JP5215350B2 - Manufacturing method of artificial bone model having cutting ability very similar to natural bone - Google Patents

Manufacturing method of artificial bone model having cutting ability very similar to natural bone Download PDF

Info

Publication number
JP5215350B2
JP5215350B2 JP2010115447A JP2010115447A JP5215350B2 JP 5215350 B2 JP5215350 B2 JP 5215350B2 JP 2010115447 A JP2010115447 A JP 2010115447A JP 2010115447 A JP2010115447 A JP 2010115447A JP 5215350 B2 JP5215350 B2 JP 5215350B2
Authority
JP
Japan
Prior art keywords
artificial bone
divided
bone
bone model
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010115447A
Other languages
Japanese (ja)
Other versions
JP2011242649A (en
Inventor
篤信 角田
卓 伊藤
健 喜多村
秀則 大野
久幸 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONO&CO Ltd
Original Assignee
ONO&CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONO&CO Ltd filed Critical ONO&CO Ltd
Priority to JP2010115447A priority Critical patent/JP5215350B2/en
Publication of JP2011242649A publication Critical patent/JP2011242649A/en
Application granted granted Critical
Publication of JP5215350B2 publication Critical patent/JP5215350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instructional Devices (AREA)

Description

本発明は、自然骨と酷似した切削性を有する人工骨モデルの製造方法に関する。さらに詳しくは、本発明は、教育訓練用や、術前治療計画の検討用などとして用いられる切削性を有する人工骨モデルを、粉末焼結積層造形法により、自然骨と酷似させて製造する方法に関するものである。   The present invention relates to a method for manufacturing an artificial bone model having a cutting ability very similar to natural bone. More specifically, the present invention relates to a method for manufacturing an artificial bone model having cutting properties used for education and training, for studying a preoperative treatment plan, or the like, by using a powder sintering additive manufacturing method so as to resemble natural bone. It is about.

欠損や変形を生じた頭蓋骨の治療、骨が複雑に組み合わされている聴覚器官の治療、大腿骨頭壊死の外科的治療、各種の複雑骨折の治療など、骨の切削を伴う治療が、整形外科、脳外科、胸部外科、口腔外科、耳鼻咽喉科、形成外科、獣医外科などの広い分野で行われている。しかし、骨の切削を伴う外科的治療に熟達した医師を養成するための教育訓練の機会は多くない。   Treatment with bone cutting, such as treatment of skulls with defects or deformation, treatment of auditory organs with complex bones, surgical treatment of femoral head necrosis, treatment of various complex fractures, orthopedics, It is performed in a wide range of fields such as brain surgery, thoracic surgery, oral surgery, otolaryngology, plastic surgery, and veterinary surgery. However, there are not many opportunities for training to train doctors who are proficient in surgical treatment with bone cutting.

従来、医療関係の教育、訓練、実験などに用いられる教材としては、人間などの、動物の遺体から採取した骨の外観を目視により模倣し、紙、合成樹脂、木材、石膏などの材料を用いて、彫刻、切削などの手法、いわゆる芸術的センスにより製作された模型が一般的に用いられている。稀に、一部の医療機関や教育機関では、採取した人体や動物の部位そのものが、故人あるいは遺族の好意により、死後献体として実体が用いられる場合がある。しかし、教育、訓練、実験用などとしての骨の入手は困難な状況にある。   Conventionally, as teaching materials used for medical education, training, experiments, etc., materials such as paper, synthetic resin, wood, plaster, etc. are used to visually imitate the appearance of bones collected from the remains of animals such as humans. In general, models made by techniques such as engraving and cutting, so-called artistic sense, are generally used. In rare cases, in some medical institutions and educational institutions, the collected human body or animal part itself may be used as a post-mortem donation, in favor of the deceased or bereaved. However, it is difficult to obtain bones for education, training and experimentation.

さらに、整形外科、脳神経外科、胸部外科、口腔外科、耳鼻咽喉科、形成外科、獣医外科などの広い分野の外科領域において、特に若い医師にとって術者としての経験を重ねることが必要とされているにも関わらず、これらの教材の入手困難な状況は深刻である。   Furthermore, there is a need for experience as a surgeon, especially for young doctors, in a wide range of surgical fields such as orthopedics, neurosurgery, thoracic surgery, oral surgery, otolaryngology, plastic surgery, veterinary surgery, etc. Nevertheless, the difficulty of obtaining these materials is serious.

また、これら若手医師たちにとっては、昨今著しい進歩を遂げている医用画像機器特にCT(Computer Tomography)の画像所見と実際の解剖所見を結びつけ、さらに解剖学的名称を正確に把握しておくことが非常に重要である。さらには、やはり近年目覚しい進歩を遂げている各種手術器具・装置・用具に関しても習熟のための充分な機会が求められている。   In addition, for these young doctors, it is necessary to link the image findings of medical imaging equipment, especially CT (Computer Tomography), which has made remarkable progress, with the actual anatomical findings, and to accurately grasp the anatomical names. Very important. Furthermore, sufficient opportunities for learning are required for various surgical instruments, devices, and tools that have made remarkable progress in recent years.

