of each detection electrode, and then corrects the correction value in the X direction of the position of the head and the Y direction of the position of the head. The occupant is characterized in that a correction value is obtained from the capacitance value of each detection electrode, and a correction calculation process required for determining the seating posture of the human body is further performed in the posture determination circuit based on the correction value. Attitude detection device.
前記検出回路は、前記検知電極とそれぞれ切替スイッチを介して接続されおり、
前記検知電極とそれぞれ前記切替スイッチを介して接続され、各検知電極に対して所定の電圧を出力する駆動回路をさらに備え、
前記姿勢判定回路は、前記検知電極のうちの一の検知電極が択一的に前記検出回路と接続されるときに、他の検知電極が前記駆動回路と接続されるように前記切替スイッチの切り替え動作を制御する
ことを特徴とする請求項1記載の乗員姿勢検知装置。
The detection circuit is connected to the detection electrode via a changeover switch,
A drive circuit connected to each of the detection electrodes via the changeover switch and outputting a predetermined voltage to each detection electrode;
The posture determination circuit switches the changeover switch so that when one detection electrode of the detection electrodes is alternatively connected to the detection circuit, the other detection electrode is connected to the drive circuit. The occupant posture detection device according to claim 1, wherein the operation is controlled.
前記姿勢判定回路は、判定した前記人体の着座姿勢に関する情報を、前記車両に搭載されたエアバッグの展開を制御する機能を含むECUに出力することを特徴とする請求項1又は2記載の乗員姿勢検知装置。 Said posture determination circuit, information about the decision to the human body sitting posture, the passenger according to claim 1 or 2, and outputs to the ECU which includes a function of controlling the deployment of the air bag mounted in the vehicle Attitude detection device. 前記検知電極は、前記車両の前方側に一つの頂点が存するような三角形平面状に前記車室天井部に配置されていることを特徴とする請求項1〜のいずれか1項記載の乗員姿勢検知装置。 The occupant according to any one of claims 1 to 3 , wherein the detection electrode is disposed on the ceiling of the passenger compartment in a triangular plane shape having one apex on the front side of the vehicle. Attitude detection device. 前記検知電極は、前記車両の後方側に一つの頂点が存するような三角形平面状に前記車室天井部に配置されていることを特徴とする請求項1〜のいずれか1項記載の乗員姿勢検知装置。 The occupant according to any one of claims 1 to 3 , wherein the detection electrode is disposed on the ceiling of the passenger compartment in a triangular plane shape having one apex on the rear side of the vehicle. Attitude detection device. 前記検知電極は、前記車両の前後方向および左右方向においてそれぞれ辺を形成するような四角形平面状に前記車室天井部に四つ配置されていることを特徴とする請求項のいずれか1項記載の乗員姿勢検知装置。 The sensing electrode, any one of claims 1 to 3, characterized in that it is four arranged in the casing ceiling in a square planar shape so as to form an edge respectively in the longitudinal direction and the lateral direction of the vehicle The occupant posture detection device according to claim 1. 前記検知電極の裏面側および周囲の両方またはいずれかに、該検知電極と電気的に絶縁されたシールド部をさらに備えたことを特徴とする請求項1〜のいずれか1項記載の乗員姿勢検知装置。 The occupant posture according to any one of claims 1 to 6 , further comprising a shield portion that is electrically insulated from the detection electrode on or on the back side and / or the periphery of the detection electrode. Detection device. 前記シールド部は、前記検知電極と同電位が与えられていることを特徴とする請求項記載の乗員姿勢検知装置。 The occupant posture detection device according to claim 7 , wherein the shield portion is given the same potential as that of the detection electrode. 前記検出回路は、あらかじめ前記座席に人体が着座していないときの静電容量値を記憶する記憶手段を備え、前記人体が着座した場合に該記憶手段に記憶された該静電容量値からの増加量を検出値として検出結果を出力することを特徴とする請求項1〜のいずれか1項記載の乗員姿勢検知装置。 The detection circuit includes storage means for storing a capacitance value when a human body is not seated in the seat in advance, and when the human body is seated, from the capacitance value stored in the storage means. The occupant posture detection device according to any one of claims 1 to 8 , wherein a detection result is output using the increase amount as a detection value. 前記検出回路は、各検知電極により検知された静電容量を電圧に変換するC−V変換型の静電容量検知回路を有することを特徴とする請求項1〜のいずれか1項記載の乗員姿勢検知装置。 The detection circuit of any one of claims 1-9, characterized in that it comprises a capacitance sensing circuit of the C-V conversion type which converts the capacitance sensed by the sensing electrode into a voltage Crew attitude detection device. 前記検出回路は、差動動作型の静電容量検知回路を有し、各検知電極の近傍に該検知電極とは逆相の該静電容量検知回路の入力端子に接続された補助電極が配置されていることを特徴とする請求項1〜のいずれか1項記載の乗員姿勢検知装置。 The detection circuit has a differential operation type capacitance detection circuit, and an auxiliary electrode connected to the input terminal of the capacitance detection circuit having a phase opposite to that of the detection electrode is arranged in the vicinity of each detection electrode. The occupant posture detection device according to any one of claims 1 to 9 , wherein the occupant posture detection device is provided. 車両の座席の上方の車室天井部に、平面上の位置を検知可能なように少なくとも三つ設けられた検知電極によって、前記座席に着座した人体の頭部と前記車室天井部との間の静電容量を検知し、
検知された静電容量を示す各検知電極からの検知信号に基づいて、前記各検知電極の静電容量値から直接前記人体の頭部の位置を検出し、前記人体の頭部の位置を検出した後に、該頭部の位置のX方向の補正値と、該頭部の位置のY方向の補正値とを前記各検知電極の静電容量値から求め、それら補正値に基づいてさらに前記人体の着座姿勢を判定するために要する補正演算を行い、
検出された前記頭部の位置を基準として、前記補正演算の結果を反映させて前記人体の着座姿勢を判定する
ことを特徴とする乗員姿勢検知方法。
Between the head of the human body seated on the seat and the ceiling of the passenger compartment by means of at least three detection electrodes provided on the ceiling of the passenger compartment above the seat of the vehicle so that the position on the plane can be detected. Detecting the capacitance of
Based on the detection signal from each detection electrode indicating the detected capacitance, the position of the head of the human body is directly detected from the capacitance value of each detection electrode, and the position of the head of the human body is detected. Then, a correction value in the X direction of the position of the head and a correction value in the Y direction of the position of the head are obtained from the capacitance values of the detection electrodes, and further based on the correction values, the human body Correction calculation required to determine the sitting posture of the
An occupant posture detection method, wherein the seating posture of the human body is determined by reflecting the result of the correction calculation on the basis of the detected position of the head.
JP2008219792A 2008-08-28 2008-08-28 Occupant posture detection device and occupant posture detection method Expired - Fee Related JP5223542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219792A JP5223542B2 (en) 2008-08-28 2008-08-28 Occupant posture detection device and occupant posture detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219792A JP5223542B2 (en) 2008-08-28 2008-08-28 Occupant posture detection device and occupant posture detection method

