JP5220299B2 - Lifting magnet - Google Patents

Lifting magnet Download PDF

Info

Publication number
JP5220299B2
JP5220299B2 JP2006298056A JP2006298056A JP5220299B2 JP 5220299 B2 JP5220299 B2 JP 5220299B2 JP 2006298056 A JP2006298056 A JP 2006298056A JP 2006298056 A JP2006298056 A JP 2006298056A JP 5220299 B2 JP5220299 B2 JP 5220299B2
Authority
JP
Japan
Prior art keywords
pole
amount
lifting magnet
inner pole
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006298056A
Other languages
Japanese (ja)
Other versions
JP2008114956A (en
Inventor
武尚 鶴留
慶武 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2006298056A priority Critical patent/JP5220299B2/en
Publication of JP2008114956A publication Critical patent/JP2008114956A/en
Application granted granted Critical
Publication of JP5220299B2 publication Critical patent/JP5220299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Load-Engaging Elements For Cranes (AREA)

Description

本発明は、リフティングマグネット(吊り上げ用電磁石)に関するものである。   The present invention relates to a lifting magnet (a lifting electromagnet).

リフティングマグネットは、電磁石の磁力によって鋼材等を吊り上げ、運搬するための装置である。特許文献1には、吊上げ電磁石(リフティングマグネット)の例が示されている。図16は、この吊上げ電磁石の構造を示す側面断面図である。図16を参照すると、吊上げ電磁石100は、内部鉄芯102、外部鉄芯104、上側鉄芯106、及び励磁コイル108を備えている。
特開2004−168545号公報
A lifting magnet is a device for lifting and transporting a steel material or the like by the magnetic force of an electromagnet. Patent Document 1 shows an example of a lifting electromagnet (lifting magnet). FIG. 16 is a side sectional view showing the structure of this lifting electromagnet. Referring to FIG. 16, the lifting electromagnet 100 includes an inner iron core 102, an outer iron core 104, an upper iron core 106, and an exciting coil 108.
JP 2004-168545 A

リフティングマグネットとしては、少ない励磁電流でより高い吸着力(磁力)が得られるものが好ましい。しかしながら、図16に示したような従来のリフティングマグネット(吊上げ電磁石)では、重量一定で性能を上げるためマグネット外径を広げ、全体を扁平にした場合、吊対象物を通るはずの磁束の一部が吊対象物を通らず励磁コイルの内部など吊対象物以外の場所に漏れてしまう。このことが、リフティングマグネットの吸着効率を低下させる一因となっていた。   As the lifting magnet, a magnet that can obtain a higher attractive force (magnetic force) with a small excitation current is preferable. However, in the case of the conventional lifting magnet (lifting electromagnet) as shown in FIG. 16, a part of the magnetic flux that should pass through the suspended object when the outer diameter of the magnet is increased and the whole is flattened in order to improve performance with a constant weight. Does not pass through the suspended object and leaks to places other than the suspended object such as the inside of the excitation coil. This has contributed to lowering the adsorption efficiency of the lifting magnet.

本発明は、上記問題点を鑑みてなされたものであり、磁束の漏れを低減して吸着効率を高めることができるリフティングマグネットを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a lifting magnet that can reduce the leakage of magnetic flux and increase the adsorption efficiency.

上記課題を解決するために、本発明による第1のリフティングマグネットは、所定軸線方向に延びる内極、所定軸線周りで内極の周囲に設けられた外極、及び、内極と外極との間に設けられた間極を含む強磁性の本体部と、内極と間極との間に配置され、所定軸線周りに巻回された第1のコイルと、間極と外極との間に配置され、所定軸線周りに巻回された第2のコイルと、第1及び第2のコイルの一端側に配置された底板としての非磁性部材とを備え、所定軸線方向における本体部の高さH1、及び外極において吊対象物と接する端面の外縁の直径D1の比(H1/D1)が1/7以上1/5以下であることを特徴とする。
In order to solve the above problems, a first lifting magnet according to the present invention includes an inner pole extending in a predetermined axial direction, an outer pole provided around the inner pole around the predetermined axis, and an inner pole and an outer pole. A ferromagnetic main body including an interposer provided therebetween, a first coil disposed between the inner pole and the interposer, and wound around a predetermined axis, and between the interpole and the outer pole A second coil wound around a predetermined axis , and a non-magnetic member as a bottom plate disposed on one end side of the first and second coils, the height of the main body portion in the predetermined axis direction The ratio (H1 / D1) of the diameter H1 of the edge H1 and the outer edge of the end face in contact with the suspended object at the outer pole is 1/7 or more and 1/5 or less.

また、本発明による第2のリフティングマグネットは、所定軸線方向に延びる内極、所定軸線周りで内極の周囲に設けられた外極、及び、内極と外極との間に設けられた間極を含む強磁性の本体部と、内極と間極との間に配置され、所定軸線周りに巻回された第1のコイルと、間極と外極との間に配置され、所定軸線周りに巻回された第2のコイルと、第1及び第2のコイルの一端側に配置された底板としての非磁性部材とを備え、内極の外側面と外極の内側面との距離r1、及び内極の外側面と間極の側面間の中心位置との距離r2の比(r2/r1)が2/5以下であることを特徴とする。
The second lifting magnet according to the present invention includes an inner pole extending in a predetermined axial direction, an outer pole provided around the inner pole around the predetermined axis, and a space between the inner pole and the outer pole. A ferromagnetic main body including a pole, a first coil disposed between an inner pole and an interpole, and wound around a predetermined axis, and disposed between the interposer and the outer pole; A distance between the outer surface of the inner pole and the inner surface of the outer pole, comprising a second coil wound around and a nonmagnetic member as a bottom plate disposed on one end side of the first and second coils; The ratio (r2 / r1) of r1 and the distance r2 between the outer surface of the inner pole and the center position between the side surfaces of the inner pole is 2/5 or less.

また、本発明による第3のリフティングマグネットは、所定軸線方向に延びる内極、所定軸線周りで内極の周囲に設けられた外極、及び、内極と外極との間に設けられた間極を含む強磁性の本体部と、内極と間極との間に配置され、所定軸線周りに巻回された第1のコイルと、間極と外極との間に配置され、所定軸線周りに巻回された第2のコイルと、第1及び第2のコイルの一端側に配置された底板としての非磁性部材とを備え、所定軸線方向における本体部の高さH1、及び外極において吊対象物と接する端面の外縁の直径D1の比(H1/D1)が1/7以上1/5以下であり、内極の外側面と外極の内側面との距離r1、及び内極の外側面と間極の側面間の中心位置との距離r2の比(r2/r1)が2/5以下であることを特徴とする。 The third lifting magnet according to the present invention includes an inner pole extending in a predetermined axial direction, an outer pole provided around the inner pole around the predetermined axis, and a space between the inner pole and the outer pole. A ferromagnetic main body including a pole, a first coil disposed between an inner pole and an interpole, and wound around a predetermined axis, and disposed between the interposer and the outer pole; A second coil wound around, a nonmagnetic member as a bottom plate disposed on one end side of the first and second coils, a height H1 of the main body in a predetermined axial direction, and an outer pole The ratio (H1 / D1) of the diameter D1 of the outer edge of the end surface in contact with the suspended object is 1/7 or more and 1/5 or less, the distance r1 between the outer surface of the inner pole and the inner surface of the outer pole, and the inner pole The ratio (r2 / r1) of the distance r2 between the outer surface of the electrode and the center position between the side surfaces of the interelectrode is 2/5 or less. That.