この改善策として、近年医学系学術集会においては、各科ともそれぞれ若手医師を対象としたハンズオンセミナーとしてトレーニングを実施しているが、学術集会の会場では献体を使用することができず、また従来のトレーニング用モデルでは、実際の手術の際に経験する事柄、すなわち、目視上の解剖学的近似性、手術器具・装置を用いた使用感(自然骨に酷似した切削性)を得ることができないのが現状である。したがって、外科系各科の若手医師に容易に画像所見と解剖所見を一致させ、最新の手術器具・装置を自然骨に酷似した状況で削開する使用感を提供することが急務となっている。
人工骨モデルの製造方法については、特許文献1に粉末焼結積層造形法による、切削性を有する人工骨モデルの製造方法が開示されている。
As a measure to improve this, in recent medical science meetings, each department has conducted training as a hands-on seminar for young doctors, but donations cannot be used at the venues of academic meetings. With the training model, it is impossible to obtain the things experienced during actual surgery, that is, the visual anatomical approximation, the feeling of use using surgical instruments and devices (cutting ability very similar to natural bone) is the current situation. Therefore, there is an urgent need to provide a usability to easily match the image findings and anatomical findings to young doctors in various surgical departments, and to cut the latest surgical instruments and devices in a situation very similar to natural bones. .
Regarding a method for manufacturing an artificial bone model, Patent Document 1 discloses a method for manufacturing an artificial bone model having cutting properties by a powder sintering additive manufacturing method.

特開2004−184606号公報JP 2004-184606 A

しかしながら、前記特許文献1に記載の人工骨モデルの製造方法では、人体などの自然骨の立体的形状を、精密かつ正確に3次元的に複製することができるが、その特殊な製造方法により、骨に該当する部位以外の空洞部分に粉末材料が未硬化のまま残留してしまい、骨に該当する部分を削開した際に、自然骨を削開した際に目視できる解剖学的所見とは異なっており、水若しくは空気にて一旦空洞箇所に残留した粉末を除去しなければならないという問題があった。
本発明は、このような状況下になされたものであり、教育訓練用や、術前治療計画の検討用などとして用いられる切削性を有する人工骨モデルを、自然骨と酷似させて製造する方法を提供することを目的とするものである。
However, in the method for manufacturing an artificial bone model described in Patent Document 1, the three-dimensional shape of a natural bone such as a human body can be accurately and accurately reproduced three-dimensionally. What is the anatomical observation that can be seen when the natural bone is cut when the powder material remains uncured in the hollow part other than the part corresponding to the bone and the part corresponding to the bone is cut off? There is a problem in that the powder remaining in the cavity must be removed once with water or air.
The present invention has been made under such circumstances, and a method for manufacturing an artificial bone model having a cutting property used for education and training, for studying a preoperative treatment plan, or the like, that closely resembles natural bone. Is intended to provide.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記の知見を得た。
自然骨の3次元CADデータを所定の分割面によって2以上に分割して、各分割自然骨の3次元CADデータを得て、該3次元CADデータに基づいて得た各分割自然骨の断層撮影情報に基づき、各分割自然骨の人工骨モデルを、粉末焼結積層造形法により別々に製造したのち、各分割人工骨モデルの分割面に露出している開口から焼結していない粉末を除去してから、全ての各分割人工骨モデルを分割面で接着して一体的人工骨モデルを形成することにより、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
Three-dimensional CAD data of natural bone is divided into two or more by a predetermined dividing plane, three-dimensional CAD data of each divided natural bone is obtained, and tomography of each divided natural bone obtained based on the three-dimensional CAD data Based on the information, artificial bone models of each divided natural bone are manufactured separately by powder sintering additive manufacturing method, and then the unsintered powder is removed from the opening exposed on the divided surface of each divided artificial bone model Then, it has been found that the object can be achieved by forming an integral artificial bone model by bonding all the divided artificial bone models at the dividing plane. The present invention has been completed based on such findings.

すなわち、本発明は、
(1)自然骨の3次元CADデータを所定の分割面によって2以上に分割して、各分割自然骨の3次元CADデータを得て、該3次元CADデータに基づいて得た各分割自然骨の断層撮影情報に基づき、各分割自然骨の人工骨モデルを別々に製造したのち、各分割自然骨の人工骨モデルを接着する自然骨の人工骨モデルの製造方法であって、
各分割自然骨の人工骨モデルを別々に製造するに当たり、合成樹脂粉末30〜90質量%と無機充填剤10〜70質量%からなる粉末焼結材料を薄層状に展開し、薄層状に展開した1層分の粉末焼結材料に、各分割自然骨の断層撮影情報に基づく外観形状及び内部構造形状をレーザ光により照射して、薄層状に展開した1層分の粉末焼結材料の該レーザ光の照射部分を焼結し、さらに、1層分の粉末焼結材料の薄層状の展開と、自然骨の断層撮影情報に基づく外観形状及び内部構造形状をレーザ光により照射して薄層状に展開した1層分の粉末焼結材料の焼結とを反復して繰り返すことにより、各分割自然骨の外観形状と内部構造形状を三次元的に複製した各部分の人工骨モデルを別々に製造し、各分割人工骨モデルの分割面に露出している開口から焼結していない粉末を除去してから、全ての各分割人工骨モデルを分割面で接着して一体的人工骨モデルを形成することを特徴とする自然骨と酷似した切削性を有する人工骨モデルの製造方法、
(2)各分割人工骨モデルの分割面に露出している開口から焼結していない粉末を除去してから、除去された空孔の内面を着色する上記(1)項記載の自然骨と酷似した切削性を有する人工骨モデルの製造方法、
(3)合成樹脂粉末の微粒子が、球状である上記(1)又は(2)項記載の自然骨と酷似した切削性を有する人工骨モデルの製造方法、
(4)人工骨モデルが、教育訓練用である上記(1)〜(3)項の何れかに記載の自然骨と酷似した切削性を有する人工骨モデルの製造方法、及び
(5)人工骨モデルが、術前治療計画の検討用である上記(1)〜(3)項の何れかに記載の自然骨と酷似した切削性を有する人工骨モデルの製造方法、
を提供するものである。
That is, the present invention
(1) Three-dimensional CAD data of natural bone is divided into two or more by a predetermined dividing surface, three-dimensional CAD data of each divided natural bone is obtained, and each divided natural bone obtained based on the three-dimensional CAD data A method for producing an artificial bone model of a natural bone, wherein an artificial bone model of each divided natural bone is manufactured separately based on the tomographic information of
In separately producing artificial bone models of each divided natural bone, a powder sintered material composed of 30 to 90% by mass of a synthetic resin powder and 10 to 70% by mass of an inorganic filler was developed into a thin layer and developed into a thin layer. The laser of the powder sintered material for one layer developed in a thin layer by irradiating the powder sintered material for one layer with the laser beam on the appearance shape and internal structure shape based on the tomographic information of each divided natural bone Sinter the irradiated part of the light, and further develop a thin layer of powder sintering material for one layer and irradiate the external shape and internal structure shape based on tomography information of natural bone with laser light into a thin layer By repeatedly repeating the sintering of the expanded powder sintering material for one layer, the artificial bone model of each part that replicates the appearance shape and internal structure shape of each divided natural bone three-dimensionally is manufactured separately. And exposed on the split surface of each split artificial bone model After removing unsintered powder from the mouth, all the divided artificial bone models are bonded at the dividing surface to form an integral artificial bone model, which has a cutting ability very similar to natural bone Manufacturing method of artificial bone model,
(2) After removing unsintered powder from the opening exposed on the divided surface of each divided artificial bone model, coloring the inner surface of the removed pores, A method of manufacturing an artificial bone model having very similar cutting properties;
(3) A method for producing an artificial bone model having cutting properties very similar to natural bone according to (1) or (2) above, wherein the fine particles of the synthetic resin powder are spherical,
(4) The method for producing an artificial bone model having cutting ability very similar to natural bone according to any one of (1) to (3) above, wherein the artificial bone model is for education and training, and (5) artificial bone The method for producing an artificial bone model having a cutting ability very similar to that of natural bone according to any one of (1) to (3) above, wherein the model is for examination of a preoperative treatment plan,
Is to provide.