Publications (2)

Publication Number Publication Date
JP2010054350A JP2010054350A (en) 2010-03-11
JP5223542B2 true JP5223542B2 (en) 2013-06-26

Family

ID=42070440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219792A Expired - Fee Related JP5223542B2 (en) 2008-08-28 2008-08-28 Occupant posture detection device and occupant posture detection method

Country Status (1)

Country Link
JP (1) JP5223542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302794B2 (en) 2016-10-17 2019-05-28 Joyson Safety Systems Japan K. K. Detection system for detecting a person on a seat

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655223B2 (en) * 2009-01-30 2015-01-21 株式会社フジクラ Crew attitude detection device
JP5561675B2 (en) * 2010-06-29 2014-07-30 株式会社フジクラ Crew attitude detection device
JPWO2013183653A1 (en) 2012-06-04 2016-02-01 株式会社フジクラ Occupant position detection device and airbag deployment control system
US9789762B2 (en) 2012-12-14 2017-10-17 Visteon Global Technologies, Inc. System and method for automatically adjusting an angle of a three-dimensional display within a vehicle
JP6642474B2 (en) * 2017-02-13 2020-02-05 オムロン株式会社 State determination device, learning device, state determination method, and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294117A (en) * 2000-04-14 2001-10-23 Honda Motor Co Ltd Seating detection device for occupant
JP2002365011A (en) * 2001-06-06 2002-12-18 Nippon Soken Inc Head position detection system
JP4319970B2 (en) * 2004-11-22 2009-08-26 株式会社フジクラ Capacitive proximity sensor
JP4316598B2 (en) * 2006-09-28 2009-08-19 株式会社ホンダエレシス Occupant detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302794B2 (en) 2016-10-17 2019-05-28 Joyson Safety Systems Japan K. K. Detection system for detecting a person on a seat

Also Published As

Publication number Publication date
JP2010054350A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5655223B2 (en) Crew attitude detection device
JP5223542B2 (en) Occupant posture detection device and occupant posture detection method
US8573700B2 (en) Headrest position adjustment device and headrest position adjustment method
US8547116B2 (en) Position detector
WO2010117061A1 (en) Headrest position adjustment device and headrest position adjustment method
JP4319970B2 (en) Capacitive proximity sensor
WO2010050607A1 (en) Capacitance-type sensor
JP4834178B2 (en) Headrest position adjustment device and headrest position adjustment method
JP5483238B2 (en) Distance measurement device between headrest and head, distance measurement method between headrest and head, headrest position adjustment device, and headrest position adjustment method
JPWO2013183653A1 (en) Occupant position detection device and airbag deployment control system
JP5509505B2 (en) Distance measurement device between headrest and head, distance measurement method between headrest and head, headrest position adjustment device, and headrest position adjustment method
JP2006177838A (en) Capacitance type proximity sensor and its output calibration method
US9568337B2 (en) Rotation state detection device
JP5134890B2 (en) Headrest position adjustment device and headrest position adjustment method
JP5561675B2 (en) Crew attitude detection device
JP5408706B2 (en) Crew attitude detection device and airbag deployment control device
JP5128270B2 (en) Seat motion control device
JP5134889B2 (en) Headrest position adjustment device and headrest position adjustment method
JP5086113B2 (en) Capacitive sensor
JP2009150063A (en) Door opening and closing device for vehicle and vehicle door opening and closing method
US20210164270A1 (en) Door handle
JP2010188974A (en) Head rest position adjusting device and head rest position adjusting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Ref document number: 5223542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees