JP5216704B2 - Transformer - Google Patents

Transformer Download PDF

Info

Publication number
JP5216704B2
JP5216704B2 JP2009154891A JP2009154891A JP5216704B2 JP 5216704 B2 JP5216704 B2 JP 5216704B2 JP 2009154891 A JP2009154891 A JP 2009154891A JP 2009154891 A JP2009154891 A JP 2009154891A JP 5216704 B2 JP5216704 B2 JP 5216704B2
Authority
JP
Japan
Prior art keywords
high voltage
voltage winding
winding
transformer
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009154891A
Other languages
Japanese (ja)
Other versions
JP2011014585A (en
Inventor
均 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2009154891A priority Critical patent/JP5216704B2/en
Publication of JP2011014585A publication Critical patent/JP2011014585A/en
Application granted granted Critical
Publication of JP5216704B2 publication Critical patent/JP5216704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation Of General Use Transformers (AREA)

Description

本発明は、電子線管用電源装置に用いられる変圧器、特に、荷電粒子加速器や電磁波発生等を目的とした電子線管用電源装置に用いられる変圧器に関する。   The present invention relates to a transformer used in an electron beam tube power supply device, and more particularly to a transformer used in an electron beam tube power supply device for the purpose of generating charged particle accelerators or electromagnetic waves.

従来、変圧器では、巻線の高電圧部位に電界が集中することによって、外来サージ電圧が侵入することによる絶縁破壊や、部分放電による絶縁の劣化などが生ずることがあった。このため、巻線の端部の近傍に遮蔽電極を設ける対策が行われてきた(例えば、特許文献1参照)。   Conventionally, in a transformer, when an electric field is concentrated on a high voltage portion of a winding, insulation breakdown due to invasion of an external surge voltage, deterioration of insulation due to partial discharge, or the like may occur. For this reason, measures have been taken to provide a shielding electrode in the vicinity of the end of the winding (see, for example, Patent Document 1).

また、低圧巻線と高圧巻線との間に絶縁筒と間隔材とを配置した変圧器もあった。この変圧器は、低圧巻線と高圧巻線との間の特定の領域における電界集中を抑制することを目的としたものであった(例えば、特許文献2参照)。
このように、従来の変圧器では、巻線の両端近傍に電極を設けたものや、2つの巻線の間に絶縁筒などを配置したものがあった。
There is also a transformer in which an insulating cylinder and a spacing member are arranged between a low voltage winding and a high voltage winding. This transformer was intended to suppress electric field concentration in a specific region between the low voltage winding and the high voltage winding (see, for example, Patent Document 2).
As described above, some conventional transformers have electrodes provided in the vicinity of both ends of the winding, and some have an insulating cylinder disposed between two windings.

特開昭58−21308号公報JP 58-21308 A 特開2000−91131号公報JP 2000-91131 A

ところで、荷電粒子加速器や電磁波発生等を目的とした電子線管用電源装置に用いられる変圧器は、パルス列からなる電圧を出力する。このパルス列は、方形波のパルスによって構成されている。パルスは、パルス幅が数マイクロ秒から数ミリ秒程度という短時間であり、パルス波高値が百キロボルト以上のものが要求される。以下、このパルスを高電圧パルスと称する。   By the way, a transformer used in a power source device for an electron beam tube for the purpose of generating a charged particle accelerator or electromagnetic wave outputs a voltage composed of a pulse train. This pulse train is composed of square wave pulses. The pulse is required to have a pulse width of a few microseconds to several milliseconds and a pulse peak value of 100 kilovolts or more. Hereinafter, this pulse is referred to as a high voltage pulse.

しかしながら、従来の変圧器では、高電圧巻線と接地電位間との間に浮遊容量が形成されるため、この浮遊容量と高電圧巻線のインダクタンスとによって共振が生じていた。
このため、変圧器により伝達すべき高電圧パルスに、共振による振動電圧が重畳することによって、高電圧パルスの波形が歪んでしまい、負荷となる加速器や電子管に、方形波の高電圧パルスを供給することができなかった(図5参照)。以下、より詳しく説明する。なお、図5に示した部材や部位のうち、後述する図6と同じものについては、同様の符号を付した。
However, in the conventional transformer, since a stray capacitance is formed between the high voltage winding and the ground potential, resonance occurs due to the stray capacitance and the inductance of the high voltage winding.
For this reason, the oscillation voltage due to resonance is superimposed on the high voltage pulse to be transmitted by the transformer, and the waveform of the high voltage pulse is distorted. Could not be done (see FIG. 5). This will be described in more detail below. In addition, the same code | symbol was attached | subjected about the same thing as FIG. 6 mentioned later among the members and parts shown in FIG.

上述した浮遊容量は、図5(a)に示すように、主に、巻線間静電容量182と高電圧巻線内部静電容量184と対地間静電容量186とからなる。高電圧巻線内部静電容量184に比べると、巻線間静電容量182、対地間静電容量186の方が大きい。これらの巻線間静電容量182や対地間静電容量186が大きい場合には、高電圧パルスの立ち上がり直後において、高電圧巻線120の軸方向に沿った電位は、図5(b)のグラフの実線に示すように、第2の端部124に近づくに従って大きく変化する。このため、高電圧パルスの立ち上がり直後に、これらの巻線間静電容量182や対地間静電容量186を充電するために、高電圧巻線120の両端から、巻線間静電容量182や対地間静電容量186に電荷が移動する。その後、図5(b)のグラフの破線に示すように、従来の変圧器の誘導起電力による電位の変化は、高電圧巻線120の軸方向に沿って直線的なものとなる。
この電荷の移動によって磁界が生じ、生じた磁界によるインダクタンスと、巻線間静電容量182や対地間静電容量186との間に共振現象が現れ、周期がマイクロ秒台の振動電圧が生ずる。この振動電圧は、高電圧パルスの立ち上がり後において、パルス波高値を時間的に変化させるため、高電圧パルスの波形が方形波から歪んでしまい、負荷となる加速器や電子管に、方形波の高電圧パルスを供給することができなかった。
As shown in FIG. 5A, the stray capacitance described above mainly includes an interwinding capacitance 182, a high voltage winding internal capacitance 184, and a ground capacitance 186. Compared to the high-voltage winding internal capacitance 184, the inter-winding capacitance 182 and the ground-to-ground capacitance 186 are larger. When these interwinding capacitance 182 and ground capacitance 186 are large, the potential along the axial direction of the high voltage winding 120 immediately after the rising of the high voltage pulse is as shown in FIG. As shown by the solid line in the graph, the distance greatly changes as the second end 124 is approached. For this reason, immediately after the rising of the high voltage pulse, in order to charge the inter-winding capacitance 182 and the ground-to-ground capacitance 186, the inter-winding capacitance 182, The charge moves to the capacitance 186 between the ground. Thereafter, as shown by the broken line in the graph of FIG. 5B, the change in potential due to the induced electromotive force of the conventional transformer becomes linear along the axial direction of the high voltage winding 120.
A magnetic field is generated by the movement of the electric charge, and a resonance phenomenon appears between the inductance due to the generated magnetic field and the inter-winding capacitance 182 and the ground-to-ground capacitance 186, and an oscillating voltage having a period in the microsecond range is generated. Since this oscillating voltage changes the pulse peak value with time after the rising of the high voltage pulse, the waveform of the high voltage pulse is distorted from the square wave, and the high voltage of the square wave is applied to the accelerator or electron tube that is the load. The pulse could not be supplied.

荷電粒子加速器や電磁波発生等を目的とした電子線管用電源装置では、荷電粒子に与えるエネルギーや電磁波の強度を一定に保つ必要がある。このため、これらの装置に供給する高電圧パルスのパルス波高値の変動を数パーセント以内に収める要求があるが、従来の変圧器では、上述した振動電圧によって、この要求を必ずしも満足できなかった。   In an electron beam tube power supply for the purpose of a charged particle accelerator or electromagnetic wave generation, it is necessary to keep the energy applied to the charged particles and the intensity of the electromagnetic wave constant. For this reason, there is a demand to keep the fluctuation of the pulse peak value of the high voltage pulse supplied to these devices within several percent, but the conventional transformer cannot always satisfy this demand due to the above-mentioned vibration voltage.

本発明は、上述の点に鑑みてなされたものであり、その目的とするところは、変圧器を構成する巻線の周辺で生ずる浮遊容量の影響を低減して、高電圧パルスの立ち上がり後において、高電圧パルスのパルス波高値が時間的に変化するのを抑制することができる変圧器を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to reduce the influence of stray capacitance generated around the windings constituting the transformer, and after the rising of the high voltage pulse. An object of the present invention is to provide a transformer capable of suppressing the temporal change of the pulse peak value of a high voltage pulse.

本発明に係る変圧器は、
筒状の形状を有する1次巻線と、前記1次巻線の外側に当該1次巻線と同心状に配置された筒状の形状を有する2次巻線とを有する変圧器であって、
前記2次巻線の外側に当該2次巻線を周回するように配置された対向電極を有し、
前記対向電極は、前記2次巻線の軸方向の中央部に、または中央部よりも接地電位側に対向配置され、
前記2次巻線と前記対向電極とを電気的に接続してなることを特徴とする。
The transformer according to the present invention is
A transformer having a primary winding having a cylindrical shape, the secondary winding and having the primary winding and concentrically disposed a cylindrical shape on the outside of the primary winding ,
Having a counter electrode arranged around the secondary winding on the outside of the secondary winding ;
The counter electrode is arranged at the center part in the axial direction of the secondary winding, or opposed to the ground potential side from the center part,
The secondary winding and the counter electrode are electrically connected.

このように構成したことにより、2次巻線の周辺で生ずる浮遊容量によって移動する電荷の量を減らし、電荷の移動によるインダクタンスと浮遊容量とによって生ずる共振による振動電圧を抑えて、2次巻線から出力される電圧の波形の歪みを小さくできる。
また、2次巻線の軸方向に沿った電位の分布が偏るのを補正して電位の分布を直線状に近づけることによって、電荷の移動量をより減らすことができ、振動電圧を抑えることにより、2次巻線から出力される電圧の波形の歪みを小さくできる。
With this configuration, the amount of charge that is moved by the stray capacitance generated around the secondary winding is reduced, and the oscillation voltage due to resonance caused by the inductance and stray capacitance due to the movement of the charge is suppressed, thereby suppressing the secondary winding. The distortion of the waveform of the voltage output from can be reduced.
In addition, by correcting the deviation of the potential distribution along the axial direction of the secondary winding and bringing the potential distribution closer to a straight line, the amount of charge movement can be further reduced, and the vibration voltage can be suppressed. The distortion of the waveform of the voltage output from the secondary winding can be reduced.

また、前記2次巻線は、第1の端部と、前記第1の端部よりも高い電位となる第2の端部とを有し、
前記対向電極と対面する部位における前記2次巻線の電位は、前記第1の端部の電位と第2の端部の電位との間の中間電位であり、
前記対向電極は、前記中間電位よりも高い電位になる前記2次巻線の部位に電気的に接続されたものが好ましい。
The secondary winding has a first end and a second end that has a higher potential than the first end,
The potential of the secondary winding at the portion facing the counter electrode is an intermediate potential between the potential of the first end and the potential of the second end,
The counter electrode is preferably one that is electrically connected to a portion of the secondary winding that has a higher potential than the intermediate potential.

このように構成したことにより、対向電極と中間電位との間で、浮遊容量が形成されやすくなり、中間電位と接地電位との間で形成される浮遊容量(対地間容量)と、同等とすることができるので、高電圧パルス印加直後から静電容量による分圧で、中間電位に略1/2の電圧が印加され、移動する電荷の量を減らし、電荷の移動によるインダクタンスと浮遊容量とによって生ずる共振による振動電圧を抑えて、2次巻線から出力される電圧の波形の歪みを小さくできる。   With this configuration, stray capacitance is easily formed between the counter electrode and the intermediate potential, and is equivalent to the stray capacitance (ground-to-ground capacitance) formed between the intermediate potential and the ground potential. Since the voltage is divided by electrostatic capacitance immediately after the high voltage pulse is applied, a voltage of about 1/2 is applied to the intermediate potential, reducing the amount of charge that moves, and by the inductance and stray capacitance due to the movement of charge. The vibration voltage due to the generated resonance can be suppressed, and the distortion of the waveform of the voltage output from the secondary winding can be reduced.

さらに、前記対向電極と前記2次巻線との間の距離が、前記1次巻線と前記2次巻線の間の距離よりも小さいものが好ましい。   Furthermore, it is preferable that the distance between the counter electrode and the secondary winding is smaller than the distance between the primary winding and the secondary winding.

このように構成したことにより、2次巻線と対向電極との間に形成される浮遊容量を、1次巻線と2次巻線との間に形成される浮遊容量とほぼ等しくすることによって、2次巻線の軸方向に沿った電位の分布を直線状に近づけることで、電荷の移動量を減らし、振動電圧を抑えることにより、2次巻線から出力される電圧の波形の歪みを小さくできる。   With this configuration, the stray capacitance formed between the secondary winding and the counter electrode is made substantially equal to the stray capacitance formed between the primary winding and the secondary winding. By approximating the distribution of the potential along the axial direction of the secondary winding to a straight line, the amount of charge movement is reduced, and the oscillation voltage is suppressed to reduce the distortion of the voltage waveform output from the secondary winding. Can be small.

また、前記対向電極は、断面の形状が円、小判形または長円であるものが好ましい。   The counter electrode preferably has a cross-sectional shape of a circle, an oval shape or an oval shape.

このように、電極の外形の形状を曲面によって構成したので、電界集中を緩和させて、部分放電や絶縁破壊を防止することができる。   Thus, since the outer shape of the electrode is configured by a curved surface, the electric field concentration can be relaxed and partial discharge and dielectric breakdown can be prevented.

2次巻線の周辺で生ずる浮遊容量によって移動する電荷の量を減らし、電荷の移動によるインダクタンスと浮遊容量とによって生ずる共振による振動電圧を抑えることにより、2次巻線から出力される電圧の波形の歪みを小さくできる。   The waveform of the voltage output from the secondary winding is reduced by reducing the amount of charge moving due to the stray capacitance generated around the secondary winding and suppressing the oscillation voltage caused by the resonance caused by the inductance and stray capacitance due to the movement of the charge. Can reduce distortion.

本発明の第一実施形態に係る変圧器100を示す正面図である。It is a front view which shows the transformer 100 which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る変圧器100を示す平面図である。It is a top view which shows the transformer 100 which concerns on 1st embodiment of this invention. 図2のII−II線に沿った変圧器100の断面図である。It is sectional drawing of the transformer 100 along the II-II line | wire of FIG. 図1のI−I線に沿った変圧器100の断面図である。It is sectional drawing of the transformer 100 along the II line | wire of FIG. 従来の変圧器の等価回路を示す参考図(a)と、従来の変圧器の高電圧巻線120における電位の変化を示すグラフ(b)とである。It is the reference figure (a) which shows the equivalent circuit of the conventional transformer, and the graph (b) which shows the change of the electric potential in the high voltage winding 120 of the conventional transformer. 本発明の第一実施形態に係る変圧器100の等価回路図を示す図(a)と、本発明の第一実施形態に係る変圧器100の高電圧巻線120における電位の変化を示すグラフ(b)とである。The figure (a) which shows the equivalent circuit schematic of the transformer 100 which concerns on 1st embodiment of this invention, and the graph which shows the change of the electric potential in the high voltage winding 120 of the transformer 100 which concerns on 1st embodiment of this invention ( b). 本発明の第二実施形態に係る変圧器200を示す正面図である。It is a front view which shows the transformer 200 which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る変圧器200を示す平面図である。It is a top view which shows the transformer 200 which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る変圧器300を示す平面図(a)と、変圧器300で用いる電位分布均等化遮蔽電極330の断面図(b)である。FIG. 5A is a plan view showing a transformer 300 according to a third embodiment of the present invention, and FIG. 5B is a cross-sectional view of a potential distribution equalization shielding electrode 330 used in the transformer 300.

以下に、本発明の実施例について図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[第一実施形態]
図1は、本発明の第一実施形態に係る変圧器100を示す正面図である。また、図2は、その平面図であり、図3は、図2のII−II線に沿った断面図である。そして、図4は、図1のI−I線に沿った断面図である。
[First embodiment]
FIG. 1 is a front view showing a transformer 100 according to the first embodiment of the present invention. 2 is a plan view thereof, and FIG. 3 is a cross-sectional view taken along line II-II in FIG. FIG. 4 is a cross-sectional view taken along the line II of FIG.

第一実施形態に係る変圧器100は、低電圧巻線110と、高電圧巻線120と、電位分布均等化遮蔽電極130と、支持棒140と、鉄心150とを有する。   The transformer 100 according to the first embodiment includes a low voltage winding 110, a high voltage winding 120, a potential distribution equalization shielding electrode 130, a support bar 140, and an iron core 150.

<低電圧巻線110、高電圧巻線120、鉄心150>
鉄心150は、環状に形成され、磁気回路を構成する。鉄心150は、略四角柱状に形成された鉄心脚152を有する。図4に示すように、鉄心脚152を軸として同心状に、低電圧巻線110と高電圧巻線120とが鉄心脚152に巻回されている。低電圧巻線110が、「1次巻線」に相当し、高電圧巻線120が、「2次巻線」に相当する。
<Low voltage winding 110, high voltage winding 120, iron core 150>
The iron core 150 is formed in an annular shape and constitutes a magnetic circuit. The iron core 150 has an iron core leg 152 formed in a substantially quadrangular prism shape. As shown in FIG. 4, the low voltage winding 110 and the high voltage winding 120 are wound around the core leg 152 in a concentric manner with the core leg 152 as an axis. The low voltage winding 110 corresponds to a “primary winding”, and the high voltage winding 120 corresponds to a “secondary winding”.

図3および図4に示すように、低電圧巻線110は、絶縁体160を介して鉄心脚152に巻回されており、筒状の形状を有する。高電圧巻線120は、絶縁体162を介して低電圧巻線110の外周に巻回されており、筒状の形状を有する。これらの絶縁体160および162は、絶縁油や空気などを用いることができる。   As shown in FIGS. 3 and 4, the low voltage winding 110 is wound around the iron core leg 152 via the insulator 160 and has a cylindrical shape. The high voltage winding 120 is wound around the outer periphery of the low voltage winding 110 via an insulator 162 and has a cylindrical shape. These insulators 160 and 162 can use insulating oil, air, or the like.

この第一実施形態では、図3に示すように、低電圧巻線110の軸方向の中央部O1と、高電圧巻線120の軸方向の中央部O2とが、軸方向で、ほぼ同じ位置になるように配置されている。低電圧巻線110と高電圧巻線120との各々は、所定の巻数を有する。変圧器100では、低電圧巻線110と高電圧巻線120との巻数比に応じて、電圧および電流の変換が行われる。   In the first embodiment, as shown in FIG. 3, the axial center O1 of the low voltage winding 110 and the axial center O2 of the high voltage winding 120 are substantially the same position in the axial direction. It is arranged to be. Each of the low voltage winding 110 and the high voltage winding 120 has a predetermined number of turns. In the transformer 100, voltage and current are converted according to the turn ratio between the low voltage winding 110 and the high voltage winding 120.

低電圧巻線110は、第1の端部112および第2の端部114を有する(図6(a)参照)。図1または図3において、第1の端部112は、下側に位置し、第2の端部114は、上側に位置する。第1の端部112および第2の端部114には、電源(図示せず)が接続されており、電源電圧が低電圧巻線110に印加される。低電圧巻線110に印加された供給電圧は、低電圧巻線110と高電圧巻線120との巻数比に応じて昇圧され、高電圧巻線120から昇圧された電圧(昇圧電圧)が出力される。   The low voltage winding 110 has a first end 112 and a second end 114 (see FIG. 6A). In FIG. 1 or FIG. 3, the first end portion 112 is located on the lower side, and the second end portion 114 is located on the upper side. A power source (not shown) is connected to the first end portion 112 and the second end portion 114, and a power source voltage is applied to the low voltage winding 110. The supply voltage applied to the low voltage winding 110 is boosted according to the turn ratio between the low voltage winding 110 and the high voltage winding 120, and a voltage boosted from the high voltage winding 120 (boosted voltage) is output. Is done.

一方、高電圧巻線120は、第1の端部122および第2の端部124を有する(図6(a)参照)。図1または図3において、第1の端部122は、下側に位置し、第2の端部124は、上側に位置する。第1の端部122は、接地されており、接地電位となる。一方、第2の端部124は、変圧器100から高電圧パルスが出力されるときには、上述した昇圧電圧に対応した電位(高電位)となる。第1の端部122および第2の端部124には、負荷(図示せず)が接続されており、高電圧巻線120から出力される昇圧電圧が負荷に印加され、高電圧パルスが負荷に供給される。
なお、負荷には、例えば、荷電粒子加速器や電磁波発生等を目的とした電子線管用電源装置などがある。以下、第2の端部124だけでなく、第2の端部124と電気的に接続され、第2の端部124と同電位となる部位、すなわち、昇圧電圧に対応した電位となり得る部位を高電位部位と称する。
On the other hand, the high voltage winding 120 has a first end 122 and a second end 124 (see FIG. 6A). In FIG. 1 or FIG. 3, the first end 122 is located on the lower side, and the second end 124 is located on the upper side. The first end 122 is grounded and has a ground potential. On the other hand, when the high voltage pulse is output from the transformer 100, the second end portion 124 has a potential (high potential) corresponding to the above-described boosted voltage. A load (not shown) is connected to the first end 122 and the second end 124, the boosted voltage output from the high voltage winding 120 is applied to the load, and the high voltage pulse is applied to the load. To be supplied.
Examples of the load include a charged particle accelerator and an electron beam tube power supply for the purpose of generating electromagnetic waves. Hereinafter, not only the second end portion 124 but also a portion that is electrically connected to the second end portion 124 and has the same potential as the second end portion 124, that is, a portion that can have a potential corresponding to the boosted voltage. It is called a high potential site.

<高圧側遮蔽電極170>
図1および図2に示すように、高電圧巻線120の上端部には、高圧側遮蔽電極170が設けられている。高圧側遮蔽電極170は、断面が略円形の環状の形状を有し、周方向の一部に間隙172が形成されている。間隙172によって、高圧側遮蔽電極170の周方向に流れる渦電流の発生を防止できる。高圧側遮蔽電極170は、第2の端部124と電気的に接続されており、高圧側遮蔽電極170も高電位部位となる。
<High voltage side shielding electrode 170>
As shown in FIGS. 1 and 2, a high voltage side shield electrode 170 is provided at the upper end of the high voltage winding 120. The high-voltage side shield electrode 170 has an annular shape with a substantially circular cross section, and a gap 172 is formed in a part of the circumferential direction. Occurrence of eddy current flowing in the circumferential direction of the high-voltage side shield electrode 170 can be prevented by the gap 172. The high-voltage side shielding electrode 170 is electrically connected to the second end portion 124, and the high-voltage side shielding electrode 170 is also a high potential portion.

高圧側遮蔽電極170は、電界緩和を目的とした部材である。すなわち、高電圧巻線120の上端部には電界が集中しやすく、高電圧巻線120の上端部に、断面が略円形の環状の形状の高圧側遮蔽電極170を設けたことにより、電界の集中によって生ずる部分放電や絶縁破壊を防ぐことができる。   The high-voltage side shield electrode 170 is a member for the purpose of relaxing the electric field. That is, the electric field tends to concentrate on the upper end portion of the high voltage winding 120, and the high voltage side shielding electrode 170 having an annular shape having a substantially circular cross section is provided on the upper end portion of the high voltage winding 120. Partial discharge and dielectric breakdown caused by concentration can be prevented.

<電位分布均等化遮蔽電極(対向電極)130>
図2に示すように、高電圧巻線120の上端部または高圧側遮蔽電極170には、4本の支持棒140が電気的に接続されている。これらの4本の支持棒140は、高電圧巻線120の上端部または高圧側遮蔽電極170の周方向に略90度間隔で配置されている。上述したように、高圧側遮蔽電極170の電位は高電位であるので、4本の支持棒140の電位も高電位となる。
この電位分布均等化遮蔽電極130が、「対向電極」に相当する。支持棒140および高圧側遮蔽電極170が、高電圧巻線120と電圧分布均等化遮蔽電極130とを接続する接続体として機能する。なお、4本の支持棒140は、高圧側遮蔽電極170に接続される場合に限らず、高電圧巻線120の上端部または高圧側遮蔽電極170のいずれか一方に電気的に接続されていればよい。
<Electric potential distribution equalization shielding electrode (counter electrode) 130>
As shown in FIG. 2, four support rods 140 are electrically connected to the upper end portion of the high voltage winding 120 or the high voltage side shielding electrode 170. These four support rods 140 are arranged at an interval of approximately 90 degrees in the circumferential direction of the upper end portion of the high voltage winding 120 or the high voltage side shield electrode 170. As described above, since the potential of the high-voltage side shield electrode 170 is high, the potentials of the four support bars 140 are also high.
This potential distribution equalization shielding electrode 130 corresponds to a “counter electrode”. The support rod 140 and the high voltage side shield electrode 170 function as a connection body that connects the high voltage winding 120 and the voltage distribution equalization shield electrode 130. The four support rods 140 are not limited to being connected to the high-voltage side shield electrode 170 but may be electrically connected to either the upper end of the high-voltage winding 120 or the high-voltage side shield electrode 170. That's fine.

支持棒140は、断面が略円形の長尺な形状を有する導電体によって構成されている。支持棒140は、2つの端部を有し、一方の端部は、上述したように、高電圧巻線120の上端部または高圧側遮蔽電極170に接続されている。図1または図3に示すように、4本の支持棒140の各々は、高電圧巻線120の軸方向に沿って下方に向かうに従って、高電圧巻線120の外周面126から離隔するように配置されている。支持棒140の断面の形状を略円形としたことにより、曲面が形成されているので、部分放電を防止することができる。また、支持棒140の断面の形状を小判形にしてもよい。この場合も、曲面が形成されているので、部分放電を防止することができる。   The support bar 140 is made of a conductor having a long shape with a substantially circular cross section. The support bar 140 has two end portions, and one end portion is connected to the upper end portion of the high voltage winding 120 or the high voltage side shielding electrode 170 as described above. As shown in FIG. 1 or FIG. 3, each of the four support rods 140 is separated from the outer peripheral surface 126 of the high voltage winding 120 as it goes downward along the axial direction of the high voltage winding 120. Has been placed. Since the curved surface is formed by making the cross-sectional shape of the support rod 140 substantially circular, partial discharge can be prevented. Further, the cross-sectional shape of the support bar 140 may be an oval shape. Also in this case, since the curved surface is formed, partial discharge can be prevented.

図1および図2に示すように、4本の支持棒140の各々の他方の端部は、電位分布均等化遮蔽電極130の周方向に略90度間隔で、電位分布均等化遮蔽電極130に接続されている。電位分布均等化遮蔽電極130は、4本の支持棒140に支持されることによって、低電圧巻線110の軸方向の中央部O1や、高電圧巻線120の軸方向の中央部O2に位置するように配置される。電位分布均等化遮蔽電極130は、断面が略円形で略環状の形状を有する。
図3に示すように、電位分布均等化遮蔽電極130の断面形状のうち内周部曲面(内方を臨む半円部分、電極面)134が、高電圧巻線120の軸方向の中央部O2で、高電圧巻線120の外周面126と対面する。
As shown in FIGS. 1 and 2, the other end of each of the four support rods 140 is arranged on the potential distribution equalization shielding electrode 130 at intervals of about 90 degrees in the circumferential direction of the potential distribution equalization shielding electrode 130. It is connected. The potential distribution equalization shielding electrode 130 is supported by the four support rods 140, thereby being positioned at the axial center O <b> 1 of the low voltage winding 110 and the axial center O <b> 2 of the high voltage winding 120. To be arranged. The potential distribution equalization shielding electrode 130 has a substantially circular cross section and a substantially annular shape.
As shown in FIG. 3, the inner peripheral curved surface (a semicircular portion facing the inside, the electrode surface) 134 of the cross-sectional shape of the potential distribution equalizing shield electrode 130 is the central portion O2 in the axial direction of the high voltage winding 120. Thus, it faces the outer peripheral surface 126 of the high voltage winding 120.

また、図4に示すように、電位分布均等化遮蔽電極130には、周方向の一部に間隙132が形成されている。間隙132によって、電位分布均等化遮蔽電極130の周方向に流れる渦電流の発生を防止できる。電位分布均等化遮蔽電極130は、高電圧巻線120を周回するとともに、高電圧巻線120に対して距離L1の間隙(図3参照)を有するように配置される。   Further, as shown in FIG. 4, the potential distribution equalization shielding electrode 130 is formed with a gap 132 in a part in the circumferential direction. Occurrence of eddy current flowing in the circumferential direction of the potential distribution equalizing shield electrode 130 can be prevented by the gap 132. The potential distribution equalization shielding electrode 130 circulates around the high voltage winding 120 and is disposed so as to have a gap (see FIG. 3) having a distance L1 with respect to the high voltage winding 120.

上述したように、支持棒140は、導電体によって構成されており、電位分布均等化遮蔽電極130は、支持棒140および高圧側遮蔽電極170を介して、高電圧巻線120の第2の端部124と電気的に接続されている。したがって、電位分布均等化遮蔽電極130を第2の端部124と同電位にすることができる。すなわち、電位分布均等化遮蔽電極130の電位は高電位となる。   As described above, the support bar 140 is made of a conductor, and the potential distribution equalization shielding electrode 130 is connected to the second end of the high-voltage winding 120 via the support bar 140 and the high-voltage side shielding electrode 170. The part 124 is electrically connected. Therefore, the potential distribution equalization shielding electrode 130 can be set to the same potential as the second end portion 124. That is, the potential of the potential distribution equalization shielding electrode 130 becomes a high potential.

一方、変圧器100から高電圧パルスが出力されるときには、電位分布均等化遮蔽電極130と向かい合う高電圧巻線120の軸方向の中央部O2における電位は、第1の端部122の電位である接地電位よりも高く、かつ、第2の端部124の電位である高電位よりも低い中間の電位(以下、中間電位と称する。)となる。
このため、変圧器100から高電圧パルスが出力されるときには、電位分布均等化遮蔽電極130の曲面134と、高電圧巻線120の外周面126との間に電位差が生じ、電位分布均等化遮蔽電極130と高電圧巻線120との間に電界を発生させることができる。このような電界が生じたときには、電位分布均等化遮蔽電極130と高電圧巻線120との間に、浮遊容量180(図6(a)参照)が形成される。
このように、浮遊容量180は、中間電位と高電位との間で形成される浮遊容量である。浮遊容量180の大きさは、電位分布均等化遮蔽電極130の直径や、電位分布均等化遮蔽電極130の曲面134と高電圧巻線120の外周面126との間の間隙の距離L1によって、所望するものに変更できる。
On the other hand, when a high voltage pulse is output from the transformer 100, the potential at the central portion O2 in the axial direction of the high voltage winding 120 facing the potential distribution equalization shielding electrode 130 is the potential at the first end 122. It becomes an intermediate potential (hereinafter referred to as an intermediate potential) that is higher than the ground potential and lower than the high potential that is the potential of the second end portion 124.
Therefore, when a high voltage pulse is output from the transformer 100, a potential difference is generated between the curved surface 134 of the potential distribution equalization shielding electrode 130 and the outer peripheral surface 126 of the high voltage winding 120, and the potential distribution equalization shielding is performed. An electric field can be generated between the electrode 130 and the high voltage winding 120. When such an electric field is generated, a stray capacitance 180 (see FIG. 6A) is formed between the potential distribution equalization shielding electrode 130 and the high voltage winding 120.
As described above, the stray capacitance 180 is a stray capacitance formed between the intermediate potential and the high potential. The size of the stray capacitance 180 depends on the diameter of the potential distribution equalization shielding electrode 130 and the distance L1 of the gap between the curved surface 134 of the potential distribution equalization shielding electrode 130 and the outer peripheral surface 126 of the high voltage winding 120. You can change it to what you want.

図6(a)は、本発明の第一実施形態の変圧器100の低電圧巻線110と高電圧巻線120との周辺で生ずる浮遊容量を含む等価回路図を示す図である。
低電圧巻線110と高電圧巻線120との間には、浮遊容量182が形成されている。また、高電圧巻線120の内部で生成される浮遊容量184と、対地間の浮遊容量186とが形成される。さらに、上述したように、電位分布均等化遮蔽電極130を設けたことによって、電位分布均等化遮蔽電極130と高電圧巻線120との間には、浮遊容量180が形成される。
FIG. 6A is a diagram showing an equivalent circuit diagram including stray capacitance generated around the low voltage winding 110 and the high voltage winding 120 of the transformer 100 according to the first embodiment of the present invention.
A stray capacitance 182 is formed between the low voltage winding 110 and the high voltage winding 120. In addition, a stray capacitance 184 generated inside the high voltage winding 120 and a stray capacitance 186 between the ground are formed. Furthermore, as described above, by providing the potential distribution equalization shielding electrode 130, the stray capacitance 180 is formed between the potential distribution equalization shielding electrode 130 and the high voltage winding 120.

図6(b)は、本発明の第一実施形態に係る変圧器100の高電圧巻線120における電位の変化を示すグラフである。図6(b)に示したグラフの横軸は、高電圧巻線120の軸方向に沿った位置を示す。具体的には、第1の端部122を原点として、第1の端部122から第2の端部124までの位置を示す。また、図6(b)に示したグラフの縦軸は、第1の端部122から第2の端部124までの位置に対応した高電圧巻線120の電位を示す。   FIG.6 (b) is a graph which shows the change of the electric potential in the high voltage winding 120 of the transformer 100 which concerns on 1st embodiment of this invention. The horizontal axis of the graph shown in FIG. 6B indicates the position along the axial direction of the high voltage winding 120. Specifically, the position from the first end 122 to the second end 124 is shown with the first end 122 as the origin. Further, the vertical axis of the graph shown in FIG. 6B indicates the potential of the high voltage winding 120 corresponding to the position from the first end 122 to the second end 124.

図6(b)に示すように、高電圧巻線120の電位は、第1の端部122から第2の端部124に向かって、直線に近い形で徐々に高くなる。また、高電圧巻線120の軸方向の中央部O2を中心にして、ほぼ対称的な形で電位が変化する。このように、電位分布均等化遮蔽電極130によって、中間電位と高電位との間で形成される浮遊容量180を形成することにより、高電圧巻線120の軸方向に沿った電位の分布を略直線状に近づけることができる。
このようにしたことで、低電圧巻線110と高電圧巻線120との間の浮遊容量182や対地間の浮遊容量186に充電される電荷の移動量を、高電圧パルスの立ち上がり直後から少なくできる。このため、電荷の移動によって生ずる磁界によるインダクタンスと、浮遊容量182や浮遊容量186との間の共振現象による振動電圧を抑えることができ、変圧器100から出力される高電圧パルスの波形の歪みを小さくできる。
As shown in FIG. 6B, the potential of the high voltage winding 120 gradually increases from the first end portion 122 toward the second end portion 124 in a form close to a straight line. Further, the potential changes in a substantially symmetrical manner with the central portion O2 in the axial direction of the high voltage winding 120 as the center. In this way, by forming the stray capacitance 180 formed between the intermediate potential and the high potential by the potential distribution equalization shielding electrode 130, the potential distribution along the axial direction of the high voltage winding 120 is substantially reduced. It can be close to a straight line.
As a result, the amount of charge transferred to the stray capacitance 182 between the low voltage winding 110 and the high voltage winding 120 and the stray capacitance 186 between the ground is reduced immediately after the rising of the high voltage pulse. it can. For this reason, it is possible to suppress the inductance due to the magnetic field generated by the movement of electric charges and the oscillating voltage due to the resonance phenomenon between the stray capacitance 182 and the stray capacitance 186, and the distortion of the waveform of the high voltage pulse output from the transformer 100 can be reduced. Can be small.

また、電位分布均等化遮蔽電極130の曲面134と、高電圧巻線120の外周面126との間の距離L1を、低電圧巻線110と高電圧巻線120の間の距離L2(図3参照)よりも小さくすることで、高電圧巻線120の中央部O2と電位分布均等化遮蔽電極130との間に形成される浮遊容量180の大きさを、高電圧巻線120の中央部O2と低電圧巻線110との間に形成される浮遊容量182の大きさとほぼ等しくできる。
このようにすることで、高電圧巻線120の軸方向に沿った電位の分布を略直線状に近づけることができるので、浮遊容量182や対地間の浮遊容量186に充電される電荷の移動量を少なくでき、高電圧パルスの波形の歪みを小さくできる。
Further, a distance L1 between the curved surface 134 of the potential distribution equalization shielding electrode 130 and the outer peripheral surface 126 of the high voltage winding 120 is set as a distance L2 between the low voltage winding 110 and the high voltage winding 120 (FIG. 3). The size of the stray capacitance 180 formed between the central portion O2 of the high voltage winding 120 and the potential distribution equalization shielding electrode 130 is reduced to be smaller than the reference portion). And the size of the stray capacitance 182 formed between the low voltage winding 110 and the low voltage winding 110.
By doing so, the potential distribution along the axial direction of the high-voltage winding 120 can be made substantially linear. Therefore, the amount of movement of charge charged in the stray capacitance 182 and the stray capacitance 186 between the ground and the ground. And the distortion of the waveform of the high voltage pulse can be reduced.

また、上述したように、電位分布均等化遮蔽電極130の断面の形状は、略円形であり、高電圧巻線120の外周面126と対面する面は、断面が円弧状の曲面134である。このように、高電圧巻線120の外周面126と向かい合う面を、曲面134としたことにより、電位分布均等化遮蔽電極130と高電圧巻線120との間に生ずる電界が集中しないようにでき、電界を緩和させることができる。電位分布均等化遮蔽電極130を設けた構成としても、絶縁破壊や絶縁劣化を防止することができる。   Further, as described above, the shape of the cross section of the potential distribution equalization shielding electrode 130 is substantially circular, and the surface facing the outer peripheral surface 126 of the high voltage winding 120 is the curved surface 134 having a circular arc cross section. Thus, the surface facing the outer peripheral surface 126 of the high voltage winding 120 is the curved surface 134, so that the electric field generated between the potential distribution equalization shielding electrode 130 and the high voltage winding 120 can be prevented from being concentrated. , The electric field can be relaxed. Even with the configuration in which the potential distribution equalizing shield electrode 130 is provided, it is possible to prevent dielectric breakdown and insulation deterioration.

[第二実施形態]
図7は、本発明の第二実施形態に係る変圧器200を示す正面図である。また、図8は、その平面図である。この第二実施形態に係る変圧器200は、第一実施形態に係る変圧器100とほぼ同様のものを二つ設けた構成を有する。すなわち、図7および図8に示すように、変圧器200は、第1の変圧器脚101aと第2の変圧器脚101bとを有する。
なお、後述するように、第1の変圧器脚101aと第2の変圧器脚101bとが、第一実施形態に係る変圧器100と相違する点は、電位分布均等化遮蔽電極130aおよび130bの形状である。
[Second Embodiment]
FIG. 7 is a front view showing a transformer 200 according to the second embodiment of the present invention. FIG. 8 is a plan view thereof. The transformer 200 according to the second embodiment has a configuration in which two substantially the same ones as the transformer 100 according to the first embodiment are provided. That is, as shown in FIGS. 7 and 8, the transformer 200 includes a first transformer leg 101a and a second transformer leg 101b.
As will be described later, the first transformer leg 101a and the second transformer leg 101b are different from the transformer 100 according to the first embodiment in that the potential distribution equalizing shield electrodes 130a and 130b are different. Shape.

第二実施形態に係る変圧器200は、鉄心250を有する。鉄心250は、環状に形成され、磁気回路を構成する。鉄心250は、略四角柱状に形成された鉄心脚252aおよび252bを有する。   The transformer 200 according to the second embodiment has an iron core 250. The iron core 250 is formed in an annular shape and constitutes a magnetic circuit. The iron core 250 has iron core legs 252a and 252b formed in a substantially quadrangular prism shape.

第1の変圧器脚101aは、低電圧巻線110aと、高電圧巻線120aと、電位分布均等化遮蔽電極130aと、支持棒140aとを有する。上述した鉄心脚252aを軸として同心状に、低電圧巻線110aと高電圧巻線120aとが鉄心脚252aに巻回されている。   The first transformer leg 101a includes a low voltage winding 110a, a high voltage winding 120a, a potential distribution equalization shielding electrode 130a, and a support bar 140a. The low voltage winding 110a and the high voltage winding 120a are wound around the iron core leg 252a concentrically with the iron core leg 252a described above as an axis.

低電圧巻線110aは、第一実施形態に係る変圧器100の低電圧巻線110に対応し、高電圧巻線120aは、第一実施形態に係る変圧器100の高電圧巻線120に対応し、電位分布均等化遮蔽電極130aは、第一実施形態に係る変圧器100の電位分布均等化遮蔽電極130に対応し、支持棒140aは、第一実施形態に係る変圧器100の支持棒140に対応し、鉄心脚252aは、第一実施形態に係る変圧器100の鉄心脚152に対応し、これらは、第一実施形態に係る変圧器100と同様の構造を有し、同様に機能する。   The low voltage winding 110a corresponds to the low voltage winding 110 of the transformer 100 according to the first embodiment, and the high voltage winding 120a corresponds to the high voltage winding 120 of the transformer 100 according to the first embodiment. The potential distribution equalization shielding electrode 130a corresponds to the potential distribution equalization shielding electrode 130 of the transformer 100 according to the first embodiment, and the support bar 140a is the support bar 140 of the transformer 100 according to the first embodiment. The core leg 252a corresponds to the core leg 152 of the transformer 100 according to the first embodiment, and these have the same structure as the transformer 100 according to the first embodiment and function similarly. .

また、鉄心脚252aと低電圧巻線110aとを絶縁状態にする絶縁体160a(図示せず)や、低電圧巻線110aと高電圧巻線120aとを絶縁状態にする絶縁体162a(図示せず)も第一実施形態と同様の構成であり、同様に機能する。   Further, an insulator 160a (not shown) that insulates the iron core leg 252a and the low voltage winding 110a, and an insulator 162a (not shown) that insulates the low voltage winding 110a and the high voltage winding 120a from each other. 2) has the same configuration as the first embodiment and functions in the same manner.

第2の変圧器脚101bは、低電圧巻線110bと、高電圧巻線120bと、電位分布均等化遮蔽電極130bと、支持棒140bとを有する。また、上述した鉄心脚252bを軸として同心状に、低電圧巻線110bと高電圧巻線120bとが鉄心脚252bに巻回されている。   The second transformer leg 101b includes a low voltage winding 110b, a high voltage winding 120b, a potential distribution equalization shielding electrode 130b, and a support bar 140b. Further, the low voltage winding 110b and the high voltage winding 120b are wound around the iron core leg 252b concentrically with the iron core leg 252b described above as an axis.

低電圧巻線110bは、第一実施形態に係る変圧器100の低電圧巻線110に対応し、高電圧巻線120bは、第一実施形態に係る変圧器100の高電圧巻線120に対応し、電位分布均等化遮蔽電極130bは、第一実施形態に係る変圧器100の電位分布均等化遮蔽電極130に対応し、支持棒140bは、第一実施形態に係る変圧器100の支持棒140に対応し、鉄心脚252bは、第一実施形態に係る変圧器100の鉄心脚152に対応し、これらは、第一実施形態に係る変圧器100と同様の構造を有し、同様に機能する。   The low voltage winding 110b corresponds to the low voltage winding 110 of the transformer 100 according to the first embodiment, and the high voltage winding 120b corresponds to the high voltage winding 120 of the transformer 100 according to the first embodiment. The potential distribution equalization shielding electrode 130b corresponds to the potential distribution equalization shielding electrode 130 of the transformer 100 according to the first embodiment, and the support bar 140b is the support bar 140 of the transformer 100 according to the first embodiment. The core leg 252b corresponds to the core leg 152 of the transformer 100 according to the first embodiment, and these have the same structure as the transformer 100 according to the first embodiment and function similarly. .

また、鉄心脚252bと低電圧巻線110bとを絶縁状態にする絶縁体160b(図示せず)や、低電圧巻線110bと高電圧巻線120bとを絶縁状態にする絶縁体162b(図示せず)も第一実施形態と同様の構成であり、同様に機能する。   Further, an insulator 160b (not shown) that insulates the iron core leg 252b and the low voltage winding 110b, and an insulator 162b (not shown) that insulates the low voltage winding 110b and the high voltage winding 120b. 2) has the same configuration as the first embodiment and functions in the same manner.

上述したように、第一実施形態の変圧器100と相違する点は、電位分布均等化遮蔽電極130aおよび130bである。図8に示すように、電位分布均等化遮蔽電極130aは、2本の脚部136aおよび138aを備え、略U字状の形状を有する。また、電位分布均等化遮蔽電極130bは、2本の脚部136bおよび138bを備え、略U字状の形状を有する。   As described above, the difference from the transformer 100 of the first embodiment is the potential distribution equalization shielding electrodes 130a and 130b. As shown in FIG. 8, the potential distribution equalization shielding electrode 130a includes two legs 136a and 138a, and has a substantially U shape. The potential distribution equalization shielding electrode 130b includes two legs 136b and 138b, and has a substantially U-shape.

電位分布均等化遮蔽電極130aの脚部136aと、電位分布均等化遮蔽電極130bの脚部136bとが互いに向かい合うように、かつ、電位分布均等化遮蔽電極130aの脚部138aと、電位分布均等化遮蔽電極130bの脚部138bとが互いに向かい合うように配置されている。互いに向かい合う脚部136aと脚部136bとの間には、間隙132Aが形成され、互いに向かい合う脚部138aと脚部138bとの間には、間隙132Bが形成されている。このように、間隙132Aと間隙132Bとを形成したことにより、2つの脚の高電圧巻線120a、120bを異なる電圧で使用することができ、例えば、負荷として接続される真空管のヒータ用電圧を供給することが可能となる。   Potential distribution equalization shielding electrode 130a leg portion 136a and potential distribution equalization shielding electrode 130b leg portion 136b face each other, potential distribution equalization shielding electrode 130a leg portion 138a and potential distribution equalization The leg portions 138b of the shielding electrode 130b are arranged so as to face each other. A gap 132A is formed between the leg portions 136a and 136b facing each other, and a gap 132B is formed between the leg portions 138a and 138b facing each other. By forming the gap 132A and the gap 132B in this way, the high voltage windings 120a and 120b of the two legs can be used at different voltages. For example, the heater voltage of the vacuum tube connected as a load can be reduced. It becomes possible to supply.

第1の変圧器脚101aにおいては、電位分布均等化遮蔽電極130aは、高電圧巻線120aと向かい合うように配置され、両者の間で浮遊容量が形成される。この浮遊容量によって、高電圧巻線120aの電位の分布は、高電圧巻線120aの軸方向に沿った位置に対して、直線に近い形で変化する。その結果、低電圧巻線110aと高電圧巻線120aとの間の浮遊容量や、対地間の浮遊容量に充電される電荷の移動量を、高電圧パルスの立ち上がり直後から少なくできる。このため、電荷の移動によって生ずる磁界によるインダクタンスと浮遊容量との間の共振現象による振動電圧を抑えることができる。 In the first transformer leg 101a, the potential distribution equalization shielding electrode 130a is disposed so as to face the high voltage winding 120a, and a stray capacitance is formed therebetween. Due to the stray capacitance, the potential distribution of the high voltage winding 120a changes in a form close to a straight line with respect to the position along the axial direction of the high voltage winding 120a. As a result, the amount of charge transferred to the stray capacitance between the low voltage winding 110a and the high voltage winding 120a and the stray capacitance between the ground can be reduced immediately after the rising of the high voltage pulse. For this reason, it is possible to suppress an oscillating voltage due to a resonance phenomenon between the inductance and stray capacitance due to the magnetic field generated by the movement of electric charges.

第2の変圧器脚101bにおいても、電位分布均等化遮蔽電極130bは、高電圧巻線120bと向かい合うように配置され、両者の間で浮遊容量が形成される。この浮遊容量によって、前記と同様、高電圧巻線120aの電位の分布は、高電圧巻線120aの軸方向に沿った位置に対して、直線に近い形で変化し、低電圧巻線110aと高電圧巻線120aとの間の浮遊容量や、対地間の浮遊容量に充電される電荷の移動量を、高電圧パルスの立ち上がり直後から少なくでき、電荷の移動によって生ずる磁界によるインダクタンスと浮遊容量との間の共振現象による振動電圧を抑えることができる。

Also in the second transformer leg 101b, the potential distribution equalization shielding electrode 130b is disposed so as to face the high voltage winding 120b, and a stray capacitance is formed therebetween. Due to this stray capacitance, the potential distribution of the high voltage winding 120a changes in a form close to a straight line with respect to the position along the axial direction of the high voltage winding 120a. The amount of movement of the charge charged in the stray capacitance between the high voltage winding 120a and the stray capacitance between the ground can be reduced immediately after the rising of the high voltage pulse, and the inductance and stray capacitance due to the magnetic field generated by the charge transfer The oscillation voltage due to the resonance phenomenon during the period can be suppressed.

このように、複数の変圧器脚を設けたことによって、巻線を分割した「内鉄型」変圧器として用いることができる。   Thus, by providing a plurality of transformer legs, it can be used as an “inner iron type” transformer in which the winding is divided.

上述した第二実施形態においては、低電圧巻線110aおよび110bが、「1次巻線」に相当し、高電圧巻線120aおよび120bが、「2次巻線」に相当し、電位分布均等化遮蔽電極130aおよび130bが「対向電極」に相当する。   In the second embodiment described above, the low-voltage windings 110a and 110b correspond to “primary windings”, and the high-voltage windings 120a and 120b correspond to “secondary windings” and have the same potential distribution. The shield electrodes 130a and 130b correspond to “counter electrodes”.

[第三実施形態]
図9は、本発明の第三実施形態の変圧器300を示す正面図(a)と、変圧器300で用いる電位分布均等化遮蔽電極330の断面図(b)とである。なお、この第三実施形態の変圧器300において、第一実施形態の変圧器100と同様の構成については、同じ符号を付した。
[Third embodiment]
FIG. 9A is a front view showing a transformer 300 according to the third embodiment of the present invention, and FIG. 9B is a cross-sectional view of a potential distribution equalization shielding electrode 330 used in the transformer 300. In addition, in the transformer 300 of this third embodiment, the same code | symbol was attached | subjected about the structure similar to the transformer 100 of 1st embodiment.

第三実施形態の変圧器300は、低電圧巻線110と、高電圧巻線120と、電位分布均等化遮蔽電極330と、支持棒140と、鉄心150とを有する。この低電圧巻線110と高電圧巻線120と支持棒140と鉄心150とは、第一実施形態の変圧器100と同様の構造を有し、同様に機能する。また、鉄心150と低電圧巻線110とを絶縁状態にする絶縁体160(図示せず)や、低電圧巻線110と高電圧巻線120とを絶縁状態にする絶縁体162(図示せず)も第一実施形態と同様の構成であり、同様に機能する。   The transformer 300 of the third embodiment includes a low voltage winding 110, a high voltage winding 120, a potential distribution equalization shielding electrode 330, a support bar 140, and an iron core 150. The low voltage winding 110, the high voltage winding 120, the support rod 140, and the iron core 150 have the same structure as the transformer 100 of the first embodiment and function in the same manner. Further, an insulator 160 (not shown) that insulates the iron core 150 and the low voltage winding 110, and an insulator 162 (not shown) that insulates the low voltage winding 110 and the high voltage winding 120 from each other. ) Has the same configuration as that of the first embodiment and functions in the same manner.

<電位分布均等化遮蔽電極(対向電極)330>
図9(b)に示すように、電位分布均等化遮蔽電極330は、断面が小判形(陸上競技場走路状(race-track shaped cross- section))、または長円形で、略環状の形状を有し、周方向の一部に間隙(図示せず)が形成されている。該間隙(図示せず)によって、電位分布均等化遮蔽電極130の周方向に流れる渦電流の発生を防止できる。電位分布均等化遮蔽電極330は、電位分布均等化遮蔽電極130と同様に、高電圧巻線120を周回するとともに、高電圧巻線120に対して所定の間隙を有するように配置される。
<Electric potential distribution equalization shielding electrode (counter electrode) 330>
As shown in FIG. 9 (b), the potential distribution equalizing shield electrode 330 has an oval cross-section (race-track shaped cross-section), or an oval shape and a substantially annular shape. And a gap (not shown) is formed in a part of the circumferential direction. Occurrence of eddy current flowing in the circumferential direction of the potential distribution equalizing shield electrode 130 can be prevented by the gap (not shown). Like the potential distribution equalization shielding electrode 130, the potential distribution equalization shielding electrode 330 circulates around the high voltage winding 120 and is disposed so as to have a predetermined gap with respect to the high voltage winding 120.

また、電位分布均等化遮蔽電極330は、電位分布均等化遮蔽電極130と同様に、導電体からなる4本の支持棒140に電気的に接続され、4本の支持棒140によって、支持されている。したがって、電位分布均等化遮蔽電極330の電位も、変圧器100から高電圧パルスが出力されるときには、第2の端部124と同電位、すなわち、高電位となる。   Similarly to the potential distribution equalization shield electrode 130, the potential distribution equalization shield electrode 330 is electrically connected to and supported by the four support bars 140 made of a conductor. Yes. Therefore, the potential of the potential distribution equalization shielding electrode 330 is also the same as that of the second end 124, that is, a high potential when a high voltage pulse is output from the transformer 100.

図9(b)に示すように、電位分布均等化遮蔽電極330の断面の形状を、小判形または長円形にした。すなわち、電位分布均等化遮蔽電極330の断面は、上端部と下端部との各々が略半円形で、かつ、上端部と下端部との間に略四角形が配置された形状である。この四角形の直線部分によって構成される面334を高電圧巻線120と対面させることにより、高電圧巻線120と向かい合う面の面積を広くすることができる。   As shown in FIG. 9B, the cross-sectional shape of the potential distribution equalization shielding electrode 330 is oval or oval. That is, the cross section of the potential distribution equalization shielding electrode 330 has a shape in which each of the upper end portion and the lower end portion is substantially semicircular, and a substantially square is disposed between the upper end portion and the lower end portion. By making the surface 334 constituted by the rectangular straight portion face the high voltage winding 120, the area of the surface facing the high voltage winding 120 can be increased.

このように、断面が小判形または長円形の電位分布均等化遮蔽電極330を用いたことにより、面334によって、高電圧巻線120と向かい合う面の面積を広くすることができる。
これにより、電位分布均等化遮蔽電極330と高電圧巻線120との間の距離を、低電圧巻線110と高電圧巻線120との間の距離と同程度にしつつ、高電圧巻線120と電位分布均等化遮蔽電極330との間に形成される浮遊容量を、低電圧巻線110と高電圧巻線120との間に形成される浮遊容量とほぼ等しくできる。
このため、浮遊容量の大きさのバランスを図りやすくできるとともに、高電圧巻線120の電位の分布を、高電圧巻線120の軸方向に沿った位置に対して、直線に近い形で変化させることができる。
As described above, by using the potential distribution equalization shielding electrode 330 having an oval or oval cross section, the surface 334 can increase the area of the surface facing the high voltage winding 120.
As a result, the distance between the potential distribution equalizing shield electrode 330 and the high voltage winding 120 is set to be approximately the same as the distance between the low voltage winding 110 and the high voltage winding 120, and the high voltage winding 120. And the stray capacitance formed between the low voltage winding 110 and the high voltage winding 120 can be made substantially equal to each other.
For this reason, it is possible to easily balance the size of the stray capacitance, and the potential distribution of the high voltage winding 120 is changed in a form close to a straight line with respect to the position along the axial direction of the high voltage winding 120. be able to.

さらに、図9に示したように、電位分布均等化遮蔽電極330の位置を、高電圧巻線120の軸方向の中央部よりも、第1の端部122側、すなわち、接地側に近づけた位置にした。このように、接地側に近づけた位置にすることにより、高電圧巻線120の接地側に近い部分と電位分布均等化遮蔽電極330との間で浮遊容量を形成させ、高電圧巻線120の軸方向に沿った電位の分布が、接地側に偏るのを防止できる。   Further, as shown in FIG. 9, the position of the potential distribution equalization shielding electrode 330 is closer to the first end 122 side, that is, the ground side than the central portion of the high voltage winding 120 in the axial direction. In position. Thus, by setting the position close to the ground side, a stray capacitance is formed between the portion near the ground side of the high voltage winding 120 and the potential distribution equalization shielding electrode 330, and the high voltage winding 120 It is possible to prevent the potential distribution along the axial direction from being biased toward the ground side.

また、上述したように、電位分布均等化遮蔽電極330の断面の形状を、小判形または長円形にした。このように、上端部と下端部との各々が略半円形で構成したことにより、電界が集中することを防止して電界緩和を図ることができる。   Further, as described above, the cross-sectional shape of the potential distribution equalization shielding electrode 330 is an oval shape or an oval shape. As described above, each of the upper end portion and the lower end portion is formed in a substantially semicircular shape, so that the electric field can be prevented from being concentrated and the electric field can be relaxed.

[その他の実施の形態]
上述した図3に示したように、電位分布均等化遮蔽電極130の曲面134と、高電圧巻線120の外周面126との間には、距離L1の間隙が形成されている。この間隙に適合した大きさおよび形状を有する絶縁体を間隙に設けてもよい。
この絶縁体の誘電率によって、電位分布均等化遮蔽電極130と高電圧巻線120との間の浮遊容量の大きさを所望するものにできる。
また、電位分布均等化遮蔽電極130を絶縁体によって支持できるので、電位分布均等化遮蔽電極130を高電圧巻線120の外側に安定させて配置することができる。
[Other embodiments]
As described above with reference to FIG. 3, a gap of a distance L <b> 1 is formed between the curved surface 134 of the potential distribution equalization shielding electrode 130 and the outer peripheral surface 126 of the high voltage winding 120. An insulator having a size and shape suitable for the gap may be provided in the gap.
The dielectric constant of the insulator makes it possible to achieve a desired floating capacitance between the potential distribution equalizing shield electrode 130 and the high voltage winding 120.
Further, since the potential distribution equalization shielding electrode 130 can be supported by the insulator, the potential distribution equalization shielding electrode 130 can be stably disposed outside the high voltage winding 120.

また、上述した第一〜第三実施形態では、電位分布均等化遮蔽電極130などを、高電圧巻線120の軸方向に沿って1つのみ、設けた構成を示したが、高電圧巻線120の軸方向に沿って、複数の電位分布均等化遮蔽電極130などを設けた構成としても良い。   In the first to third embodiments described above, the configuration in which only one potential distribution equalizing shield electrode 130 or the like is provided along the axial direction of the high voltage winding 120 is shown. A plurality of potential distribution equalization shielding electrodes 130 and the like may be provided along the 120 axial direction.

複数の電位分布均等化遮蔽電極130などを設けることによって、浮遊容量180の大きさを適宜変更しやすくでき、高電圧巻線120の軸方向に沿った電位の分布を直線に近づけやすくできる。また、複数の電位分布均等化遮蔽電極130などを設けたことにより、軽量化を図ることもできる。   By providing a plurality of potential distribution equalization shielding electrodes 130 and the like, the size of the stray capacitance 180 can be easily changed, and the distribution of potentials along the axial direction of the high voltage winding 120 can be made closer to a straight line. Further, by providing a plurality of potential distribution equalization shielding electrodes 130, the weight can be reduced.

そして、上述した第一〜第三実施形態では、支持棒140および高圧側遮蔽電極170が、高電圧巻線(2次巻線)と電位分布均等化遮蔽電極(対向電極)とを電気的に接続しているが、これに限定されず、高圧側遮蔽電極を有しない変圧器にも適用することができる。この場合、電位分布均等化遮蔽電極(対向電極)と支持棒の一方端を接続する一方、支持棒の他方端を高電圧巻線の上端部(高電位側)に接続すればよい。   In the first to third embodiments described above, the support rod 140 and the high voltage side shielding electrode 170 electrically connect the high voltage winding (secondary winding) and the potential distribution equalizing shielding electrode (counter electrode). Although connected, it is not limited to this, It can apply also to the transformer which does not have a high voltage | pressure side shielding electrode. In this case, the potential distribution equalization shielding electrode (counter electrode) and one end of the support rod are connected, while the other end of the support rod is connected to the upper end portion (high potential side) of the high voltage winding.

100、200、300 変圧器
101a、101b 変圧器脚
110、110a、110b 低電圧巻線(1次巻線)
120、120a、120b 高電圧巻線(2次巻線)
122 第1の端部
124 第2の端部
130、130a、130b、330 電位分布均等化遮蔽電極(対向電極)
134 曲面(電極面)
334 面(電極面)
140、140a、140b 支持棒
150、250 鉄心
170、170a、170b 高圧側遮蔽電極
100, 200, 300 Transformer 101a, 101b Transformer leg 110, 110a, 110b Low voltage winding (primary winding)
120, 120a, 120b High voltage winding (secondary winding)
122 1st edge part 124 2nd edge part 130, 130a, 130b, 330 Potential distribution equalization shielding electrode (counter electrode)
134 Curved surface (electrode surface)
334 surface (electrode surface)
140, 140a, 140b Support rod 150, 250 Iron core 170, 170a, 170b High voltage side shielding electrode

Claims (4)

筒状の形状を有する1次巻線と、前記1次巻線の外側に当該1次巻線と同心状に配置された筒状の形状を有する2次巻線とを有する変圧器であって、
前記2次巻線の外側に当該2次巻線を周回するように配置された対向電極を有し、
前記対向電極は、前記2次巻線の軸方向の中央部に、または中央部よりも接地電位側に対向配置され、
前記2次巻線と前記対向電極とを電気的に接続してなることを特徴とする変圧器。
A transformer having a primary winding having a cylindrical shape, the secondary winding and having the primary winding and concentrically disposed a cylindrical shape on the outside of the primary winding ,
Having a counter electrode arranged around the secondary winding on the outside of the secondary winding ;
The counter electrode is arranged at the center part in the axial direction of the secondary winding, or opposed to the ground potential side from the center part,
A transformer formed by electrically connecting the secondary winding and the counter electrode.
前記2次巻線は、第1の端部と、前記第1の端部よりも高い電位となる第2の端部とを有し、
前記対向電極と対面する部位における前記2次巻線の電位は、前記第1の端部の電位と第2の端部の電位との間の中間電位であり、
前記対向電極は、前記中間電位よりも高い電位になる前記2次巻線の部位に電気的に接続されたことを特徴とする請求項1に記載の変圧器。
The secondary winding has a first end and a second end having a higher potential than the first end,
The potential of the secondary winding at the portion facing the counter electrode is an intermediate potential between the potential of the first end and the potential of the second end,
The transformer according to claim 1, wherein the counter electrode is electrically connected to a portion of the secondary winding that has a higher potential than the intermediate potential.
前記対向電極と前記2次巻線との間の距離が、前記1次巻線と前記2次巻線の間の距離よりも小さいことを特徴とする請求項1または2に記載の変圧器。   The transformer according to claim 1 or 2, wherein a distance between the counter electrode and the secondary winding is smaller than a distance between the primary winding and the secondary winding. 前記対向電極は、断面の形状が円、小判形または長円であることを特徴とする請求項1ないしのいずれか1項に記載の変圧器。 The transformer according to any one of claims 1 to 3 , wherein the counter electrode has a cross-sectional shape of a circle, an oval shape, or an ellipse.
JP2009154891A 2009-06-30 2009-06-30 Transformer Active JP5216704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154891A JP5216704B2 (en) 2009-06-30 2009-06-30 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154891A JP5216704B2 (en) 2009-06-30 2009-06-30 Transformer

Publications (2)

Publication Number Publication Date
JP2011014585A JP2011014585A (en) 2011-01-20
JP5216704B2 true JP5216704B2 (en) 2013-06-19

Family

ID=43593226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154891A Active JP5216704B2 (en) 2009-06-30 2009-06-30 Transformer

Country Status (1)

Country Link
JP (1) JP5216704B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593022U (en) * 1992-05-07 1993-12-17 株式会社ミヤデン Boost coil
JPH0855738A (en) * 1994-08-12 1996-02-27 Murata Mfg Co Ltd Transformer
JP2000091140A (en) * 1998-09-11 2000-03-31 Micron Kk Integrated transformer device
JP2005012176A (en) * 2003-05-23 2005-01-13 Toko Inc Inverter transformer and discharge lamp lighting device using the same
JP2008227421A (en) * 2007-03-15 2008-09-25 Taiyo Yuden Co Ltd Transformer for inverter circuit

Also Published As

Publication number Publication date
JP2011014585A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
US8023294B2 (en) Noise reduction systems and methods for unshielded coupling of switch mode power supply
US10700551B2 (en) Inductive wireless power transfer device with improved coupling factor and high voltage isolation
US10896778B2 (en) Transformer including gaps
KR101229631B1 (en) Magnetic shield style transformer
JPH0147950B2 (en)
US4406978A (en) Horizontal deflection output transformer for a television receiver
KR960000918B1 (en) Deflection yoke device
JP5216704B2 (en) Transformer
US9887690B2 (en) Inductive isolation of voltage sources of an inductive voltage adder by individual coupled coils
JPH0374172A (en) Voltage generator
CA2495382C (en) Winding arrangement
GB2571772A (en) Ion confinement device
US20240055173A1 (en) Transformer
EP2573781A1 (en) High voltage current coil
JP2017022211A (en) Discharge device
KR20200049235A (en) Multiple winding High Voltage Isolated Transformer
US5347196A (en) Line output transformer
US3213399A (en) Flyback transformers
JP2552163B2 (en) DC high voltage generator with high voltage floating charging circuit
RU2050708C1 (en) X-ray pulse generator
RU82063U1 (en) HIGH VOLT TRANSFORMER
RU2063107C1 (en) Partitioned insulating column of high-voltage accelerator
KR19980042856A (en) Cathode ray tube device
JPH0718299U (en) Electron beam irradiation device
JPH0129781Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Ref document number: 5216704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250