本発明によれば教育訓練用や、術前治療計画の検討用などとして用いられる切削性を有する人工骨モデルを、粉末焼結積層造形法により、自然骨と酷似させて製造する方法を提供することができる。   According to the present invention, there is provided a method of manufacturing an artificial bone model having a cutting property used for education and training, for studying a preoperative treatment plan, or the like, by using a powder sintering additive manufacturing method so as to resemble natural bone. be able to.

実施例1で得られた、接合前の2つの分割側頭骨の人工骨モデルの斜視図である。It is a perspective view of the artificial bone model of two division | segmentation temporal bones obtained in Example 1 before joining. 実施例1で得られた、一体化されてなるヒト側頭骨の人工骨モデルの斜視図であり、(a)は上面から見た斜視図、(b)は側面から見た斜視図、(c)は下面から見た斜視図である。It is the perspective view of the artificial bone model of the human temporal bone integrated in Example 1 obtained in Example 1, (a) is the perspective view seen from the upper surface, (b) is the perspective view seen from the side, (c ) Is a perspective view seen from the bottom. 実施例2で得られた、2つに分割され、重要部位が着色されてなる側頭骨の人工骨モデルの斜視図である。It is a perspective view of the artificial bone model of the temporal bone obtained in Example 2, which is divided into two and whose important parts are colored.

本発明の自然骨と酷似した切削性を有する人工骨モデルの製造方法(以下、単に「人工骨モデルの製造方法」と称することがある。)は、自然骨の3次元CADデータを所定の分割面によって2以上に分割して、各分割自然骨の3次元CADデータを得て、該3次元CADデータに基づいて得た各分割自然骨の断層撮影情報に基づき、各分割自然骨の人工骨モデルを別々に製造したのち、各分割自然骨の人工骨モデルを接着する自然骨の人工骨モデルの製造方法であって、
各分割自然骨の人工骨モデルを別々に製造するに当たり、合成樹脂粉末30〜90質量%と無機充填剤10〜70質量%からなる粉末焼結材料を薄層状に展開し、薄層状に展開した1層分の粉末焼結材料に、各分割自然骨の断層撮影情報に基づく外観形状及び内部構造形状をレーザ光により照射して、薄層状に展開した1層分の粉末焼結材料の該レーザ光の照射部分を焼結し、さらに、1層分の粉末焼結材料の薄層状の展開と、自然骨の断層撮影情報に基づく外観形状及び内部構造形状をレーザ光により照射して薄層状に展開した1層分の粉末焼結材料の焼結とを反復して繰り返すことにより、各分割自然骨の外観形状と内部構造形状を三次元的に複製した各部分の人工骨モデルを別々に製造し、各分割人工骨モデルの分割面に露出している開口から焼結していない粉末を除去してから、全ての各分割人工骨モデルを分割面で接着して一体的人工骨モデルを形成することを特徴とする。
The method for manufacturing an artificial bone model having cutting ability very similar to that of natural bone according to the present invention (hereinafter sometimes simply referred to as “artificial bone model manufacturing method”) divides the three-dimensional CAD data of the natural bone into predetermined segments. Divided into two or more according to the plane, three-dimensional CAD data of each divided natural bone is obtained, and based on the tomographic information of each divided natural bone obtained based on the three-dimensional CAD data, the artificial bone of each divided natural bone A method for producing an artificial bone model of natural bone, wherein the model is manufactured separately, and then each divided natural bone artificial bone model is bonded.
In separately producing artificial bone models of each divided natural bone, a powder sintered material composed of 30 to 90% by mass of a synthetic resin powder and 10 to 70% by mass of an inorganic filler was developed into a thin layer and developed into a thin layer. The laser of the powder sintered material for one layer developed in a thin layer by irradiating the powder sintered material for one layer with the laser beam on the appearance shape and internal structure shape based on the tomographic information of each divided natural bone Sinter the irradiated part of the light, and further develop a thin layer of powder sintering material for one layer and irradiate the external shape and internal structure shape based on tomography information of natural bone with laser light into a thin layer By repeatedly repeating the sintering of the expanded powder sintering material for one layer, the artificial bone model of each part that replicates the appearance shape and internal structure shape of each divided natural bone three-dimensionally is manufactured separately. And exposed on the split surface of each split artificial bone model Following removal of the powder that is not sintered mouth, and forming an integral artificial bone model by bonding a split face all of the divided artificial bone model.

[各分割自然骨の人工骨モデルの作製]
本発明の人工骨モデルの製造方法においては、まず自然骨の3次元CADデータを所定の分割面によって2以上に分割して、各分割自然骨の3次元CADデータを得たのち、該3次元CADデータに基づいて得られた各分割自然骨の断層撮影情報に基づき、各分割自然骨の人工骨モデルを、粉末焼結積層造形法により、別々に作製する。
[Production of artificial bone model of each divided natural bone]
In the method for producing an artificial bone model of the present invention, first, the three-dimensional CAD data of natural bone is divided into two or more by a predetermined dividing surface, and the three-dimensional CAD data of each divided natural bone is obtained. Based on the tomography information of each divided natural bone obtained based on the CAD data, artificial bone models of each divided natural bone are separately produced by a powder sintering additive manufacturing method.

(自然骨の3次元CADデータ)
自然骨の3次元CADデータは、人体の各部位の自然骨を、磁気共鳴映像法(MRI)、X線コンピュータ断層撮影(X線CT)、超音波コンピュータ断層撮影(超音波CT)などのいずれか1種又は2種以上の複合方法を用いて透視計測又は外形計測したものである。得られた人体から実測した各部位の自然骨の三次元的立体形状と寸法データは、例えば、医用デジタル画像と通信(DICOM、Digital Imaging and Communications in Medicine)データを、さらにソリッドタイプのSTL(Standard Trianglation language)フォーマットデータに変換することにより、粉末焼結積層造形法に適用することが可能となり、このデータに基づいて粉末焼結積層造形装置におけるレーザ光を稼動させることができる。
本発明においては、上記自然骨の3次元CADデータを、所定の分割面によって2以上、通常2〜5に分割して、各分割自然骨の3次元CADデータを得たのち、この3次元CADデータに基づいて得られた各分割自然骨の断層撮影情報に基づき、粉末焼結積層造形法によって、各分割自然骨の人工骨モデルを別々に作製する。
(3D CAD data of natural bone)
The natural bone 3D CAD data can be obtained by analyzing the natural bone of each part of the human body, such as magnetic resonance imaging (MRI), X-ray computed tomography (X-ray CT), or ultrasonic computed tomography (ultrasound CT). These are fluoroscopic measurement or external shape measurement using one or two or more combined methods. The three-dimensional shape and dimension data of the natural bone of each part actually measured from the obtained human body are, for example, medical digital image and communication (DICOM, Digital Imaging and Communications in Medicine) data, and solid type STL (Standard By converting to format data, it becomes possible to apply to the powder sintering additive manufacturing method, and based on this data, the laser light in the powder sintering additive manufacturing apparatus can be operated.
In the present invention, the three-dimensional CAD data of the natural bone is divided into two or more, usually 2 to 5 by a predetermined dividing plane, and the three-dimensional CAD data of each divided natural bone is obtained. Based on the tomographic information of each divided natural bone obtained based on the data, artificial bone models of each divided natural bone are separately produced by the powder sintering additive manufacturing method.

(粉末焼結材料)
本発明の人工骨モデルの製造方法において用いる粉末焼結材料は、レーザ光の照射により焼結する材料であって、合成樹脂粉末30〜90質量%と無機充填剤10〜70質量%からなり、好ましくは合成樹脂粉末50〜80質量%と無機充填剤20〜50質量%からなる。合成樹脂粉末が30質量%未満で無機充填剤が70質量%を超えると、得られる人工骨モデルが硬く、脆くなるとともに、自然骨の切削性から外れるおそれがある。合成樹脂粉末が90質量%を超え無機充填剤が10質量%未満であると、得られる各分割人工骨モデルの切削性が不良となるおそれがある。合成樹脂粉末と無機充填剤の配合比を調整することにより、得られる人工骨モデルの硬軟や柔脆の程度を調節することができるので、硬い老人の骨から、軟らかい子供の骨まで、目的に応じた人工骨モデルを作製することができる。
(Powder sintered material)
The powder sintered material used in the method for producing an artificial bone model of the present invention is a material that is sintered by laser light irradiation, and is composed of synthetic resin powder 30 to 90% by mass and inorganic filler 10 to 70% by mass, Preferably, it consists of synthetic resin powder 50-80 mass% and inorganic filler 20-50 mass%. If the synthetic resin powder is less than 30% by mass and the inorganic filler exceeds 70% by mass, the resulting artificial bone model becomes hard and brittle, and may deviate from the machinability of natural bone. If the synthetic resin powder exceeds 90 mass% and the inorganic filler is less than 10 mass%, the machinability of each obtained divided artificial bone model may be poor. By adjusting the blending ratio of synthetic resin powder and inorganic filler, it is possible to adjust the degree of softness and softness of the resulting artificial bone model, so that it can be used for hard bones of elderly people and bones of soft children. A corresponding artificial bone model can be produced.

<合成樹脂粉末>
本発明方法に用いる合成樹脂粉末に特に制限はなく、例えば、ナイロン、ポリカーボネート、ポリエステル、ポリアセタール、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブチレン、ABS樹脂、セルロース系樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂などを挙げることができる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよいが、これらの中で、ナイロンを好適に用いることができ、ナイロン11を特に好適に用いることができる。
本発明方法においては、合成樹脂粉末の微粒子が球状であることが好ましい。合成樹脂粉末の微粒子を球状とすることにより、均一な厚みで空隙率の小さい粉末焼結材料の薄層を、再現性よく形成することができる。
また、本発明においては、得られた各分割人工骨モデルの分割面に露出している開口から、焼結していない粉末を除去する必要があるが、該合成樹脂粉末の微粒子が球状であれば、焼結していない粉末の除去が容易となる。
<Synthetic resin powder>
The synthetic resin powder used in the method of the present invention is not particularly limited. For example, nylon, polycarbonate, polyester, polyacetal, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutylene, ABS resin, cellulose resin, acrylic resin, epoxy resin, fluorine Examples thereof include resins. One of these may be used alone, or two or more may be used in combination. Among these, nylon can be preferably used, and nylon 11 can be particularly preferably used.
In the method of the present invention, the fine particles of the synthetic resin powder are preferably spherical. By making the fine particles of the synthetic resin powder spherical, a thin layer of a powder sintered material having a uniform thickness and a small porosity can be formed with good reproducibility.
Further, in the present invention, it is necessary to remove the unsintered powder from the openings exposed on the divided surfaces of the obtained divided artificial bone models, but the fine particles of the synthetic resin powder should be spherical. In this case, it becomes easy to remove the unsintered powder.

合成樹脂粉末の微粒子の大きさに特に制限はないが、平均粒径5〜200μmであることが好ましく、平均粒径20〜120μmであることがより好ましく、平均粒径40〜90μmであることがさらに好ましい。平均粒径が5μm未満の合成樹脂粉末は、製造が容易でなく、コスト高になるおそれがある。合成樹脂粉末の平均粒径が200μmを超えると、得られる人工骨モデルの均一性が低下し、切削性が不良となるおそれがあり、また開口からの除去性が低下するおそれがある。   Although there is no restriction | limiting in particular in the magnitude | size of the microparticles | fine-particles of synthetic resin powder, it is preferable that it is an average particle diameter of 5-200 micrometers, it is more preferable that it is average particle diameter of 20-120 micrometers, and it is that average particle diameter is 40-90 micrometers. Further preferred. Synthetic resin powder having an average particle size of less than 5 μm is not easy to produce and may increase costs. When the average particle size of the synthetic resin powder exceeds 200 μm, the uniformity of the resulting artificial bone model is lowered, the cutting performance may be poor, and the removability from the opening may be lowered.

<無機充填剤>
本発明方法に用いる無機充填剤に特に制限はなく、例えば、タルク、炭酸カルシウム、ガラスビーズ、シリカ、クレー、カオリン、硫酸バリウム、ウォラストナイト、雲母、酸化チタン、ケイソウ土、ヒドロキシアパタイト、金属粉末などを挙げることができる。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよいが、これらの中で、ガラスビーズは、切削性の良好な人工骨モデルを得ることができるので、特に好適に用いることができる。
<Inorganic filler>
There are no particular limitations on the inorganic filler used in the method of the present invention. For example, talc, calcium carbonate, glass beads, silica, clay, kaolin, barium sulfate, wollastonite, mica, titanium oxide, diatomaceous earth, hydroxyapatite, metal powder And so on. One of these may be used alone, or two or more may be used in combination, but among these, glass beads can obtain an artificial bone model with good cutting properties. It can be used suitably.

<レーザ光>
本発明方法に用いるレーザ光に特に制限はなく、例えば、CO2レーザ、YAGレーザ、エキシマレーザ、He−Cdレーザ、半導体励起固体レーザなどを挙げることができる。これらの中で、CO2レーザは、操作が簡単で、制御が容易なので、特に好適に用いることができる。これらのレーザは、1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。使用するレーザの種類によって、製造時間、粉末焼結材料の結合の程度、得られる人工骨モデルの気孔率などを調節することができる。
本発明方法において、粉末焼結材料にレーザ光を照射するときの雰囲気に特に制限はなく、例えば、水素、ヘリウム、アルゴン、窒素などのガス中とすることができ、あるいは、大気中とすることもできる。雰囲気を不活性ガスとすることにより、粉末焼結材料の酸化や腐食を防止するとともに、レーザ光照射による成形体の過熱による変形を防止することができる。
<Laser light>
There is no particular limitation on the laser beam used in the method of the present invention, and examples thereof include a CO 2 laser, a YAG laser, an excimer laser, a He—Cd laser, and a semiconductor excitation solid laser. Among these, the CO 2 laser is particularly suitable because it is easy to operate and easy to control. These lasers can be used alone or in combination of two or more. Depending on the type of laser used, the manufacturing time, the degree of bonding of the powdered sintered material, the porosity of the resulting artificial bone model, etc. can be adjusted.
In the method of the present invention, the atmosphere when the powder sintered material is irradiated with laser light is not particularly limited, and can be, for example, in a gas such as hydrogen, helium, argon, nitrogen, or in the atmosphere. You can also. By making the atmosphere an inert gas, oxidation and corrosion of the powder sintered material can be prevented, and deformation due to overheating of the molded body due to laser light irradiation can be prevented.