本発明者らは、図16に示したような従来の構成に対して、コイルを第1及び第2のコイルに分割し、内極及び外極と同様に極として機能する間極を第1及び第2のコイルの間に設けることによって、コイルの内部やコイルと吊対象物との隙間への磁束の漏れを低減できることを見出した。すなわち、上記した第1〜第3のリフティングマグネットによれば、磁束の漏れを低減して吊対象物中に磁束を効率よく通すことができるので、従来の構成と比較してリフティングマグネットの吸着効率を高めることができる。   The inventors of the present invention divided the coil into first and second coils with respect to the conventional configuration as shown in FIG. And it discovered that the leakage of the magnetic flux to the clearance gap between the inside of a coil and a coil, and a suspended | suspended object can be reduced by providing between 2nd coils. That is, according to the above-described first to third lifting magnets, the leakage of magnetic flux can be reduced and the magnetic flux can be efficiently passed through the suspended object. Therefore, the adsorption efficiency of the lifting magnet compared to the conventional configuration Can be increased.

更に、本発明者らは、間極を設けた場合のリフティングマグネットの形状と吸着効率との関係に着目し、様々な検討を行った。その結果、上記第1及び第3のリフティングマグネットのように、所定軸線方向における本体部の高さH1、及び外極において吊対象物と接する端面の外縁の直径D1の比(H1/D1)が1/7以上であれば、長時間の使用による吸着効率の低下が抑えられ、吸着力を好適に維持できることを見出した。また、比(H1/D1)が1/5以下であれば、間極を設けない場合と比較して、このような吸着力維持効果がより効果的に発揮されることを見出した。すなわち、上記第1及び第3のリフティングマグネットによれば、従来の構成と比較して吸着効率を高め、且つ、長時間の使用による吸着効率の低下をも効果的に抑制できる。   Furthermore, the present inventors have made various studies by paying attention to the relationship between the shape of the lifting magnet and the adsorption efficiency in the case where the interelectrode is provided. As a result, like the first and third lifting magnets, the ratio (H1 / D1) of the height H1 of the main body portion in the predetermined axial direction and the diameter D1 of the outer edge of the end face in contact with the suspended object at the outer pole. It has been found that if it is 1/7 or more, a decrease in adsorption efficiency due to long-term use can be suppressed, and the adsorption force can be suitably maintained. Further, it has been found that when the ratio (H1 / D1) is 1/5 or less, such an adsorption force maintaining effect is more effectively exhibited as compared with the case where no interelectrode is provided. That is, according to the first and third lifting magnets, it is possible to increase the adsorption efficiency as compared with the conventional configuration and to effectively suppress a decrease in the adsorption efficiency due to long-time use.

また、本発明者らは、上記第2及び第3のリフティングマグネットのように、内極の外側面と外極の内側面との距離r1、及び内極の外側面と間極の側面間の中心位置との距離r2の比(r2/r1)が2/5以下であれば、間極を設けることによる上記効果がより顕著となることを見出した。すなわち、上記第2及び第3のリフティングマグネットによれば、従来の構成と比較して吸着効率をより高めることができる。   Further, the present inventors, like the above-described second and third lifting magnets, have a distance r1 between the outer surface of the inner pole and the inner surface of the outer pole, and between the outer surface of the inner pole and the side surface of the interpole. It has been found that when the ratio of the distance r2 to the center position (r2 / r1) is 2/5 or less, the above-described effect due to the provision of the interelectrode is more remarkable. That is, according to the second and third lifting magnets, the adsorption efficiency can be further increased as compared with the conventional configuration.

また、上記第1〜第3のリフティングマグネットは、距離r1及び距離r2の比(r2/r1)が1/7以上であることを特徴としてもよい。本発明者らは、比(r2/r1)が1/7以上であれば、長時間の使用による吸着効率の低下がより効果的に抑えられることを見出した。すなわち、このリフティングマグネットによれば、吸着効率を高め、且つ、長時間の使用による吸着効率の低下を更に抑制できる。   Further, the first to third lifting magnets may be characterized in that a ratio (r2 / r1) of the distance r1 and the distance r2 is 1/7 or more. The present inventors have found that if the ratio (r2 / r1) is 1/7 or more, a decrease in adsorption efficiency due to long-term use can be more effectively suppressed. That is, according to the lifting magnet, it is possible to increase the adsorption efficiency and further suppress the decrease in the adsorption efficiency due to long-time use.

また、上記第1〜第3のリフティングマグネットは、所定軸線と直交する径方向における間極の幅が1.2mmより大きいことを特徴としてもよい。本発明者らは、間極の幅を1.2mmより大きくすることにより、長時間の使用による吸着効率の低下がより効果的に抑えられることを見出した。すなわち、このリフティングマグネットによれば、吸着効率を高め、且つ、長時間の使用による吸着効率の低下を更に抑制できる。   The first to third lifting magnets may be characterized in that the width of the interpole in the radial direction orthogonal to the predetermined axis is greater than 1.2 mm. The inventors of the present invention have found that a decrease in adsorption efficiency due to long-time use can be more effectively suppressed by making the width of the interelectrode larger than 1.2 mm. That is, according to the lifting magnet, it is possible to increase the adsorption efficiency and further suppress the decrease in the adsorption efficiency due to long-time use.

本発明のリフティングマグネットによれば、磁束の漏れを低減して吸着効率を高めることができる。   According to the lifting magnet of the present invention, it is possible to reduce the leakage of magnetic flux and increase the adsorption efficiency.

以下、添付図面を参照しながら本発明によるリフティングマグネットの実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of a lifting magnet according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明によるリフティングマグネットの一実施形態の構成を示す側面断面図である。また、図2は、図1に示したリフティングマグネット1のII−II線に沿った断面を示す断面図である。なお、本実施形態のリフティングマグネット1は所定軸線Cを中心とする円柱状の外観を有しており、図1では軸線Cに対して片側の断面の図示を省略している。   FIG. 1 is a side sectional view showing the configuration of an embodiment of a lifting magnet according to the present invention. 2 is a cross-sectional view showing a cross section taken along line II-II of the lifting magnet 1 shown in FIG. Note that the lifting magnet 1 of the present embodiment has a cylindrical appearance centered on a predetermined axis C, and the cross section on one side with respect to the axis C is not shown in FIG.

図1及び図2を参照すると、本実施形態のリフティングマグネット1は、ケース2、コイル20及び21、並びに固定材41及び42を備えている。コイル20は、本実施形態における第1のコイルであり、後述する内極12と間極14との間に配置され、軸線C周りに導線が巻回されて成る。また、コイル21は、本実施形態における第2のコイルであり、後述する間極14と外極13との間に配置され、軸線C周りに導線が巻回されて成る。   Referring to FIGS. 1 and 2, the lifting magnet 1 of this embodiment includes a case 2, coils 20 and 21, and fixing members 41 and 42. The coil 20 is a first coil in the present embodiment, and is arranged between an inner pole 12 and an interpole 14 which will be described later, and a conductive wire is wound around the axis C. The coil 21 is a second coil in the present embodiment, and is arranged between a later-described intermediate electrode 14 and an outer electrode 13, and a conductive wire is wound around the axis C.

ここで、図3は、コイル20,21の部分断面(図中のA1及びA2)の構造を詳細に示す拡大図である。コイル20,21は、導線22及び絶縁被覆膜23を有している。導線22は、複数の層にわたって軸線C周りに巻回されている。導線22は、例えばアルミニウムといった導電性の材料からなる。また、絶縁被覆膜23は、例えば絶縁紙などによって構成されており、導線22を覆っている。なお、コイル20の導線22とコイル21の導線22とは互いに繋がっていてもよく、或いは互いに独立していてもよい。   Here, FIG. 3 is an enlarged view showing in detail the structure of partial cross sections (A1 and A2 in the drawing) of the coils 20 and 21. FIG. The coils 20 and 21 have a conducting wire 22 and an insulating coating film 23. The conducting wire 22 is wound around the axis C across a plurality of layers. The conducting wire 22 is made of a conductive material such as aluminum. The insulating coating film 23 is made of, for example, insulating paper and covers the conductive wire 22. In addition, the conducting wire 22 of the coil 20 and the conducting wire 22 of the coil 21 may be connected to each other or may be independent from each other.

再び図1及び図2を参照する。ケース2は、コイル20及び21を収容するための部材である。ケース2は、コイル20及び21の一端側に配置された底板としての非磁性部材15と、強磁性部材からなる本体部10とを含んで構成される。更に、本体部10は、コイル20及び21の他端側に配置された天板としてのヨーク11と、コイル20の内側に配置された内極12と、コイル21の外側に配置された外極13と、コイル20及び21の間に設けられた間極14とを含んで構成されている。ヨーク11、内極12、外極13、及び間極14は、それぞれ鉄等の強磁性体からなる。   Please refer to FIG. 1 and FIG. 2 again. The case 2 is a member for housing the coils 20 and 21. The case 2 includes a nonmagnetic member 15 as a bottom plate disposed on one end side of the coils 20 and 21 and a main body portion 10 made of a ferromagnetic member. Further, the main body 10 includes a yoke 11 as a top plate disposed on the other end side of the coils 20 and 21, an inner pole 12 disposed on the inner side of the coil 20, and an outer pole disposed on the outer side of the coil 21. 13 and an interelectrode 14 provided between the coils 20 and 21. The yoke 11, the inner pole 12, the outer pole 13, and the interpole 14 are each made of a ferromagnetic material such as iron.

内極12は、コイル20の内側面20bに沿ってコイル20の巻回軸方向(すなわち中心軸線Cに平行な方向)に延びる円柱状の部材であり、コイル20とともに第1の電磁石を構成する。すなわち、コイル20に励磁電流が流れると、内極12の内部に磁界が形成され、内極12の一端側の端部12aが第1の電磁石の一方の極となる。なお、端部12aは本体部10に対して取り外し可能に構成されており、損耗に応じて交換される。   The inner pole 12 is a columnar member that extends in the winding axis direction of the coil 20 (that is, the direction parallel to the central axis C) along the inner side surface 20 b of the coil 20, and constitutes a first electromagnet together with the coil 20. . That is, when an exciting current flows through the coil 20, a magnetic field is formed inside the inner pole 12, and the end portion 12a on one end side of the inner pole 12 becomes one pole of the first electromagnet. The end portion 12a is configured to be removable from the main body portion 10, and is exchanged according to wear.

間極14は、コイル20の外側面20c及びコイル21の内側面21bに沿って中心軸線Cに平行な方向に延びる筒状の部材であり、コイル21とともに第2の電磁石を構成する。すなわち、コイル21に励磁電流が流れると、間極14の内部に磁界が形成され、間極14の一端側の端部14aが第2の電磁石の一方の極となる。本実施形態の間極14は、図2に示すように、コイル20及び21の全周に亘って連続する環状に設けられている。   The interpole 14 is a cylindrical member extending in a direction parallel to the central axis C along the outer side surface 20 c of the coil 20 and the inner side surface 21 b of the coil 21, and constitutes a second electromagnet together with the coil 21. That is, when an exciting current flows through the coil 21, a magnetic field is formed inside the interpole 14, and the end portion 14a on one end side of the interpole 14 becomes one pole of the second electromagnet. As shown in FIG. 2, the intermediate pole 14 of the present embodiment is provided in an annular shape that is continuous over the entire circumference of the coils 20 and 21.

外極13は、コイル21の外側面21cに沿って中心軸線Cに平行な方向に延びる筒状の部材である。コイル20及び21に励磁電流が流れると、外極13の内部に磁界が形成され、外極13の一端側の端部13aが第1及び第2の電磁石の他方の極となる。端部13aは、内極12の端部12aと同様に本体部10に対して取り外し可能に構成されており、損耗に応じて交換される。端部12a及び13aの下端(すなわち内極12及び外極13の一端)は同一平面内に位置しており、例えば吊対象物の吸着面が平面である場合、端部12a及び13aが吊対象物の被吸着面に当接する。   The outer pole 13 is a cylindrical member that extends in a direction parallel to the central axis C along the outer surface 21 c of the coil 21. When an exciting current flows through the coils 20 and 21, a magnetic field is formed inside the outer pole 13, and the end 13a on one end side of the outer pole 13 becomes the other pole of the first and second electromagnets. The end portion 13a is configured to be removable from the main body portion 10 similarly to the end portion 12a of the inner pole 12, and is exchanged in accordance with wear. The lower ends of the end portions 12a and 13a (that is, one end of the inner pole 12 and the outer pole 13) are located in the same plane. For example, when the adsorption surface of the object to be suspended is a plane, the ends 12a and 13a are objects to be suspended. Abuts on the surface to be attracted.

ヨーク11は、コイル20の他端側の端面20d、及びコイル21の他端側の端面21dに沿って設けられた円板状の部材である。内極12の他端はヨーク11の中央部に固定されており、外極13の他端はヨーク11の外周部付近に固定されており、間極14の他端はヨーク11の中央部と外周部との間の中間部に固定されている。なお、これらの各極12〜14とヨーク11との固定方法としては、溶接やボルト締め等が好適である。また、各極12〜14とヨーク11とは鋳造等で一体形成されても良い。コイル20,21に励磁電流が流れると、磁束はヨーク11の内部を通る。これにより、内極12、外極13、及び間極14に磁場を効率よく発生させることができる。   The yoke 11 is a disk-shaped member provided along the end surface 20 d on the other end side of the coil 20 and the end surface 21 d on the other end side of the coil 21. The other end of the inner pole 12 is fixed to the central portion of the yoke 11, the other end of the outer pole 13 is fixed near the outer peripheral portion of the yoke 11, and the other end of the interpole 14 is connected to the central portion of the yoke 11. It is fixed to an intermediate part between the outer peripheral part. In addition, welding, bolting, etc. are suitable as a fixing method of each of these poles 12-14 and the yoke 11. The poles 12 to 14 and the yoke 11 may be integrally formed by casting or the like. When an exciting current flows through the coils 20 and 21, the magnetic flux passes through the inside of the yoke 11. Thereby, a magnetic field can be efficiently generated in the inner pole 12, the outer pole 13, and the interpole 14.

非磁性部材15は、コイル20の一端側の端面20a、及びコイル21の一端側の端面21aに沿って設けられた円板状の部材である。非磁性部材15は、各磁極12〜14における磁場を乱さないように、例えば高マンガン系オーステナイト鋼やNi−Cr系オーステナイトステンレス鋼といった非磁性体によって構成されている。また、非磁性部材15は、内極12が貫通するための開口15aを中央部に有しており、内極12の一端が非磁性部材15から下方に露出している。非磁性部材15の外周部(縁部15b)は、外極13に固定されている。   The nonmagnetic member 15 is a disk-shaped member provided along the end surface 20 a on one end side of the coil 20 and the end surface 21 a on one end side of the coil 21. The nonmagnetic member 15 is made of a nonmagnetic material such as high manganese austenitic steel or Ni—Cr austenitic stainless steel so as not to disturb the magnetic fields in the magnetic poles 12 to 14. Further, the nonmagnetic member 15 has an opening 15 a through which the inner pole 12 passes in the central portion, and one end of the inner pole 12 is exposed downward from the nonmagnetic member 15. An outer peripheral portion (edge portion 15 b) of the nonmagnetic member 15 is fixed to the outer pole 13.

固定材41及び42は、コイル20及び21とケース2との隙間をそれぞれ埋めて固まることにより、ケース2内においてコイル20及び21を固定するための部材である。固定材41及び42は、例えばエポキシ樹脂などの絶縁材料からなる。   The fixing members 41 and 42 are members for fixing the coils 20 and 21 in the case 2 by filling and hardening the gaps between the coils 20 and 21 and the case 2, respectively. The fixing members 41 and 42 are made of an insulating material such as an epoxy resin.

以上の構成を備えるリフティングマグネット1による作用効果について、以下に説明する。   The effects of the lifting magnet 1 having the above configuration will be described below.

一般的に、吊対象物に及ぼされる磁力Fは次の数式(1)で表される。

Figure 0005220299

但し、数式(1)において、Mは強磁性体(吊対象物)の磁化[A/m]、Vは吊対象物の体積[m]、Bは吊対象物中の磁束密度[T]、zは内極及び外極の一端面(吸引面)を原点とする励磁コイルの巻回軸方向座標、μは真空透磁率[H/m]、Hは空間に分布する磁界強さ[A/m]である。 Generally, the magnetic force F exerted on the suspended object is expressed by the following formula (1).
Figure 0005220299

However, in Formula (1), M is the magnetization [A / m] of the ferromagnetic material (suspended object), V is the volume [m 3 ] of the suspended object, and B is the magnetic flux density [T] in the suspended object. , Z is a winding axis direction coordinate of the exciting coil with one end surface (attraction surface) of the inner and outer poles as an origin, μ 0 is a vacuum permeability [H / m], and H is a magnetic field strength distributed in space [ A / m].

吊対象物がリフティングマグネットに吊り上げられる条件は、数式(1)の磁力Fが吊対象物にかかる重力Fを上回ることである。従って、吊上げ条件は以下の数式(2)で表される。

Figure 0005220299

但し、ρは吊対象物の密度[g/m]、gは重力加速度[m/s]である。 Conditions suspended object is lifted to the lifting magnet is to exceed the force of gravity F g according to the magnetic force F is suspended object in Equation (1). Therefore, the lifting condition is expressed by the following formula (2).
Figure 0005220299

However, ρ is the density [g / m 3 ] of the suspended object, and g is the gravitational acceleration [m / s 2 ].

ここで、図4は、従来の構成を備えるリフティングマグネット(図16参照)における磁束密度の分布例を示す図である。図4を参照すると、理想的には吊対象物Lを通るはずの磁束の一部が、コイル108の内部や、リフティングマグネット100以外のところに漏れていることがわかる。このため、コイル108を流れる励磁電流の大きさに対して吊対象物Lを通る磁束の密度が小さくなってしまい、吸着効率が抑制される一因となる。また、吊対象物中の磁束密度がz軸方向(すなわち中心軸線方向)へ主に広がってしまい、径方向への広がりが不十分である。従って、数式(2)を満足する大きさの磁束が径方向へ十分に広がらないので、数式(2)を満足する領域が小さく、無駄が生じてしまう。   Here, FIG. 4 is a diagram showing an example of distribution of magnetic flux density in a lifting magnet (see FIG. 16) having a conventional configuration. Referring to FIG. 4, it can be seen that a part of the magnetic flux that should ideally pass through the suspended object L leaks to the inside of the coil 108 and other than the lifting magnet 100. For this reason, the density of the magnetic flux passing through the suspended object L is reduced with respect to the magnitude of the excitation current flowing through the coil 108, which is one factor that suppresses the adsorption efficiency. Moreover, the magnetic flux density in the suspended object mainly spreads in the z-axis direction (that is, the central axis direction), and the spread in the radial direction is insufficient. Therefore, since the magnetic flux having a magnitude satisfying the formula (2) does not spread sufficiently in the radial direction, the area satisfying the formula (2) is small and wasteful.

これに対し、図5は、本実施形態のリフティングマグネット1における磁束密度の分布を示す図である。図5に示されるように、本実施形態では、間極14を設けることによって磁束の流れが制御され、コイル20,21の内部や、リフティングマグネット1と吊対象物Lとの隙間に漏れる磁束が低減される。従って、吊対象物以外に漏れる磁束を低減して吊対象物Lに磁束を効率よく通すことができるので、従来の構成と比較してリフティングマグネット1の吸着効率を高めることができる。   On the other hand, FIG. 5 is a diagram showing the distribution of magnetic flux density in the lifting magnet 1 of the present embodiment. As shown in FIG. 5, in the present embodiment, the flow of magnetic flux is controlled by providing the interpole 14, and the magnetic flux leaking into the coils 20 and 21 and the gap between the lifting magnet 1 and the suspended object L is reduced. Reduced. Therefore, since the magnetic flux leaking to other than the suspended object can be reduced and the magnetic flux can be efficiently passed through the suspended object L, the adsorption efficiency of the lifting magnet 1 can be increased as compared with the conventional configuration.

また、本実施形態においては、間極14を設けることによってリフティングマグネット1の径(図1の直径D1)を大きくすることができるので、吊対象物Lへの磁束密度が均一に分布し、また、吊対象物Lに対するリフティングマグネット1の投影面積が増大する。その結果、吊対象物Lに対して磁力が効率よく発生し、吸着効率を高めることができる。   Moreover, in this embodiment, since the diameter of the lifting magnet 1 (diameter D1 in FIG. 1) can be increased by providing the interelectrode 14, the magnetic flux density to the suspended object L is uniformly distributed, and The projected area of the lifting magnet 1 with respect to the suspended object L increases. As a result, a magnetic force is efficiently generated for the suspended object L, and the adsorption efficiency can be increased.

また、上記効果によって、所要の磁力を発生させるために必要な励磁電流を小さくできるので、コイル20,21におけるジュール熱の発熱量を抑制できる。更に、コイル20,21において発生したジュール熱を間極14を介して外部へ放出できる。これらにより、コイル20,21の温度上昇に起因する吸着力の低下を抑え、必要な吸着力を長時間にわたって保持できる。   Moreover, since the exciting current required for generating a required magnetic force can be reduced by the above effect, the amount of generated Joule heat in the coils 20 and 21 can be suppressed. Furthermore, the Joule heat generated in the coils 20 and 21 can be released to the outside through the intermediate electrode 14. As a result, it is possible to suppress a decrease in the attractive force due to the temperature rise of the coils 20 and 21 and to maintain the necessary attractive force for a long time.

また、本実施形態のリフティングマグネット1においては、内極12の外側面12bと外極13の内側面13bとの距離r1、及び内極12の外側面12bと間極14の側面14b,14c間の中心位置Eとの距離r2の比(r2/r1)が、2/5以下であることが好ましく、また、1/7以上であることがより好ましい。但し、内極12の外側面12bはコイル20の内側面20bと対向する面であり、外極13の内側面13bはコイル21の外側面21cと対向する面であり、間極14の側面14bはコイル20の外側面20cと対向する面であり、間極14の側面14cはコイル21の内側面21bと対向する面である。   Further, in the lifting magnet 1 of the present embodiment, the distance r1 between the outer surface 12b of the inner pole 12 and the inner surface 13b of the outer pole 13 and the distance between the outer surface 12b of the inner pole 12 and the side surfaces 14b and 14c of the interelectrode 14 are shown. The ratio (r2 / r1) of the distance r2 to the center position E is preferably 2/5 or less, and more preferably 1/7 or more. However, the outer surface 12b of the inner pole 12 is a surface facing the inner surface 20b of the coil 20, the inner surface 13b of the outer pole 13 is a surface facing the outer surface 21c of the coil 21, and the side surface 14b of the interpole 14 Is the surface facing the outer surface 20 c of the coil 20, and the side surface 14 c of the interpole 14 is the surface facing the inner surface 21 b of the coil 21.

本発明者らは、内極12及び外極13に対する間極14の位置(すなわち、間極14の側面間の中心位置E)とリフティングマグネット1の吸着能力(通電直後での吊量、8時間通電後の吊量、及び8時間通電時における通電直後からの吊量低下量)との関係について、リフティングマグネット1の質量を一定として検証した。図6は、距離r1及びr2を適宜変更して比(r2/r1)を0〜4/5の間で変化させたときの、通電直後の吊量、8時間通電後の吊量、及びその間の吊量低下量を示す図表である。また、図7は、比(r2/r1)と通電直後の吊量との関係を示すグラフであり、図8は、比(r2/r1)と吊量低下量との関係を示すグラフである。なお、図7及び図8における破線は、比較のため間極14を設けない場合の値を示している。   The inventors have determined the position of the interelectrode 14 with respect to the inner electrode 12 and the outer electrode 13 (that is, the center position E between the side surfaces of the interelectrode 14) and the adsorption capacity of the lifting magnet 1 (the amount of suspension immediately after energization, 8 hours). Regarding the relationship between the amount of suspension after energization and the amount of decrease in suspension after energization for 8 hours), the mass of the lifting magnet 1 was verified as constant. FIG. 6 shows the amount of suspension immediately after energization, the amount of suspension after energization for 8 hours, and the interval when the ratio (r2 / r1) is changed between 0 and 4/5 by appropriately changing the distances r1 and r2. It is a chart which shows the amount of hanging amount fall. FIG. 7 is a graph showing the relationship between the ratio (r2 / r1) and the suspension amount immediately after energization, and FIG. 8 is a graph showing the relationship between the ratio (r2 / r1) and the suspension amount reduction amount. . Note that the broken lines in FIGS. 7 and 8 indicate values when the interelectrode 14 is not provided for comparison.

図7に示されるように、比(r2/r1)が2/5以下であれば、吊量が間極14を設けない場合よりも大きくなり、間極14を設けることによる上記効果(吸着効率の増大)が好適に得られることがわかる。また、図8に示されるように、比(r2/r1)が1/7以上であれば、8時間通電後の吊量低下量が間極14を設けない場合よりも小さくなり、長時間の使用による吸着効率の低下が効果的に抑えられることがわかる。これらのことから、比(r2/r1)は1/7以上2/5以下であることが好ましい。   As shown in FIG. 7, when the ratio (r2 / r1) is 2/5 or less, the hanging amount becomes larger than the case where the interelectrode 14 is not provided, and the above-described effect (adsorption efficiency) by the interelectrode 14 is provided. It can be seen that an increase in In addition, as shown in FIG. 8, if the ratio (r2 / r1) is 1/7 or more, the amount of decrease in the amount of suspension after 8 hours of energization is smaller than that in the case where the interelectrode 14 is not provided. It can be seen that a decrease in adsorption efficiency due to use can be effectively suppressed. Therefore, the ratio (r2 / r1) is preferably 1/7 or more and 2/5 or less.

また、本実施形態のリフティングマグネット1においては、所定軸線Cに沿った方向における本体部10の高さH1と、外極13において吊対象物と接する端面(すなわち、端部13aの下端面)の外縁の直径D1との比(H1/D1)が、1/7以上1/5以下であることが好ましい。   Further, in the lifting magnet 1 of the present embodiment, the height H1 of the main body 10 in the direction along the predetermined axis C and the end surface (that is, the lower end surface of the end portion 13a) in contact with the suspended object at the outer pole 13. The ratio (H1 / D1) with the diameter D1 of the outer edge is preferably 1/7 or more and 1/5 or less.

本発明者らは、リフティングマグネット1における吊対象物との接触面の直径(すなわち直径D1)とリフティングマグネット1の吸着能力(通電直後での吊量、8時間通電後の吊量、及び8時間通電時における通電直後からの吊量低下量)との関係について、リフティングマグネット1の質量を一定とし、比(r2/r1)を1/3で一定として検証した。図9(a)は、高さH1及び直径D1を適宜変更して比(H1/D1)を1/4〜1/9の間で変化させたときの、通電直後の吊量、8時間通電後の吊量、その間の吊量低下量、吊量変化率、及び低下量率を示す図表である。ここで、吊量変化率とは、(H1/D1)=1/4を基準としたときの通電直後での吊量比率を示す数値であり、低下量率とは、(H1/D1)=1/4を基準としたときの通電直後から8時間通電後の間の吊量低下量の比率を示す数値である。また、図10は、比(H1/D1)と吊量変化率(グラフG1)及び低下量率(グラフG2)との関係を示すグラフである。   The inventors of the present invention are the diameter of the contact surface of the lifting magnet 1 with the object to be suspended (that is, the diameter D1) and the adsorption capacity of the lifting magnet 1 (the suspended amount immediately after energization, the suspended amount after energization for 8 hours, and 8 hours. With respect to the relationship with the amount of decrease in the suspended amount immediately after energization during energization, the mass of the lifting magnet 1 was made constant, and the ratio (r2 / r1) was made constant at 1/3. FIG. 9A shows the amount of suspension immediately after energization and energization for 8 hours when the ratio (H1 / D1) is changed between 1/4 and 1/9 by appropriately changing the height H1 and the diameter D1. It is a table | surface which shows the amount of subsequent suspension, the amount of suspension amount fall | interval in the meantime, the amount change of suspension amount, and the amount of fall amount. Here, the hanging amount change rate is a numerical value indicating the hanging amount ratio immediately after energization when (H1 / D1) = 1/4 is used as a reference, and the decrease amount rate is (H1 / D1) = It is a numerical value showing the ratio of the amount of decrease in suspension amount immediately after energization for 8 hours when 1/4 is used as a reference. FIG. 10 is a graph showing the relationship between the ratio (H1 / D1), the hanging amount change rate (graph G1), and the decrease amount rate (graph G2).

図10に示されるように、比(H1/D1)を1/4から1/7まで変更しても吊量変化率及び低下量率はほぼ同じだが、比(H1/D1)を1/7より小さくすると低下量率が急激に上昇する。このことから、高さH1と直径D1との比(H1/D1)が1/7以上であれば、長時間の使用による吸着効率の低下が抑えられ、吸着力を好適に維持できることがわかる。   As shown in FIG. 10, even if the ratio (H1 / D1) is changed from 1/4 to 1/7, the hanging amount change rate and the decrease amount rate are almost the same, but the ratio (H1 / D1) is 1/7. If it is made smaller, the rate of decrease increases rapidly. From this, it can be seen that if the ratio of the height H1 to the diameter D1 (H1 / D1) is 1/7 or more, a decrease in adsorption efficiency due to long-time use can be suppressed, and the adsorption force can be suitably maintained.

ここで、図16に示す従来のリフティングマグネットにおいて、質量及び供給電力により定まる励磁電流値を変えずに、リフティングマグネットの本体部の外径を大きくし、且つリフティングマグネットの高さを低くして扁平化した場合を考える。図9(b)は、従来のリフティングマグネットを扁平化した場合(すなわち、本実施形態のリフティングマグネット1と比較して間極14を備えない形状)において、高さH及び直径Dを適宜変更して比(H/D)を1/4〜1/6の間で変化させたときの、通電直後の吊量、8時間通電後の吊量、その間の吊量低下量、吊量変化率、及び低下量率を示す図表である。また、図11は、比(H/D)と吊量変化率(グラフG3)及び低下量率(グラフG4)との関係を示すグラフである。   Here, in the conventional lifting magnet shown in FIG. 16, the outer diameter of the lifting magnet body is increased and the height of the lifting magnet is reduced without changing the excitation current value determined by the mass and the supplied power. Consider the case. FIG. 9B shows a case where the height H and the diameter D are appropriately changed when the conventional lifting magnet is flattened (that is, the shape having no interelectrode 14 compared with the lifting magnet 1 of the present embodiment). When the ratio (H / D) is changed between 1/4 to 1/6, the amount of suspension immediately after energization, the amount of suspension after energization for 8 hours, the amount of decrease in suspension during that time, the rate of change in suspension amount, It is a graph which shows a fall amount rate. FIG. 11 is a graph showing the relationship between the ratio (H / D), the hanging amount change rate (graph G3), and the drop amount rate (graph G4).

間極14を設けないでリフティングマグネットを扁平化した場合、図11に示されるように、吊量変化率は増えるが低下量率も増加する。このため、通電直後の吸着能力を向上できても、長時間使用時の吸着能力の低下に拍車がかかることになってしまう。これに対し本実施形態のリフティングマグネット1は、間極14を備えているので、長時間使用時の吸着能力の低下を効果的に抑えることができる。   When the lifting magnet is flattened without providing the interelectrode 14, as shown in FIG. 11, the hanging amount change rate increases, but the decrease amount rate also increases. For this reason, even if the adsorption capability immediately after energization can be improved, the reduction in the adsorption capability during long-time use will be spurred. On the other hand, since the lifting magnet 1 of this embodiment is provided with the interposition electrode 14, it can suppress effectively the fall of the adsorption | suction capability at the time of long-time use.

また、図12は、高さH1と直径D1との比(H1/D1)に応じた、通電直後から8時間通電後への吊量の変化を示すグラフである。図12のグラフG5〜G7は、間極14を備える本実施形態のリフティングマグネット1において、比(H1/D1)が1/4の場合、1/5の場合、及び1/6の場合をそれぞれ示している。また、グラフG8〜G10は、間極14を備えない従来のリフティングマグネットにおいて、比(H/D)が1/4の場合、1/5の場合、及び1/6の場合をそれぞれ示している。なお、ここでも、リフティングマグネットの質量を一定としている。   FIG. 12 is a graph showing changes in the amount of suspension from immediately after energization to after 8 hours of energization according to the ratio of height H1 to diameter D1 (H1 / D1). Graphs G5 to G7 in FIG. 12 show the case where the ratio (H1 / D1) is 1/4, 1/5, and 1/6, respectively, in the lifting magnet 1 of the present embodiment having the interpole 14. Show. Graphs G8 to G10 show a case where the ratio (H / D) is 1/4, 1/5, and 1/6, respectively, in a conventional lifting magnet that does not include the interpole 14. . In this case as well, the mass of the lifting magnet is constant.

図12に示されるように、比(H1/D1)を1/4とした場合では、通電直後の吊量及び8時間通電後の吊量は間極14の有無には殆ど影響されないが、比(H1/D1)を1/5以下とした場合では、間極14を備える方が吊量が増加している。このように、比(H1/D1)が1/5以下であれば、間極14を設けない場合と比較して、本実施形態のリフティングマグネット1の吸着力維持効果がより効果的に発揮されることがわかる。   As shown in FIG. 12, when the ratio (H1 / D1) is set to 1/4, the hanging amount immediately after energization and the hanging amount after 8 hours energization are hardly affected by the presence or absence of the interelectrode 14. In the case where (H1 / D1) is 1/5 or less, the amount of suspension increases when the interelectrode 14 is provided. Thus, if the ratio (H1 / D1) is 1/5 or less, the attractive force maintaining effect of the lifting magnet 1 of the present embodiment is more effectively exhibited as compared with the case where the interelectrode 14 is not provided. I understand that

また、本実施形態のリフティングマグネット1においては、リフティングマグネット1の径方向における間極14の幅(図1の幅t、すなわち側面14bと側面14cとの間隔)が1.2mmより大きいことが好ましい。ここで、図13は、間極14の幅tを0mm(すなわち間極14が設けられない状態)から24mmまで変化させたときの、通電直後の吊量、8時間通電後の吊量、及びその間の吊量低下量を示す図表である。また、図14は、間極14の幅tと通電直後の吊量との関係を示すグラフであり、図15は、間極14の幅tと8時間通電後の吊量との関係を示すグラフである。   In the lifting magnet 1 of the present embodiment, the width of the interpole 14 in the radial direction of the lifting magnet 1 (the width t in FIG. 1, ie, the distance between the side surface 14b and the side surface 14c) is preferably larger than 1.2 mm. . Here, FIG. 13 shows the amount of suspension immediately after energization, the amount of suspension after energization for 8 hours, when the width t of the interelectrode 14 is changed from 0 mm (that is, the state where the interelectrode 14 is not provided) to 24 mm. It is a chart which shows the amount of hanging amount fall in the meantime. FIG. 14 is a graph showing the relationship between the width t of the interelectrode 14 and the suspension amount immediately after energization, and FIG. 15 shows the relationship between the width t of the interelectrode 14 and the suspension amount after 8 hours of energization. It is a graph.

図14及び図15に示されるように、間極14を設置した場合、通電直後の吊量との関係においては幅tが0より大きければ有効といえるが、8時間通電後の吊量との関係においては幅tが1.2mmを超えていないと有効とはいい難い。このことから、間極14の幅tを1.2mmより大きくすることにより、長時間の使用による吸着効率の低下が好適に抑えられ、吸着力を好適に維持できることがわかる。   As shown in FIG. 14 and FIG. 15, when the interelectrode 14 is installed, it can be said that it is effective if the width t is larger than 0 in relation to the hanging amount immediately after energization, but with the hanging amount after 8 hours energization. In relation, it is difficult to say that the width t does not exceed 1.2 mm. From this, it can be seen that by making the width t of the interelectrode 14 greater than 1.2 mm, the reduction of the adsorption efficiency due to long-time use is suitably suppressed, and the adsorption force can be suitably maintained.

本発明によるリフティングマグネットは、上記した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態においては間極の一端がケース内部に収容されているが、間極の一端は内極及び外極の一端と同様にケースの外部に露出していてもよい。   The lifting magnet according to the present invention is not limited to the above-described embodiment, and various other modifications are possible. For example, in the above-described embodiment, one end of the interelectrode is housed inside the case, but one end of the interelectrode may be exposed to the outside of the case in the same manner as one end of the inner and outer poles.

本発明によるリフティングマグネットの一実施形態の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of one Embodiment of the lifting magnet by this invention. 図1に示したリフティングマグネットのII−II線に沿った断面を示す断面図である。It is sectional drawing which shows the cross section along the II-II line of the lifting magnet shown in FIG. コイルの部分断面の構造を詳細に示す拡大図である。It is an enlarged view which shows the structure of the partial cross section of a coil in detail. 図16に示す従来の構成を備えるリフティングマグネットにおける磁束密度の分布を示す図である。It is a figure which shows distribution of the magnetic flux density in a lifting magnet provided with the conventional structure shown in FIG. 実施形態に係るリフティングマグネットにおける磁束密度の分布を示す図である。It is a figure which shows distribution of the magnetic flux density in the lifting magnet which concerns on embodiment. 距離r1及びr2を適宜変更して比(r2/r1)を0〜4/5の間で変化させたときの、通電直後の吊量、8時間通電後の吊量、及びその間の吊量低下量を示す図表である。When the distances r1 and r2 are appropriately changed and the ratio (r2 / r1) is changed between 0 and 4/5, the amount of suspension immediately after energization, the amount of suspension after 8 hours of energization, and the decrease in the amount of suspension between them It is a chart which shows quantity. 比(r2/r1)と通電直後の吊量との関係を示すグラフである。It is a graph which shows the relationship between ratio (r2 / r1) and the amount of hanging immediately after electricity supply. 比(r2/r1)と吊量低下量との関係を示すグラフである。It is a graph which shows the relationship between ratio (r2 / r1) and suspension amount fall amount. (a)高さH1及び直径D1を適宜変更して比(H1/D1)を1/4〜1/9の間で変化させたときの、通電直後の吊量、8時間通電後の吊量、その間の吊量低下量、吊量変化率、及び低下量率を示す図表である。(b)従来のリフティングマグネットを扁平化した場合において、高さH及び直径Dを適宜変更して比(H/D)を1/4〜1/6の間で変化させたときの、通電直後の吊量、8時間通電後の吊量、その間の吊量低下量、吊量変化率、及び低下量率を示す図表である。(A) Suspension amount immediately after energization and suspension amount after energization for 8 hours when the ratio (H1 / D1) is changed between 1/4 and 1/9 by appropriately changing the height H1 and the diameter D1. It is a graph which shows the amount of suspension amount fall, the amount change rate of suspension amount, and the amount of fall amount in the meantime. (B) Immediately after energization when the conventional lifting magnet is flattened and the ratio (H / D) is changed between 1/4 and 1/6 by appropriately changing the height H and diameter D. It is a chart which shows the amount of suspension, the amount of suspension after energization for 8 hours, the amount of decrease in amount suspended, the rate of change of amount of suspension, and the rate of decrease 図9(a)に基づいて、比(H1/D1)と吊量変化率及び低下量率との関係を示すグラフである。It is a graph which shows the relationship between ratio (H1 / D1), hanging amount change rate, and fall amount rate based on Fig.9 (a). 図9(b)に基づいて、比(H/D)と吊量変化率及び低下量率との関係を示すグラフである。It is a graph which shows the relationship between ratio (H / D), hanging amount change rate, and fall amount rate based on FIG.9 (b). 高さH1と直径D1との比(H1/D1)に応じた、通電直後から8時間通電後への吊量の変化を示すグラフである。It is a graph which shows the change of the amount of suspension from immediately after electricity supply to after 8 hours electricity supply according to ratio (H1 / D1) of height H1 and diameter D1. 間極の幅を0mmから24mmまで変化させたときの、通電直後の吊量、8時間通電後の吊量、及びその間の吊量低下量を示す図表である。It is a chart which shows the amount of suspension immediately after energization, the amount of suspension after energization for 8 hours, and the amount of decrease in the amount of suspension between them when the width of the interelectrode is changed from 0 mm to 24 mm. 間極の幅と通電直後の吊量との関係を示すグラフである。It is a graph which shows the relationship between the width | variety of an interpole, and the amount of hanging immediately after electricity supply. 間極の幅と8時間通電後の吊量との関係を示すグラフである。It is a graph which shows the relationship between the width | variety of an interpole, and the amount of suspension after 8 hours energization. 従来の吊上げ電磁石の構造を示す側面断面図である。It is side surface sectional drawing which shows the structure of the conventional lifting electromagnet.

符号の説明Explanation of symbols

1…リフティングマグネット、2…ケース、10…本体部、11…ヨーク、12…内極、13…外極、14…間極、15…非磁性部材、20,21…コイル、22…導線、23…絶縁被覆膜、41,42…固定材。   DESCRIPTION OF SYMBOLS 1 ... Lifting magnet, 2 ... Case, 10 ... Main part, 11 ... Yoke, 12 ... Inner pole, 13 ... Outer pole, 14 ... Interpole, 15 ... Nonmagnetic member, 20, 21 ... Coil, 22 ... Conductor, 23 ... insulation coating film, 41, 42 ... fixing material.

Claims (5)

所定軸線方向に延びる内極、前記所定軸線周りで前記内極の周囲に設けられた外極、及び、前記内極と前記外極との間に設けられた間極を含む強磁性の本体部と、
前記内極と前記間極との間に配置され、前記所定軸線周りに巻回された第1のコイルと、
前記間極と前記外極との間に配置され、前記所定軸線周りに巻回された第2のコイルと
前記第1及び第2のコイルの一端側に配置された底板としての非磁性部材と
を備え、
前記所定軸線方向における前記本体部の高さH1、及び前記外極において吊対象物と接する端面の外縁の直径D1の比(H1/D1)が1/7以上1/5以下であることを特徴とする、リフティングマグネット。
A ferromagnetic main body including an inner pole extending in a predetermined axial direction, an outer pole provided around the inner pole around the predetermined axis, and an intermediate pole provided between the inner pole and the outer pole When,
A first coil disposed between the inner pole and the intermediate pole and wound around the predetermined axis;
A second coil disposed between the intermediate electrode and the outer electrode and wound around the predetermined axis ;
A non-magnetic member as a bottom plate disposed on one end side of the first and second coils ,
The ratio (H1 / D1) of the height H1 of the main body portion in the predetermined axial direction and the diameter D1 of the outer edge of the outer surface in contact with the suspended object is 1/7 or more and 1/5 or less. A lifting magnet.
所定軸線方向に延びる内極、前記所定軸線周りで前記内極の周囲に設けられた外極、及び、前記内極と前記外極との間に設けられた間極を含む強磁性の本体部と、
前記内極と前記間極との間に配置され、前記所定軸線周りに巻回された第1のコイルと、
前記間極と前記外極との間に配置され、前記所定軸線周りに巻回された第2のコイルと
前記第1及び第2のコイルの一端側に配置された底板としての非磁性部材と
を備え、
前記内極の外側面と前記外極の内側面との距離r1、及び前記内極の外側面と前記間極の側面間の中心位置との距離r2の比(r2/r1)が2/5以下であることを特徴とする、リフティングマグネット。
A ferromagnetic main body including an inner pole extending in a predetermined axial direction, an outer pole provided around the inner pole around the predetermined axis, and an intermediate pole provided between the inner pole and the outer pole When,
A first coil disposed between the inner pole and the intermediate pole and wound around the predetermined axis;
A second coil disposed between the intermediate electrode and the outer electrode and wound around the predetermined axis ;
A non-magnetic member as a bottom plate disposed on one end side of the first and second coils ,
The ratio (r2 / r1) of the distance r1 between the outer surface of the inner pole and the inner side surface of the outer pole and the distance r2 between the outer surface of the inner pole and the center position between the side surfaces of the inner pole is 2/5. Lifting magnet characterized by the following:
所定軸線方向に延びる内極、前記所定軸線周りで前記内極の周囲に設けられた外極、及び、前記内極と前記外極との間に設けられた間極を含む強磁性の本体部と、
前記内極と前記間極との間に配置され、前記所定軸線周りに巻回された第1のコイルと、
前記間極と前記外極との間に配置され、前記所定軸線周りに巻回された第2のコイルと
前記第1及び第2のコイルの一端側に配置された底板としての非磁性部材と
を備え、
前記所定軸線方向における前記本体部の高さH1、及び前記外極において吊対象物と接する端面の外縁の直径D1の比(H1/D1)が1/7以上1/5以下であり、
前記内極の外側面と前記外極の内側面との距離r1、及び前記内極の外側面と前記間極の側面間の中心位置との距離r2の比(r2/r1)が2/5以下であることを特徴とする、リフティングマグネット。
A ferromagnetic main body including an inner pole extending in a predetermined axial direction, an outer pole provided around the inner pole around the predetermined axis, and an intermediate pole provided between the inner pole and the outer pole When,
A first coil disposed between the inner pole and the intermediate pole and wound around the predetermined axis;
A second coil disposed between the intermediate electrode and the outer electrode and wound around the predetermined axis ;
A non-magnetic member as a bottom plate disposed on one end side of the first and second coils ,
The ratio (H1 / D1) of the height H1 of the main body portion in the predetermined axial direction and the diameter D1 of the outer edge of the outer surface in contact with the suspended object is 1/7 or more and 1/5 or less,
The ratio (r2 / r1) of the distance r1 between the outer surface of the inner pole and the inner side surface of the outer pole and the distance r2 between the outer surface of the inner pole and the center position between the side surfaces of the inner pole is 2/5. Lifting magnet characterized by the following:
前記距離r1及び前記距離r2の比(r2/r1)が1/7以上であることを特徴とする、請求項1〜3のいずれか一項に記載のリフティングマグネット。   The lifting magnet according to any one of claims 1 to 3, wherein a ratio (r2 / r1) of the distance r1 and the distance r2 is 1/7 or more. 前記所定軸線と直交する径方向における前記間極の幅が1.2mmより大きいことを特徴とする、請求項1〜4のいずれか一項に記載のリフティングマグネット。
The lifting magnet according to any one of claims 1 to 4, wherein a width of the interpole in a radial direction orthogonal to the predetermined axis is greater than 1.2 mm.
JP2006298056A 2006-11-01 2006-11-01 Lifting magnet Active JP5220299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298056A JP5220299B2 (en) 2006-11-01 2006-11-01 Lifting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298056A JP5220299B2 (en) 2006-11-01 2006-11-01 Lifting magnet

Publications (2)

Publication Number Publication Date
JP2008114956A JP2008114956A (en) 2008-05-22
JP5220299B2 true JP5220299B2 (en) 2013-06-26

Family

ID=39501225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298056A Active JP5220299B2 (en) 2006-11-01 2006-11-01 Lifting magnet

Country Status (1)

Country Link
JP (1) JP5220299B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012009702A1 (en) * 2012-05-16 2013-11-21 Evertz Magnetbau Gmbh & Co. Kg Method for unpacking cast portion from mold, involves lifting upper portion of mold from base portion, and using electromagnet for converting upper portion and base portion

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929014B1 (en) * 1969-12-29 1974-07-31
JPS4844169U (en) * 1971-09-28 1973-06-08
JPS5950594B2 (en) * 1981-03-11 1984-12-08 株式会社日立製作所 Lifting magnet device
JPS6038846B2 (en) * 1982-05-27 1985-09-03 三菱製鋼磁材株式会社 Electromagnetic suction device
JPH09193070A (en) * 1996-01-12 1997-07-29 Mitsubishi Materials Corp Electromagnetic chuck
JP2004168545A (en) * 2002-11-01 2004-06-17 Shinko Electric Co Ltd Lifting electromagnet
JP4555605B2 (en) * 2004-05-10 2010-10-06 鋼板剪断機械株式会社 Lifting electromagnet device

Also Published As

Publication number Publication date
JP2008114956A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
RU2479880C2 (en) Assembly of superconductive coils and equipment for generation of magnetic field
EP2850328B1 (en) Magnetic bearing and method for mounting a ferromagnetic structure around the core of a magnetic bearing
BRPI1102617B1 (en) SPEAKER MAGNET STRUCTURE
JP2007201129A (en) Reactor
JP2010521373A (en) Electromagnetic rail brake device with asymmetric excitation coil and / or split coil
JP2007207706A (en) Electromagnetic wave generator
EP2787515B1 (en) Inductor gap spacer
JP5220299B2 (en) Lifting magnet
JP2007217119A (en) Lifting magnet
US20140203899A1 (en) Electromagnet, motor and solenoid
JPWO2017149726A1 (en) solenoid
JP2009032922A (en) Reactor core and reactor
WO2013038591A1 (en) Power-reception device, power-transmission device, and power-transfer device
US20150280634A1 (en) Electro-magnetic transducer and vibration control system
JP5189637B2 (en) Coil parts and power supply circuit using the same
WO2013145227A1 (en) Magnetic circuit for speaker device and speaker device
JPH09210610A (en) High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
JP4234731B2 (en) Lifting magnet
JP2008258403A (en) Inductance component
CN110828100B (en) Giant iron core structure, giant electromagnet and combined giant electromagnet
JP2008091147A (en) Proximity sensor and core for the sensor
JP5516923B2 (en) Reactor and converter
KR101438403B1 (en) Control Method and Magnetic Bearing
JP2008203166A (en) Torque sensor and torque detecting method
JP2003022919A (en) Magnetic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5220299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150