JP5219273B2 - Post-treatment agent for galvanizing and galvanized material surface-treated using the same - Google Patents

Post-treatment agent for galvanizing and galvanized material surface-treated using the same Download PDF

Info

Publication number
JP5219273B2
JP5219273B2 JP2008332004A JP2008332004A JP5219273B2 JP 5219273 B2 JP5219273 B2 JP 5219273B2 JP 2008332004 A JP2008332004 A JP 2008332004A JP 2008332004 A JP2008332004 A JP 2008332004A JP 5219273 B2 JP5219273 B2 JP 5219273B2
Authority
JP
Japan
Prior art keywords
compound
post
treatment
treatment agent
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008332004A
Other languages
Japanese (ja)
Other versions
JP2010150626A (en
Inventor
典克 武政
辰徳 堂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2008332004A priority Critical patent/JP5219273B2/en
Publication of JP2010150626A publication Critical patent/JP2010150626A/en
Application granted granted Critical
Publication of JP5219273B2 publication Critical patent/JP5219273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、亜鉛めっき加工を施した鋼材の表面に処理した後でも仕上がり外観を損なうことなく、耐食性や後工程での化成反応性を付与でき、かつクロムを含まない環境に優しい皮膜を形成させる為に用いる後処理剤並びにそれを用いて表面処理した亜鉛めっき加工材に関する。   The present invention is capable of imparting corrosion resistance and chemical conversion reactivity in the subsequent process without damaging the finished appearance even after being processed on the surface of the galvanized steel material, and forming an environmentally friendly film that does not contain chromium. The present invention relates to a post-treatment agent used for the purpose and a galvanized material subjected to surface treatment using the same.

亜鉛めっきは鋼材に耐久性をもたせ、長寿命化させる一般的な方法である。すなわち、耐食性向上を目的に施されているものであるが、このめっき自体は大気中の酸素、水分、排気ガス成分、等によって酸化腐食され、外観上は亜鉛の白錆が発生し、最終的には鉄の赤錆が発生する。鋼材の耐久性以外、亜鉛の白錆を少しでも遅延させる一時防錆性が重要となる。この一時防錆性とは耐久性はもとより、亜鉛めっきの外観を白錆の発生で損なわせない意匠性も含めて考えられている。亜鉛めっきの腐食を防止する方法として、従来、クロメート処理と呼ばれる6価クロムを主体とする処理が施されてきた。クロメート処理自体はめっきに対して優れた耐食性を発揮するものであるが、昨今の環境負荷物質である6価クロムを含んでいる為、家電分野を中心としたRoHS指令(家電、コンピューター、通信機器などの電気電子機器類について有害な化学物質の使用を禁止するという欧州理事会指令)、自動車分野を中心としたELV指令(使用済自動車に関する欧州理事会指令)、などにより有害物質の使用を控える、もしくは禁止する動きになっている。   Galvanization is a common method for making steel materials durable and extending their life. In other words, it is applied for the purpose of improving corrosion resistance, but this plating itself is oxidatively corroded by atmospheric oxygen, moisture, exhaust gas components, etc., and the appearance of zinc white rust is generated. In this case, iron red rust occurs. In addition to the durability of steel materials, temporary rust prevention properties that delay white zinc rust even a little are important. This temporary rust prevention property is considered to include not only durability but also design properties that do not impair the appearance of galvanization due to the occurrence of white rust. As a method for preventing corrosion of galvanizing, a treatment mainly composed of hexavalent chromium called a chromate treatment has been conventionally performed. The chromate treatment itself exhibits excellent corrosion resistance against plating, but since it contains hexavalent chromium, which is a recent environmentally hazardous substance, the RoHS Directive (home appliances, computers, communication equipment) mainly in the home appliance field The European Council Directive prohibits the use of harmful chemical substances in electrical and electronic equipment such as the ELV Directive (European Council Directive on Used Cars) centered on the automobile field, etc. Or it is a movement to ban.

一方、家電や自動車分野以外で主には建築分野ではRoHS指令やELV指令という規制がない為、現段階、6価クロムを使用している。しかしながら、環境保全の気運が日々強まっており、自主的に環境負荷物質の使用を控える動きが見られるようになってきた。また、亜鉛めっき加工材を扱う建築分野においては、橋梁、送電鉄塔、道路外壁等に使用され、材料の締結方法として高力ボルト摩擦接合が一般的である。この方法は、接合面のすべり係数が大きい程、材料の狂いは少なく、安全である。そのため、亜鉛めっき加工材には接合面に化成処理を施し、すべり係数を大きくしている。この化成処理は、りん酸塩処理を指す。亜鉛めっき上に絶縁性の高い皮膜やりん酸塩の形成を阻害するような皮膜が存在すると亜鉛めっき上に結晶状のりん酸塩皮膜を形成させることができず、結果的に接合時にボルトが適切に締結できない。また、締結した場合でも施工後にボルトが緩み易くなり、安全性に問題をきたすことがある。この化成処理は施工時に簡易的に塗布型りん酸塩の処理剤をスプレーや刷毛塗り処理をして、表面粗さを付与するものである。そこで、すべり係数を高くするよう後処理剤により、適度な皮膜を形成させる必要がある。   On the other hand, hexavalent chromium is used at this stage because there are no regulations such as the RoHS directive or ELV directive mainly in the construction field other than the home appliance and automobile fields. However, the momentum of environmental protection has been increasing day by day, and there has been a movement to voluntarily refrain from using environmentally hazardous substances. In the field of architecture that handles galvanized materials, high-strength bolt friction joining is commonly used as a fastening method for materials used for bridges, power transmission towers, road outer walls, and the like. In this method, the larger the slip coefficient of the joint surface, the less the deviation of the material and the safer. Therefore, the galvanized material is subjected to chemical conversion treatment on the joint surface to increase the slip coefficient. This chemical conversion treatment refers to a phosphate treatment. If a highly insulating film or a film that inhibits the formation of phosphate exists on the galvanizing, a crystalline phosphate film cannot be formed on the galvanizing, resulting in bolts being joined. It cannot be concluded properly. Moreover, even if it is fastened, the bolt tends to loosen after construction, which may cause a problem in safety. In this chemical conversion treatment, a coating-type phosphate treatment agent is simply sprayed or brushed at the time of construction to impart surface roughness. Therefore, it is necessary to form an appropriate film with a post-treatment agent so as to increase the slip coefficient.

もう1つ、亜鉛めっき加工材を後処理剤で表面処理する場合、通常、浸漬処理することが殆どである。この浸漬処理では、後処理槽から亜鉛めっき加工材を引き上げて自然乾燥することが多く、仕上がり外観において亜鉛めっきの外観を損なわないことが重要である。すなわち、意匠性という観点から、後処理後の外観を可能な限り均一にする技術が必要なのである。   When the surface of the galvanized material is post-treated with a post-treatment agent, usually, immersion treatment is usually performed. In this immersion treatment, the galvanized material is often lifted from the post-treatment tank and naturally dried, and it is important that the appearance of the galvanized metal is not impaired in the finished appearance. That is, from the viewpoint of design properties, a technique for making the appearance after post-processing as uniform as possible is necessary.

6価クロムを含まない処理液を用いる方法としては、特開2003−147544号公報には、pHが2.5〜7.0で3価クロム及びフッ素化合物を含有する処理液が開示されているが、この方法では6価クロムと比較すると耐食性が劣るという欠点を有している。   As a method of using a treatment liquid that does not contain hexavalent chromium, JP 2003-147544 A discloses a treatment liquid having a pH of 2.5 to 7.0 and containing trivalent chromium and a fluorine compound. However, this method has a drawback that the corrosion resistance is inferior to that of hexavalent chromium.

クロム化合物自体を含まない処理液を用いる方法としては、特開平10−60233号公報には、特定構造の変性ビスフェノールAエポキシ樹脂又はその誘導体を含有する水性防錆剤を鋼板上に塗布した後に加熱、乾燥させる方法、特開2002−146554号公報には、亜鉛めっき鋼材の表面にバナジン酸塩及び水溶性アクリル樹脂を含有する水溶液を接触させて鋼材表面を防食する方法、等が開示されているが、これらの方法では我々が求めている後工程での化成反応性が不十分であった。また、浸漬処理した場合の皮膜処理外観は均一にならず、亜鉛めっきの色調を損なう。   As a method of using a treatment liquid that does not contain a chromium compound itself, Japanese Patent Application Laid-Open No. 10-60233 discloses a method in which an aqueous rust inhibitor containing a modified bisphenol A epoxy resin having a specific structure or a derivative thereof is applied on a steel plate and then heated. , A method of drying, Japanese Patent Application Laid-Open No. 2002-146554 discloses a method of preventing corrosion of a steel material surface by bringing an aqueous solution containing a vanadate and a water-soluble acrylic resin into contact with the surface of the galvanized steel material. However, these methods have insufficient chemical conversion reactivity in the post-process that we have been seeking. Further, the appearance of the film treatment when the immersion treatment is performed is not uniform, and the color tone of the galvanizing is impaired.

特開平8−35084号公報には、金属面に接触する水溶液に添加する金属防錆剤であって、リン酸三ナトリウム(無水):10〜20w/v%、重合リン酸塩:5〜15w/v%及び1−ヒドロキシエチリデン−1,1−ジホスホン酸:10〜15w/v%の水溶液にリン酸を加えてpH:5〜7に調整した金属防錆剤が開示されているが、この方法では6価クロムと比較すると耐食性が劣るという欠点を有している。   JP-A-8-35084 discloses a metal rust inhibitor added to an aqueous solution in contact with a metal surface, which is trisodium phosphate (anhydrous): 10 to 20 w / v%, polymerized phosphate: 5 to 15 w. / V% and 1-hydroxyethylidene-1,1-diphosphonic acid: A metal rust inhibitor prepared by adding phosphoric acid to an aqueous solution of 10 to 15 w / v% to adjust the pH to 5 to 7 is disclosed. The method has a disadvantage that the corrosion resistance is inferior to hexavalent chromium.

特開2006−9121号公報には、(A)加水分解性チタン化合物、加水分解性チタン化合物の低縮合物、水酸化チタン及び水酸化チタンの低縮合物よりなる群から選ばれる少なくとも1種のチタン化合物を過酸化水素水と混合して得られるチタン含有水性液の固形分100質量部に基づいて、(B)有機リン酸化合物1〜400質量部、(C)水溶性又は水分散性有機樹脂を固形分で10〜2,000質量部、(D)バナジン酸化合物1〜400質量部、(E)弗化ジルコニウム化合物1〜400質量部及び(F)炭酸ジルコニウム化合物1〜400質量部を含有してなることを特徴とする金属表面処理組成物が開示されているが、この方法では耐食性と後工程での化成反応性の両立が難しかった。   JP-A-2006-9121 discloses at least one selected from the group consisting of (A) a hydrolyzable titanium compound, a low condensate of a hydrolyzable titanium compound, titanium hydroxide and a low condensate of titanium hydroxide. Based on 100 parts by mass of the solid content of a titanium-containing aqueous liquid obtained by mixing a titanium compound with hydrogen peroxide, (B) 1 to 400 parts by mass of an organic phosphate compound, (C) water-soluble or water-dispersible organic 10 to 2,000 parts by mass of resin in solid content, (D) 1 to 400 parts by mass of vanadic acid compound, (E) 1 to 400 parts by mass of zirconium fluoride compound and (F) 1 to 400 parts by mass of zirconium carbonate compound Although the metal surface treatment composition characterized by containing is disclosed, in this method, it was difficult to achieve both corrosion resistance and chemical conversion reactivity in the subsequent step.

特許3851106号公報には、少なくとも1種のバナジウム化合物(A)と、ジルコニウム、チタニウム、モリブデン、タングステン、マンガン及びセリウムからなる群から選ばれる少なくとも1種の金属を含む金属化合物(B)とを含有することを特徴とする金属表面処理剤、物性のさらなる改良のために、5価バナジウムイオンの全バナジウムに対する割合を規定したり、特定官能基を有する有機化合物やエッチング材や水溶性高分子または/及び水系エマルション樹脂を含有させることを特徴とする金属表面処理方法及び表面処理金属材料と開示されている。この方法では亜鉛めっき加工材の表面処理後の皮膜外観を均一にして耐食性を付与しつつ、すべり係数が0.4以上とすることの両立が難しかった。   Japanese Patent No. 3851106 contains at least one vanadium compound (A) and a metal compound (B) containing at least one metal selected from the group consisting of zirconium, titanium, molybdenum, tungsten, manganese, and cerium. In order to further improve the physical properties of the metal surface treatment agent, the ratio of pentavalent vanadium ions to the total vanadium is specified, the organic compound having a specific functional group, the etching material, the water-soluble polymer or / And a metal surface treatment method and a surface treatment metal material characterized by containing an aqueous emulsion resin. In this method, it has been difficult to make the slip appearance coefficient 0.4 or more while making the appearance of the film after the surface treatment of the galvanized material uniform and imparting corrosion resistance.

従って、亜鉛めっき加工を施した鋼材に後処理し、均一な皮膜外観、優れた耐食性を発揮し、後工程での化成反応性の全てを満足でき、かつクロムを含まない皮膜を形成させる為に用いる後処理剤が得られていないのが現状である。
特開2003−147544号公報 特開平10−60233号公報 特開2002−146554号公報 特開平8−35084号公報 特開2006−9121号公報 特許3851106号公報 特開2004−232040号公報
Therefore, in order to form a film that is post-treated on a galvanized steel, exhibits a uniform film appearance, excellent corrosion resistance, satisfies all chemical conversion reactivity in the subsequent process, and does not contain chromium. The present condition is that the post-processing agent to be used is not obtained.
JP 2003-147544 A Japanese Patent Laid-Open No. 10-60233 JP 2002-146554 A JP-A-8-35084 Japanese Patent Laid-Open No. 2006-9121 Japanese Patent No. 3851106 Japanese Patent Laid-Open No. 2004-232040

本発明は、前記従来技術の抱える問題を解決するためのものであって、鋼管、道路(ガードレールや支柱)、グレーチング、橋梁、鉄塔、鉄道公舎、継ぎ手など主には屋外で使用される建材に用いられる亜鉛めっき加工材の表面外観を損なわない皮膜処理外観を得て、耐食性や後工程での化成反応性を付与でき、かつクロムを含まない環境に優しい皮膜を形成させる為に用いる後処理剤並びにそれを用いて表面処理した亜鉛めっき加工材を提供することを目的とする。   The present invention is for solving the problems of the prior art, and is mainly used for construction materials used outdoors such as steel pipes, roads (guardrails and columns), gratings, bridges, steel towers, railway buildings, joints, and the like. Post-treating agent used to form a coating-treated appearance that does not impair the surface appearance of the galvanized material used, to provide corrosion resistance and chemical conversion reactivity in the subsequent process, and to form an environmentally friendly coating that does not contain chromium And it aims at providing the galvanization processed material surface-treated using it.

本発明者は、前記課題を解決する手段について鋭意検討した結果、特定の化合物を必須成分とし、その配合比を限定した後処理剤を用いて亜鉛めっき加工鋼材を処理することにより、仕上がり外観を損なうことなく、耐食性や後工程での化成反応性を持つ皮膜が得られる事を見出し、本発明を完成するに至った。   As a result of earnestly examining the means for solving the above-mentioned problems, the present inventor treated the galvanized steel with a post-treatment agent having a specific compound as an essential component and limiting the compounding ratio, thereby giving a finished appearance. The present inventors have found that a film having corrosion resistance and chemical conversion reactivity in a subsequent process can be obtained without damaging the present invention.

すなわち本発明は、ジルコニウム化合物(A)と、4価バナジウム化合物(B)と、無機リン酸及びその塩から選ばれる無機化合物(C)と、珪素化合物(D)とを含有し、且つ、化合物の質量比がA/(B+C)=0.8〜4.5、B/(A+C)=0.15〜0.7、D/(A+B+C)=0.1〜5.0であって、pH7〜11からなる亜鉛めっき加工用後処理剤に関する。また、有機ホスホン酸およびリン酸エステルから選ばれる少なくとも1種の化合物(E)を更に含有し、化合物の質量比がE/(A+B+C)=0.05〜5.0であることが好ましく、アニオン性若しくはノニオン性を有する水性樹脂化合物(F)を更に含有し、化合物の質量比がF/(A+B+C)=0.01〜3.5であることが好ましく、F/(A+B+C)=0.05〜3.5であることがより好ましい。 That is, the present invention is zirconium arm of compound and (A), the tetravalent vanadium of compound (B), an inorganic compound selected from inorganic phosphoric acids and salts thereof (C), and silicon compound (D) And the mass ratio of the compounds is A / (B + C) = 0.8 to 4.5, B / (A + C) = 0.15 to 0.7 , D / (A + B + C) = 0.1 to 5. The present invention relates to a post-treatment agent for galvanizing processing that is 0 and has a pH of 7 to 11. Further, organic phosphonic acid and at least one compound selected from phosphoric acid ester (E) further contains, preferably the weight ratio of the compound is E / (A + B + C ) = 0.05~5.0, It further contains an anionic or nonionic aqueous resin compound (F), and the mass ratio of the compounds is preferably F / (A + B + C) = 0.01 to 3.5, and F / (A + B + C) = 0. It is more preferable that it is 05-3.5 .

また、本発明は亜鉛めっき加工材の表面を該後処理剤で処理した亜鉛めっき加工材に関する。さらに、温度が20〜80℃である該後処理剤を接触させて表面処理することが好ましく、表面処理した後、水洗いをせずに皮膜を形成させることが好ましい。   The present invention also relates to a galvanized material obtained by treating the surface of a galvanized material with the post-treatment agent. Furthermore, it is preferable to perform the surface treatment by bringing the post-treatment agent having a temperature of 20 to 80 ° C. into contact, and it is preferable to form a film without washing with water after the surface treatment.

また、亜鉛めっきの表面に該後処理剤を接触させて表面処理した後の処理外観が、処理前と同じめっき外観を有する亜鉛めっき加工材に関する。また、片面の亜鉛めっき付着量が80〜1000g/mであり、該後処理剤を接触させて表面処理した後に更にりん酸塩化成処理された後のすべり係数が0.4以上である亜鉛めっき加工材に関する。 Further, the present invention relates to a galvanized material having a plated appearance that is the same as that before the treatment, after the surface treatment by bringing the post-treatment agent into contact with the surface of the galvanizing. Moreover, the zinc coating amount of one side is 80-1000 g / m < 2 >, and the slip coefficient after performing a phosphate chemical conversion treatment after making it surface-treat by contacting this post-processing agent is 0.4 or more zinc It relates to a plated material.

本発明の後処理剤を用いて表面処理することにより、亜鉛めっき加工材の表面外観を殆ど変えずに仕上がりの良好な皮膜処理外観が得られ、耐食性、後工程での化成反応性を付与でき、かつクロムを含まない環境に優しい皮膜を形成させることができる。化合物(A)は亜鉛めっきの上に皮膜形成されるときにめっき界面で反応して難溶性の塩を形成すると同時に金属酸化物のネットワークを形成し、バリア性の高い皮膜を得る。これによって耐食性を向上できる。しかしながら、この効果のみでは不十分であるため、酸化力が高い金属化合物(B)を含有させて亜鉛めっきの表面を不活性化させることができ、防錆力を補強することができる。また、界面に不溶性の金属塩を形成することができる。これによって実用レベルの耐食性を発揮することが可能となる。さらには皮膜形成時に亜鉛めっきのエッチングを抑制することで亜鉛のエッチングによる皮膜処理外観の白ムラを抑制することができる。化合物(C)は、後工程ですべり係数調整を行うための化成処理性のコントロールで必要となる。特に形成する皮膜と酸性の化成処理剤が接触したときに、皮膜の一部を流去させ、化成処理剤に含まれるリン酸塩の結晶粒子を形成させて粗さを持たせる。皮膜の流去性が乏しいと、リン酸塩の形成が不十分となり、所望のすべり係数が得られない。本発明の化合物(A)、(B)および(C)の効果、作用の詳細についてはさらに後述する。   By performing the surface treatment using the post-treatment agent of the present invention, it is possible to obtain a film-finished appearance with a good finish without changing the surface appearance of the galvanized material, and to impart corrosion resistance and chemical conversion reactivity in the subsequent process. In addition, an environmentally friendly film containing no chromium can be formed. Compound (A) reacts at the plating interface to form a hardly soluble salt when a film is formed on the galvanized film, and at the same time forms a metal oxide network to obtain a highly barrier film. Thereby, corrosion resistance can be improved. However, since this effect alone is insufficient, it is possible to inactivate the surface of the galvanizing by containing the metal compound (B) having a high oxidizing power and reinforce the rust prevention power. In addition, an insoluble metal salt can be formed at the interface. This makes it possible to exhibit a practical level of corrosion resistance. Furthermore, white unevenness of the coating treatment appearance due to the etching of zinc can be suppressed by suppressing the etching of galvanizing at the time of coating formation. The compound (C) is necessary for the control of chemical conversion treatment for adjusting the slip coefficient in the subsequent process. In particular, when the film to be formed and the acidic chemical conversion treatment agent come into contact with each other, a part of the film is washed away to form crystal grains of phosphate contained in the chemical conversion treatment agent so as to have roughness. When the flowability of the film is poor, the formation of phosphate is insufficient, and a desired slip coefficient cannot be obtained. Details of the effects and actions of the compounds (A), (B) and (C) of the present invention will be described later.

本発明に用いるジルコニウム或いはチタンを含む化合物(A)としては、酸化物、水酸化物、錯化合物、無機酸もしくは有機酸との塩などが挙げられる。例えば、ジルコニウム化合物としては、塩基性炭酸ジルコニウム{Zr(CO)(OH)}、水酸化ジルコニウム、酢酸ジルコニウム{(CHCOZr}、炭酸ジルコニウムアンモニウム{(NH42[Zr(CO32(OH)2]}、炭酸ジルコニウムカリウム{K[Zr(OH)(CO]}、炭酸ジルコニウムナトリウム{Na[Zr(OH)(CO]}、ジルコニウムアセテート、ヘキサフルオロジルコニウム水素酸およびその塩、ジルコニアゾル等が挙げられる。 Examples of the compound (A) containing zirconium or titanium used in the present invention include oxides, hydroxides, complex compounds, salts with inorganic acids or organic acids, and the like. For example, as the zirconium compound, basic zirconium carbonate {Zr 2 (CO 3 ) (OH) 2 O 2 }, zirconium hydroxide, zirconium acetate {(CH 3 CO 2 ) n Zr}, zirconium carbonate ammonium {(NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ]}, potassium zirconium carbonate {K 2 [Zr (OH) 2 (CO 3 ) 2 ]}, sodium zirconium carbonate {Na 2 [Zr (OH) 2 (CO 3 ) 2 ]}, zirconium acetate, hexafluorozirconium hydrogen acid and its salt, zirconia sol and the like.

チタン化合物としては、硫酸チタニル{TiOSO4}、チタンラクテート、ジイソプロポキシチタニウムビスアセチルアセトン{(C5722Ti[OCH(CH322}、乳酸とチタニウムアルコキシドとの反応物、ジ-n-ブトキシ・ビス(トリエタノールアミナト)チタン{Ti(OCHCHCHCH[OCN(COH)}、チタンテトライソプロポキシド、ヘキサフルオロチタニウム水素酸およびその塩、チタニアゾル、酸化チタン等が挙げられる。 Titanium sulfate {TiOSO 4 }, titanium lactate, diisopropoxytitanium bisacetylacetone {(C 5 H 7 O 2 ) 2 Ti [OCH (CH 3 ) 2 ] 2 }, reaction of lactic acid with titanium alkoxide Di-n-butoxy bis (triethanolaminato) titanium {Ti (OCH 2 CH 2 CH 2 CH 3 ) 2 [OC 2 H 4 N (C 2 H 4 OH) 2 ] 2 }, titanium tetraiso Examples thereof include propoxide, hexafluorotitanium hydrogen acid and its salt, titania sol, titanium oxide and the like.

ジルコニウム化合物とチタン化合物ではジルコニウム化合物の方が耐食性の点からより好ましい。さらにはジルコニウム化合物のなかでは、塩基性炭酸ジルコニウム及びその塩が特に好適である。例えば、塩基性炭酸ジルコニウム{Zr(CO)(OH)}、炭酸ジルコニウムアンモニウム{(NH42[Zr(CO32(OH)2]}、炭酸ジルコニウムカリウム{K[Zr(OH)(CO]}、炭酸ジルコニウムナトリウム{Na[Zr(OH)(CO]}を用いるのが好適である。 Of zirconium compounds and titanium compounds, zirconium compounds are more preferred from the viewpoint of corrosion resistance. Furthermore, among zirconium compounds, basic zirconium carbonate and its salt are particularly suitable. For example, basic zirconium carbonate {Zr 2 (CO 3 ) (OH) 2 O 2 }, zirconium ammonium carbonate {(NH 4 ) 2 [Zr (CO 3 ) 2 (OH) 2 ]}, potassium zirconium carbonate {K 2 [Zr (OH) 2 (CO 3 ) 2 ]} and sodium zirconium carbonate {Na 2 [Zr (OH) 2 (CO 3 ) 2 ]} are preferably used.

本発明に用いるバナジウム、モリブデン、タングステンを含む化合物(B)としては、酸化物、水酸化物、錯化合物、無機酸もしくは有機酸との塩などが挙げられる。例えば、バナジウム化合物としては、五酸化バナジウム{V25}、メタバナジン酸{HVO3}、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、オキシ三塩化バナジウム{VOCl3}、三酸化バナジウム{V23}、二酸化バナジウム{VO2}、オキシ硫酸バナジウム{VOSO4}、バナジウムオキシアセチルアセトネート{VO(OC(CH3)=CHCOCH3)}2}、バナジウムアセチルアセトネート{V(OC(CH3)=CHCOCH33}、三塩化バナジウム{VCl3}、リンバナドモリブデン酸{H15−X[PV12−xMoxO40]・nH2O(6<x<12,n<30)}、硫酸バナジウム{VSO4・7H2O}、二塩化バナジウム{VCl2}、酸化バナジウム{VO}、しゅう酸酸化バナジウム{V(C)O}等が挙げられる。 Examples of the compound (B) containing vanadium, molybdenum, and tungsten used in the present invention include oxides, hydroxides, complex compounds, salts with inorganic acids or organic acids, and the like. For example, vanadium compounds include vanadium pentoxide {V 2 O 5 }, metavanadate {HVO 3 }, ammonium metavanadate, sodium metavanadate, vanadium oxytrichloride {VOCl 3 }, vanadium trioxide {V 2 O 3 } , Vanadium dioxide {VO 2 }, vanadium oxysulfate {VOSO 4 }, vanadium oxyacetylacetonate {VO (OC (CH 3 ) = CHCOCH 3 )} 2 }, vanadium acetylacetonate {V (OC (CH 3 ) = CHCOCH 3) 3}, vanadium trichloride {VCl 3}, phosphovanadomolybdic acid {H 15 -X [PV 12 -xMoxO 40] · nH 2 O (6 <x <12, n <30)}, vanadium sulfate { VSO 4 · 7H 2 O}, vanadium dichloride {VCl 2}, vanadium oxide {VO}, oxalic acid acid Vanadium {V (C 2 O 4) O} , and the like.

モリブデン化合物としては、モリブデン酸(H2MoO4)、モリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブドリン酸化合物(例えば、モリブドリン酸アンモニウム{(NH43[PO4Mo1236]・3H2O}、モリブドリン酸ナトリウム{Na3(PO4・12MoO3)・nH2O}、等が挙げられる。 Examples of the molybdenum compound include molybdic acid (H 2 MoO 4 ), ammonium molybdate, sodium molybdate, and molybdophosphoric acid compounds (eg, ammonium molybdate {(NH 4 ) 3 [PO 4 Mo 12 O 36 ] · 3H 2 O}). And sodium molybdate {Na 3 (PO 4 · 12MoO 3 ) · nH 2 O}, and the like.

タングステン化合物としては、メタタングステン酸{H6(H21240)}、メタタングステン酸アンモニウム{(NH46(H21240)}、メタタングステン酸ナトリウム、パラタングステン酸{H10(W124610)}、パラタングステン酸アンモニウム、パラタングステン酸ナトリウム、リンモリブデン酸ナトリウム{NaHPMo12O・nHO}等が挙げられる。 Tungsten compounds include metatungstic acid {H 6 (H 2 W 12 O 40 )}, ammonium metatungstate {(NH 4 ) 6 (H 2 W 12 O 40 )}, sodium metatungstate, paratungstic acid { H 10 (W 12 O 46 H 10 )}, ammonium paratungstate, sodium paratungstate, sodium phosphomolybdate {Na 2 HPMo 12 O · nH 2 O}, and the like.

バナジウム化合物、モリブデン化合物、タングステン化合物では、バナジウム化合物が耐食性の点からより好ましく、4価のバナジウム化合物であることがより好ましく、4価のバナジウム錯化合物であることが特に好ましい。前記のバナジウム化合物で2価〜3価であると酸化力が小さく、4価と比べて耐食性を向上させる効果が小さい。また、5価であると酸化力は大きいが形成した皮膜に水が存在すると溶解しやすいため、腐食環境下で徐々に流去し、耐食性を向上させる効果が4価と比べて小さい。4価は酸化力があり、皮膜からの流去が5価より少ないといえる。これにより、耐食性において好適である。また、本発明の実施に際して列記する代表的なバナジウム化合物は少なくとも形成する皮膜に存在する量が過剰になると皮膜外観に黄色乃至褐色ムラが発生し、それを回避するために後処理剤に含有する配合量を少なくする必要がある。但し、4価はその影響が極めて小さい。すなわち、他の価数のバナジウム化合物と比べて存在量が多くても皮膜外観の黄色乃至褐色ムラが発生しにくいのである。また、酸化力が大きいと後処理剤が亜鉛めっき上で皮膜を形成するときに、後処理剤の亜鉛めっきに対するエッチングを抑制し、形成する皮膜の白化を抑制する。このような点から、バナジウム化合物は、モリブデン化合物やタングステン化合物より好ましく、更にはバナジウムの価数は4価以上が好ましい。すなわち、総合的に4価のバナジウム化合物が本発明に用いる化合物(B)のなかでは好適であるといえる。   Of the vanadium compounds, molybdenum compounds, and tungsten compounds, vanadium compounds are more preferred from the viewpoint of corrosion resistance, more preferably tetravalent vanadium compounds, and particularly preferably tetravalent vanadium complex compounds. If the vanadium compound is divalent to trivalent, the oxidizing power is small, and the effect of improving the corrosion resistance is small compared to tetravalent. In addition, when it is pentavalent, the oxidizing power is large, but if water is present in the formed film, it is easy to dissolve, so that the effect of gradually flowing away in a corrosive environment and improving the corrosion resistance is small compared to tetravalent. The tetravalent has an oxidizing power, and it can be said that the runoff from the film is less than the pentavalent. Thereby, it is suitable in corrosion resistance. Further, typical vanadium compounds listed in the practice of the present invention contain yellow or brown unevenness in the appearance of the coating when at least the amount present in the coating to be formed is contained in the post-treatment agent in order to avoid it. It is necessary to reduce the blending amount. However, the effect of tetravalent is extremely small. That is, yellow or brown unevenness of the appearance of the film hardly occurs even when the abundance is large as compared with other vanadium compounds having other valences. Moreover, when an oxidizing power is large, when a post-processing agent forms a film | membrane on galvanization, the etching with respect to the zinc plating of a post-processing agent will be suppressed, and the whitening of the film | membrane to form will be suppressed. From such a point, the vanadium compound is more preferable than the molybdenum compound or the tungsten compound, and the vanadium valence is preferably 4 or more. That is, it can be said that a tetravalent vanadium compound is preferable in the compound (B) used in the present invention.

リンから選ばれる無機化合物(C)としては、無機リン酸及びその塩が好適である。例えば、オルトリン酸、メタリン酸、縮合リン酸、ピロリン酸、トリポリリン酸、テトラリン酸、ヘキサメタリン酸およびその塩が挙げられる。例えば、重リン酸マグネシウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、リン酸ヒドロキシルアンモニウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸カリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、リン酸アルミニウム、リン酸ニッケル、リン酸コバルト等が挙げられる。これらのなかでは、耐食性の観点から選ぶと、リン酸水素二アンモニウム、リン酸水素アンモニウム、リン酸三アンモニウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸カリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウムが好ましく、リン酸水素二アンモニウム、リン酸水素アンモニウム、リン酸三アンモニウムがより好ましい。   As the inorganic compound (C) selected from phosphorus, inorganic phosphoric acid and a salt thereof are preferable. Examples thereof include orthophosphoric acid, metaphosphoric acid, condensed phosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, tetraphosphoric acid, hexametaphosphoric acid and salts thereof. For example, magnesium biphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, hydroxylammonium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium phosphate, sodium dihydrogen phosphate , Disodium hydrogen phosphate, trisodium phosphate, aluminum phosphate, nickel phosphate, cobalt phosphate and the like. Among these, from the viewpoint of corrosion resistance, diammonium hydrogen phosphate, ammonium hydrogen phosphate, triammonium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium phosphate, sodium dihydrogen phosphate, Disodium hydrogen phosphate and trisodium phosphate are preferable, and diammonium hydrogen phosphate, ammonium hydrogen phosphate, and triammonium phosphate are more preferable.

無機化合物(C)は化成反応性を発現させるために必要な成分である。本発明により形成された皮膜に無機化合物(C)が含有すると、摩擦係数を調整するために実施する化成反応性に有効である。無機化合物(C)、すなわちリン化合物が存在すると、酸性のリン酸塩処理剤に接触する(化成処理)とリン化合物の一部が皮膜から溶解することでリン酸塩の結晶が析出し易くなる。さらには、皮膜が溶解する過程で一部、亜鉛めっき表面が露出し、その部位でリン酸塩の結晶が析出し易くなる。無機化合物(C)はこのような作用によって必要となる。   The inorganic compound (C) is a component necessary for developing chemical conversion reactivity. When the inorganic compound (C) is contained in the film formed according to the present invention, it is effective for the chemical conversion reactivity carried out to adjust the friction coefficient. In the presence of the inorganic compound (C), that is, the phosphorus compound, when it comes into contact with the acidic phosphating agent (chemical conversion treatment), a part of the phosphorus compound dissolves from the film, so that phosphate crystals are likely to precipitate. . Furthermore, the galvanized surface is partially exposed in the process of dissolution of the film, and phosphate crystals are likely to precipitate at that portion. The inorganic compound (C) is required by such an action.

化成反応させた後に本発明の後処理材のすべり係数を測定することによって、厳密には化成反応性を判断できるが、簡易的には外観的にグレー色に変化することで判断することも可能である。後処理材が化成反応後にグレー色に変化することが好ましい。   By measuring the slip coefficient of the post-treatment material of the present invention after the chemical conversion reaction, strictly speaking, the chemical conversion reactivity can be judged, but it can also be judged simply by changing the appearance to gray. It is. It is preferable that the post-treatment material changes to a gray color after the chemical conversion reaction.

後処理剤に含まれる化合物(A)〜(C)の質量比について、A/(B+C)=0.8〜4.5とする必要がある。本範囲において、1.0〜4.0とすることが好ましく、1.2〜3.5とすることがより好ましい。本範囲は耐食性、化成反応性において重要である。本範囲を下回ると化合物(A)のもつ皮膜のバリア性が乏しくなり、耐食性が低下する。また、本範囲を超えると無機化合物(C)の溶解性が乏しくなり、化成反応性が低下する。同時に化合物(B)の溶解性が乏しくなり、耐食性が低下する。化合物(B)を適度に溶解させていくことが耐食性を発揮させるうえで重要となる。   The mass ratio of the compounds (A) to (C) contained in the post-treatment agent needs to be A / (B + C) = 0.8 to 4.5. In this range, it is preferable to set it as 1.0-4.0, and it is more preferable to set it as 1.2-3.5. This range is important for corrosion resistance and chemical conversion reactivity. Below this range, the barrier property of the film of the compound (A) becomes poor, and the corrosion resistance decreases. Moreover, when this range is exceeded, the solubility of an inorganic compound (C) will become scarce, and chemical conversion reactivity will fall. At the same time, the solubility of the compound (B) becomes poor and the corrosion resistance decreases. It is important to dissolve the compound (B) appropriately in order to exhibit corrosion resistance.

さらに、B/(A+C)=0.15〜0.7とする必要がある。本範囲において、0.15〜0.65とすることが好ましく、0.15〜0.6とすることがより好ましく、0.15〜0.4とすることが更に好ましい。化合物(B)そのものは着色し易い成分であるため、皮膜処理外観を良くするためには本範囲にする必要がある。本範囲を下回ると酸化力が乏しく、亜鉛めっき上に皮膜を形成するときに亜鉛のエッチングが大きくなり、皮膜処理外観に白色ムラがでてくる。また、本範囲を上回ると化合物(B)の存在量が多くなり、着色の影響度が大きくなる。そのため、黄色や褐色ムラの不具合が生じる。   Further, it is necessary to set B / (A + C) = 0.15 to 0.7. In this range, it is preferably 0.15 to 0.65, more preferably 0.15 to 0.6, and still more preferably 0.15 to 0.4. Since the compound (B) itself is a component that is easily colored, it is necessary to be within this range in order to improve the coating treatment appearance. Below this range, the oxidizing power is poor, and when the coating is formed on the zinc plating, the etching of zinc becomes large, and white unevenness appears on the coating treatment appearance. Moreover, when it exceeds this range, the abundance of the compound (B) increases, and the degree of influence of coloring increases. Therefore, the trouble of yellow and brown unevenness arises.

皮膜処理外観をさらに向上させるために、珪素化合物(D)を後処理剤に含有させることが好ましい。例えば、SiOを水に分散した湿式シリカゾルや乾式シリカゾル、SiO2・nMb2O(ここで、nは1〜5であり、Mbはアルカリ金属である)で示される無機珪素化合物、ビニルトリクロロシラン、ビニルトリス(2−メトキシエトキシシラン)、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3−(メタクリロイルオキシプロピル)トリメトキシシラン、2−(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリキシドキシプロピルトリメトキシシラン、3―グリキシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、N−(2−アミノエチル)3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、ウレイドプロピルトリエトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン等のテトラ又はトリメトキシシラン等を挙げることができる。また、テトラメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン等のテトラ又はトリメトキシシラン等のテトラ又はトリメトキシシランと、グリシドールとの脱メタノール反応により得られるグリシジル基含有メトキシシランの部分縮合物であっても構わない。 In order to further improve the appearance of the film treatment, it is preferable to contain the silicon compound (D) in the post-treatment agent. For example, wet silica sol or dry silica sol dispersed SiO 2 in water, SiO 2 · nMb 2 O (where, n is 1 to 5, Mb is an alkali metal) inorganic silicon compound represented by vinyl trichlorosilane , Vinyltris (2-methoxyethoxysilane), vinyltriethoxysilane, vinyltrimethoxysilane, 3- (methacryloyloxypropyl) trimethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, 3-glyoxydoxy Propyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-Aminopropylmethyldimethoxysilane 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, ureidopropyltriethoxysilane, Examples thereof include tetra- or trimethoxysilane such as tetramethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, and n-propyltrimethoxysilane. Also, containing glycidyl group obtained by demethanol reaction of tetra- or trimethoxysilane such as tetramethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, or tetra- or trimethoxysilane such as n-propyltrimethoxysilane and glycidol It may be a partial condensate of methoxysilane.

珪素化合物(D)の含有量について、質量比がD/(A+B+C)=0.1〜5.0の範囲であることが効果を発現させるうえで好ましい。本範囲を下回ると十分な効果が得られない。また、本範囲を超えると皮膜の連続性がなくなって脆弱となり、耐食性を低下させる場合がある。従って、皮膜処理外観を向上させるためには本範囲とするのが好適である。   About content of a silicon compound (D), when mass ratio is the range of D / (A + B + C) = 0.1-5.0, it is preferable when expressing an effect. Below this range, a sufficient effect cannot be obtained. On the other hand, if it exceeds this range, the continuity of the film is lost and it becomes brittle, which may reduce the corrosion resistance. Therefore, this range is suitable for improving the appearance of the film treatment.

皮膜処理外観を向上させるために、有機ホスホン酸やリン酸エステルのいずれかの化合物(E)を後処理剤に含有させることが好ましい。当該化合物(E)を含有させると、化合物(B)とキレートすることで形成する皮膜の黄色乃至褐色の度合いを抑制することができ、皮膜処理外観が向上する。例えば、アミノトリ(メチレンホスホン酸)、1−ヒドロキシメタン−1,1−ジホスホン酸、1−ヒドロキシエタン−1,1−ジホスホン酸、1−ヒドロキシプロパン−1,1−ジホスホン酸、1−ヒドロキシエチレン−1,1−ジホスホン酸、2−ヒドロキシホスホノ酢酸、アミノトリ(メチレンホスホン酸)、エチレンジアミン−N,N,N´,N´−テトラ(メチレンホスホン酸)、ヘキサメチレンジアミン−N,N,N´,N´−テトラ(メチレンホスホン酸)、ジエチレントリアミン−N,N,N´,N´´,N´´−ペンタ(メチレンホスホン酸)、2−ホスホン酸ブタン−1,2,4−トリカルボン酸、イノシトールヘキサホスホン酸、フィチン酸等の有機ホスホン酸、1−ヒドロキシエチリデン−1,1´−ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、フィチン酸等の有機リン酸等が挙げられる。   In order to improve the appearance of the film treatment, it is preferable to contain any compound (E) of organic phosphonic acid or phosphate ester in the post-treatment agent. When the compound (E) is contained, the degree of yellow or brown of the film formed by chelating with the compound (B) can be suppressed, and the film treatment appearance is improved. For example, aminotri (methylenephosphonic acid), 1-hydroxymethane-1,1-diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, 1-hydroxypropane-1,1-diphosphonic acid, 1-hydroxyethylene- 1,1-diphosphonic acid, 2-hydroxyphosphonoacetic acid, aminotri (methylenephosphonic acid), ethylenediamine-N, N, N ′, N′-tetra (methylenephosphonic acid), hexamethylenediamine-N, N, N ′ , N′-tetra (methylenephosphonic acid), diethylenetriamine-N, N, N ′, N ″, N ″ -penta (methylenephosphonic acid), 2-phosphonic butane-1,2,4-tricarboxylic acid, Organic phosphonic acids such as inositol hexaphosphonic acid, phytic acid, 1-hydroxyethylidene-1,1'-diphosphonic acid, ethyl Emissions diamine tetra (methylene phosphonic acid), and organic phosphoric acids such as phytic acid.

化合物(E)の含有量について、化合物の質量比がE/(A+B+C)=0.05〜5.0の範囲であることが効果を発現させるうえで好ましい。本範囲を下回ると十分な効果が得られない。また、本範囲を超えると皮膜の連続性がなくなって脆弱となり、耐食性を低下させる場合がある。従って、皮膜処理外観を向上させるためには本範囲とするのが好適である。   About content of a compound (E), when mass ratio of a compound is the range of E / (A + B + C) = 0.05-5.0, it is preferable when expressing an effect. Below this range, a sufficient effect cannot be obtained. On the other hand, if it exceeds this range, the continuity of the film is lost and it becomes brittle, which may reduce the corrosion resistance. Therefore, this range is suitable for improving the appearance of the film treatment.

耐食性を向上させるために、アニオン性若しくはノニオン性を有する水性樹脂化合物(F)を後処理剤に含有させることが好ましい。特に限定するものではないが、例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、フェノール樹脂等が挙げられる。このなかでは、アクリル樹脂、ウレタン樹脂、エポキシ樹脂を用いるのがより好ましい。   In order to improve the corrosion resistance, it is preferable to contain an anionic or nonionic aqueous resin compound (F) in the post-treatment agent. Although it does not specifically limit, For example, an acrylic resin, a urethane resin, an epoxy resin, a polyester resin, a polyamide resin, a polyolefin resin, a phenol resin etc. are mentioned. In this, it is more preferable to use an acrylic resin, a urethane resin, and an epoxy resin.

化合物(F)の含有量について、化合物の質量比がE/(A+B+C)=0.05〜5.0の範囲であることが効果を発現させるうえで好ましい。本範囲を下回ると十分な効果が得られない。また、本範囲を超えると耐食性の観点からは好ましいが、皮膜のバリア性が向上するために化成処理性が低下する。従って、耐食性を向上し、化成処理性を維持させるためには本範囲とするのが好適である。   About content of a compound (F), when mass ratio of a compound is the range of E / (A + B + C) = 0.05-5.0, it is preferable when expressing an effect. Below this range, a sufficient effect cannot be obtained. Moreover, when it exceeds this range, it is preferable from the viewpoint of corrosion resistance, but since the barrier property of the film is improved, the chemical conversion treatment property is lowered. Therefore, it is preferable to be within this range in order to improve the corrosion resistance and maintain the chemical conversion treatment property.

ここで、本発明に係る亜鉛めっき加工用後処理剤での必須成分である化合物(A)及び化合物(C)は、いずれもアンモニウム塩であることが好適である。そして、より好適な態様として、化合物(A)、化合物(B)及び化合物(C)として、それぞれ塩基性炭酸ジルコニウムのアンモニウム塩(例えば炭酸ジルコニウムアンモニウム)、4価のバナジウム化合物、無機リン酸のアンモニウム塩(例えば、リン酸三アンモニウム、リン酸二水素一アンモニウム、リン酸水素二アンモニウム)を挙げることができる。その理由は、化合物(A)と化合物(C)のカウンターカチオンがアンモニウムイオンであると皮膜形成時に揮散するため、皮膜の連続性が失われにくくなる。そのため、耐食性や皮膜処理外観においては所望の性能が得やすい。   Here, it is preferable that both the compound (A) and the compound (C), which are essential components in the post-treatment agent for galvanizing processing according to the present invention, are ammonium salts. And as a more suitable aspect, as a compound (A), a compound (B), and a compound (C), ammonium salt of basic zirconium carbonate (for example, zirconium ammonium carbonate), a tetravalent vanadium compound, ammonium inorganic phosphate, respectively Examples thereof include salts (for example, triammonium phosphate, monoammonium dihydrogen phosphate, diammonium hydrogen phosphate). The reason is that if the counter cations of the compound (A) and the compound (C) are ammonium ions, they are volatilized at the time of film formation, so that the continuity of the film is hardly lost. Therefore, desired performance is easily obtained in the corrosion resistance and the film-treated appearance.

本発明の後処理剤の液体媒体としては水が好適である。尚、液体媒体が水である場合、液体媒体として水以外の他の水系溶媒(例えば、後述するような水溶性のアルコール類)を含有していてもよい。また、液体媒体が水である場合、前述の必須成分である化合物(A)〜(C)は、典型的には溶解した状態で水中に存在している。但し、部分的に溶解していないものが存在していたり、分散状態(例えばコロイド状態)で存在している態様でもよい。   Water is suitable as the liquid medium for the post-treatment agent of the present invention. When the liquid medium is water, the liquid medium may contain an aqueous solvent other than water (for example, a water-soluble alcohol as described later). When the liquid medium is water, the compounds (A) to (C) that are essential components described above are typically present in water in a dissolved state. However, there may be an embodiment in which some are not dissolved or in a dispersed state (for example, a colloidal state).

本発明の後処理剤は、pH7〜11(好適にはpH7.5〜10、より好適には8〜9.5)とすることが屋外暴露での白ムラを防止するために必要である。酸性後処理の場合、後処理後に水洗しないと酸成分が残存して実使用下(本発明での実証では暴露試験)で後処理の皮膜処理材が、水分と酸成分によって亜鉛めっきが酸化、エッチングされることで亜鉛酸化物が生じたり、皮膜の連続性が失われることにより、白化する不具合が発生してしまうからである。更には、pHが高いと後処理剤と亜鉛めっきのエッチングが過多となり、白化が生じる。pHが低いと後処理安定性の確保が困難となる。加えて、長期の液安定性を維持するためにも必要である。pHが低い場合、形成した皮膜に水を介在させると酸成分が亜鉛めっきの表面の一部をエッチングし、耐食性の低下を招いてしまう。   The post-treatment agent of the present invention needs to have a pH of 7 to 11 (preferably pH 7.5 to 10, more preferably 8 to 9.5) in order to prevent white unevenness in outdoor exposure. In the case of acidic post-treatment, if the water is not washed after the post-treatment, the acid component remains and the film treatment material for the post-treatment is oxidized under actual use (exposure test in the present invention). This is because, by etching, zinc oxide is generated or the continuity of the film is lost, thereby causing a problem of whitening. Furthermore, when the pH is high, the post-treatment agent and the galvanizing are excessively etched and whitening occurs. If the pH is low, it is difficult to ensure post-processing stability. In addition, it is necessary to maintain long-term liquid stability. When the pH is low, when water is interposed in the formed film, the acid component etches a part of the surface of the galvanizing, leading to a decrease in corrosion resistance.

本発明の後処理剤は、後処理液の安定化のためにpH調整剤を添加しても良い。pH調整剤としては、特に限定するものではないが、アンモニア水、水酸化ナトリウム、水酸化カリウム、炭酸アンモニウム、炭酸水素アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム、硫酸、硫酸アンモニウム、塩酸、塩化アンモニウム等が挙げられる。   The post-treatment agent of the present invention may contain a pH adjuster for stabilization of the post-treatment liquid. The pH adjuster is not particularly limited, and examples thereof include ammonia water, sodium hydroxide, potassium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate, sulfuric acid, ammonium sulfate, hydrochloric acid, ammonium chloride and the like. It is done.

本発明の後処理剤には、塗工性を調整する目的で増粘剤、レベリング剤、濡れ性向上剤、消泡剤、界面活性剤、水溶性のアルコール類、セロソルブ系溶剤等を含有しても構わない。また、防腐剤、抗菌剤、着色剤、傷付き防止剤、潤滑剤などを含有していてもよい。また、ベンゾトリアゾール、グアニジン系化合物、ヒンダードアミンなどを含有してもよい。尚、本発明の後処理剤は、タンニン酸、没食子酸など芳香環を有する有機酸をはじめとする有機酸を含有しないことが好適である。当該組成においてこのような有機酸が存在すると皮膜処理外観が悪くなる。尚、ここで、「含有しない」とは、「実質的に含有しない」を意味し、完全に含有していない場合のみならず、微量程度存在している場合をも包含する。   The post-treatment agent of the present invention contains a thickener, a leveling agent, a wettability improver, an antifoaming agent, a surfactant, a water-soluble alcohol, a cellosolve solvent, etc. for the purpose of adjusting coating properties. It doesn't matter. Moreover, you may contain antiseptic | preservative, an antibacterial agent, a coloring agent, a damage prevention agent, a lubricant, etc. Moreover, you may contain a benzotriazole, a guanidine type compound, a hindered amine, etc. In addition, it is suitable for the post-processing agent of this invention not to contain organic acids including organic acids having an aromatic ring such as tannic acid and gallic acid. When such an organic acid is present in the composition, the appearance of the film treatment is deteriorated. Here, “does not contain” means “does not contain substantially” and includes not only the case where it is not completely contained, but also the case where it is present in a trace amount.

本発明の処理剤は、化合物(A)と化合物(B)と化合物(C)の組み合わせにより、皮膜処理外観、耐食性と後工程の化成反応性を得ることができるが、これらの化合物を単に混合するだけではなく、公知の化学反応を用いて後処理剤を調整しても構わない。   The treatment agent of the present invention can obtain the appearance of film treatment, corrosion resistance and chemical conversion reactivity in the post-process by combining the compound (A), the compound (B) and the compound (C), but these compounds are simply mixed. In addition, the post-treatment agent may be adjusted using a known chemical reaction.

次に本発明の後処理剤の表面処理方法としては、特に限定するものではないが、めっき加工後の冷却工程で行う浸漬処理、スプレー処理、刷毛塗り処理、静電塗装処理、などが挙げられる。これらの処理に際して、鋼材表面に油分、汚れなどが付着している場合にはアルカリ脱脂剤、酸性脱脂剤で洗浄して、その後に湯洗もしくは水洗を行い、表面状態を清浄にする事が好ましい。尚、本発明の処理剤を適用する亜鉛めっき加工材のめっき加工方法や亜鉛以外のめっき成分としては特に限定するものではない。合金成分としてアルミニウム、マグネシウム、珪素等が含有しても構わない。   Next, the surface treatment method of the post-treatment agent of the present invention is not particularly limited, and examples include immersion treatment, spray treatment, brush painting treatment, electrostatic coating treatment, and the like performed in the cooling step after plating. . In these treatments, it is preferable to clean the surface state by washing with an alkaline degreasing agent or an acidic degreasing agent and then washing with hot water or water when oil or dirt adheres to the surface of the steel material. . In addition, it does not specifically limit as a plating processing method of the zinc plating processed material which applies the processing agent of this invention, and plating components other than zinc. Aluminum, magnesium, silicon or the like may be contained as an alloy component.

また、亜鉛めっき加工材の形状については特に限定するものではないが、例えば、H鋼、ガードレール、コルゲートパイプ、建造物の柱や梁、防音壁支柱、標識柱、照明柱、大型の橋桁橋梁、跨線橋などの橋梁、鉄筋、電力鉄塔などに使用される架線金物やボルト・ナットなどの小物部品、太陽電池な小型風力発電装置の架台、屋外露出型鉄骨等、亜鉛めっき加工を施す全ての建築材料が挙げられる。   In addition, the shape of the galvanized material is not particularly limited. For example, H steel, guardrail, corrugated pipe, building columns and beams, soundproof wall columns, sign columns, lighting columns, large bridge girder bridges, All building materials that are galvanized, such as bridges such as overpasses, steel bars, small parts such as bolts and nuts used in power towers, small wind power generators such as solar cells, outdoor exposed steel frames, etc. Is mentioned.

後処理剤の乾燥方法としては、一番経済的なのはめっき加工後の予熱を利用する方法であり、亜鉛めっき加工材を浸漬して、そのまま放置する事により乾燥する事が出来る。すなわち、後処理後に水洗などの洗浄工程が一切必要ない。乾燥の際に亜鉛めっき加工材の表面に付着している水分を効率よく飛ばす為の風を送っても良い。また、生産効率を上げる為に後処理剤自体を加熱する事も可能である。その際の後処理剤の温度としては、特に限定するものではないが、20〜80℃が好ましく、30〜80℃がより好ましく、特に好ましくは35〜75℃である。処理工程上、亜鉛めっき加工後の予熱を利用するのが難しい場合には、後処理剤に含まれる水分を蒸発させることが出来る乾燥設備を利用するのが好ましい。その場合の乾燥設備としては、特に限定するものではないが、熱風乾燥設備、誘導加熱式乾燥設備、赤外線ヒーター乾燥設備、近赤外ヒーター乾燥設備、等が挙げられる。これら乾燥設備を用いた場合の乾燥温度としては、特に限定するものではないが、亜鉛めっき加工材表面の到達温度として40〜200℃であることが好ましく、より好ましくは40〜150℃である。   As the drying method of the post-treatment agent, the most economical method is to use preheating after the plating process, and it can be dried by immersing the galvanized material and leaving it as it is. That is, there is no need for a washing step such as water washing after the post-treatment. You may send the wind for efficiently flying the water | moisture content adhering to the surface of a zinc plating processed material in the case of drying. In addition, the post-treatment agent itself can be heated to increase production efficiency. Although it does not specifically limit as temperature of the post-treatment agent in that case, 20-80 degreeC is preferable, 30-80 degreeC is more preferable, Especially preferably, it is 35-75 degreeC. When it is difficult to use preheating after the galvanizing process, it is preferable to use a drying facility that can evaporate water contained in the post-treatment agent. In this case, the drying equipment is not particularly limited, and examples thereof include hot air drying equipment, induction heating drying equipment, infrared heater drying equipment, near infrared heater drying equipment, and the like. Although it does not specifically limit as drying temperature at the time of using these drying facilities, It is preferable that it is 40-200 degreeC as reach | attainment temperature on the surface of a galvanization processed material, More preferably, it is 40-150 degreeC.

後処理剤により形成される皮膜処理外観としては、表面処理方法、乾燥工程に関わらず、亜鉛めっきの外観を損なうことなく、均一な皮膜処理外観にすることが出来る。   Regardless of the surface treatment method and the drying process, the film-treated appearance formed by the post-treatment agent can have a uniform film-treated appearance without impairing the appearance of the galvanizing.

後処理剤により形成される皮膜は、化成反応後のすべり耐力(建築工事標準仕様書
JASS6 鉄骨工事による)で、本発明の後処理剤であればすべり係数が0.4以上となり、すべり耐力を得られることが出来る。
The film formed by the post-treatment agent is the slip strength after the chemical conversion reaction (according to the building construction standard specification JASS6 steel construction). With the post-treatment agent of the present invention, the slip coefficient is 0.4 or more, and the slip strength is increased. Can be obtained.

処理剤により形成される皮膜の付着量としては、乾燥皮膜質量で0.05〜10g/mであることが好ましく、より好ましくは0.05〜5g/mである。乾燥皮膜質量が0.1g/m未満の場合には充分な耐食性が得られず、一方、10g/mを超える場合には皮膜にクラックが生じ皮膜自体の密着性が低下し、耐食性の低下を招く場合がある。また、皮膜処理外観も低下する場合がある。 The coating weight of the film formed by the treating agent is preferably from 0.05 to 10 g / m 2 on a dry film weight, more preferably 0.05-5 g / m 2. When the dry film mass is less than 0.1 g / m 2, sufficient corrosion resistance cannot be obtained. On the other hand, when the dry film mass exceeds 10 g / m 2 , cracks occur in the film and the adhesion of the film itself is reduced, resulting in corrosion resistance. It may cause a decrease. In addition, the appearance of the film treatment may be deteriorated.

後処理剤の全固形分濃度としては、特に限定するものではないが、1〜500g/Lの範囲であることが好ましく、より好ましくは1〜400g/Lである。処理剤の全固形分濃度が1g/L未満の場合には、耐食性が不十分であり、一方、500g/Lを超える場合には後処理剤により得られる皮膜にクラックが生じ皮膜自体の密着性が低下する場合がある。   Although it does not specifically limit as total solid content concentration of a post-processing agent, It is preferable that it is the range of 1-500 g / L, More preferably, it is 1-400 g / L. When the total solid concentration of the treatment agent is less than 1 g / L, the corrosion resistance is insufficient. On the other hand, when it exceeds 500 g / L, the coating obtained by the post-treatment agent is cracked, and the adhesion of the coating itself May decrease.

後処理剤の粘度としては、特に限定するものではないが、亜鉛めっき加工材を浸漬する事により、乾燥皮膜質量のバラツキが少なくなる範囲である事が望ましく、粘度(B型粘度計)としては500mPa・s以下である事が好ましく、より好ましくは250mPa・s以下であり、さらに好ましくは100mPa・s以下である。処理剤の粘度が500mPa・sを超える場合には、めっき加工建築材料を浸漬した後に引き上げた際に液溜まり部が発生しやすく、また、乾燥皮膜質量のバラツキが大きくなるので好ましくない。   The viscosity of the post-treatment agent is not particularly limited, but it is desirable that the variation in dry film mass is reduced by immersing the galvanized material, and the viscosity (B-type viscometer) is as follows. It is preferably 500 mPa · s or less, more preferably 250 mPa · s or less, and still more preferably 100 mPa · s or less. When the viscosity of the treating agent exceeds 500 mPa · s, it is not preferable because a liquid pool portion is likely to be generated when the plated building material is dipped and then lifted, and the variation in the dry film mass increases.

次に実施例及び比較例によって本発明を説明するが、本実施例は単なる一例であり、本発明を限定するものではない。実施例、比較例において使用した亜鉛めっき鋼材、化合物、後処理剤、後処理剤にて表面処理した亜鉛めっき鋼材、評価方法は次の通りである。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention, this Example is a mere example and does not limit this invention. The galvanized steel materials, compounds, post-treatment agents, galvanized steel materials surface-treated with the post-treatment agents and evaluation methods used in Examples and Comparative Examples are as follows.

1.素材
使用した素材を以下に記す。通常、建築材料用亜鉛めっき加工品は形状物であることが殆どであるが、本試験においては板を素材として用いた。なお、素材の形状が変わっても、本発明が発現する効果については何の影響も及ぼさない。

a:溶融亜鉛めっき鋼板(JIS H 8641 HDZ35に準ずる)、スパングル小
寸法:700mm×150mm×1.6mm(板厚)両面めっき付着量360g/m
b:溶融亜鉛めっき鋼板(JIS H 8641 HDZ55に準ずる)
寸法:700mm×150mm×6mm(板厚) 両面めっき付着量720g/m
c:溶融亜鉛めっき鋼板(市販品)
寸法:700mm×150mm×1mm(板厚) 両面めっき付着量160g/m
1. Materials The materials used are listed below. Normally, galvanized products for building materials are mostly shaped products, but plates were used as raw materials in this test. It should be noted that even if the shape of the material changes, the effect of the present invention is not affected.

a: Hot-dip galvanized steel sheet (according to JIS H8641 HDZ35), small spangle Dimension: 700 mm × 150 mm × 1.6 mm (plate thickness) Double-sided plating adhesion 360 g / m 2
b: Hot-dip galvanized steel sheet (according to JIS H8641 HDZ55)
Dimensions: 700 mm x 150 mm x 6 mm (plate thickness) Double-sided plating adhesion amount 720 g / m 2
c: Hot-dip galvanized steel sheet (commercially available)
Dimensions: 700 mm x 150 mm x 1 mm (plate thickness) Double-sided plating adhesion 160 g / m 2

2.化合物
使用した化合物(A)を以下に記す。
A1:炭酸ジルコニウムカリウム
A2:炭酸ジルコニウムアンモニウム
A3:ジルコニアゾル
A4:ジイソプロポキシチタニウムビスアセチルアセトン
A5:チタンラクテートアンモニウム塩
2. Compound The compound (A) used is described below.
A1: potassium zirconium carbonate A2: ammonium zirconium carbonate A3: zirconia sol A4: diisopropoxytitanium bisacetylacetone A5: titanium lactate ammonium salt

使用した化合物(B)を以下に記す。
B1:メタバナジン酸アンモニウム
B2:バナジルアセチルアセトナート
B3:オキシ蓚酸バナジウム
B4:モリブデン酸アンモニウム
B5:メタタングステン酸アンモニウム
The compound (B) used is described below.
B1: ammonium metavanadate B2: vanadyl acetylacetonate B3: vanadium oxysuccinate B4: ammonium molybdate B5: ammonium metatungstate

使用した化合物(C)を以下に記す。
C1:リン酸三アンモニウム
C2:リン酸水素ニアンモニウム
C3:ピロリン酸ソーダ
The compound (C) used is described below.
C1: triammonium phosphate C2: diammonium hydrogen phosphate C3: sodium pyrophosphate

使用した化合物(D)を以下に記す。
D1:コロイダルシリカ
D2:気相シリカ
D3:3−グリキシドキシプロピルトリメトキシシラン
The compound (D) used is described below.
D1: Colloidal silica D2: Gas phase silica D3: 3-Glyoxydoxypropyltrimethoxysilane

使用した化合物(E)を以下に記す。
E1:1−ヒドロキシエチリデン1、1−ジホスホン酸アンモニウム
E2:ニトリロトリス(メチレンホスホン酸アンモニウム)
E3:2−ホスホンブタントリカルボン酸アンモニウム
The compound (E) used is described below.
E1: 1-hydroxyethylidene 1, 1-diphosphonate ammonium E2: nitrilotris (methylenephosphonate ammonium)
E3: ammonium 2-phosphonbutanetricarboxylate

使用した化合物(F)を以下に記す。
F1:アクリル樹脂(日本触媒(株)製、アクアリックHL)
F2:アクリル樹脂(昭和高分子(株)製、ポリゾールAP−1058)
F3:ウレタン樹脂(第一工業製薬(株)製、スーパーフレックスE2500)
F4:エチレンアクリル酸共重合物(東邦化学(株)製、ハイテックS3121)
The compound (F) used is described below.
F1: Acrylic resin (manufactured by Nippon Shokubai Co., Ltd., Aquaric HL)
F2: acrylic resin (manufactured by Showa Polymer Co., Ltd., Polyzol AP-1058)
F3: Urethane resin (Daiichi Kogyo Seiyaku Co., Ltd., Superflex E2500)
F4: Ethylene acrylic acid copolymer (manufactured by Toho Chemical Co., Ltd., Hitech S3121)

3.後処理剤
後処理剤の詳細を表1に示す。処理液は、脱イオン水に化合物(A)〜(F)を順次添加し、固形分濃度を15g/Lになるように調整して製造した。(A)〜(F)添加毎にそれぞれ30分間プロペラ攪拌機で撹拌した。
3. Post-treatment agent Details of the post-treatment agent are shown in Table 1. The treatment liquid was produced by sequentially adding the compounds (A) to (F) to deionized water and adjusting the solid content concentration to 15 g / L. Each time (A) to (F) was added, the mixture was stirred with a propeller stirrer for 30 minutes.

4.処理材の作製方法
処理材の作製方法を以下に記す。
(1)脱脂
素材の表面を清浄にするため、日本パーカライジング(株)製ファインクリーナーFC−315(20g/L建浴、60℃、30秒スプレー、浸漬)で素材の表面に付着した汚れを除去した。続いて、流水中に10秒浸漬し、更に75℃の温水に30秒間浸漬し、自然乾燥した。これにより、亜鉛めっき表面を清浄にした。
(2)本発明の処理剤の処理方法
処理I:60℃に加温した処理剤に素材を1分間浸漬した後に取り出し、吊り下げた状態で自然乾燥した。
処理II:20℃に加温した処理剤に素材を1分間浸漬した後に取り出し、吊り下げた状態で自然乾燥した。
処理III:80℃に加温した処理剤に素材を1分間浸漬した後に取り出し、吊り下げた状態で自然乾燥した。
後処理剤は素材表面に後処理剤が付着するウエット量を精密天秤により計算すると、ウエット量は片面で25g/mであった。その為、後処理剤した後の乾燥皮膜量は0.4g/mと計算できる。
4). Method for Producing Treatment Material A method for producing the treatment material is described below.
(1) Degreasing In order to clean the surface of the material, the dirt attached to the surface of the material is removed with Fine Cleaner FC-315 (20g / L building bath, 60 ° C, 30 seconds spray, immersion) manufactured by Nihon Parkerizing Co., Ltd. did. Subsequently, it was immersed in running water for 10 seconds, further immersed in warm water at 75 ° C. for 30 seconds, and naturally dried. This cleaned the galvanized surface.
(2) Treatment method of treatment agent of the present invention Treatment I: The material was immersed in a treatment agent heated to 60 ° C. for 1 minute, then taken out, and naturally dried in a suspended state.
Treatment II: The material was immersed in a treatment agent heated to 20 ° C. for 1 minute, then taken out, and naturally dried in a suspended state.
Treatment III: The material was immersed in a treatment agent heated to 80 ° C. for 1 minute, then taken out, and naturally dried in a suspended state.
When the amount of wet with which the post-treatment agent adhered to the surface of the material was calculated with a precision balance, the amount of wet was 25 g / m 2 on one side. Therefore, the dry film amount after the post-treatment agent can be calculated as 0.4 g / m 2 .

5.評価方法
(1)皮膜処理外観
処理剤により形成される皮膜の処理外観を目視評価した。
評価基準: ○以上は実用レベル
◎+:めっき外観とほぼ同じであり、皮膜処理後も殆ど変化しない
◎:めっき外観とほぼ同じであるが、目視する角度によっては極僅かに色調ムラがある。
○:めっき外観とほぼ同じであるが、極僅かに色調ムラがある程度である。
△:めっき外観と異なる部位があり、その部位が薄く白色或いは黄色である。
×:めっき外観と異なる部位が多く、明らかに白色或いは黄色である。
(2)塩水噴霧試験
JIS−Z−2371に基づき塩水噴霧試験を行い、24時間後の白錆発生面積で評価した。
評価基準:白錆発生面積 ○以上は実用レベル
◎+:5%未満、◎:5%以上10%未満、○:10%以上30%未満
△:30%以上60%未満、×:60%以上
(3)屋外暴露試験
屋外に30日間、暴露放置した後の白錆発生状況を調べ、白錆発生面積で評価した。
評価基準:白錆発生面積 ○以上は実用レベル
◎+:白錆発生なし、◎:薄白錆が1%未満、○:白錆1%未満
△:白錆1%以上5%未満、×:5%以上
(4)化成反応性
(4)−1 外観変化
日本パーカライジング(株)製リン酸塩処理用化成薬剤パルボンドL15C(A剤250g/L+B剤250g/L、30℃、刷毛塗り)で処理した後に5分間放置し、刷毛塗り部分の表面状態で評価した。変色面積が高いほど概後処理剤で形成された皮膜がリン酸塩処理によって部分的に溶解し、且つリン酸塩皮膜が形成されてグレー色の色調を呈する。
評価基準:刷毛塗り部分のグレー変色面積 ○以上は実用レベル
◎+:100%、◎:95%以上100%未満、○:80%以上95%未満
△:50%以上80%未満、×:50%未満
(4)−2 すべり係数
(4)−1項で化成処理したグレー変色部位を対象に、すべり耐力試験(建築工事標準仕様書 JASS6 鉄骨工事による)ですべり係数を算出した。
評価基準:すべり係数 ○は実用レベル
○:0.40以上、×:0.39未満
5. Evaluation Method (1) Film Treatment Appearance The treatment appearance of the film formed with the treatment agent was visually evaluated.
Evaluation criteria: Above are practical levels. ◎ +: Almost the same as the plating appearance, and hardly changes even after coating treatment. ◎: Almost the same as the plating appearance, but there is slight color unevenness depending on the viewing angle.
○: Almost the same as the plating appearance, but there is a slight color unevenness.
(Triangle | delta): There exists a site | part different from a plating external appearance, and the site | part is light white or yellow.
X: There are many parts different from the plating appearance, and it is clearly white or yellow.
(2) Salt spray test A salt spray test was performed based on JIS-Z-2371, and the white rust generation area after 24 hours was evaluated.
Evaluation criteria: White rust generation area ○ Above is practical level ◎ +: Less than 5%, ◎: 5% to less than 10%, ○: 10% to less than 30% △: 30% to less than 60%, ×: 60% or more (3) Outdoor exposure test The condition of white rust occurrence after exposure to outdoor exposure for 30 days was examined and evaluated by the white rust occurrence area.
Evaluation criteria: Area where white rust is generated ○ Above is practical level ◎ +: No white rust is generated, ◎: Light white rust is less than 1%, ○: White rust is less than 1% △: White rust is 1% or more and less than 5%, ×: 5% or more (4) Chemical conversion reactivity (4) -1 Appearance change Treated with Nippon Parkerizing Co., Ltd. phosphate treatment chemical Palbond L15C (A agent 250 g / L + B agent 250 g / L, 30 ° C., brush coating) Then, it was allowed to stand for 5 minutes, and the surface condition of the brushed portion was evaluated. The higher the discolored area, the more the film formed with the rough post-treatment agent is partially dissolved by the phosphate treatment, and the phosphate film is formed to exhibit a gray color tone.
Evaluation criteria: Gray discoloration area of brushed portion ○ Above is practical level ◎ +: 100%, ◎: 95% to less than 100%, ○: 80% to less than 95% △: 50% to less than 80%, ×: 50 Less than% (4) -2 Slip coefficient (4) The slip coefficient was calculated by the slip strength test (by the building construction standard specification JASS6 steel frame work) for the gray discolored part subjected to the chemical conversion treatment in item -1.
Evaluation criteria: Slip coefficient ○ is practical level ○: 0.40 or more, x: less than 0.39

実施例及び比較例で用いた後処理剤の内容を表1に示す。また、処理材の評価結果を表1に示す。本発明の化合物(A)と化合物(B)を含有する処理剤(実施例1〜31)から形成された皮膜処理材は、皮膜処理外観、耐食性(塩水噴霧試験、屋外暴露試験)及び化成反応性(化成後外観、すべり係数)を示すことが判る。これに比べて、化合物(A)、化合物(B)もしくは化合物(C)を含まない比較例1〜3はいずれかの性能が劣っている。また、本発明の範囲外になる比較例4〜8や特許文献に示される比較例9〜10もいずれかの性能が劣っている。また、クロメート処理である比較例11はいずれの性能も満足するが、6価クロムを含有しているため環境保全という観点からは好ましくない。
本発明の後処理剤はクロムを含まない環境に優しい処理液であり、本発明の後処理剤により亜鉛めっき加工材に表面処理された亜鉛めっき加工材は皮膜処理外観、耐食性、化成反応性、すべり耐力を併せ持っており、本発明の後処理剤及びこれを用いて後処理した亜鉛めっき加工材は産業上の利用価値が極めて大きいものである。
Table 1 shows the contents of the post-treatment agents used in the examples and comparative examples. Table 1 shows the evaluation results of the treated materials. The film treatment material formed from the compound (A) of the present invention and the treatment agent (Examples 1 to 31) containing the compound (B) is coated film appearance, corrosion resistance (salt spray test, outdoor exposure test) and chemical conversion reaction. It can be seen that it exhibits properties (appearance after chemical conversion, slip coefficient). In comparison, Comparative Examples 1 to 3 that do not contain the compound (A), the compound (B), or the compound (C) are inferior in performance. In addition, Comparative Examples 4 to 8 which are out of the scope of the present invention and Comparative Examples 9 to 10 shown in the patent literature are inferior in performance. Moreover, although the comparative example 11 which is a chromate process satisfies all performance, since it contains hexavalent chromium, it is not preferable from a viewpoint of environmental conservation.
The post-treatment agent of the present invention is an environmentally friendly treatment liquid that does not contain chromium, and the galvanized material surface-treated on the galvanized material by the post-treatment agent of the present invention has a coating treatment appearance, corrosion resistance, chemical conversion reactivity, The post-treatment agent of the present invention and the galvanized material post-treated by using the post-treatment agent of the present invention have extremely high industrial utility value.

Figure 0005219273
Figure 0005219273

Claims (8)

ジルコニウム化合物(A)と、4価バナジウム化合物(B)と、無機リン酸及びその塩から選ばれる無機化合物(C)と、珪素化合物(D)とを含有し、且つ、化合物の質量比がA/(B+C)=0.8〜4.5、B/(A+C)=0.15〜0.7、D/(A+B+C)=0.1〜5.0であって、pH7〜11からなる亜鉛めっき加工用後処理剤。 Zirconium arm of compound and (A), the tetravalent vanadium of compound (B), an inorganic compound selected from inorganic phosphoric acids and salts thereof (C), and contains a silicon compound (D), and, The mass ratio of the compounds is A / (B + C) = 0.8 to 4.5, B / (A + C) = 0.15 to 0.7 , D / (A + B + C) = 0.1 to 5.0 , A post-treatment agent for galvanization processing comprising pH 7-11. 有機ホスホン酸およびリン酸エステルから選ばれる少なくとも1種の化合物(E)を更に含有し、化合物の質量比がE/(A+B+C)=0.05〜5.0である請求項1に記載の亜鉛めっき加工用後処理剤。 2. The zinc according to claim 1, further comprising at least one compound (E) selected from organic phosphonic acid and phosphate ester, wherein the mass ratio of the compounds is E / (A + B + C) = 0.05 to 5.0. Post-treatment agent for plating. アニオン性若しくはノニオン性を有する水性樹脂化合物(F)を含有し、化合物の質量比がF/(A+B+C)=0.01〜3.5である請求項1又は2に記載の亜鉛めっき加工用後処理剤。 The after-galvanization process according to claim 1 or 2 , comprising an anionic or nonionic aqueous resin compound (F), wherein the mass ratio of the compound is F / (A + B + C) = 0.01 to 3.5. Processing agent. 化合物の質量比がF/(A+B+C)=0.05〜3.5である請求項3に記載の亜鉛めっき加工用後処理剤。The post-treatment agent for galvanization processing according to claim 3, wherein the mass ratio of the compounds is F / (A + B + C) = 0.05 to 3.5. 請求項1〜のいずれか一項に記載する該後処理剤を接触させて表面処理した亜鉛めっき加工材。 A galvanized material that has been surface-treated by contacting the post-treatment agent according to any one of claims 1 to 4 . 前記表面処理が、亜鉛めっきの表面に該後処理剤を接触させた後に水洗しない塗布型処理である請求項に記載の亜鉛めっき加工材。 The galvanized material according to claim 5 , wherein the surface treatment is a coating type treatment in which the post-treatment agent is brought into contact with the surface of the galvanizing and is not washed with water. 片面の亜鉛めっき付着量が80〜1000g/mである請求項又はに記載の亜鉛めっき加工材。 Zinc plated material according to claim 5 or 6 zinc coating weight of one surface is 80~1000g / m 2. 亜鉛めっきの表面に該後処理剤を接触させて表面処理した後に更にりん酸塩化成処理された亜鉛めっき加工材のすべり係数が0.4以上である請求項のいずれか一項に記載の亜鉛めっき加工材。 The slip coefficient of a galvanized material further subjected to phosphate conversion treatment after bringing the post-treatment agent into contact with the surface of the galvanizing surface is 0.4 or more, according to any one of claims 5 to 7. The galvanized material described.
JP2008332004A 2008-12-26 2008-12-26 Post-treatment agent for galvanizing and galvanized material surface-treated using the same Active JP5219273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332004A JP5219273B2 (en) 2008-12-26 2008-12-26 Post-treatment agent for galvanizing and galvanized material surface-treated using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332004A JP5219273B2 (en) 2008-12-26 2008-12-26 Post-treatment agent for galvanizing and galvanized material surface-treated using the same

Publications (2)

Publication Number Publication Date
JP2010150626A JP2010150626A (en) 2010-07-08
JP5219273B2 true JP5219273B2 (en) 2013-06-26

Family

ID=42570019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332004A Active JP5219273B2 (en) 2008-12-26 2008-12-26 Post-treatment agent for galvanizing and galvanized material surface-treated using the same

Country Status (1)

Country Link
JP (1) JP5219273B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316384B1 (en) * 2011-12-23 2013-10-10 주식회사 포스코 Conversion coating composition, surface treated steel sheet, and method for manufacturing the same
JP5946358B2 (en) * 2012-08-03 2016-07-06 新日鐵住金株式会社 Method for producing hexavalent chromium-free organic coated steel
JP6098579B2 (en) * 2014-07-04 2017-03-22 Jfeスチール株式会社 Regular spangled galvanized steel sheet with surface treatment film
JP6441655B2 (en) * 2014-12-09 2018-12-19 新日鐵住金株式会社 Ground treatment liquid, method for producing organic coated galvanized steel pipe using ground treatment liquid, and organic coated galvanized steel pipe
RU2676364C1 (en) * 2014-12-26 2018-12-28 Дипсол Кемикалз Ко., Лтд. Chemical conversion liquid on basis of trivalent chrome for zinc substrates, or zinc alloy, and also chemical conversion coating film
JP6672519B1 (en) * 2019-06-18 2020-03-25 日鉄日新製鋼株式会社 Chemical conversion treated steel sheet
JP6981493B2 (en) * 2019-06-18 2021-12-15 日本製鉄株式会社 Manufacturing method of chemical conversion steel sheet
JP7417473B2 (en) * 2020-05-20 2024-01-18 日鉄鋼板株式会社 Coated plated steel plate
JP7385275B2 (en) 2020-10-02 2023-11-22 日本表面化学株式会社 Cobalt-free chemical conversion coating treatment solution and chemical conversion coating treatment method using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776458B2 (en) * 2005-07-22 2011-09-21 新日本製鐵株式会社 Chromate-free surface-treated metal material with excellent corrosion resistance, heat resistance, fingerprint resistance, conductivity, paintability, and black residue resistance during processing
TW200809006A (en) * 2006-04-20 2008-02-16 Nippon Steel Corp Zinc-plated steel material coated with composite film excellent in corrosion resistance, unsusceptibility to blackening, coating adhesion, and alkali resistance
MY153410A (en) * 2006-11-15 2015-02-13 Nippon Steel Corp Surface-treated material and method for producing the same
JP4907315B2 (en) * 2006-11-28 2012-03-28 新日本製鐵株式会社 Surface-treated metal material
JP5088095B2 (en) * 2006-12-13 2012-12-05 Jfeスチール株式会社 Surface treated galvanized steel sheet with excellent corrosion resistance, blackening resistance, appearance and corrosion resistance after press molding, and aqueous surface treatment liquid for galvanized steel sheet
JP2008195977A (en) * 2007-02-09 2008-08-28 Kansai Paint Co Ltd Inorganic chromium-free surface treatment agent for metal

Also Published As

Publication number Publication date
JP2010150626A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5219273B2 (en) Post-treatment agent for galvanizing and galvanized material surface-treated using the same
JP4685162B2 (en) Chromium-free low-temperature curing metal surface treatment composition and surface-treated steel sheet using the same
JP6026016B2 (en) Surface treatment composition for galvanized steel sheet, surface treatment method for galvanized steel sheet, and galvanized steel sheet
JP5555177B2 (en) Surface treatment agent for metal materials
JP4607969B2 (en) Surface treatment agent for metal material, surface treatment method and surface treatment metal material
JP5555178B2 (en) Surface treatment agent for metal material, surface treatment method of metal material using the same, surface treatment metal material
JP2006213958A (en) Composition for surface treatment of metallic material, and treatment method
JP5446057B2 (en) Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet
US20170314137A1 (en) Process for coating metallic surfaces with a passivating agent, the passivating agent and its use
JP2007162098A (en) Metal surface-treating aqueous agent, surface treatment method and surface treated metallic material
JP2015004136A (en) Method for forming a corrosion resistant film on a zinc metal surface
WO2011155538A1 (en) Inorganic chromium-free metal surface treatment agent
JP2011068996A (en) Composition for surface treatment of metallic material, and treatment method
JP2007002330A (en) Surface treatment agent for zinc or zinc alloy galvanized steel sheet, and surface treated zinc or zinc alloy galvanized steel sheet
JP4970773B2 (en) Metal surface treatment agent, metal material surface treatment method and surface treatment metal material
JP6569194B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
JP5498634B2 (en) Water-based metal surface treatment agent, surface treatment method and surface treatment metal material
JP3903594B2 (en) Manufacturing method of surface-treated steel sheet with excellent corrosion resistance
WO2009138022A1 (en) A composition for conversion coating a zinciferous metal substrate, a method for treating a zinciferous metal substrate, a treated zinciferous metal substrate and its use
JP5222491B2 (en) Surface-treated steel sheet
JP5946358B2 (en) Method for producing hexavalent chromium-free organic coated steel
KR102301323B1 (en) Method for coating metallic surfaces for preventing pinholes on zinc-containing metal surfaces
JP5424555B2 (en) Method for forming corrosion-resistant film on zinc metal surface
JP4117203B2 (en) Corrosion resistant galvanized steel sheet
TWI586835B (en) Aqueous composition for treating metallic surface, method of treating surface, protective film and surface-treated galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250