(各分割人工骨モデルの作製方法)
本発明の人工骨モデルの作製方法においては、各分割自然骨の人工骨モデルを、別々に下記のようにして作製する。
前述した粉末焼結材料を薄層状に展開し、薄層状に展開した1層分の粉末焼結材料に、各分割自然骨の断層撮影情報に基づく外観形状及び内部構造形状をレーザ光により照射して、薄層状に展開した1層分の粉末焼結材料の該レーザ光の照射部分を焼結し、さらに、1層分の粉末焼結材料の薄層状の展開と、自然骨の断層撮影情報に基づく外観形状及び内部構造形状をレーザ光により照射して薄層状に展開した1層分の粉末焼結材料の焼結とを反復して繰り返すことにより、各分割自然骨の外観形状と内部構造形状を三次元的に複製した各部分の人工骨モデルを別々に製造する。この際、積層ピッチは、通常0.03〜0.2mm程度である。
(Production method for each artificial bone model)
In the method for producing an artificial bone model of the present invention, artificial bone models of each divided natural bone are separately produced as follows.
The powder sintered material described above is developed into a thin layer, and the appearance shape and the internal structure shape based on the tomographic information of each divided natural bone are irradiated to the powder sintered material for one layer developed into a thin layer with a laser beam. Then, the portion irradiated with the laser light of the powder sintered material for one layer developed in a thin layer is sintered, and further, the thin layer development of the powder sintered material for one layer and tomography information of natural bone The appearance shape and internal structure of each divided natural bone are repeatedly obtained by repeatedly repeating the sintering of one layer of powder sintered material that is developed into a thin layer by irradiating the appearance shape and internal structure shape based on An artificial bone model of each part whose shape is three-dimensionally replicated is manufactured separately. At this time, the stacking pitch is usually about 0.03 to 0.2 mm.

[自然骨と酷似した切削性を有する人工骨モデルの作製]
前述のようにして得られた、各分割人工骨モデルの分割面に露出している開口から、焼結していない粉末を、該人工骨モデルを振るなどして除去してから、全ての各分割人工骨モデルを、分割面で接着剤により接着して一体化することにより、自然骨と酷似した切削性を有する人工骨モデルが得られる。
前記接着剤については、各分割人工骨モデルを密着性よく接合し得る材料であれば、無機系接着剤及び有機系接着剤のいずれも用いることができる。
また、各分割人工骨モデルの分割面に露出している開口から焼結していない粉末を除去してから、除去された空孔の内面を、解剖学的重要部位を示すなどの目的で着色することができる。
[Production of artificial bone model with cutting ability very similar to natural bone]
After removing the unsintered powder by shaking the artificial bone model from the openings exposed on the dividing surface of each divided artificial bone model obtained as described above, By integrating the divided artificial bone model by bonding with an adhesive on the divided surface, an artificial bone model having cutting ability very similar to natural bone can be obtained.
As for the adhesive, both inorganic adhesives and organic adhesives can be used as long as they can join the divided artificial bone models with good adhesion.
In addition, after removing the unsintered powder from the openings exposed on the split surface of each split artificial bone model, the inner surface of the removed holes is colored for the purpose of indicating important anatomical sites. can do.

本発明の方法で製造された人工骨モデルは、自然骨と酷似した切削性を有するのみならず、内部空間構造を空間として再現し、かつ解剖学的重要部位が着色してあり、しかも手術手技の教育訓練や、術前治療計画の検討などで削開を行う場合、各分割人工骨モデルの接合面で削開を行うことで、未焼結の粉末が出ることがなく、かつ着色された重要部位も確認できることから、手術・手技の教育訓練用として、あるいは術前治療計画の検討用などとして有用である。   The artificial bone model manufactured by the method of the present invention not only has a cutting ability very similar to that of natural bone, but also reproduces the internal space structure as a space, and anatomically important parts are colored. When cutting in training and studying preoperative treatment plans, etc., the unsintered powder was not produced and colored by cutting at the joint surface of each divided artificial bone model Since important parts can be confirmed, it is useful for education and training of surgery and procedures, or for studying preoperative treatment plans.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、この例によってなんら限定されるものではない。
実施例1
成人男子の側頭骨を、X線コンピュータ断層撮影して得られた3次元CADデータを、所定の分割面によって2つに分割して、各分割側頭骨の3次元CADデータを得たのち、該3次元CADデータに基づいて得られた各分割側頭骨の断層撮影情報を、ソフトウェア[Materialise社、Mimics]を用いて造形用データに変換した。このデータを造形装置に入力し、積層ピッチ0.10mmで粉末焼結材料を逐次積層焼結し、各分割側頭骨の人工骨モデルを別々に作製した。
なお、粉末焼結材料として、平均粒径58μmの球状のナイロン11の粉末70質量%と、平均粒径60μmのガラスビーズ30質量%の混合物を用い、造形装置として、100W炭酸ガスレーザを備えた粉末焼結積層造形装置[3D Systems社、Vanguard HS]を用いた。
次に、上記のようにして得られた2つの分割側頭骨の人工骨モデルを振って、分割面に露出している開口から、焼結していない粉末を除去した。
図1は、接合前の2つの分割側頭骨の人工骨モデルの斜視図である。
次に、上記2つの分割側頭骨の人工骨モデルを、分割面でシアノアクリレート系接着剤で接着して、一体化し、ヒト側頭骨の人工骨モデルを得た。
図2に、一体化されたヒト側頭骨の人工骨モデルの斜視図を示す。図2(a)は上面から見た斜視図、図2(b)は側面から見た斜視図、図2(c)は下面から見た斜視図である。なお、符号Aは重要部位を示す黄色着色部である。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example.
Example 1
After the 3D CAD data obtained by X-ray computed tomography of the adult male temporal bone is divided into two by a predetermined dividing plane, the 3D CAD data of each divided temporal bone is obtained. The tomographic information of each divided temporal bone obtained based on the three-dimensional CAD data was converted into modeling data using software [Materialise, Mimics]. This data was input into the modeling apparatus, and the powder sintered material was sequentially laminated and sintered at a lamination pitch of 0.10 mm, and artificial bone models of each divided temporal bone were separately produced.
A powder comprising a spherical nylon 11 powder of 70% by mass with an average particle size of 58 μm as a powder sintering material and 30% by mass of glass beads with an average particle size of 60 μm, and a powder equipped with a 100 W carbon dioxide laser as a modeling apparatus. A sintered additive manufacturing apparatus [3D Systems, Vanguard HS] was used.
Next, the two divided temporal bone artificial bone models obtained as described above were shaken to remove the unsintered powder from the openings exposed on the divided surfaces.
FIG. 1 is a perspective view of an artificial bone model of two divided temporal bones before joining.
Next, the above-mentioned two divided temporal bone artificial bone models were bonded and integrated with a cyanoacrylate adhesive on the divided surface to obtain a human temporal bone artificial bone model.
FIG. 2 is a perspective view of an integrated human temporal bone artificial bone model. 2A is a perspective view seen from the top surface, FIG. 2B is a perspective view seen from the side surface, and FIG. 2C is a perspective view seen from the bottom surface. In addition, the code | symbol A is a yellow coloring part which shows an important site | part.

実施例2
実施例1と同様にして、2つに分割された、ヒトの側頭骨の人工骨モデルを作製したのち、それぞれ該人工骨モデルを振って、分割面に露出している開口から、焼結していない粉末を除去した。
次いで、出来上がった側頭骨の人工骨モデルの2つの部位の内部構造をそれぞれ、顔面神経管については黄色の合成着色料で、そして内耳(蝸牛、前庭、半規管)については、赤色の合成着色料にて着色した。
図3は、2つに分割され、重要部位が着色された側頭骨の人工骨モデルの斜視図である(図3(a)及び図3(b))。
次に、上記の分割された側頭骨の人工骨モデル図3(b)を反転させて、その分割面と、上記の分割された側頭骨の人工骨モデル図3(a)図の分割面とを、シアノアクリレート系接着剤により接着して一体化し、ヒト側頭骨の人工骨モデルを得た。
なお、図3(a)及び図3(b)において、符号A及びBは、それぞれ黄色着色部及び赤色着色部である。
Example 2
In the same manner as in Example 1, after producing an artificial bone model of a human temporal bone divided into two, each artificial bone model was shaken and sintered from the opening exposed on the divided surface. Not powder was removed.
The internal structure of the two parts of the resulting temporal bone artificial bone model is then converted to the yellow synthetic colorant for the facial nerve tube and the red synthetic colorant for the inner ear (cochlea, vestibule, semicircular canal), respectively. And colored.
FIG. 3 is a perspective view of an artificial bone model of a temporal bone that has been divided into two and colored important parts (FIGS. 3A and 3B).
Next, the above-mentioned divided temporal bone artificial bone model FIG. 3B is inverted, and the divided surface and the divided temporal bone artificial bone model shown in FIG. Were bonded and integrated with a cyanoacrylate adhesive to obtain a human temporal bone artificial bone model.
In FIGS. 3A and 3B, symbols A and B are a yellow colored portion and a red colored portion, respectively.

本発明の方法で製造された人工骨モデルは、自然骨に酷似した切削性を有する人工骨モデルであって、手術・手技の教育訓練用として、あるいは術前治療計画の検討用などとして用いられる。   The artificial bone model manufactured by the method of the present invention is an artificial bone model having cutting ability similar to that of natural bone, and is used for education and training of surgery / procedures or for examination of preoperative treatment plans. .

A 黄色着色部
B 赤色着色部
A Yellow colored part B Red colored part

Claims (5)

自然骨の3次元CADデータを所定の分割面によって2以上に分割して、各分割自然骨の3次元CADデータを得て、該3次元CADデータに基づいて得た各分割自然骨の断層撮影情報に基づき、各分割自然骨の人工骨モデルを別々に製造したのち、各分割自然骨の人工骨モデルを接着する自然骨の人工骨モデルの製造方法であって、
各分割自然骨の人工骨モデルを別々に製造するに当たり、合成樹脂粉末30〜90質量%と無機充填剤10〜70質量%からなる粉末焼結材料を薄層状に展開し、薄層状に展開した1層分の粉末焼結材料に、各分割自然骨の断層撮影情報に基づく外観形状及び内部構造形状をレーザ光により照射して、薄層状に展開した1層分の粉末焼結材料の該レーザ光の照射部分を焼結し、さらに、1層分の粉末焼結材料の薄層状の展開と、自然骨の断層撮影情報に基づく外観形状及び内部構造形状をレーザ光により照射して薄層状に展開した1層分の粉末焼結材料の焼結とを反復して繰り返すことにより、各分割自然骨の外観形状と内部構造形状を三次元的に複製した各部分の人工骨モデルを別々に製造し、各分割人工骨モデルの分割面に露出している開口から焼結していない粉末を除去してから、全ての各分割人工骨モデルを分割面で接着して一体的人工骨モデルを形成することを特徴とする自然骨と酷似した切削性を有する人工骨モデルの製造方法。
Three-dimensional CAD data of natural bone is divided into two or more by a predetermined dividing plane, three-dimensional CAD data of each divided natural bone is obtained, and tomography of each divided natural bone obtained based on the three-dimensional CAD data Based on the information, a method for producing a natural bone artificial bone model in which an artificial bone model of each divided natural bone is manufactured separately and then bonded to each divided natural bone artificial bone model,
In separately producing artificial bone models of each divided natural bone, a powder sintered material composed of 30 to 90% by mass of a synthetic resin powder and 10 to 70% by mass of an inorganic filler was developed into a thin layer and developed into a thin layer. The laser of the powder sintered material for one layer developed in a thin layer by irradiating the powder sintered material for one layer with the laser beam on the appearance shape and internal structure shape based on the tomographic information of each divided natural bone Sinter the irradiated part of the light, and further develop a thin layer of powder sintering material for one layer and irradiate the external shape and internal structure shape based on tomography information of natural bone with laser light into a thin layer By repeatedly repeating the sintering of the expanded powder sintering material for one layer, the artificial bone model of each part that replicates the appearance shape and internal structure shape of each divided natural bone three-dimensionally is manufactured separately. And exposed on the split surface of each split artificial bone model After removing unsintered powder from the mouth, all the divided artificial bone models are bonded at the dividing surface to form an integral artificial bone model, which has a cutting ability very similar to natural bone A method for manufacturing an artificial bone model.
各分割人工骨モデルの分割面に露出している開口から焼結していない粉末を除去してから、除去された空孔の内面を着色する請求項1記載の自然骨と酷似した切削性を有する人工骨モデルの製造方法。   The machinability that is very similar to that of natural bone according to claim 1, wherein unsintered powder is removed from the openings exposed on the divided surfaces of each divided artificial bone model, and then the inner surface of the removed pores is colored. A method for manufacturing an artificial bone model. 合成樹脂粉末の微粒子が、球状である請求項1又は2記載の自然骨と酷似した切削性を有する人工骨モデルの製造方法。   The method for producing an artificial bone model having a cutting property very similar to natural bone according to claim 1 or 2, wherein the fine particles of the synthetic resin powder are spherical. 人工骨モデルが、教育訓練用である請求項1〜3の何れかに記載の自然骨と酷似した切削性を有する人工骨モデルの製造方法。   The method for producing an artificial bone model having cutting properties very similar to natural bone according to any one of claims 1 to 3, wherein the artificial bone model is for education and training. 人工骨モデルが、術前治療計画の検討用である請求項1〜3の何れかに記載の自然骨と酷似した切削性を有する人工骨モデルの製造方法。   The method for producing an artificial bone model having a cutting property very similar to that of natural bone according to any one of claims 1 to 3, wherein the artificial bone model is for examination of a preoperative treatment plan.
JP2010115447A 2010-05-19 2010-05-19 Manufacturing method of artificial bone model having cutting ability very similar to natural bone Active JP5215350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115447A JP5215350B2 (en) 2010-05-19 2010-05-19 Manufacturing method of artificial bone model having cutting ability very similar to natural bone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115447A JP5215350B2 (en) 2010-05-19 2010-05-19 Manufacturing method of artificial bone model having cutting ability very similar to natural bone

Publications (2)

Publication Number Publication Date
JP2011242649A JP2011242649A (en) 2011-12-01
JP5215350B2 true JP5215350B2 (en) 2013-06-19

Family

ID=45409344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115447A Active JP5215350B2 (en) 2010-05-19 2010-05-19 Manufacturing method of artificial bone model having cutting ability very similar to natural bone

Country Status (1)

Country Link
JP (1) JP5215350B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ894300A0 (en) * 2000-07-24 2000-08-17 Commonwealth Of Australia, The A surrogate
JP2003070816A (en) * 2001-08-30 2003-03-11 Pentax Corp Designing method for implant, and implant
JP3927487B2 (en) * 2002-12-02 2007-06-06 株式会社大野興業 Manufacturing method of artificial bone model

Also Published As

Publication number Publication date
JP2011242649A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP3927487B2 (en) Manufacturing method of artificial bone model
Jin et al. 3D printing of physical organ models: recent developments and challenges
Negi et al. Basics and applications of rapid prototyping medical models
Jardini et al. Improvement in cranioplasty: advanced prosthesis biomanufacturing
Malik et al. Three-dimensional printing in surgery: a review of current surgical applications
Suzuki et al. Rapid prototyping of temporal bone for surgical training and medical education
Torres et al. Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education
Thompson et al. X-ray computed tomography and additive manufacturing in medicine: a review
Wanibuchi et al. Skull base training and education using an artificial skull model created by selective laser sintering
WO2014002284A1 (en) Bone-affixing screw template and method for producing same
Daoud et al. Establishing a point-of-care additive manufacturing workflow for clinical use
Dobroś et al. Application of 3D‐printed teeth models in teaching dentistry students: a scoping review
Patel et al. Medical 3D printing using desktop inverted vat photopolymerization: Background, clinical applications, and challenges
Hadad et al. The impact of 3D printing on oral and maxillofacial surgery
Wersényi et al. Cost-effective 3D scanning and printing technologies for outer ear reconstruction: Current status
JP5215350B2 (en) Manufacturing method of artificial bone model having cutting ability very similar to natural bone
KR100469086B1 (en) Device for making models of 3 dimensional bone tissue or soft tissue and application method and model thereof
Malyala et al. Manufacturing of patient specific AM medical models for complex surgeries
Kashapov et al. The application of additive technologies in creation a medical simulator-trainer of the human head operating field
Suzuki et al. Rapidly prototyped temporal bone model for otological education
AU2021101703A4 (en) 3d printing of cost-effective human skull models and skull implants
Brennan Production of anatomical models from CT scan data
Mian et al. Three‐dimensional printing in oral and maxillofacial surgery: Current landscape and future directions
Gandapur et al. Orthopaedics and additive manufacturing: The start of a new era
Dincă et al. Additive manufacturing in maxillofacial reconstruction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121031

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20121031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121031

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121101

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Ref document number: 5215350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250