JP5219879B2 - Method for determining logP, and two-phase solvent used in the method - Google Patents

Method for determining logP, and two-phase solvent used in the method Download PDF

Info

Publication number
JP5219879B2
JP5219879B2 JP2009037865A JP2009037865A JP5219879B2 JP 5219879 B2 JP5219879 B2 JP 5219879B2 JP 2009037865 A JP2009037865 A JP 2009037865A JP 2009037865 A JP2009037865 A JP 2009037865A JP 5219879 B2 JP5219879 B2 JP 5219879B2
Authority
JP
Japan
Prior art keywords
log
phase
solvent
logp
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009037865A
Other languages
Japanese (ja)
Other versions
JP2010190837A (en
Inventor
庸一 澁澤
顕郎 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP2009037865A priority Critical patent/JP5219879B2/en
Publication of JP2010190837A publication Critical patent/JP2010190837A/en
Application granted granted Critical
Publication of JP5219879B2 publication Critical patent/JP5219879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、logPの決定方法、および該方法に使用される二相系溶媒に関する。   The present invention relates to a method for determining logP and a two-phase solvent used in the method.

logPとは1−オクタノール/水二相系溶媒における化合物の分配係数(Po/w)の対数値である。logPは、化合物の疎水性または親水性の程度を示すひとつの指標値であり、薬理活性や生体内での薬物吸収・分布・代謝・排泄(ADME)等の挙動を予測する上で有用であるので、特に薬学分野でよく知られている。 Log P is a logarithmic value of the distribution coefficient (P o / w ) of a compound in a 1-octanol / water two-phase solvent. Log P is an index value indicating the degree of hydrophobicity or hydrophilicity of a compound, and is useful for predicting behavior such as pharmacological activity and drug absorption / distribution / metabolism / excretion (ADME) in vivo. So it is well known especially in the pharmaceutical field.

薬学の分野では一般に、薬物スクリーニングにおいて適度な疎水性を有する化合物(+4>logP>+1)が選抜されやすかったが、近年では、DDS(ドラッグデリバリーシステム)や製剤技術の進歩により、水溶性の高極性薬物(0>logP)の種類が増加している。よって、対象となる薬物のlogPの幅は大きく広がっている。   In the field of pharmaceutics, compounds with moderate hydrophobicity (+4> logP> +1) were generally easily selected in drug screening, but recently, due to advances in DDS (drug delivery system) and formulation technology, The types of polar drugs (0> logP) are increasing. Therefore, the range of log P of the target drug is greatly expanded.

logPの測定方法として、(1)1−オクタノール/水二相系溶媒の上下相に分配した薬物濃度からPo/w(=Coctanol/Cwater)を実測するフラスコ振とう(shake-flask)法、(2)アルキル(又はミセル)固定相に対する溶質の保持係数からPo/wを間接測定する逆相(RP)HPLC法やミセル動電クロマトグラフィー(MEKC)法、および(3)1−オクタノール/水二相系溶媒の上下相を固定相/移動相として溶質の保持時間からPo/wを実測する高速向流クロマトグラフィー(HSCCC)法などがある。 As a method for measuring log P, (1) flask-shaking to measure P o / w (= C octanol / C water ) from the drug concentration distributed in the upper and lower phases of 1-octanol / water two-phase solvent (shake-flask) (2) reverse phase (RP) HPLC method or micellar electrokinetic chromatography (MEKC) method for indirectly measuring Po / w from the retention coefficient of solute with respect to the alkyl (or micelle) stationary phase, and (3) 1- There is a high-speed counter-current chromatography (HSCCC) method in which Po / w is measured from the retention time of a solute using the upper and lower phases of an octanol / water two-phase solvent as a stationary phase / mobile phase.

しかしながら、いずれの方法もlogPを正確に測定できる範囲が狭く、特に水溶性(高極性)薬物の負のlogPを正確に求める事ができなかった。   However, in any of the methods, the range in which logP can be measured accurately is narrow, and in particular, the negative logP of a water-soluble (high polarity) drug cannot be accurately determined.

例えば、日本工業規格の公定法として指定されているフラスコ振とう法(JIS Z 7260-107, 2000)では、1−オクタノール/水二相系溶媒の上下相に被検物質を分配させてから相分離し、必要に応じて希釈した後、各相中の物質濃度を定量する必要があり、定量に用いる公知の分析法および分析機器では、定量値が感度や誤差の影響を受けた。例えば、最も一般的な濃度定量法である紫外可視吸光光度法では、精度良く測定可能な吸光度値がおよそ1〜0.01として表される範囲であるため、上下相の濃度比として正確に測定できるlogPの範囲は一般におよそ−2〜+2であった。この測定範囲を拡大するためには、二相分配の結果得られた溶液が高濃度の場合、溶液を希釈する必要があり、また低濃度の場合は測定スケールを上げて物質の絶対量を増やし、得られた溶液を更に濃縮してから測定する必要があるが、作業が煩雑になり誤差も出る。   For example, in the flask shaking method (JIS Z 7260-107, 2000), which is specified as an official method of the Japanese Industrial Standard, the test substance is distributed between the upper and lower phases of 1-octanol / water two-phase solvent and then the phase is mixed. After separating and diluting as necessary, it is necessary to quantify the substance concentration in each phase. In known analytical methods and analytical instruments used for quantification, the quantitative values are affected by sensitivity and error. For example, in the UV-Vis spectrophotometric method, which is the most common concentration quantification method, the absorbance value that can be accurately measured is in the range expressed as approximately 1 to 0.01, so it is accurately measured as the concentration ratio of the upper and lower phases. The range of possible log P was generally around -2 to +2. In order to expand this measurement range, it is necessary to dilute the solution when the solution obtained as a result of two-phase partitioning is high, and when the concentration is low, the measurement scale is increased to increase the absolute amount of the substance. However, it is necessary to measure the solution after further concentration, but the work becomes complicated and errors occur.

また例えば、C8やC18アルキルカラムを固定相とする逆相HPLC法では、被検物質はアルキル固定相と移動相溶媒(水系緩衝液またはメタノール混液)間で分配しながらカラム内を移動・溶出するため、溶出ピークの保持時間から計算した質量分布比k’とP値は強く相関することが知られている。従って、あらかじめP値が既知の標準物質を用いてk’とPの相関式を作成することにより、濃度定量することなく、被検物質のP値を実測したk’から間接的に見積もることができる。逆相HPLC法によるlogPの測定範囲は一般におよそ−1〜+6とされているが、溶質の保持が、分配以外の固定相支持体との物理化学的な相互作用の影響を受けるため、相関精度に難点があった。特に、解離基を有する親水性化合物などは固定相の残存シラノール基と相互作用するため、logPの信頼性が低下する事が知られていた。また、k’とPの相関式についても、化学構造が大きく異なる物質間では相関係数が異なるため、得られる値の精度が低下した。すなわち、上記測定範囲内であっても正確なlogPを測定できない場合があった。さらに、逆相HPLC法では、アルキル固定相にほとんど保持されない高極性化合物の負のlogP値(−1以下)は全く測定することができなかった。   Further, for example, in the reverse phase HPLC method using a C8 or C18 alkyl column as a stationary phase, the test substance moves and elutes in the column while being distributed between the alkyl stationary phase and the mobile phase solvent (aqueous buffer solution or methanol mixed solution). Therefore, it is known that the mass distribution ratio k ′ calculated from the retention time of the elution peak strongly correlates with the P value. Therefore, by creating a correlation equation between k ′ and P using a standard substance with a known P value in advance, the P value of the test substance can be estimated indirectly from the actually measured k ′ without quantifying the concentration. it can. The logP measurement range by the reverse phase HPLC method is generally about −1 to +6. However, since the retention of the solute is affected by the physicochemical interaction with the stationary phase support other than the partition, the correlation accuracy is There were difficulties. In particular, it has been known that a hydrophilic compound having a dissociating group interacts with the residual silanol group of the stationary phase, and thus the reliability of log P is lowered. In addition, regarding the correlation equation of k ′ and P, the correlation coefficient is different between substances having greatly different chemical structures, and thus the accuracy of the obtained value is lowered. That is, accurate log P may not be measured even within the above measurement range. Furthermore, in the reverse phase HPLC method, a negative log P value (-1 or less) of a highly polar compound hardly retained in the alkyl stationary phase could not be measured.

また例えば、液々分配クロマトグラフィーであるHSCCC法では、1−オクタノール/水二相系溶媒の一方の液相を固定相、他方の液相を移動相とすることができるので、特別な相関式を用いることなく、被検物質のP値を溶出ピークの保持時間から実測することができる。HSCCC法もまた、濃度定量の必要がないlogP測定法であるが、極端に分配比が偏る物質のP値は、保持時間の差に表れにくいため、実質的なlogPの測定範囲はおよそ−2〜+4程度の範囲に留まっていた。   Further, for example, in the HSCCC method which is liquid-liquid partition chromatography, one liquid phase of 1-octanol / water two-phase solvent can be a stationary phase and the other liquid phase can be a mobile phase. The P value of the test substance can be measured from the retention time of the elution peak without using. The HSCCC method is also a logP measurement method that does not require concentration determination. However, since the P value of a substance whose distribution ratio is extremely biased hardly appears in the difference in retention time, the substantial logP measurement range is approximately −2 It remained in the range of about ~ + 4.

本発明は、フラスコ振とう法により広範囲のlogPを得ることのできる方法および該方法に使用される二相系溶媒を提供することを目的とする。   An object of the present invention is to provide a method capable of obtaining a wide range of logP by a flask shaking method and a two-phase solvent used in the method.

本発明は、
極性有機溶媒、水性溶媒および疎水性有機溶媒を混合・静置して二相系溶媒を調製する工程;
logPが既知である化合物の、前記二相系溶媒における分配係数(K)を測定し、該分配係数の対数値(logK)と、既知のlogPとから、相関式を導出する工程;
logPの決定対象である化合物の、前記二相系溶媒における分配係数(K)を測定し、該分配係数の対数値(logK)から、前記相関式に基づいて、logPを算出する工程;
を含むlogPの決定方法に関する。
The present invention
A step of preparing a two-phase solvent by mixing and leaving a polar organic solvent, an aqueous solvent and a hydrophobic organic solvent;
measuring a partition coefficient (K) of the compound having a known log P in the two-phase solvent and deriving a correlation equation from the logarithmic value of the partition coefficient (log K) and the known log P;
measuring the partition coefficient (K) of the compound for which logP is to be determined in the two-phase solvent, and calculating logP from the logarithmic value of the partition coefficient (logK) based on the correlation equation;
The method of determining logP including

本発明はまた、上記logPの決定方法で使用される二相系溶媒に関する。   The present invention also relates to a two-phase solvent used in the logP determination method.

本発明によれば、フラスコ振とう法により、従来フラスコ振とう法では測定できなかったlogPを広範囲(−8〜+8)で決定できる。
本発明に従うと、logPの決定対象である化合物を少量で用いても、上記logPを決定することができる。
According to the present invention, logP, which could not be measured by the conventional flask shaking method, can be determined in a wide range (−8 to +8) by the flask shaking method.
According to the present invention, the above log P can be determined even when a small amount of the compound that is the target of determining log P is used.

logKとlogPとの相関関係を示すグラフの一例である。It is an example of the graph which shows the correlation of logK and logP.

本発明に係るlogPの決定方法は特定の二相系溶媒を使用することを特徴とするものであり、少なくとも二相系溶媒の調製工程、logPが既知である化合物のlogK−logP相関式導出工程、およびlogPの決定対象である化合物のlogP算出工程を含むものである。   The logP determination method according to the present invention is characterized by using a specific two-phase solvent, at least a two-phase solvent preparation step, and a logK-logP correlation derivation step for a compound having a known logP. , And a logP calculation step for the compound for which logP is to be determined.

本明細書中、logPは、薬学の分野で従来からよく知られている疎水性または親水性の程度を示すひとつの指標値であって、「1−オクタノール/水」二相系溶媒における化合物の分配係数(P)の対数値を意味するものである。
logKは、後で詳述する「極性有機溶媒/水性溶媒/疎水性有機溶媒」二相系溶媒における化合物の分配係数(K)の対数値を意味するものとする。
In the present specification, log P is one index value indicating the degree of hydrophobicity or hydrophilicity well known in the field of pharmacology, and is a value of a compound in a “1-octanol / water” two-phase solvent. It means the logarithmic value of the distribution coefficient (P).
logK means the logarithmic value of the partition coefficient (K) of the compound in the “polar organic solvent / aqueous solvent / hydrophobic organic solvent” two-phase solvent described in detail later.

(二相系溶媒)
本発明に使用する二相系溶媒は、極性有機溶媒、水性溶媒および疎水性有機溶媒からなる混合溶媒である。本発明においては極性有機溶媒および水性溶媒を含む混合溶媒に疎水性有機溶媒を添加混合し、十分に混合した後、常温(25℃)において静置して二相分離を行い、上相と下相とに分離した溶媒をそれぞれ分取し、二相系溶媒として使用するものである。分取に際しての二相分離は、溶媒耐性のある容器中で、極性有機溶媒、水性溶媒および疎水性有機溶媒を混合・撹拌してから、30分間以上静置することにより充分相分離が確認されたことを確認してから行うようにする。本明細書中、本発明で使用する二相系溶媒を「極性有機溶媒/水性溶媒/疎水性有機溶媒」二相系溶媒と標記することがある。
(Two-phase solvent)
The two-phase solvent used in the present invention is a mixed solvent composed of a polar organic solvent, an aqueous solvent and a hydrophobic organic solvent. In the present invention, a hydrophobic organic solvent is added to and mixed with a mixed solvent containing a polar organic solvent and an aqueous solvent, and after sufficient mixing, the mixture is allowed to stand at room temperature (25 ° C.) for two-phase separation. The solvent separated into phases is separated and used as a two-phase solvent. Two-phase separation during fractionation is sufficiently confirmed by mixing and stirring a polar organic solvent, aqueous solvent and hydrophobic organic solvent in a solvent-resistant container, and then allowing to stand for 30 minutes or longer. Make sure that this is done. In the present specification, the two-phase solvent used in the present invention may be referred to as “polar organic solvent / aqueous solvent / hydrophobic organic solvent” two-phase solvent.

本発明で使用される「極性有機溶媒/水性溶媒/疎水性有機溶媒」二相系溶媒は、従来の「1−オクタノール/水」二相系溶媒と比較して、対象化合物を上相と下相との間で顕著な濃度差を生じさせることなく分配・溶解させることができる。そのため、本発明の二相系溶媒における化合物の分配係数(K)を適度な大きさの正確な値で求めることができ、結果として、十分に正確なlogPを極めて広範囲で測定できる。   The “polar organic solvent / aqueous solvent / hydrophobic organic solvent” two-phase solvent used in the present invention is compared with the conventional “1-octanol / water” two-phase solvent in which the target compound is mixed with the upper and lower phases. It can be distributed and dissolved without causing a significant concentration difference between the phases. Therefore, the distribution coefficient (K) of the compound in the two-phase solvent of the present invention can be determined with an accurate value of an appropriate size, and as a result, sufficiently accurate log P can be measured in a very wide range.

極性有機溶媒は、誘電率が疎水性有機溶媒よりも高く、常温常圧で水と相溶して均一系を形成する有機溶媒が使用される。極性有機溶媒は二相系溶媒において主に上相を構成する。二相系溶媒に極性有機溶媒が含まれず、水性溶媒と疎水性有機溶媒のみで構成されると、上相と下相の極性差が大きくなり、最終的に広範囲のlogP値が得られない。   As the polar organic solvent, an organic solvent having a dielectric constant higher than that of the hydrophobic organic solvent and compatible with water at room temperature and normal pressure to form a homogeneous system is used. The polar organic solvent mainly constitutes the upper phase in the two-phase solvent. If the two-phase solvent does not contain a polar organic solvent and is composed only of an aqueous solvent and a hydrophobic organic solvent, the polarity difference between the upper phase and the lower phase becomes large, and a wide range of log P values cannot be obtained finally.

極性有機溶媒として、例えば、アセトニトリル、アセトンまたはそれらの混合物等が使用可能である。好ましい極性有機溶媒はアセトニトリルである。   As the polar organic solvent, for example, acetonitrile, acetone or a mixture thereof can be used. A preferred polar organic solvent is acetonitrile.

水性溶媒は、例えば、純水、イオン交換水および水道水等の水、またはこれらの水にpH緩衝剤を溶解してなる水性緩衝液が使用される。水性溶媒は二相系溶媒において主に下相を構成する。   As the aqueous solvent, for example, water such as pure water, ion exchange water and tap water, or an aqueous buffer solution obtained by dissolving a pH buffer in these waters is used. The aqueous solvent mainly constitutes the lower phase in the two-phase solvent.

水性溶媒は水性緩衝液を使用することが好ましい。水性緩衝液のpHを、生体内の体液のpHに近似させておくことによって、生体内での薬物吸収・分布・代謝・排泄(ADME)等の挙動をよく予測するlogPを求めることができるためである。   The aqueous solvent is preferably an aqueous buffer. By approximating the pH of the aqueous buffer to the pH of the body fluid in the living body, it is possible to obtain logP that well predicts the behavior of drug absorption, distribution, metabolism, excretion (ADME), etc. in the living body. It is.

水性緩衝液は、水性のいわゆるpH緩衝液が使用される。水性緩衝液としては、後述するlogKの測定時においても、下相のpHを目的に応じて一定値に保持できるものが望ましい。保持するpHの値は、生体内における被検薬物の作用部位や吸収部位により様々であるが、血液内環境や一般的な細胞内環境を想定する場合は、下相のpHを7.0〜8.0、特に7.4に保持できる緩衝液が有用であり、例えば、リン酸系緩衝液、酢酸系緩衝液、炭酸系緩衝液またはトリス緩衝液等が使用可能である。   As the aqueous buffer, an aqueous so-called pH buffer is used. The aqueous buffer is preferably one that can maintain the pH of the lower phase at a constant value according to the purpose even when measuring logK, which will be described later. The value of the retained pH varies depending on the action site and absorption site of the test drug in the living body. However, when assuming a blood environment or a general intracellular environment, the pH of the lower phase is set to 7.0 to 7.0. A buffer solution that can be maintained at 8.0, particularly 7.4 is useful. For example, a phosphate buffer solution, an acetate buffer solution, a carbonate buffer solution, or a Tris buffer solution can be used.

リン酸系緩衝液はリン酸もしくはその塩を含む水溶液である。リン酸塩として、例えば、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム等が使用可能である。   The phosphate buffer is an aqueous solution containing phosphoric acid or a salt thereof. As the phosphate, for example, sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate and the like can be used.

リン酸系緩衝液は、二種類の共役なリン酸塩水溶液またはリン酸水溶液を添加・混合することによって調製され得る。各水溶液の濃度は500mmol/L以下、特に20〜200mmol/Lが好ましい。   The phosphate buffer solution can be prepared by adding and mixing two kinds of conjugate phosphate aqueous solutions or phosphoric acid aqueous solutions. The concentration of each aqueous solution is preferably 500 mmol / L or less, particularly preferably 20 to 200 mmol / L.

酢酸系緩衝液は酢酸塩とその共役な酸または塩基を含む水溶液である。酢酸塩として、例えば、酢酸ナトリウム、酢酸カリウム、酢酸アンモニウム等が使用可能である。共役な酸や塩基としては、酢酸、水酸化カリウム、水酸化ナトリウム、アンモニア等が使用可能である。   The acetic acid buffer is an aqueous solution containing an acetate and its conjugate acid or base. As the acetate, for example, sodium acetate, potassium acetate, ammonium acetate and the like can be used. As the conjugated acid or base, acetic acid, potassium hydroxide, sodium hydroxide, ammonia or the like can be used.

酢酸系緩衝液は、酢酸塩水溶液に共役な酸または塩基を添加・混合することによって調製され得る。酢酸塩水溶液の濃度は500mmol/L以下、特に20〜200mmol/Lが好ましい。   The acetic acid buffer can be prepared by adding and mixing a conjugated acid or base to an aqueous acetate solution. The concentration of the aqueous acetate solution is preferably 500 mmol / L or less, particularly preferably 20 to 200 mmol / L.

炭酸系緩衝液は炭酸もしくはその塩を含む水溶液である。炭酸塩として、例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム等が使用可能である。   The carbonate buffer is an aqueous solution containing carbonic acid or a salt thereof. As the carbonate, for example, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate, sodium carbonate, potassium carbonate, ammonium carbonate and the like can be used.

炭酸系緩衝液は、二種類の共役な炭酸塩水溶液または炭酸水溶液を添加・混合することによって調製され得る。各水溶液の濃度は500mmol/L以下、特に20〜200mmol/Lが好ましい。   The carbonate buffer can be prepared by adding and mixing two kinds of conjugated carbonate aqueous solution or carbonic acid aqueous solution. The concentration of each aqueous solution is preferably 500 mmol / L or less, particularly preferably 20 to 200 mmol / L.

トリス(Tris)緩衝液は2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオールと酸を含む水溶液である。酸として、例えば、塩酸や硫酸等が使用可能である。   The Tris buffer is an aqueous solution containing 2-amino-2-hydroxymethyl-1,3-propanediol and an acid. For example, hydrochloric acid or sulfuric acid can be used as the acid.

トリス緩衝液は、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール水溶液に酸もしくはその水溶液を添加・混合することによって調製され得る。2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール水溶液の濃度は500mmol/L以下、特に20〜200mmol/Lが好ましい。   The Tris buffer can be prepared by adding and mixing an acid or an aqueous solution thereof to an aqueous 2-amino-2-hydroxymethyl-1,3-propanediol solution. The concentration of the 2-amino-2-hydroxymethyl-1,3-propanediol aqueous solution is preferably 500 mmol / L or less, particularly preferably 20 to 200 mmol / L.

水性溶媒の使用量は、本発明の目的が達成される限り特に制限されず、通常は極性有機溶媒100体積部に対して60〜130体積部、好ましくは90〜110体積部である。   The amount of the aqueous solvent used is not particularly limited as long as the object of the present invention is achieved, and is usually 60 to 130 parts by volume, preferably 90 to 110 parts by volume with respect to 100 parts by volume of the polar organic solvent.

疎水性有機溶媒は、誘電率が極性有機溶媒よりも低く、常温常圧において水と非相溶で均一系を形成しないが、極性有機溶媒と相溶して均一系を形成する有機溶媒が使用される。疎水性有機溶媒は二相系溶媒において、極性有機溶媒と共に上相を構成する。二相系溶媒に疎水性有機溶媒が含まれないと、溶媒は二相に分離しない。   Hydrophobic organic solvents have a lower dielectric constant than polar organic solvents and do not form a homogeneous system that is incompatible with water at room temperature and normal pressure. However, organic solvents that are compatible with polar organic solvents to form a homogeneous system are used. Is done. The hydrophobic organic solvent constitutes an upper phase together with the polar organic solvent in a two-phase solvent. If the two-phase solvent does not contain a hydrophobic organic solvent, the solvent will not separate into two phases.

そのような疎水性有機溶媒として、例えば、飽和脂肪族モノアルコールが挙げられる。
疎水性飽和脂肪族モノアルコールとしては炭素数4以上、特に4〜10、好ましくは7〜9のものが使用でき、より好ましくは直鎖状のものが使用される。そのような好ましい疎水性の直鎖状飽和脂肪族モノアルコールの具体例として、1−ブタノール、1−アミルアルコール、1−ヘキサノール、1−ヘプタノール、1−オクタノール、1−ノニルアルコールおよび1−デシルアルコール等が挙げられる。
Examples of such hydrophobic organic solvents include saturated aliphatic monoalcohols.
As the hydrophobic saturated aliphatic monoalcohol, those having 4 or more carbon atoms, particularly 4 to 10 carbon atoms, preferably 7 to 9 carbon atoms can be used, and linear ones are more preferable. Specific examples of such preferred hydrophobic linear saturated aliphatic monoalcohols include 1-butanol, 1-amyl alcohol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonyl alcohol and 1-decyl alcohol. Etc.

疎水性有機溶媒の使用量は、本発明の目的が達成される限り特に制限されず、通常は極性有機溶媒100体積部に対して4〜40体積部であり、二相系溶媒の製造時における二相分離のための静置時間の短縮の観点から好ましくは10〜20体積部である。疎水性有機溶媒の使用量が小さすぎると、二相への分離が困難になる。疎水性有機溶媒の使用量が大きすぎると、上相と下相との間で、化合物に対する溶解力の差が大きくなるので、化合物を上相と下相との間で分配させたとき、顕著な濃度差が生じる。そのため、実測するlogK値が、実際のlogPの値に近似しすぎてしまうため、広い範囲のlogPを測定することができない。   The amount of the hydrophobic organic solvent used is not particularly limited as long as the object of the present invention is achieved, and is usually 4 to 40 parts by volume with respect to 100 parts by volume of the polar organic solvent. From the viewpoint of shortening the standing time for two-phase separation, the amount is preferably 10 to 20 parts by volume. If the amount of the hydrophobic organic solvent used is too small, separation into two phases becomes difficult. If the amount of the hydrophobic organic solvent used is too large, the difference in solubility in the compound between the upper phase and the lower phase will increase, so it will be remarkable when the compound is distributed between the upper phase and the lower phase. Concentration differences occur. For this reason, the actually measured log K value is too close to the actual log P value, and thus a wide range of log P cannot be measured.

本発明の二相系溶媒の調製に際し、混合時間は、十分な混合が達成されれば特に制限されず、通常は1分間以上であればよく、1〜60分間が好ましい。
静置時間は、1分間以上であればよく、通常は1〜60分間が好適である。
In the preparation of the two-phase solvent of the present invention, the mixing time is not particularly limited as long as sufficient mixing is achieved, and usually 1 minute or more, preferably 1 to 60 minutes.
The standing time may be 1 minute or longer, and usually 1 to 60 minutes is preferable.

(logPが既知である化合物のlogK−logP相関式導出工程)
本工程では、まず、logPが既知である化合物の、前記「極性有機溶媒/水性溶媒/疎水性有機溶媒」二相系溶媒における分配係数(K)を測定し、該分配係数の対数値(logK)を求める。
(Step of deriving log K-log P correlation equation of compound with known log P)
In this step, first, a distribution coefficient (K) of a compound having a known log P in the above-mentioned “polar organic solvent / aqueous solvent / hydrophobic organic solvent” two-phase solvent is measured, and the logarithmic value (log K) of the distribution coefficient is measured. )

logPが既知である化合物とは、文献や測定によって正確な値と考えられるlogPを知ることができる化合物であり、従来からの1−オクタノール/水二相系溶媒を用いたフラスコ振とう法によって測定したときlogPがおよそ−2〜+2の範囲内になった化合物、1−オクタノール/水二相系溶媒を用いたHSCCC法によって測定したときlogPがおよそ−2〜+4の範囲内になった化合物、および逆相HPLC法によって測定したときlogPがおよそ−1〜+6の範囲内になった化合物が挙げられる。特に逆相HPLC法によって測定したときlogPがおよそ−1〜+6の範囲内になった化合物については、固定相支持体から物理化学的な相互作用の影響を受けない化合物を使用するようにする。   A compound whose log P is known is a compound that can know log P, which is considered to be an accurate value from literatures and measurements, and is measured by a conventional flask shaking method using a 1-octanol / water two-phase solvent. A compound having a log P in the range of about -2 to +4 when measured by an HSCCC method using a 1-octanol / water biphasic solvent, And compounds having a log P in the range of about −1 to +6 as measured by the reverse phase HPLC method. In particular, for a compound having a log P in the range of about −1 to +6 as measured by the reverse phase HPLC method, a compound that is not affected by the physicochemical interaction from the stationary phase support is used.

logPが既知である化合物の具体例としては、正確なlogPが既知である限り特に制限されず、例えば、実施例で使用した表1および表2に記載の化合物等が挙げられるが、これらの化合物に制限されるものではない。   Specific examples of the compound with known log P are not particularly limited as long as the exact log P is known, and examples thereof include the compounds described in Table 1 and Table 2 used in the examples. It is not limited to.

より正確なlogPを得る相関式を導出する観点から、logKを測定する化合物の数は多いほど好ましく、通常は3個以上、好ましくは20個以上、より好ましくは30〜50個が適当である。相関式導出のための化合物として、表1および表2に記載の化合物を選択することはさらに好ましい。   From the viewpoint of deriving a correlation equation for obtaining a more accurate log P, the number of compounds for measuring log K is preferably as large as possible, usually 3 or more, preferably 20 or more, more preferably 30 to 50. It is more preferable to select the compounds listed in Table 1 and Table 2 as the compounds for deriving the correlation equation.

logKの測定方法としては、二相系溶媒に所定の化合物を分配させる。詳しくは、例えば、試料(化合物)1mgに上相液および下相液各1mLを加えて、試験管中で十分に攪拌混合溶解させた後、静置して二相分離を行う。logKの測定に際して、化合物および二相系溶媒を上記のように小量スケールで使用しても、結果として正確なlogPを求めることができる。化合物濃度は、化合物が二相溶媒中に完全に溶解するような濃度範囲内で無ければならない。   As a method for measuring log K, a predetermined compound is distributed in a two-phase solvent. Specifically, for example, 1 mL of each of the upper phase solution and the lower phase solution is added to 1 mg of a sample (compound), and the mixture is sufficiently stirred and mixed in a test tube, and then allowed to stand to perform two-phase separation. Even when the compound and the two-phase solvent are used on a small scale as described above when measuring log K, accurate log P can be obtained as a result. The compound concentration must be within a concentration range such that the compound is completely dissolved in the biphasic solvent.

次いで、分離後の上相液および下相液の試料濃度を測定する。上相液の試料液、および下相液の試料液について、試料濃度を定量する。濃度定量は、試料化合物の化学構造や物理化学的性質や化学反応性に応じて、適切な手法を選択することができるが、様々な化合物に対する汎用性や測定の簡便性の観点から、紫外可視分光光度法が好ましい。この方法では、精度良く測定できる試料溶液の吸光度範囲が狭いため(0.01〜1.0程度)、例えばメタノールで7種類程度の希釈倍率(例えば、1倍、2倍、5倍、10倍、20倍、50倍、100倍)の試料希釈液を調製してから、試料化合物が光吸収する波長を選択して吸光度測定するとよい。   Next, the sample concentrations of the upper phase solution and the lower phase solution after the separation are measured. The sample concentration is quantified for the sample solution of the upper phase solution and the sample solution of the lower phase solution. For concentration quantification, an appropriate method can be selected according to the chemical structure, physicochemical properties, and chemical reactivity of the sample compound. From the viewpoint of versatility for various compounds and ease of measurement, UV-visible Spectrophotometry is preferred. In this method, since the absorbance range of the sample solution that can be measured with high accuracy is narrow (about 0.01 to 1.0), for example, about 7 types of dilution factor (for example, 1 time, 2 times, 5 times, 10 times) with methanol. , 20 times, 50 times, and 100 times), after preparing a sample dilution solution, the wavelength at which the sample compound absorbs light may be selected to measure the absorbance.

次いで、定量された濃度定量値から、下記算出式により、分配係数(K)を求め、その対数値(logK)を算出する。
K=CUP/CLP=(吸光度UP×希釈倍率UP)/(吸光度LP×希釈倍率LP
Next, the distribution coefficient (K) is obtained from the quantified concentration quantitative value by the following calculation formula, and the logarithmic value (log K) is calculated.
K = C UP / C LP = (absorbance UP × dilution factor UP ) / (absorbance LP × dilution factor LP )

上記式中、CUPは上相液を用いた試料液の希釈前の濃度定量値である。
LPは下相液を用いた試料液の希釈前の濃度定量値である。濃度はどの様な単位で表しても良いが、CUPとCLPの単位は同一にする必要がある。
吸光度UPは上相液を用いた試料希釈液の吸光度(無単位)であり、当該試料希釈液の希釈倍率が希釈倍率UPである。
吸光度LPは下相液を用いた試料希釈液の吸光度(無単位)であり、当該試料希釈液の希釈倍率が希釈倍率LPである。
なお、吸光度UPおよび吸光度LPはいずれも補正値を用いることが好ましい。所定の試料希釈液の吸光度の値から、試料が含有されていない希釈液の吸光度の値を差し引いて得られた値を用いる。
In the above formula, C UP is a quantitative concentration value before dilution of the sample solution using the upper phase solution.
C LP is a quantitative concentration value before dilution of the sample solution using the lower phase solution. The concentration may be expressed in any unit, but the units of CUP and CLP need to be the same.
Absorbance UP is the absorbance (unitless) of the sample diluent using the upper phase solution, and the dilution factor of the sample diluent is the dilution factor UP .
The absorbance LP is the absorbance (no unit) of the sample diluent using the lower phase solution, and the dilution factor of the sample diluent is the dilution factor LP .
Note that it is preferable to use correction values for both the absorbance UP and the absorbance LP . A value obtained by subtracting the absorbance value of the diluent not containing the sample from the absorbance value of the predetermined sample diluent is used.

上記算出式に用いられる吸光度UPおよび希釈倍率UPは、吸光度値が0.1〜1.0の範囲にある希釈試料液の吸光度および希釈倍率である。上記算出式に用いられる吸光度LPおよび希釈倍率LPは、吸光度値が0.1〜1.0の範囲にある希釈試料液の吸光度および希釈倍率である。 The absorbance UP and dilution factor UP used in the above calculation formula are the absorbance and dilution factor of a diluted sample solution having an absorbance value in the range of 0.1 to 1.0. The absorbance LP and dilution factor LP used in the above calculation formula are the absorbance and dilution factor of a diluted sample solution having an absorbance value in the range of 0.1 to 1.0.

本明細書中、吸光度はマイクロプレートリーダー(TECAN製;XSafire Mini Version)によって測定された値を用いているが、当該装置によって測定されなければならないというわけではなく、当該装置と同様の原理・原則によって吸光度測定できる装置であれば、いかなる装置によって測定されてもよい。   In this specification, the absorbance is a value measured by a microplate reader (manufactured by TECAN; XSafire Mini Version). However, it does not have to be measured by the device, and the same principle and principle as the device are used. Any device can be used as long as the absorbance can be measured by the above method.

logPが既知の化合物についてlogKを求めた後は、当該logKと、既知のlogPとから、相関式を導出する。詳しくは、logPが既知の化合物のlogKとlogPとを、例えば図1に示すように、横軸;logK−縦軸;logPの座標にプロットし、最小二乗法により線形回帰することにより、相関式を導き出す。   After obtaining log K for a compound with a known log P, a correlation equation is derived from the log K and the known log P. Specifically, log K and log P of a compound with known log P are plotted on the horizontal axis; log K-vertical axis: log P coordinates, for example, as shown in FIG. To derive.

相関式は以下に示す一次関数の形態で導出される。
logP=A×logK+B
[式中、Aは傾きを示し、Bは切片を示す]。
The correlation equation is derived in the form of a linear function shown below.
logP = A × logK + B
[Where A represents the slope and B represents the intercept].

相関式の相関係数Rの2乗値は、相関式導出のために選択される化合物や参考にする文献値、化合物の数により変わるが、本発明において通常は0.9000以上を達成する。例えば、表1および表2に記載の化合物を選択した場合、本法では相関式の相関係数Rの2乗値は0.9300以上を達成する。   The square value of the correlation coefficient R of the correlation equation varies depending on the compound selected for deriving the correlation equation, the literature value to be referred to, and the number of compounds, but in the present invention, it normally reaches 0.9000 or more. For example, when the compounds listed in Table 1 and Table 2 are selected, the square value of the correlation coefficient R of the correlation equation is 0.9300 or more in this method.

相関係数Rの2乗値とは、統計学の分野で知られる値であり、1に近いほど、正の相関が強いことを示す。本発明において相関係数Rの2乗値は、具体的には、上記グラフ上、相関式の導出に用いた全ての化合物のlogK−logPプロットの相関式からのズレの程度を表す平均の指標値であり、1に近いほど、当該ズレは小さく、当該相関式に基づく計算値が正確と考えられる値(参照値)に近いことを意味する。
よって、本発明で導出された相関式は既知のlogPとよく相関しており、当該相関式に基づいて算出されたlogPは十分に有意であることが明らかである。
The square value of the correlation coefficient R is a value known in the field of statistics, and the closer to 1, the stronger the positive correlation. In the present invention, the square value of the correlation coefficient R is specifically an average index representing the degree of deviation from the correlation equation of the log K-log P plot of all the compounds used for deriving the correlation equation on the graph. The value is closer to 1, and the deviation is smaller, which means that the calculated value based on the correlation equation is closer to the value (reference value) considered to be accurate.
Therefore, it is clear that the correlation formula derived in the present invention correlates well with the known logP, and logP calculated based on the correlation formula is sufficiently significant.

(logPの決定対象である化合物のlogP算出工程)
本工程では、まず、logPの決定対象である化合物の、前記「極性有機溶媒/水性溶媒/疎水性有機溶媒」二相系溶媒における分配係数(K)を測定し、該分配係数の対数値(logK)を求める。
(Log P calculation step of the compound for which log P is to be determined)
In this step, first, the distribution coefficient (K) of the compound for which logP is determined in the above-mentioned “polar organic solvent / aqueous solvent / hydrophobic organic solvent” two-phase solvent is measured, and the logarithmic value of the distribution coefficient ( logK).

「logPの決定対象である化合物」とは、logPを知りたい化合物のことであり、例えば、logPが未知の化合物であってもよいし、またはlogPは既知であるが、既知の値が不正確と考えられるために、正確なlogPが知りたい化合物であってもよい。   The “compound for which logP is to be determined” refers to a compound for which logP is to be known. For example, logP may be an unknown compound, or logP is known, but the known value is inaccurate. Therefore, it may be a compound for which an accurate log P is desired.

logPが未知の化合物としては、親水性が極めて高い化合物や疎水性が極めて高い化合物が挙げられる。
親水性が極めて高い化合物の具体例として、例えば、ヌクレオチド類、ヌクレオシド類、多糖系やペプチド系抗生物質、多糖類、ペプチド類、薬物抱合体類等が挙げられる。
疎水性が極めて高い化合物の具体例として、例えば、脂溶性ビタミン類、脂肪酸類、多感芳香族化合物類、環状ペプチド類、ステロイド類、テルペン類等が挙げられる。
Examples of compounds with unknown log P include compounds with extremely high hydrophilicity and compounds with extremely high hydrophobicity.
Specific examples of the compound having extremely high hydrophilicity include nucleotides, nucleosides, polysaccharides and peptide antibiotics, polysaccharides, peptides, and drug conjugates.
Specific examples of the compound having extremely high hydrophobicity include, for example, fat-soluble vitamins, fatty acids, polysensitive aromatic compounds, cyclic peptides, steroids, terpenes and the like.

logPは既知であるが、正確なlogPが知りたい化合物としては、従来からの1−オクタノール/水二相系溶媒を用いたフラスコ振とう法によって測定したときlogPが−2未満または+2を超える値になった化合物、1−オクタノール/水二相系溶媒を用いたHSCCC法によって測定したときlogPが−2未満または+4を超える値になった化合物、ならびに逆相HPLC法やミセル動電クロマトグラフィー(MEKC)法によって測定したときlogPが測定限界付近(−1もしくは+6付近)または−1未満もしくは+6を超える値になった化合物および逆相HPLC法やミセル動電クロマトグラフィー(MEKC)法によるlogPが−1〜+6の範囲内であっても、固定相支持体から物理化学的な相互作用の影響を受ける化合物等が挙げられる。   The log P is known, but the compound for which the exact log P is desired is a value where the log P is less than −2 or more than +2 when measured by a conventional flask shaking method using a 1-octanol / water two-phase solvent. , Compounds whose log P was less than −2 or greater than +4 as measured by the HSCCC method using 1-octanol / water two-phase solvent, and reversed-phase HPLC or micellar electrokinetic chromatography ( When measured by the MEKC) method, the log P is close to the measurement limit (-1 or +6) or less than -1 or exceeds +6, and the log P by the reverse phase HPLC method or the micellar electrokinetic chromatography (MEKC) method is Even within the range of -1 to +6, the stationary phase support is affected by physicochemical interactions. Compounds, and the like.

そのような化合物のlogKの測定方法としては、前工程で説明したlogKの測定方法と同様の方法が採用できる。   As a method for measuring log K of such a compound, a method similar to the method for measuring log K described in the previous step can be employed.

logPの決定対象である化合物についてlogKを求めた後は、当該logKから、前記相関式に基づいて、logPを算出する。詳しくは、前記相関式に、logKを代入することにより、logPを求めることができる。   After obtaining log K for the compound for which log P is to be determined, log P is calculated from the log K based on the correlation equation. Specifically, logP can be obtained by substituting logK into the correlation equation.

本発明のlogPの決定方法、そこに使用する二相系溶媒は、フラスコ振とう法だけでなく、HSCCC法にも採用することができる。例えば、HSCCC法では、本発明の二相系溶媒の一方の相を固定相、他方の相を移動相としてクロマトグラフィーを行い、被検化合物の保持時間から−2〜+2の範囲のlogKを求めることができる。より具体的には、二相溶媒系の上相を固定相とし、下相を移動相とする逆相分配モードのHSCCCにより、極性の高い親水性化合物のlogKを、濃度定量することなく短時間で求めることができる。また、二相溶媒系の下相を固定相とし、上相を移動相とする順相分配モードのHSCCCにより、疎水性化合物のlogKを、同様に短時間で求めることができる。logKを求めた後は、当該logKから、前記相関式に基づいて、logPを算出する。詳しくは、前記相関式に、logKを代入することにより、logPを求めることができる。   The logP determination method of the present invention and the two-phase solvent used therein can be employed not only in the flask shaking method but also in the HSCCC method. For example, in the HSCCC method, chromatography is performed using one phase of the two-phase solvent of the present invention as a stationary phase and the other phase as a mobile phase, and a log K in the range of −2 to +2 is obtained from the retention time of the test compound. be able to. More specifically, log K of a highly polar hydrophilic compound is measured for a short time without quantifying the concentration by reverse phase distribution mode HSCCC in which the upper phase is a stationary phase and the lower phase is a mobile phase. Can be obtained. In addition, the log K of the hydrophobic compound can be similarly determined in a short time by HSCCC in the normal phase distribution mode in which the lower phase of the two-phase solvent system is the stationary phase and the upper phase is the mobile phase. After obtaining log K, log P is calculated from the log K based on the correlation equation. Specifically, logP can be obtained by substituting logK into the correlation equation.

<実験例A>
(二相系溶媒の調製工程)
まず、50mMの酢酸アンモニウム水溶液に10%アンモニア水を添加・混合して、pHを7.4に調整し、酢酸系緩衝液を調製した。
次いで、1L容量のガラス製分液ロートに、HPLC用アセトニトリルとアンモニア系緩衝液とをそれぞれ500mLずつ加えて、さらに1−オクタノールを80mL加えた後、5分間振とう・撹拌して混合を行った。混合液を常温(25℃)において30分間静置後、溶液が二相に完全に分離したのを確認し、二相系溶媒Aを得た。二相系溶媒Aにおける上相液(溶液)と下相液(溶液)とを別々の容器に分別して貯留した。
<Experimental example A>
(Preparation process of two-phase solvent)
First, 10% aqueous ammonia was added to and mixed with a 50 mM aqueous ammonium acetate solution to adjust the pH to 7.4, thereby preparing an acetic acid buffer.
Next, 500 mL each of acetonitrile for HPLC and ammonia-based buffer was added to a 1 L glass separatory funnel, and further 80 mL of 1-octanol was added, followed by mixing by shaking and stirring for 5 minutes. . The mixed solution was allowed to stand at room temperature (25 ° C.) for 30 minutes, and then it was confirmed that the solution was completely separated into two phases, and a two-phase solvent A was obtained. The upper phase liquid (solution) and the lower phase liquid (solution) in the two-phase solvent A were separated and stored in separate containers.

(logPが既知である化合物のlogK−logP相関式導出工程)
表1および表2に記載の、logPが既知である化合物を、シグマアルドリッチジャパン(株)、和光純薬工業(株)より入手した。これらの化合物は正確なlogPが知られている化合物であり、例えば、フラスコ振とう法やHSCCC法により1−オクタノール/水二相系溶媒で直接的に正確なlogPを測定できた化合物、および文献によって正確なlogPが明らかにされた化合物である。当該文献では、logPは、逆相HPLC法により測定されている。
(Step of deriving log K-log P correlation equation of compound with known log P)
The compounds with known logP listed in Table 1 and Table 2 were obtained from Sigma Aldrich Japan Co., Ltd. and Wako Pure Chemical Industries, Ltd. These compounds are compounds for which accurate log P is known. For example, compounds in which accurate log P can be directly measured with a 1-octanol / water two-phase solvent by a flask shaking method or an HSCCC method, and literature Is the compound whose exact log P was revealed. In this document, logP is measured by a reverse phase HPLC method.

各化合物について、二相系溶媒Aにおける分配係数(K)をフラスコ振とう法により測定し、該分配係数の対数値(logK)を求めた。求めたlogKと、既知のlogPとを表1および表2に示した。logKは、以下に示す測定を3回実施したときの平均値であり、SDは標準偏差である。   For each compound, the partition coefficient (K) in the two-phase solvent A was measured by a flask shaking method, and the logarithmic value (log K) of the partition coefficient was determined. The obtained log K and known log P are shown in Table 1 and Table 2. log K is an average value when the following measurement is performed three times, and SD is a standard deviation.

詳しくは、以下の方法を実施した。
logKの測定方法;
試料(化合物)1mgに上相液および下相液各1mLを加えてボルテックスミキサーにより十分に撹拌した後、5分間静置して二相分離を行った。分離後の上相液および下相液をそれぞれ、メタノールで7種類の希釈倍率(1倍、2倍、5倍、10倍、20倍、50倍、100倍)で96穴プレートに200μLずつ入れ、マイクロプレートリーダー(TECAN製 XSafire Mini Version)を用い、260nmおよび230nmの検出波長で吸光度を測定した。同様に、試料を入れていない上相液および下相液の吸光度を測定した。試料含有液の吸光度から試料フリー液の吸光度を引いて補正した後、前記Kの算出式に基づいて、上下相の吸光度比(分配係数K)を求め、その対数値を求めた。前記算出式に用いた吸光度UPおよび希釈倍率UPは、吸光度値が0.1〜1.0の範囲にある希釈試料液の吸光度および希釈倍率であった。吸光度LPおよび希釈倍率LPは、吸光度値が0.1〜1.0の範囲にある希釈試料液の吸光度および希釈倍率であった。
In detail, the following method was implemented.
logK measurement method;
1 mL of each of the upper phase solution and the lower phase solution was added to 1 mg of the sample (compound), and the mixture was sufficiently stirred with a vortex mixer, and then allowed to stand for 5 minutes for two-phase separation. 200 μL each of the upper phase solution and the lower phase solution after separation in a 96-well plate at 7 different dilution ratios (1 ×, 2 ×, 5 ×, 10 ×, 20 ×, 50 ×, 100 ×) with methanol Using a microplate reader (XSafire Mini Version manufactured by TECAN), the absorbance was measured at detection wavelengths of 260 nm and 230 nm. Similarly, the absorbance of the upper phase solution and the lower phase solution without a sample was measured. After correcting by subtracting the absorbance of the sample-free solution from the absorbance of the sample-containing solution, the absorbance ratio (distribution coefficient K) of the upper and lower phases was determined based on the formula for calculating K, and the logarithmic value thereof was determined. The absorbance UP and dilution factor UP used in the calculation formula were the absorbance and dilution factor of the diluted sample solution having an absorbance value in the range of 0.1 to 1.0. The absorbance LP and the dilution factor LP were the absorbance and the dilution factor of the diluted sample solution having an absorbance value in the range of 0.1 to 1.0.

相関式の導出方法;
次いで、前記各種化合物のlogKと、既知のlogPとを、図1に示すように、横軸;logK−縦軸;logPの座標にプロットし、最小二乗法により線形回帰することにより、以下に示す相関式を導出した。
logP=4.0358×logK+0.1617
Method for deriving the correlation equation;
Next, as shown in FIG. 1, the log K and the known log P of the various compounds are plotted on the horizontal axis; log K-vertical axis: log P coordinates, and linear regression is performed by the least square method, as shown below. The correlation formula was derived.
log P = 4.0358 × log K + 0.1617

上記相関式の相関係数Rの2乗値は0.9399であった。   The square value of the correlation coefficient R in the above correlation equation was 0.9399.

上記相関式の傾きと切片より、比較的広範囲のlogP値(−8〜+8)を、比較的狭範囲のlogK値(−2〜+2)で実測可能であることが判った。そのようなlogK範囲は、本発明の溶媒を用いたこと以外、従来のフラスコ振とう法やHSCCC法と同様の方法により、小量スケールで正確に測定可能である。
それらの結果より、logPの決定対象である化合物を小量スケールで用いても、十分に正確なlogPを極めて広範囲で測定できることが明らかである。
From the slope and intercept of the above correlation equation, it was found that a relatively wide range of log P values (−8 to +8) can be measured with a relatively narrow range of log K values (−2 to +2). Such a log K range can be accurately measured on a small scale by a method similar to the conventional flask shaking method or HSCCC method except that the solvent of the present invention is used.
From these results, it is clear that sufficiently accurate log P can be measured in a very wide range even when the compound for which log P is determined is used on a small scale.

Figure 0005219879
Figure 0005219879

Figure 0005219879
Figure 0005219879

表1および表2中、aからfで示すlogPの既知の値は以下に示す値である。
aは、1−オクタノール/水二相系溶媒を用いたこと以外、前記logKの測定方法と同様の方法により3回測定されたlogPの平均値である。
bは、Lombardo, F. ; Shalaeva,M.Y. ; Tupper, K.A. ; Gao, F. ; Abraham, M.H. J.Med. Chem. 2000, 43, 2922-2928で記載されていたlogPである。
cは、Lombardo, F. ; Shalaeva, M.Y. ; Tupper, K.A. ; Gao, F. J.Med. Chem. 2001, 44, 2490-2497で記載されていたlogPである。
dはTakacs-Novak, K. ; Avdeef, A. J.Pharm. Biomed. Anal. 1994, 12, 1369-1377で記載されていたlogPである。
eは、Avdeef,A. Absorption and Drug Development: Solubility, Permeability, and Charge State; John Wiley & Sons, Inc.: Hoboken, NJ,2003; pp42-66で記載されていたlogPである。
fは、Sugano, K. ; Hamada, H ; Machida, M. ;Ushio, H. J.Biomol. Screening 2001, 6, 189-196で記載されていたlogPである。
In Tables 1 and 2, known values of logP indicated by a to f are values shown below.
a is an average value of log P measured three times by the same method as the measurement method of log K except that 1-octanol / water two-phase solvent was used.
b is log P described in Lombardo, F .; Shalaeva, MY; Tupper, KA; Gao, F .; Abraham, MHJ Med. Chem. 2000, 43, 2922-2928.
c is logP described in Lombardo, F .; Shalaeva, MY; Tupper, KA; Gao, FJMed. Chem. 2001, 44, 2490-2497.
d is logP described in Takacs-Novak, K .; Avdeef, AJPharm. Biomed. Anal. 1994, 12, 1369-1377.
e is logP described in Avdeef, A. Absorption and Drug Development: Solubility, Permeability, and Charge State; John Wiley & Sons, Inc .: Hoboken, NJ, 2003; pp42-66.
f is logP described in Sugano, K .; Hamada, H; Machida, M .; Ushio, HJ Biomol. Screening 2001, 6, 189-196.

<実験例B>
(logPの決定対象である化合物のlogP算出工程)
表3に記載の、logPが未知である化合物を、シグマアルドリッチジャパン(株)、和光純薬工業(株)より入手した。
これらの化合物は、ヌクレオチド類またはヌクレオシド類に分類されるもので、水溶性(親水性)が非常に高いために従来フラスコ振とう法によりlogPを測定できなかった化合物であり、また文献値も存在しなかった化合物である。
<Experiment B>
(Log P calculation step of the compound for which log P is to be determined)
The compounds with unknown log P listed in Table 3 were obtained from Sigma Aldrich Japan Co., Ltd. and Wako Pure Chemical Industries, Ltd.
These compounds are classified as nucleotides or nucleosides, and are very water-soluble (hydrophilic), so it was not possible to measure logP by the conventional flask shaking method, and there are literature values. It was a compound that did not.

各化合物について、二相系溶媒Aにおける分配係数(K)をフラスコ振とう法により測定し、該分配係数の対数値(logK)を求めた。logKの測定は、実験例Aにおける方法と同様の方法により実施した。logKは、logKの測定を3回実施したときの平均値である。   For each compound, the partition coefficient (K) in the two-phase solvent A was measured by a flask shaking method, and the logarithmic value (log K) of the partition coefficient was determined. The measurement of log K was carried out by the same method as in Experimental Example A. logK is an average value when logK is measured three times.

logKから、前記相関式に基づいて、logPを算出した。求めたlogKおよびlogPを表3に示した。   Based on the correlation equation, logP was calculated from logK. The obtained log K and log P are shown in Table 3.

Figure 0005219879
Figure 0005219879

Claims (3)

極性有機溶媒、水性溶媒および疎水性有機溶媒を混合・静置して二相系溶媒を調製する工程;
logPが既知である化合物の、前記二相系溶媒における分配係数(K)を測定し、該分配係数の対数値(logK)と、既知のlogPとから、相関式を導出する工程;
logPの決定対象である化合物の、前記二相系溶媒における分配係数(K)を測定し、該分配係数の対数値(logK)から、前記相関式に基づいて、logPを算出する工程;
を含むlogPの決定方法。
A step of preparing a two-phase solvent by mixing and leaving a polar organic solvent, an aqueous solvent and a hydrophobic organic solvent;
measuring a partition coefficient (K) of the compound having a known log P in the two-phase solvent and deriving a correlation equation from the logarithmic value of the partition coefficient (log K) and the known log P;
measuring the partition coefficient (K) of the compound for which logP is to be determined in the two-phase solvent, and calculating logP from the logarithmic value of the partition coefficient (logK) based on the correlation equation;
A method for determining logP including:
極性有機溶媒がアセトニトリル、アセトンまたはそれらの混合物であり、
水性溶媒が水性緩衝液であり、
疎水性有機溶媒が炭素数4〜10の飽和脂肪族モノアルコールであることを特徴とする請求項1に記載のlogPの決定方法。
The polar organic solvent is acetonitrile, acetone or a mixture thereof;
The aqueous solvent is an aqueous buffer,
The method for determining logP according to claim 1, wherein the hydrophobic organic solvent is a saturated aliphatic monoalcohol having 4 to 10 carbon atoms.
請求項1または2に記載のlogPの決定方法で使用される二相系溶媒。   A two-phase solvent used in the method for determining logP according to claim 1 or 2.
JP2009037865A 2009-02-20 2009-02-20 Method for determining logP, and two-phase solvent used in the method Expired - Fee Related JP5219879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009037865A JP5219879B2 (en) 2009-02-20 2009-02-20 Method for determining logP, and two-phase solvent used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009037865A JP5219879B2 (en) 2009-02-20 2009-02-20 Method for determining logP, and two-phase solvent used in the method

Publications (2)

Publication Number Publication Date
JP2010190837A JP2010190837A (en) 2010-09-02
JP5219879B2 true JP5219879B2 (en) 2013-06-26

Family

ID=42817020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009037865A Expired - Fee Related JP5219879B2 (en) 2009-02-20 2009-02-20 Method for determining logP, and two-phase solvent used in the method

Country Status (1)

Country Link
JP (1) JP5219879B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954943B (en) * 2011-08-16 2016-08-17 云南天士力帝泊洱生物茶集团有限公司 A kind of detect the detection method of tea polysaccharide in Folium camelliae assamicae or Pu'er tea
CN108680526A (en) * 2018-03-27 2018-10-19 天津科技大学 Use the method for tea polysaccharide in acid precipitation pigment detection Pu'er tea and its extract

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364880A (en) * 1993-06-16 1994-11-15 Advanced Therapies, Inc. Compound for treatment of cardiac arrhythmia, synthesis, and methods of use
GB0219248D0 (en) * 2002-08-17 2002-09-25 Univ York OPtical assembly and method for detection of light transmission
PL1808170T3 (en) * 2004-11-05 2011-12-30 Senju Pharma Co Aqueous eye drops with accelerated intraocular migration
CN101296950B (en) * 2005-10-26 2011-01-26 旭硝子株式会社 Fluororesin with low fluorine-containing emulsifier residual and method for producing same
WO2008093647A1 (en) * 2007-01-31 2008-08-07 Tohoku University Microarray, method for production thereof, and method for detection of interaction between organic molecule and active substance

Also Published As

Publication number Publication date
JP2010190837A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
CN106706785B (en) A method of using substance related in high performance liquid chromatography detection irbesartan and hydrochlorthiazide piece
Lin et al. A novel method for high throughput lipophilicity determination by microscale shake flask and liquid chromatography tandem mass spectrometry
CN101738444A (en) Method for detecting melamine
JP5219879B2 (en) Method for determining logP, and two-phase solvent used in the method
Mostafa PVC matrix membrane sensor for potentiometric determination of metoclopramide hydrochloride in some pharmaceutical formulations
Ieggli et al. Validation of UV spectrophotometric and nonaqueous titration methods for the determination of carvedilol in pharmaceutical formulations
CN104316618A (en) Method for measuring L-cysteine content by HPLC (high performance liquid chromatography) process
RU2330281C1 (en) Anti-cold antiallergic polypharmaceutical drug assay method
Rizk et al. Micellar high performance liquid chromatographic determination of Itraconazole in bulk, pharmaceutical dosage forms and human plasma
CN110231416B (en) Method for measuring 2-iodoxybenzoic acid related substances by using HPLC (high performance liquid chromatography)
Mahgoub Novel stability-indicating RP-HPLC method for determination of hydrochlorothiazide, amiloride hydrochloride and timolol maleate in tablet dosage form
Rangapriya et al. Validation of UV spectroscopy for simultaneous estimation of stavudine, lamivudine and nevirapine in tablet formulations
Nyola et al. Method Development and Validation ofLevosalbutamol in Pure and Tablet Dosage Formby RP-HPLC
Li et al. A sensitive LC-MS/MS method to determine the concentrations of erlotinib and its active metabolite OSI-420 in BALB/c nude mice plasma simultaneously and its application to a pharmacokinetic study
Gaonkar et al. Spectrophotometric method for determination of glucosamine in tablets
I AL-Neaimy et al. The use of oxidation reaction for the spectrophotometric determination of ganciclovir in pharmaceutical formulations
JP2011089811A (en) Method for quantifying dimethylaminoethyl methacrylate-containing copolymer
Amin et al. Spectrophotometric methods for sertraline hydrochloride and/or clidinium bromide determination in bulk and pharmaceutical preparations
Puranik et al. A Simple, novel validated stability indicating RP-HPLC method for estimation of duloxetine HCl in capsule pharmaceutical formulation
US20130261986A1 (en) Method for determining lipophilicity
RU2338189C1 (en) Method of detecting quantitative content of methylaminoantipyrine admixture in multi-component medications of anti-fever, analgetic, anti-cold acton
Walash et al. Micellar high performance liquid chromatographic determination of furosemide and spironolactone in combined dosage forms. Application to human plasma
CN109738536A (en) A method of benzaldehyde and nitrobenzaldehyde are separated with high performance liquid chromatography
Pulgarín et al. Direct determination of triamterene in urine by matrix isopotential synchronous fluorescence spectrometry
Kabaweh et al. Determination of some bronchodilator and expectorant drugs (guaifenesin and theophylline) using HPLC technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees