JP5213227B2 - Method for producing amorphous carbon thin film - Google Patents

Method for producing amorphous carbon thin film Download PDF

Info

Publication number
JP5213227B2
JP5213227B2 JP2007267780A JP2007267780A JP5213227B2 JP 5213227 B2 JP5213227 B2 JP 5213227B2 JP 2007267780 A JP2007267780 A JP 2007267780A JP 2007267780 A JP2007267780 A JP 2007267780A JP 5213227 B2 JP5213227 B2 JP 5213227B2
Authority
JP
Japan
Prior art keywords
thin film
temperature
amorphous carbon
supercritical
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007267780A
Other languages
Japanese (ja)
Other versions
JP2009096650A (en
Inventor
透 前川
ラントネン ニルキ
孝治 石井
義賢 中島
達郎 花尻
Original Assignee
学校法人 東洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 東洋大学 filed Critical 学校法人 東洋大学
Priority to JP2007267780A priority Critical patent/JP5213227B2/en
Priority to EP08792703.4A priority patent/EP2186775A4/en
Priority to US12/675,361 priority patent/US20100243426A1/en
Priority to PCT/JP2008/065095 priority patent/WO2009028451A1/en
Publication of JP2009096650A publication Critical patent/JP2009096650A/en
Application granted granted Critical
Publication of JP5213227B2 publication Critical patent/JP5213227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

本発明はアモルファスカーボン薄膜作製方法に関する。   The present invention relates to a method for producing an amorphous carbon thin film.

半導体作製の際に利用される低誘電率(1ow-k)薄膜作製技術は、半導体産業において重要な技術の一つである。従来の化学蒸着(CVD)法による薄膜作製では、原料の炭化水素などをチャンバー内で900℃程度に加熱・分解し、シリコンなどの基板上に堆積させる。   Low dielectric constant (1ow-k) thin film fabrication technology used in semiconductor fabrication is one of the important technologies in the semiconductor industry. In the conventional thin film formation by chemical vapor deposition (CVD) method, a raw material hydrocarbon or the like is heated and decomposed to about 900 ° C. in a chamber and deposited on a substrate such as silicon.

ところが、CVD法では加熱温度が900℃以上であることより耐熱性のない薄膜作製が困難であった。またCVD法に用いられる製造装置が大型でしかも高価であった。そのため、簡易にしかも安価に薄膜を作製する方法が求められていた。   However, in the CVD method, since the heating temperature is 900 ° C. or higher, it is difficult to produce a thin film having no heat resistance. Moreover, the manufacturing apparatus used for the CVD method is large and expensive. Therefore, a simple and inexpensive method for producing a thin film has been demanded.

上述の課題を解決する手段としていくつかの技術が提案されている(例えば、特許文献1参照。)が、改善の余地が残されていた。
特開2006−144084号公報
Several techniques have been proposed as means for solving the above problems (for example, see Patent Document 1), but there is still room for improvement.
JP 2006-144084 A

本発明は、簡易にしかも安価に作製することができるアモルファスカーボン薄膜作製方法を提供することを目的とする。   An object of this invention is to provide the amorphous carbon thin film preparation method which can be produced simply and cheaply.

本発明の特徴は、超臨界流体セルの流体層内に二酸化炭素及び炭化水素を封入し超臨界状態を形成する工程と、流体層内に紫外波長のレーザー光を照射する工程と、を含むアモルファスカーボン薄膜作製方法を要旨とする。   A feature of the present invention is an amorphous structure including a step of enclosing carbon dioxide and hydrocarbons in a fluid layer of a supercritical fluid cell to form a supercritical state, and a step of irradiating the fluid layer with laser light having an ultraviolet wavelength. The gist of the carbon thin film manufacturing method.

本発明によれば、簡易にしかも安価に作製することができるアモルファスカーボン薄膜作製方法が提供される。   The present invention provides a method for producing an amorphous carbon thin film that can be produced easily and inexpensively.

以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。尚、図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。   Hereinafter, the present invention will be described with reference to embodiments, but the present invention is not limited to the following embodiments. In addition, about what has the same function or a similar function in a figure, the same or similar code | symbol is attached | subjected and description is abbreviate | omitted.

(アモルファスカーボン薄(a−c)膜作成装置)
実施形態に係るアモルファスカーボン薄膜作製方法に用いられるアモルファスカーボン薄膜作成装置1は、超臨界雰囲気が形成される流体層5を備える超臨界流体セル6と、超臨界流体セル6の上部に配置された合成石英ガラス4と、流体層5の底部に配置され薄膜が成長する基板8と、超臨界流体セル6にレーザー光を照射するレーザー2と、光源からのレーザー光の進路を変更するミラー3と、さらに超臨界流体セル6の周囲に配置された温度調節器9と、を有する。
薄膜が成長することとなる基板8としては、シリコン基板を用いることができる。
(Amorphous carbon thin (ac) film making device)
An amorphous carbon thin film production apparatus 1 used for an amorphous carbon thin film production method according to an embodiment is disposed on a supercritical fluid cell 6 including a fluid layer 5 in which a supercritical atmosphere is formed, and on the supercritical fluid cell 6. A synthetic quartz glass 4, a substrate 8 disposed on the bottom of the fluid layer 5 on which a thin film grows, a laser 2 for irradiating the supercritical fluid cell 6 with laser light, and a mirror 3 for changing the path of the laser light from the light source; And a temperature controller 9 disposed around the supercritical fluid cell 6.
As the substrate 8 on which the thin film is to be grown, a silicon substrate can be used.

(アモルファスカーボン薄膜作製方法)
(イ)図1に示すようなアモルファスカーボン薄膜作成装置1を用意する。
(Amorphous carbon thin film production method)
(A) An amorphous carbon thin film forming apparatus 1 as shown in FIG. 1 is prepared.

(ロ)超臨界流体セル6の流体層5内に二酸化炭素及び炭化水素を封入する。薄膜の原料源となる炭化水素としては、ベンゼン、1,3,5−トリクロロベンゼン等のベンゼン類が挙げられる。ベンゼン類は超臨界二酸化炭素内における分散性が高いことから、反応溶媒としての超臨界二酸化炭素との相性が良いからである。 (B) Carbon dioxide and hydrocarbons are enclosed in the fluid layer 5 of the supercritical fluid cell 6. Examples of the hydrocarbon that is a raw material source for the thin film include benzenes such as benzene and 1,3,5-trichlorobenzene. This is because benzenes have high dispersibility in supercritical carbon dioxide, and thus have good compatibility with supercritical carbon dioxide as a reaction solvent.

(ハ)超臨界流体セル6の流体層5内で超臨界状態を形成する。一般に二酸化炭素の臨界点では、臨界密度466kg/m、臨界圧力7.38MPa、臨界温度304.2Kになる。よって、超臨界流体セル6内の温度、圧力を上記の数値程度に調整することで二酸化炭素の超臨界状態を形成することができる。 (C) A supercritical state is formed in the fluid layer 5 of the supercritical fluid cell 6. Generally, at the critical point of carbon dioxide, the critical density is 466 kg / m 3 , the critical pressure is 7.38 MPa, and the critical temperature is 304.2K. Therefore, the supercritical state of carbon dioxide can be formed by adjusting the temperature and pressure in the supercritical fluid cell 6 to the above numerical values.

この場合、超臨界二酸化炭素温度をT、臨界温度をTcとしたときの温度差T−Tcが3℃以上、より好ましくは5℃以上になるように流体層5内の温度を調整することが都合がよい。平坦な薄膜を形成することができるからである。   In this case, the temperature in the fluid layer 5 can be adjusted so that the temperature difference T-Tc when the supercritical carbon dioxide temperature is T and the critical temperature is Tc is 3 ° C. or more, more preferably 5 ° C. or more. convenient. This is because a flat thin film can be formed.

流体層5内に入れるベンゼン類の種類・量により臨界温度が変化し、絶対的な温度を示すことが難しいので、ここでは流体層5内の温度として二成分混合系の気液臨界点温度からの差を記載している。この場合、特に制限はないが、後に説明する実施例の欄に示す1,3,5−トリクロロベンゼンを混合させた場合では、流体層5内の温度を臨界温度(35℃)よりも3℃以上高い38℃以上に調整することが好ましく、5℃以上高い40℃以上に調整することがより好ましい。   Since the critical temperature varies depending on the type and amount of benzenes put into the fluid layer 5 and it is difficult to indicate the absolute temperature, the temperature in the fluid layer 5 is determined from the gas-liquid critical point temperature of the binary mixture system here. The difference is described. In this case, although there is no particular limitation, when 1,3,5-trichlorobenzene shown in the column of an example described later is mixed, the temperature in the fluid layer 5 is 3 ° C. higher than the critical temperature (35 ° C.). The temperature is preferably adjusted to 38 ° C. or higher, and more preferably 5 ° C. or higher to 40 ° C. or higher.

より均一な薄膜を得るには電場をかけることが好ましい。具体的には0.40kV/mmよりも高い電場をかけることが好ましく、より好ましくは0.50kV/mm以上、さらに好ましくは0.60kV/mm以上の電場をかけることが好ましい。   In order to obtain a more uniform thin film, it is preferable to apply an electric field. Specifically, it is preferable to apply an electric field higher than 0.40 kV / mm, more preferably 0.50 kV / mm or more, and still more preferably 0.60 kV / mm or more.

(ニ)流体層5内に紫外波長のレーザー光を照射する。紫外波長のレーザー光としては、例えばYAG−THG(3次元周波):波長355nm、YAG−THG(4次元周波):波長266nm、KrFエキシマ:波長248nm等が挙げられる。 (D) Irradiating the fluid layer 5 with laser light having an ultraviolet wavelength. Examples of ultraviolet laser light include YAG-THG (three-dimensional frequency): wavelength 355 nm, YAG-THG (four-dimensional frequency): wavelength 266 nm, KrF excimer: wavelength 248 nm, and the like.

半導体作製の際に利用される低誘電率(1ow-k)薄膜作製技術は、半導体産業において重要な技術の一つである。CVD法による薄膜作製では、原料の炭化水素などをチャンバー内で900℃程度に加熱・分解し、シリコンなどの基板上に堆積させていた。ところが、本実施形態によれば、従来の薄膜作製技術とは異なり、35℃程度の室温で薄膜作製が可能である。また本実施形態によれば、比較的に安価でしかも入手容易なベンゼン類を超臨界二酸化炭素中に分散させ、YAGレーザーを照射することにより、分散されているベンゼン類を光分解し、超臨界流体セル6内に設置したシリコン基板に堆積させることができる。つまり本実施形態によれば、簡易にしかも安価で薄膜を作製することができる。   Low dielectric constant (1ow-k) thin film fabrication technology used in semiconductor fabrication is one of the important technologies in the semiconductor industry. In the thin film production by the CVD method, a raw material hydrocarbon or the like is heated and decomposed to about 900 ° C. in a chamber and deposited on a substrate such as silicon. However, according to the present embodiment, unlike a conventional thin film production technique, a thin film can be produced at a room temperature of about 35 ° C. In addition, according to the present embodiment, benzenes that are relatively inexpensive and easily available are dispersed in supercritical carbon dioxide, and irradiated with a YAG laser, the dispersed benzenes are photodecomposed and supercritical. It can be deposited on a silicon substrate installed in the fluid cell 6. That is, according to this embodiment, a thin film can be produced easily and inexpensively.

また本実施形態によれば、低温でアモルファスカーボン薄膜を作製することができるため、熱に弱いタンパク質を用いたバイオ半導体チップなどの作製に使用され得る。   Moreover, according to this embodiment, since an amorphous carbon thin film can be produced at a low temperature, it can be used for producing a biosemiconductor chip or the like using a heat-sensitive protein.

(実施例1)
実施形態と同様の方法により以下の条件で図1のアモルファスカーボン薄膜作成装置1を用いて薄膜を作製した。
条件:反応溶媒として二酸化炭素、炭素源(炭化水素)として1,3,5−トリクロロベンゼン、紫外波長のレーザー光としてYAG−THG4次元周波(波長266nm)を用いて、流体層内温度:40℃、臨界密度で実験を行った。
Example 1
A thin film was produced by the same method as in the embodiment using the amorphous carbon thin film production apparatus 1 of FIG. 1 under the following conditions.
Conditions: carbon dioxide as a reaction solvent, 1,3,5-trichlorobenzene as a carbon source (hydrocarbon), YAG-THG four-dimensional frequency (wavelength 266 nm) as an ultraviolet wavelength laser beam, fluid layer temperature: 40 ° C. The experiment was conducted at a critical density.

得られた薄膜について、原子間力顕微鏡(AFM)観察、Raman散乱計による薄膜の構造解析、エネルギー分散型X線分析装置(EDS)を用いた成分分析を行った。得られた結果を図3、図4、図5に示す。   The obtained thin film was subjected to atomic force microscope (AFM) observation, structural analysis of the thin film with a Raman scatterometer, and component analysis using an energy dispersive X-ray analyzer (EDS). The obtained results are shown in FIG. 3, FIG. 4, and FIG.

(比較例1)
亜臨界状態となるように流体層内温度を25℃、臨界密度にしたことを除いて、実施例1と同様に実験を行った。得られた薄膜について、AFM観察を行った。得られた結果を図2に示す。
実施例1により、二酸化炭素の超臨界状態(35℃程度の室温)において厚さが均一な薄膜が形成されることが示された。一方、比較例1によれば、二酸化炭素の亜臨界状態においては、厚さが均一な薄膜が形成されないことが示された。
(Comparative Example 1)
The experiment was conducted in the same manner as in Example 1 except that the temperature in the fluid layer was adjusted to 25 ° C. and the critical density so as to be in the subcritical state. The obtained thin film was observed with AFM. The obtained results are shown in FIG.
Example 1 showed that a thin film having a uniform thickness was formed in the supercritical state of carbon dioxide (room temperature of about 35 ° C.). On the other hand, according to Comparative Example 1, it was shown that a thin film having a uniform thickness was not formed in the subcritical state of carbon dioxide.

(実施例2、実施例3)、(比較例2、比較例3、)
超臨界流体セル6内のベンゼンが分散された超臨界二酸化炭素の温度と薄膜の均一性等の関係を示すため、炭素源としてベンゼンを用い、T−Tc=0℃、1℃、3℃、5℃としたことを除き、実施例1と同様に実験を行った。得られた薄膜について、AFM観察を行った。得られた結果を図6(比較例2、T−Tc=0℃)、図7(比較例3、T−Tc=1℃)、図8(実施例2、T−Tc=3℃)、図9(実施例3、T−Tc=5℃)に示す。また、薄膜の均一性を定量的に評価するため、AFM観察により得られた画像から計算された薄膜表面高さのRMSを計算した値を図10に示す。
図6〜図9より、超臨界二酸化炭素の温度が高くなるに従い、薄膜表面が均一になることが分かった。
(Example 2, Example 3), (Comparative Example 2, Comparative Example 3,)
In order to show the relationship between the temperature of the supercritical carbon dioxide in which the benzene in the supercritical fluid cell 6 is dispersed and the uniformity of the thin film, benzene is used as the carbon source, T-Tc = 0 ° C., 1 ° C., 3 ° C., The experiment was performed in the same manner as in Example 1 except that the temperature was 5 ° C. The obtained thin film was observed with AFM. FIG. 6 (Comparative Example 2, T-Tc = 0 ° C.), FIG. 7 (Comparative Example 3, T-Tc = 1 ° C.), FIG. 8 (Example 2, T-Tc = 3 ° C.) It shows in FIG. 9 (Example 3, T-Tc = 5 degreeC). Moreover, in order to quantitatively evaluate the uniformity of the thin film, the value obtained by calculating the RMS of the thin film surface height calculated from the image obtained by AFM observation is shown in FIG.
6 to 9, it was found that the surface of the thin film becomes uniform as the temperature of supercritical carbon dioxide increases.

図10より臨界二酸化炭素温度、つまり超臨界流体セル6内の温度の上昇に伴い薄膜表面の均一性が向上していることが分かった。薄膜表面高さのRMSがT−Tc=0℃において、T−Tc=1℃での場合と比較して均一性が向上しているが、この場合臨界タンパク光の発生により二酸化炭素分子が多く分解することによって引き起こされる。しかしながら、薄膜の特性に関しては二酸化炭素分子が分解されたものが多く含まれ不純物となってしまうため、T−Tc=0℃では薄膜にとっては良い条件とはならない。したがって、今回の薄膜作製実験においては、チャンバー内の超臨界二酸化炭素がT−Tc>3℃程度の温度環境で均一なa-c薄膜を作製することが可能であることが分かった。   From FIG. 10, it was found that the uniformity of the surface of the thin film was improved as the critical carbon dioxide temperature, that is, the temperature in the supercritical fluid cell 6 increased. The uniformity of the thin film surface height at T-Tc = 0 ° C. is improved compared to the case at T-Tc = 1 ° C., but in this case, there are many carbon dioxide molecules due to the generation of critical protein light. Caused by disassembling. However, regarding the characteristics of the thin film, since many carbon dioxide molecules decomposed are contained and become impurities, T-Tc = 0 ° C. is not a good condition for the thin film. Therefore, in this thin film production experiment, it was found that it is possible to produce a uniform a-c thin film in a temperature environment where the supercritical carbon dioxide in the chamber is about T-Tc> 3 ° C.

(アモルファスカーボン(a−c)薄膜の表面粗さに関する電場の影響)
電場強度と薄膜の均一性の関係を示すため、電場強度を変化させたことを除いて、実施例3と同様に実験を行った。図11に流体温度T−Tc=5℃において電場強度を変化させた場合のa−c薄膜の表面のRMS変化を示す。電場を強くすることにより、a−c薄膜表面が均一になることがわかった。また、電場強度0.38kV/mmと0.63kV/mmの間に大きな違いが見られ、0.63kV/mmの電場強度では、10倍以上の均一な薄膜を形成することが分かった。
(Effect of electric field on surface roughness of amorphous carbon (ac) thin film)
In order to show the relationship between the electric field strength and the uniformity of the thin film, an experiment was conducted in the same manner as in Example 3 except that the electric field strength was changed. FIG. 11 shows the RMS change of the surface of the a-c thin film when the electric field strength is changed at the fluid temperature T−Tc = 5 ° C. It was found that by increasing the electric field, the surface of the ac thin film becomes uniform. Moreover, a big difference was seen between electric field strength 0.38 kV / mm and 0.63 kV / mm, and it turned out that a 10-fold or more uniform thin film is formed in the electric field strength of 0.63 kV / mm.

(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、1ow-k薄膜には、フッ素含有薄膜が良いとされていることより、1,3,5−トリクロロベンゼンに換えて、ヘキサフルオロベンゼンを超臨界二酸化炭素に分散させても構わない。さらに、超臨界流体セル6内に電場を印加することで、高効率かつ均一に薄膜を作製することができる。   For example, since it is considered that a fluorine-containing thin film is good for the 1ow-k thin film, hexafluorobenzene may be dispersed in supercritical carbon dioxide instead of 1,3,5-trichlorobenzene. Furthermore, a thin film can be produced with high efficiency and uniformity by applying an electric field in the supercritical fluid cell 6.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

アモルファスカーボン薄膜作成装置の概略構成図を示す。The schematic block diagram of an amorphous carbon thin film production apparatus is shown. 比較例1の薄膜についての原子間力顕微鏡(AFM)観察により得られた図を示す。The figure obtained by atomic force microscope (AFM) observation about the thin film of the comparative example 1 is shown. 実施例1の薄膜についてのAFM観察により得られた図を示す。The figure obtained by AFM observation about the thin film of Example 1 is shown. 実施例1の薄膜についてのRaman散乱計による構造解析結果を示す。The structural analysis result by a Raman scatterometer about the thin film of Example 1 is shown. 実施例1の薄膜についてのEDS成分分析結果を示す。The EDS component analysis result about the thin film of Example 1 is shown. 参考例2の薄膜についてのAFM観察により得られた図を示す(T−Tc=0℃)。The figure obtained by AFM observation about the thin film of the reference example 2 is shown (T-Tc = 0 degreeC). 参考例3の薄膜についてのAFM観察により得られた図を示す(T−Tc=1℃)。The figure obtained by AFM observation about the thin film of the reference example 3 is shown (T-Tc = 1 degreeC). 実施例2の薄膜についてのAFM観察により得られた図を示す(T−Tc=3℃)。The figure obtained by the AFM observation about the thin film of Example 2 is shown (T-Tc = 3 degreeC). 実施例3の薄膜についてのAFM観察により得られた図を示す(T−Tc=5℃)。The figure obtained by AFM observation about the thin film of Example 3 is shown (T-Tc = 5 degreeC). AFM観察により得られた画像から計算された薄膜表面高さのRMSを計算した値を示す。The value which calculated RMS of the thin film surface height calculated from the image obtained by AFM observation is shown. AFM観察により得られた画像から計算された薄膜表面高さのRMSを計算した値を示す。The value which calculated RMS of the thin film surface height calculated from the image obtained by AFM observation is shown.

符号の説明Explanation of symbols

1:アモルファスカーボン薄膜作成装置
2:レーザー
3:ミラー
4:合成石英ガラス
5:流体層
6:超臨界流体セル
8:基板
9:温度調節器
1: Amorphous carbon thin film forming apparatus 2: Laser 3: Mirror 4: Synthetic quartz glass 5: Fluid layer 6: Supercritical fluid cell 8: Substrate 9: Temperature controller

Claims (5)

超臨界流体セルの流体層内に二酸化炭素及び炭化水素を封入し、超臨界状態を形成する工程と、
前記流体層内に紫外波長のレーザー光を照射する工程とを含むものであり、
0.50kV/mm以上の電場をかける工程をさらに含むことを特徴とするアモルファスカーボン薄膜作製方法。
Encapsulating carbon dioxide and hydrocarbons in the fluid layer of the supercritical fluid cell to form a supercritical state;
Irradiating the fluid layer with laser light of an ultraviolet wavelength ,
A method for producing an amorphous carbon thin film , further comprising a step of applying an electric field of 0.50 kV / mm or more .
前記炭化水素が、1,3,5−トリクロロベンゼンであることを特徴とする請求項1記載のアモルファスカーボン薄膜作製方法。   The method for producing an amorphous carbon thin film according to claim 1, wherein the hydrocarbon is 1,3,5-trichlorobenzene. 前記炭化水素が、ヘキサフルオロベンゼンであることを特徴とする請求項1記載のアモルファスカーボン薄膜作製方法。   2. The method for producing an amorphous carbon thin film according to claim 1, wherein the hydrocarbon is hexafluorobenzene. 超臨界二酸化炭素温度をT、臨界温度をTcとしたときの温度差T−Tcが3℃以上になるように前記流体層内の温度を調整する工程をさらに含むことを特徴とする請求項1記載のアモルファスカーボン薄膜作製方法。   2. The method of claim 1, further comprising a step of adjusting the temperature in the fluid layer so that a temperature difference T-Tc is 3 ° C. or more when the supercritical carbon dioxide temperature is T and the critical temperature is Tc. The method for producing an amorphous carbon thin film as described. 超臨界二酸化炭素温度をT、臨界温度をTcとしたときの温度差T−Tcが5℃以上になるように前記流体層内の温度を調整する工程をさらに含むことを特徴とする請求項1記載のアモルファスカーボン薄膜作製方法。   2. The method of claim 1, further comprising a step of adjusting the temperature in the fluid layer so that the temperature difference T-Tc is 5 ° C. or more when the supercritical carbon dioxide temperature is T and the critical temperature is Tc. The method for producing an amorphous carbon thin film as described.
JP2007267780A 2007-08-27 2007-10-15 Method for producing amorphous carbon thin film Expired - Fee Related JP5213227B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007267780A JP5213227B2 (en) 2007-10-15 2007-10-15 Method for producing amorphous carbon thin film
EP08792703.4A EP2186775A4 (en) 2007-08-27 2008-08-25 Method for decomposing carbon-containing compound, method for producing carbon microstructure, and method for forming carbon thin film
US12/675,361 US20100243426A1 (en) 2007-08-27 2008-08-25 Method for decomposing carbon-containing compound, method for producing carbon nano/microstructure, and method for producing carbon thin film
PCT/JP2008/065095 WO2009028451A1 (en) 2007-08-27 2008-08-25 Method for decomposing carbon-containing compound, method for producing carbon microstructure, and method for forming carbon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267780A JP5213227B2 (en) 2007-10-15 2007-10-15 Method for producing amorphous carbon thin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012279333A Division JP5392932B2 (en) 2012-12-21 2012-12-21 Method for producing amorphous carbon thin film

Publications (2)

Publication Number Publication Date
JP2009096650A JP2009096650A (en) 2009-05-07
JP5213227B2 true JP5213227B2 (en) 2013-06-19

Family

ID=40700000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267780A Expired - Fee Related JP5213227B2 (en) 2007-08-27 2007-10-15 Method for producing amorphous carbon thin film

Country Status (1)

Country Link
JP (1) JP5213227B2 (en)

Also Published As

Publication number Publication date
JP2009096650A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
Lin et al. Rapid growth of large single‐crystalline graphene via second passivation and multistage carbon supply
Boyd et al. Single-step deposition of high-mobility graphene at reduced temperatures
Han et al. Homogeneous optical and electronic properties of graphene due to the suppression of multilayer patches during CVD on copper foils
Ullah et al. Growth and simultaneous valleys manipulation of two-dimensional MoSe2-WSe2 lateral heterostructure
US20150368111A1 (en) Method and system for graphene formation
US7820131B2 (en) Diamond uses/applications based on single-crystal CVD diamond produced at rapid growth rate
Osipov et al. High-temperature etching of SiC in SF6/O2 inductively coupled plasma
Fan et al. Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films
JP6818755B2 (en) Equipment and methods for plane formation of modifications in solids
Ehlen et al. Narrow photoluminescence and Raman peaks of epitaxial MoS2 on graphene/Ir (1 1 1)
Im et al. Xenon Flash Lamp‐Induced Ultrafast Multilayer Graphene Growth
Ke et al. Nanopores in 2D MoS2: defect-mediated formation and density modulation
JP7444867B2 (en) sp3-bonded carbon material, manufacturing method and use thereof
Momeni et al. A computational framework for guiding the MOCVD-growth of wafer-scale 2D materials
Wu et al. Photo-induced exfoliation of monolayer transition metal dichalcogenide semiconductors
Xie et al. Control of crystallographic orientation in diamond synthesis through laser resonant vibrational excitation of precursor molecules
Kondrashov et al. Controlled graphene synthesis from solid carbon sources
JP5392932B2 (en) Method for producing amorphous carbon thin film
Xiang et al. Unveiling the origin of anomalous low-frequency Raman mode in CVD-grown monolayer WS2
JP5213227B2 (en) Method for producing amorphous carbon thin film
US20040208817A1 (en) Direct surface patterning of carbon
Shahzad et al. Probing Interfacial Surface State Excitons in Nanoscale Synthesized CuxS/MoS2 Heterostructure
JP6493658B2 (en) Method for producing highly water-repellent film
Woo et al. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template
Chen et al. A Versatile Approach to Create Nanobubbles on Arbitrary Two‐Dimensional Materials for Imaging Exciton Localization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Ref document number: 5213227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees