JP5212059B2 - Voltage nonlinear resistor composition and multilayer varistor - Google Patents
Voltage nonlinear resistor composition and multilayer varistor Download PDFInfo
- Publication number
- JP5212059B2 JP5212059B2 JP2008311904A JP2008311904A JP5212059B2 JP 5212059 B2 JP5212059 B2 JP 5212059B2 JP 2008311904 A JP2008311904 A JP 2008311904A JP 2008311904 A JP2008311904 A JP 2008311904A JP 5212059 B2 JP5212059 B2 JP 5212059B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- varistor
- nonlinear resistor
- voltage nonlinear
- resistor composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Thermistors And Varistors (AREA)
Description
本発明は、電子機器を静電気から保護するのに適したバリスタに用いられる電圧非直線性抵抗体組成物、およびこれを用いた積層バリスタに関する。 The present invention relates to a voltage nonlinear resistor composition used for a varistor suitable for protecting an electronic device from static electricity, and a laminated varistor using the same.
電子機器に用いられるIC等の半導体デバイスは、静電気(ESD)によって破壊や特性が劣化することがある。特に、最近の半導体デバイスはその高速動作化に伴い、ESDに対して脆弱になってきており、ESDによる半導体デバイスの破壊は、電子機器に誤動作や故障などの深刻な障害を招く。このため、各種の電子機器におけるESD対策の重要性が近年頓に増しており、その対策部品として電圧非直線性抵抗体のZnO系のバリスタが広く用いられている。 A semiconductor device such as an IC used for an electronic apparatus may be broken or deteriorated in characteristics due to static electricity (ESD). In particular, recent semiconductor devices are becoming vulnerable to ESD as their speed increases, and destruction of semiconductor devices due to ESD causes serious failures such as malfunctions and failures in electronic devices. For this reason, the importance of ESD countermeasures in various electronic devices has been increasing in recent years, and ZnO-based varistors of voltage nonlinear resistors are widely used as countermeasure parts.
ESD対策に用いられるバリスタとしては、当然ESDの吸収特性に優れることが望ましい。また、バリスタ自身がESDで破壊されてはならず、そのESD耐性にも優れている必要がある。さらに最近は、電子機器の小型化への強い要望から、小型形状で、なおかつ回路信号の高周波化に対応可能な、伝送特性を悪化させない数pF以下に低静電容量化したものが望まれている。 As a varistor used for ESD countermeasures, it is naturally desirable to have excellent ESD absorption characteristics. In addition, the varistor itself must not be destroyed by ESD, and the ESD resistance needs to be excellent. More recently, due to a strong demand for downsizing of electronic devices, it is desired to have a small shape and a low capacitance of several pF or less that can cope with high frequency circuit signals and does not deteriorate transmission characteristics. Yes.
このようなESD対策用途のZnOを主成分とする積層バリスタに関する先行技術文献情報としては、例えば、Prなどの希土類系の特許文献1、および、Bi系の特許文献2が知られている。
しかしながら、従来の積層バリスタは、上述した特性の要求に対して充分なものではなかった。ZnO系のバリスタは、一般にバリスタ特性発現添加物によりPr系およびBi系の2種に大別される。このうちPr系の積層バリスタは、低バリスタ電圧化に適し、例えば、8〜39V程度の低いバリスタ電圧V1mA(電流値1mAのときの電圧値)で、優れたESD吸収特性とESD耐性に優れるものが得られている。しかしながら、その誘電率は一般に約700程度であるため、8〜39V程度の低いバリスタ電圧V1mAの積層バリスタでは、電極間隔が狭まるので静電容量の増大がより顕在化し低静電容量化が困難であり、高周波信号ラインの用途には不向きであるという課題がある。 However, conventional laminated varistors have not been sufficient for the above-described characteristics requirements. ZnO-based varistors are generally roughly classified into two types, Pr-based and Bi-based, depending on varistor characteristic expression additives. Among them, the Pr-based multilayer varistor is suitable for lowering the varistor voltage. For example, it has a low varistor voltage V 1 mA of about 8 to 39 V (voltage value at a current value of 1 mA), and has excellent ESD absorption characteristics and ESD resistance. Things have been obtained. However, since the dielectric constant is generally about 700, in a multilayer varistor with a low varistor voltage V 1 mA of about 8 to 39 V, the electrode interval is narrowed, so that the increase in capacitance becomes more obvious and it is difficult to reduce the capacitance. Therefore, there is a problem that it is unsuitable for high-frequency signal lines.
一方、Bi系の積層バリスタは、優れた電圧非直線性を有しながら約70程度の低い誘電率のものが得られている。したがって、0.5〜1pFの非常に小さな静電容量値の積層バリスタが得られているが、低静電容量化に伴う電極面積の減少は電流密度の増加を招くため、バリスタ電圧を100V以下に低圧化するとESDによる特性劣化を引き起こしやすくなる。このため、実用上のESD耐性を満足させると、100V程度の高いバリスタ電圧しか実現できず、低バリスタ電圧化は困難であり、ESD吸収特性が不十分で、機器のESD対策が不十分となりやすいという課題がある。 On the other hand, Bi-based multilayer varistors have a dielectric constant as low as about 70 while having excellent voltage nonlinearity. Accordingly, a laminated varistor having a very small capacitance value of 0.5 to 1 pF has been obtained. However, since the reduction in the electrode area accompanying the reduction in capacitance leads to an increase in current density, the varistor voltage is set to 100 V or less. If the pressure is reduced to a low level, deterioration of characteristics due to ESD tends to occur. For this reason, if the practical ESD tolerance is satisfied, only a high varistor voltage of about 100 V can be realized, it is difficult to reduce the varistor voltage, the ESD absorption characteristics are insufficient, and the ESD countermeasure of the device is likely to be insufficient. There is a problem.
このような背景から、高周波伝送用途のESD対策では、伝送特性に悪影響を与えない微小静電容量化を実現し、かつ、ESD抑制効果も大きくその耐性にも優れた積層バリスタが望まれている。 Against such a background, ESD countermeasures for high-frequency transmission applications require a multilayer varistor that realizes a small capacitance that does not adversely affect transmission characteristics, has a large ESD suppression effect, and is excellent in its resistance. .
本発明は、上記課題を解決するもので、低バリスタ電圧化とともに低静電容量化を実現しかつESD耐性に優れ、高周波伝送回路の用途に適した積層バリスタ、および、この積層バリスタを作製するのに適した電圧非直線性抵抗体組成物を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention solves the above problems, and realizes a multilayer varistor that realizes low varistor voltage and low capacitance, is excellent in ESD resistance, and is suitable for use in a high-frequency transmission circuit, and the multilayer varistor. An object of the present invention is to provide a voltage non-linear resistor composition suitable for the above.
上記目的を達成するため、本発明の電圧非直線性抵抗体組成物は、特に、ZnOを主成分とし、一般式(1−x)ZnO+x〔Sr1-yMy〕1-aCo1+aO3で表した時、MはCaおよびBaの少なくとも1種であり、x、yおよびaはモル比を表し、0.0005≦x≦0.10、0≦y≦0.8および−0.1≦a≦0.2である構成としたものである。 In order to achieve the above object, the voltage non-linear resistor composition of the present invention has, in particular, ZnO as a main component and a general formula (1-x) ZnO + x [Sr 1- y My ] 1-a Co 1+ When represented by aO 3 , M is at least one of Ca and Ba, x, y and a represent molar ratios, 0.0005 ≦ x ≦ 0.10, 0 ≦ y ≦ 0.8 and − It is set as the structure which is 0.1 <= a <= 0.2.
また、本発明の積層バリスタは、内部に複数の内部電極を有するセラミック焼結体と、前記内部電極と電気的に接続され前記セラミック焼結体の表面に形成された外部電極とを有し、前記セラミック焼結体は、上記の電圧非直線性抵抗体組成物を用いて形成された構成としたものである。 The multilayer varistor of the present invention has a ceramic sintered body having a plurality of internal electrodes therein, and an external electrode electrically connected to the internal electrodes and formed on the surface of the ceramic sintered body, The ceramic sintered body is formed using the voltage non-linear resistor composition described above.
本発明の電圧非直線性抵抗体組成物によれば、上記した構成により、その電気特性として、非常に低いバリスタ電圧、優れた非直線性、および極めて低い誘電率が実現できる。また、微細組織のZnO結晶粒子を有するものとなる。そして、これら特性により、電圧非直線性抵抗体として、優れた電気特性を有し、優れたESD耐性を有した信頼性の高いものとすることができる。 According to the voltage nonlinear resistor composition of the present invention, with the above-described configuration, a very low varistor voltage, excellent nonlinearity, and an extremely low dielectric constant can be realized as its electrical characteristics. Moreover, it will have the fine structure ZnO crystal particle. And by these characteristics, as a voltage non-linear resistance body, it can have the electrical property which was excellent, and it was highly reliable with the outstanding ESD tolerance.
また、本発明の積層バリスタによれば、上記した構成により、小型形状でバリスタ電圧の低圧化と小さな静電容量を得ながらもESD耐性に優れたものとなり、高周波伝送回路の用途に適した積層バリスタが実現できる。 In addition, according to the multilayer varistor of the present invention, the above-described configuration makes the varistor voltage excellent in ESD resistance while obtaining a low varistor voltage and a small capacitance, and is suitable for high frequency transmission circuit applications. A varistor can be realized.
(実施の形態1)
以下、本発明の電圧非直線性抵抗体組成物について、一実施例に基づき詳細に説明する。
(Embodiment 1)
Hereinafter, the voltage nonlinear resistor composition of the present invention will be described in detail based on an example.
まず、出発原料として、主成分であるZnO、および副成分であるSrCO3、Co2O3、CaCO3、BaCO3、さらに第2副成分であるAl2O3の化学的に高純度な粉末を準備した。続いて、焼結後の組成が、一般式(1−x)ZnO+x〔Sr1-yMy〕1-aCo1+aO3で表した時、x、yおよびaの値が各原子換算で(表1)の試料番号1〜52に示す組成比となり残部がZnOになるように出発原料を秤量し、また、一部については、上記一般式の組成物1molに対して第2副成分であるAl2O3を添加し、(表1)の試料番号47〜52に示す組成比になるように秤量した。 First, as a starting material, ZnO as a main component, SrCO 3 , Co 2 O 3 , CaCO 3 , BaCO 3 as subcomponents, and Al 2 O 3 as a second subcomponent, a chemically high-purity powder Prepared. Subsequently, when the composition after sintering is represented by the general formula (1-x) ZnO + x [Sr 1- y My ] 1-a Co 1 + a O 3 , the values of x, y, and a are each atom. The starting materials are weighed so that the composition ratios shown in Sample Nos. 1 to 52 in (Table 1) are converted, and the balance is ZnO. The component, Al 2 O 3, was added and weighed so that the composition ratios shown in Sample Nos. 47 to 52 in (Table 1) were obtained.
これらの出発原料粉末をポリエチレン製ボールミルに入れ、安定化ジルコニア製の玉石および純水を加え約20時間混合した後、脱水乾燥した。この乾燥粉末を高純度アルミナ質のルツボに入れて約750℃にて2時間仮焼した。次に、この仮焼粉末を混合時と同じボールミルに入れ、安定化ジルコニア製の玉石および純水を加え約20時間粉砕した後、脱水乾燥した。 These starting material powders were put in a polyethylene ball mill, stabilized zirconia boulders and pure water were added and mixed for about 20 hours, and then dehydrated and dried. This dried powder was put into a high-purity alumina crucible and calcined at about 750 ° C. for 2 hours. Next, this calcined powder was put in the same ball mill as that used for mixing, cobblestone made of stabilized zirconia and pure water were added and pulverized for about 20 hours, and then dehydrated and dried.
次に、この乾燥した原料粉体に有機バインダを加え均質に混合し、32メッシュのふるいを通して整粒した後、金型と油圧プレスを用いて成形圧力2ton/cm2で成形し直径13mm、厚み1.3mmの成形体を得た。次いで、成形体の上下面に電極となるPd系の電極ペーストを印刷乾燥して形成した後、この成形体を耐熱性のジルコニアのサヤに入れて大気中にて1000〜1100℃の焼成温度で2時間焼成し、(表1)の試料番号1〜52に示す組成の電圧非直線性抵抗体を得た。 Next, an organic binder is added to the dried raw material powder, and the mixture is mixed homogeneously. After being sized through a 32 mesh sieve, it is molded using a mold and a hydraulic press at a molding pressure of 2 ton / cm 2 and has a diameter of 13 mm and thickness. A molded body of 1.3 mm was obtained. Next, a Pd-based electrode paste to be electrodes is formed on the upper and lower surfaces of the molded body by printing and drying, and then the molded body is placed in a heat-resistant zirconia sheath at a firing temperature of 1000 to 1100 ° C. in the atmosphere. Firing was performed for 2 hours to obtain a voltage nonlinear resistor having the composition shown in sample numbers 1 to 52 of (Table 1).
次に、得られた試料番号1〜52の電圧非直線性抵抗体それぞれの電気特性について、バリスタ特性および誘電率を評価した。バリスタ特性は、試料に1μA〜1mAの範囲で電流を流したときの電圧値を測定して電圧電流特性を評価し、この電圧電流特性から単位厚み当たりのバリスタ電圧V1mA/mm(V)と非直線性αを求めた。バリスタ電圧V1mAは電流値が1mAのときの電圧値と定義し、試料の素子厚みから、単位厚み当たりのバリスタ電圧V1mA/mm(V)を求めた。また、非直線性αは電流値が1mAのときの電圧値V1mAと電流値が10μAのときの電圧値V10μAとの比V1mA/V10μAで評価した。したがって、非直線性αが、1に近いほど理想的で非直線性に優れた電圧非直線性抵抗体である。 Next, the varistor characteristics and the dielectric constant were evaluated for the electrical characteristics of each of the obtained voltage nonlinear resistors of sample numbers 1 to 52. The varistor characteristics are evaluated by measuring the voltage value when a current is applied to the sample in the range of 1 μA to 1 mA, and the varistor voltage V 1 mA / mm (V) per unit thickness is evaluated from the voltage-current characteristics. Non-linearity α was determined. The varistor voltage V 1 mA was defined as a voltage value when the current value was 1 mA, and the varistor voltage V 1 mA / mm (V) per unit thickness was obtained from the element thickness of the sample. Further, the non-linearity α was evaluated by a ratio V 1 mA / V 10 μA of a voltage value V 1 mA when the current value was 1 mA and a voltage value V 10 μA when the current value was 10 μA. Accordingly, the non-linearity α is a voltage non-linear resistance element that is ideal and has excellent non-linearity as the non-linearity is closer to 1.
誘電率εrは、測定周波数1MHz、測定電圧1Vrms、無DCバイアス下で静電容量を測定し、この静電容量と試料の素子厚みおよび径から求めた。また、電子顕微鏡を用いた観察像からインターセプト法によりZnO粒子の平均結晶粒子径Dgを求め、試料の結晶の微細組織を評価した。 The dielectric constant ε r was obtained from a capacitance measured under a measurement frequency of 1 MHz, a measurement voltage of 1 Vrms and no DC bias, and from the capacitance and the element thickness and diameter of the sample. Also, an average crystal grain size D g of ZnO grains by intercept method from the observation image using an electron microscope to evaluate the microstructure of samples of crystal.
試料番号1〜52の電圧非直線性抵抗体についての評価結果を、その組成とともに(表1)に示す。(表1)において、*印を付したものは本発明の範囲外の比較例である。 The evaluation results for the voltage nonlinear resistors of sample numbers 1 to 52 are shown in (Table 1) together with their compositions. In Table 1, those marked with * are comparative examples outside the scope of the present invention.
以下に、本発明の電圧非直線性抵抗体組成物について、その組成範囲を限定した理由を(表1)を参照しながら詳細に説明する。 Hereinafter, the reason for limiting the composition range of the voltage nonlinear resistor composition of the present invention will be described in detail with reference to (Table 1).
試料番号1のように、〔Sr1-yMy〕1-aCo1+aO3のモル比xが0.0002molより少ない場合には、バリスタ特性は発現されない。バリスタ特性の発現は、試料番号2のように、xが0.0002molから見られるが、この添加量では粒子や粒界間での特性差が大きく、素子全体の特性としては、特に非直線性αが悪く、実用的な特性ではない。粒子間で特性が均一化されて実用的な非直線性αを2.0以下とするためには、試料番号3〜15のように、xが0.0005mol以上であることを要する。一方、試料番号16〜17のように、xが0.10molより多い場合には、ZnO粒子界面に2次相として過剰に析出した相が、バリスタ電圧の高圧化(V1mA/mm>500V)、非直線性の悪化(α>2.0)、および誘電率の増大(εr>50)を招く。これらの特性変化は、ESD吸収特性の低下や信号ラインの伝送品質悪化につながるものであり、本発明の目的としては実用的でなく好ましくない。 As in Sample No. 1, if [Sr 1-y M y] 1-a Co 1 + a O 3 molar ratio x is less than 0.0002mol the varistor characteristics is not expressed. The expression of varistor characteristics can be seen from the sample number 2 where x is 0.0002 mol, but with this addition amount, there is a large difference in characteristics between particles and grain boundaries. α is bad and is not a practical characteristic. In order for the characteristics to be uniform between the particles and the practical non-linearity α to be 2.0 or less, it is necessary that x is 0.0005 mol or more as in sample numbers 3 to 15. On the other hand, when x is more than 0.10 mol as in sample numbers 16 to 17, the phase that excessively precipitated as the secondary phase at the ZnO particle interface is increased in varistor voltage (V 1 mA / mm> 500 V). , Leading to deterioration of nonlinearity (α> 2.0) and increase of dielectric constant (ε r > 50). These characteristic changes lead to a decrease in ESD absorption characteristics and a deterioration in signal line transmission quality, which is not practical and not desirable for the purpose of the present invention.
また、試料番号5、試料番号21および試料番号31のように、〔Sr1-yMy〕1-aCo1+aO3のモル比aが−0.1molより負である場合や、試料番号10、試料番号26および試料番号36のように、モル比aが0.2molより大きい場合には、バリスタ電圧の高圧化(V1mA/mm>500V)、および平均結晶粒子径Dgの増大を招き、本発明の目的としては実用的でなく好ましくない。 Further, as in sample number 5, sample number 21 and sample number 31, when the molar ratio a of [Sr 1- y My ] 1-a Co 1 + a O 3 is more negative than −0.1 mol, When the molar ratio a is larger than 0.2 mol as in Sample No. 10, Sample No. 26 and Sample No. 36, the varistor voltage is increased (V 1 mA / mm> 500 V), and the average crystal particle diameter D g is This is unpreferable and not practical for the purpose of the present invention.
したがって、高周波伝送用の電圧非直線性抵抗体に適する組成としては、その特性として、V1mA/mmが500V以下の非常に低いバリスタ電圧、αが2.0以下の優れた非直線性、およびεrが50以下の極めて低い誘電率が得られる組成、すなわち、ZnOを主成分とし一般式(1−x)ZnO+x〔Sr1-yMy〕1-aCo1+aO3で表した時、Xが0.0005mol以上0.10mol以下で、aが−0.1mol以上0.2mol以下の組成範囲が好ましい。 Therefore, a composition suitable for a voltage nonlinear resistor for high-frequency transmission has as its characteristics a very low varistor voltage with V 1 mA / mm of 500 V or less, excellent nonlinearity with α of 2.0 or less, and A composition that provides an extremely low dielectric constant of ε r of 50 or less, that is, expressed by the general formula (1-x) ZnO + x [Sr 1- y My ] 1-a Co 1 + a O 3 containing ZnO as a main component. In this case, a composition range in which X is 0.0005 mol or more and 0.10 mol or less and a is −0.1 mol or more and 0.2 mol or less is preferable.
また、試料番号7と比較した試料番号8〜9、試料番号23と比較した試料番号24〜25、および試料番号33と比較した試料番号34〜35のように、〔Sr1-yMy〕1-aCo1+aO3におけるモル比aを、0<a≦0.2の範囲として、Aサイトの〔Sr1-yMy〕に比べてBサイトのCOを過剰とした組成のものは、低い誘電率と優れた非直線性とを維持したままでバリスタ電圧をさらに低圧化できる効果が得られる。このバリスタ電圧の低圧化は、ESD吸収効果の一層の改善につながるものである。 [Sr 1- y My ], such as sample numbers 8-9 compared with sample number 7, sample numbers 24-25 compared with sample number 23, and sample numbers 34-35 compared with sample number 33 The molar ratio a in 1-a Co 1 + a O 3 is in the range of 0 <a ≦ 0.2, and the composition is such that CO at the B site is excessive compared to [Sr 1- y My ] at the A site. In this case, the effect of further reducing the varistor voltage while maintaining a low dielectric constant and excellent non-linearity can be obtained. This lowering of the varistor voltage leads to further improvement of the ESD absorption effect.
また、試料番号18と比較した試料番号19、20、23および27、試料番号29と比較した試料番号30、33、37および38、並びに試料番号40〜45のように、〔Sr1-yMy〕1-aCo1+aO3のAサイトのSrの一部をCaおよびBaの少なくとも1種で置換した組成のものは、低い誘電率と優れた非直線性とを維持したままでバリスタ電圧をさらに低圧化できる効果が得られる。このバリスタ電圧の低圧化は、ESD吸収効果の一層の改善につながるものである。 [Sr 1-y M] Sample numbers 19, 20, 23 and 27 compared with sample number 18, sample numbers 30, 33, 37 and 38 compared with sample number 29, and sample numbers 40 to 45 y ] 1-a Co 1 + a O 3 having a composition in which part of Sr at the A site is substituted with at least one of Ca and Ba maintains a low dielectric constant and excellent non-linearity. An effect of further reducing the varistor voltage can be obtained. This lowering of the varistor voltage leads to further improvement of the ESD absorption effect.
しかしながら、試料番号28および試料番号39のように、置換のmol比yが0.8より大きい場合には、BaおよびCaのどちらの元素種でも誘電率の増大を招く。このため、εrが50以下の非常に低い誘電率を得るためには、置換のmol比yは0.8以下の組成範囲が好ましい。 However, when the molar ratio y of substitution is larger than 0.8 as in Sample No. 28 and Sample No. 39, an increase in dielectric constant is caused by both Ba and Ca element species. Therefore, in order to obtain a very low dielectric constant with ε r of 50 or less, the molar ratio y of substitution is preferably a composition range of 0.8 or less.
なお、Aサイトの置換のmol比yを1.0として、AサイトのSrの全てを完全置換した場合、特に、試料番号39のように、Baで完全置換した場合には、結晶粒子の異常成長を引き起こす傾向があり、平均結晶粒子径Dgも大きくなる。このようなZnO粒子の異常成長によって不均一化した微細組織は、粒子やその界面部での電流密度の違いに反映される。このため、非直線性だけでなく、特に粗大粒子界面部では、ESDによる電流密度の局所的集中を生じやすくなって破壊に至る始点となる。このため、微細組織も非直線性やESD耐性へ悪影響を及ぼす副次的な因子となる。一方、置換のmol比yが0.8以下の組成のものは、ZnO粒子の異常成長がなく平均結晶粒子径Dgも小さく均一であり、非直線性やESD耐性の改善を図ることができ、より信頼性を高める効果を得ることができる。 In addition, when the molar ratio y of substitution at the A site is 1.0 and all of the Sr at the A site is completely substituted, particularly when Ba is completely substituted as in the sample No. 39, abnormalities in crystal grains are observed. There is a tendency to cause growth, and the average crystal particle diameter Dg also increases. Such a microstructure that has become non-uniform due to abnormal growth of ZnO particles is reflected in the difference in current density at the particles and their interfaces. For this reason, not only non-linearity, but particularly at the coarse particle interface, local concentration of current density due to ESD is likely to occur, which becomes a starting point for destruction. For this reason, the microstructure is also a secondary factor that adversely affects non-linearity and ESD resistance. On the other hand, the composition having a substitution molar ratio y of 0.8 or less has no abnormal growth of ZnO particles, the average crystal particle diameter Dg is small and uniform, and can improve non-linearity and ESD resistance. Thus, the effect of increasing the reliability can be obtained.
上述の理由により、高周波伝送用の電圧非直線性抵抗体の組成としては、その特性として、V1mA/mmが500V以下の非常に低いバリスタ電圧、αが2.0以下の優れた非直線性、およびεrが50以下の極めて低い誘電率が得られる組成、すなわち、ZnOを主成分とし一般式(1−x)ZnO+x〔Sr1-yMy〕1-aCo1+aO3で表した時、MはCaおよびBaの少なくとも1種であり、xが0.0005mol以上0.10mol以下で、Mのmol比yが0.8以下であり、aが−0.1mol以上0.2mol以下である組成が適している。 For the above reasons, the composition of the voltage nonlinear resistor for high-frequency transmission is characterized by its very low varistor voltage with V 1 mA / mm of 500 V or less and excellent nonlinearity with α of 2.0 or less. , And a composition with which an extremely low dielectric constant of ε r of 50 or less is obtained, that is, with ZnO as a main component and a general formula (1-x) ZnO + x [Sr 1- y My ] 1-a Co 1 + a O 3 When expressed, M is at least one of Ca and Ba, x is 0.0005 mol or more and 0.10 mol or less, M molar ratio y is 0.8 or less, and a is −0.1 mol or more and 0.00. A composition that is 2 mol or less is suitable.
さらに、試料番号46と比較した試料番号47〜52のように、第2副成分としてAl2O3を微量添加した組成のものは、より一層の結晶粒子の微粒子化、均一化に有効であり、さらに非直線性やESD耐性の改善を図ることができ、より信頼性を高める効果を得ることができる。また、セラミック組織の微粒子化、均一化は、当然、機械的強度も向上させることとなるので、熱衝撃や機器の落下衝撃に対する信頼性も高まる効果もある。しかしながら、試料番号51〜52のように、添加量が多い場合には誘電率の増大を招く。このため、εrが50以下の非常に低い誘電率を得るためには、主組成1molに対するAl2O3の添加量は、0.003mol以下の組成範囲が好ましい。 Furthermore, as in Sample Nos. 47 to 52 compared with Sample No. 46, a composition in which a small amount of Al 2 O 3 is added as the second subcomponent is effective for making finer and more uniform crystal grains. Further, the non-linearity and the ESD resistance can be improved, and the effect of increasing the reliability can be obtained. In addition, since the mechanical strength is naturally improved by making the ceramic structure fine and uniform, there is also an effect of increasing the reliability against thermal shock and drop impact of the device. However, as in sample numbers 51 to 52, when the addition amount is large, the dielectric constant increases. Therefore, in order to obtain a very low dielectric constant with ε r of 50 or less, the amount of Al 2 O 3 added to 1 mol of the main composition is preferably within a composition range of 0.003 mol or less.
そして、上記の本発明の電圧非直線性抵抗体組成物について、組成分析およびX線回折により分析した結果、ZnOの結晶相のほかに、このZnO粒子間の粒界にはペロブスカイト構造の〔Sr1-yMy〕1-aCo1+aO3の固溶体相を有することが確認された。この結果から、ZnO粒子界面におけるペロブスカイト型〔Sr1-yMy〕1-aCo1+aO3化合物がバリスタ特性発現物質としての作用効果を有していることが確認できた。したがって、ペロブスカイト型〔Sr1-yMy〕1-aCo1+aO3化合物をあらかじめ合成してZnOに添加しても同様の特性を得ることができる。以上から明らかなように、上記の優れた特性は、ZnOにペロブスカイト型〔Sr1-yMy〕1-aCo1+aO3化合物を本発明の組成範囲で含有させることで得られるものである。 The voltage nonlinear resistor composition of the present invention was analyzed by composition analysis and X-ray diffraction. As a result, in addition to the crystal phase of ZnO, the grain boundary between the ZnO particles had a perovskite structure [Sr it was confirmed that the 1-y M y] 1-a Co 1 + a O 3 solid solution phase. From this result, the perovskite-type in the ZnO grain boundaries [Sr 1-y M y] 1-a Co 1 + a O 3 compound was confirmed to have effects as varistor characteristics expressed substance. Therefore, it is possible to be a perovskite [Sr 1-y M y] 1-a Co 1 + a O 3 compound previously synthesized was added to ZnO obtain the same characteristics. As is clear from the above, the above-mentioned excellent characteristics can be obtained by including perovskite type [Sr 1- y My ] 1-a Co 1 + a O 3 compound in the composition range of the present invention in ZnO. It is.
以上のように、本発明の電圧非直線性抵抗体組成物は、ZnOを主成分とし、一般式(1−x)ZnO+x〔Sr1-yMy〕1-aCo1+aO3で表した時、MはCaおよびBaの少なくとも1種であり、xが0.0005mol以上0.10mol以下、yが0.8mol以下、aが−0.1mol以上0.2mol以下の組成のものであり、これにより、その電気特性として、V1mA/mmが500V以下の非常に低いバリスタ電圧、αが2.0以下の優れた非直線性、およびεrが50以下の極めて低い誘電率が実現できる。また、2.0μm以下の平均結晶粒子径の微細組織を有するものとなる。そして、これにより、電圧非直線性抵抗体としての非直線性やESD耐性の改善を図ることができ、より信頼性を高めることができる。 As described above, the voltage nonlinear resistor composition of the present invention contains ZnO as a main component and is represented by the general formula (1-x) ZnO + x [Sr 1- y My ] 1-a Co 1 + a O 3 When M is expressed, M is at least one of Ca and Ba, and x is 0.0005 mol or more and 0.10 mol or less, y is 0.8 mol or less, and a is -0.1 mol or more and 0.2 mol or less. As a result, its electrical characteristics include a very low varistor voltage with V 1 mA / mm of 500 V or less, excellent non-linearity with α of 2.0 or less, and extremely low dielectric constant with ε r of 50 or less. it can. Moreover, it has a fine structure with an average crystal particle diameter of 2.0 μm or less. And thereby, the non-linearity as a voltage non-linear resistance body and the improvement of ESD tolerance can be aimed at, and reliability can be improved more.
以上説明したように、本発明の電圧非直線性抵抗体組成物はZnOを主成分としMがCaおよびBaの少なくとも1種である〔Sr1-yMy〕1-aCo1+aO3を含有するものであり、〔Sr1-yMy〕1-aCo1+aO3は、N型半導体のZnO粒子界面でアクセプター準位を形成させ、多結晶体組織での障壁特性(バリスタ特性)発現の起源となっている。この点では、従来のBi酸化物やPr酸化物と同じ役割を果たすものであるが、本発明の一実施例における試料のバリスタ電圧V1mA/mmと平均結晶粒子径Dgから求めた1粒界あたりの障壁高さ(Vgh)は0.4〜0.6eVであり、従来組成での一般的な0.6〜1.0eV(Pr系)、0.8〜1.4eV(Bi系)と比較して、低い値の材料特性が得られる。これは、静電気対策部品としてのバリスタ製品設計において、バリスタ電圧は粒界の数NとVghとの積であることからして、本質的に低圧化に有利となることを意味する。そして、発明者らの研究によると、Bi系バリスタにおけるBi酸化物は、約600℃程度以上から種々の状態変化(液相化や相転移)する性質を有しており、これがESDで生じる熱エネルギーによって特性変化や熱破壊につながり、素子特性劣化の原因となっている。これに対し、本発明のMがCaおよびBaの少なくとも1種である〔Sr1-yMy〕1-aCo1+aO3は、融点は1500℃以上と熱安定に優れているため、MがCaおよびBaの少なくとも1種である〔Sr1-yMy〕1-aCo1+aO3を非直線性抵抗特性の発現物質として用いることで、非常にESD耐性に優れる電圧非直線性抵抗体を得ることができることとなる。 As described above, the voltage nonlinear resistor composition of the present invention has ZnO as a main component and M is at least one of Ca and Ba [Sr 1- y My ] 1-a Co 1 + a O 3 are those containing, [Sr 1-y M y] 1-a Co 1 + a O 3 is to form an acceptor level in ZnO particle interface of the N-type semiconductor, the barrier properties of the polycrystalline body tissue (Varistor characteristics) Origin of expression. In this respect, it plays the same role as the conventional Bi oxide and Pr oxide, but one grain obtained from the varistor voltage V 1 mA / mm and the average crystal particle diameter D g of the sample in one example of the present invention. The barrier height (V gh ) per boundary is 0.4 to 0.6 eV, and is generally 0.6 to 1.0 eV (Pr system) and 0.8 to 1.4 eV (Bi system) in the conventional composition. In comparison with), lower values of material properties are obtained. This means that, in designing a varistor product as an anti-static component, the varistor voltage is the product of the number of grain boundaries N and V gh , which is essentially advantageous for lowering the voltage. According to the researches of the inventors, Bi oxides in Bi-based varistors have the property of changing various states (liquid phase and phase transition) from about 600 ° C. or higher, which is the heat generated by ESD. Energy leads to characteristic changes and thermal destruction, causing element characteristic deterioration. In contrast, [Sr 1- y My ] 1-a Co 1 + a O 3 in which M of the present invention is at least one of Ca and Ba has a melting point of 1500 ° C. or more and is excellent in thermal stability. , M is by using at least one of Ca and Ba and [Sr 1-y M y] 1-a Co 1 + a O 3 as an expression material of the non-linear resistance characteristic, the voltage very excellent ESD immunity A non-linear resistor can be obtained.
また、MがCaおよびBaの少なくとも1種である〔Sr1-yMy〕1-aCo1+aO3の構成元素は、Prよりも軽元素であるので、その結晶の誘電率は一般的に小さくなるため、粒界部における空乏層領域が同じであれば、その誘電率は本質的に低いものとなる。従って、MがCaおよびBaの少なくとも1種である〔Sr1-yMy〕1-aCo1+aO3を特性発現物質に使用した粒界部では、低誘電率化されるため、電圧非直線性抵抗体素子の低静電容量化も可能となる。 Furthermore, constituent elements of the M is at least one of Ca and Ba [Sr 1-y M y] 1-a Co 1 + a O 3 , since than Pr is light element, the dielectric constant of the crystal is In general, since the depletion layer region at the grain boundary portion is the same, the dielectric constant is essentially low because it is small. Thus, since M is a grain boundary by using at least one of Ca and Ba and [Sr 1-y M y] 1-a Co 1 + a O 3 to the characteristic expression material, which is low dielectric constant, It is also possible to reduce the capacitance of the voltage nonlinear resistor element.
(実施の形態2)
以下、本発明の積層バリスタについて、上記実施の形態1で説明した電圧非直線性抵抗体組成物を用いて積層バリスタを作製した場合の一実施例の特性に基づき詳細に説明する。
(Embodiment 2)
Hereinafter, the multilayer varistor of the present invention will be described in detail based on the characteristics of an example in the case where a multilayer varistor is manufactured using the voltage nonlinear resistor composition described in the first embodiment.
まず、積層バリスタを作製する電圧非直線性抵抗体組成物として、上記実施の形態1の(表1)の中から、試料番号2、7、8、11、15、16、19、23、24、33、34、39、43、46、および49の15種類の組成を選択した。そして、実施の形態1と同様に、出発原料として、主成分であるZnO、および副成分であるSrCO3、Co2O3、CaCO3、BaCO3、さらに第2副成分であるAl2O3の化学的に高純度な粉末を準備し、上記試料番号に対応する組成比となるように出発原料を秤量した。続いて、実施の形態1と同様の方法により、混合、乾燥、仮焼、粉砕、乾燥して、それぞれの試料番号の組成比の原料粉体15種類を作製し準備した。 First, as voltage non-linear resistor composition for producing a multilayer varistor, sample numbers 2, 7, 8, 11, 15, 16, 19, 23, 24 from (Table 1) of the first embodiment are used. , 33, 34, 39, 43, 46, and 49 were selected. As in the first embodiment, as starting materials, ZnO as a main component, SrCO 3 , Co 2 O 3 , CaCO 3 , BaCO 3 as subcomponents, and Al 2 O 3 as a second subcomponent. Were prepared, and the starting materials were weighed so that the composition ratio corresponded to the sample number. Subsequently, mixing, drying, calcination, pulverization, and drying were performed by the same method as in Embodiment 1 to prepare and prepare 15 types of raw material powders having the composition ratios of the respective sample numbers.
次に、上記15種類の原料粉体それぞれを用いて、本実施の形態2における積層バリスタを15種類作製した。積層バリスタは、以下の方法により作製した。 Next, 15 types of laminated varistors in Embodiment 2 were produced using each of the 15 types of raw material powders. The laminated varistor was produced by the following method.
まず、原料粉体に、有機バインダ、溶剤および可塑剤を加えて混合し、ドクターブレード法により成形してグリーンシートを作製し準備した。そして、このグリーンシート上に、AgPd合金(Ag70/Pd30)ペーストを用いスクリーン印刷法で内部電極となる導体層を形成した。次に、内部電極となる導体層を形成したグリーンシートを積層し加圧して、積層体ブロックを得た。次に、上記積層体ブロックを所望の寸法に切断分離して、個片の生チップとした。この生チップを大気中で約500℃に加熱して脱バインダ処理した後、大気中で1000〜1100℃まで加熱して焼成し焼結体素子を得た。 First, an organic binder, a solvent, and a plasticizer were added to the raw material powder, mixed, and molded by a doctor blade method to prepare and prepare a green sheet. Then, a conductor layer serving as an internal electrode was formed on the green sheet by screen printing using an AgPd alloy (Ag70 / Pd30) paste. Next, the green sheet in which the conductor layer used as an internal electrode was laminated | stacked and pressurized, and the laminated body block was obtained. Next, the laminated body block was cut and separated into a desired size to obtain individual raw chips. The raw chip was heated to about 500 ° C. in the atmosphere to remove the binder, and then heated to 1000 to 1100 ° C. in the atmosphere and fired to obtain a sintered body element.
次に、上記焼結体素子をバレル研磨して焼結体素子の両端面に内部電極を露出させた後、Agペーストを塗布乾燥し750〜850℃で焼付けした後、Ni−Snメッキを形成して、本実施の形態2における15種類の積層バリスタを作製した。作製した本実施の形態2における積層バリスタの外形寸法は、いずれも、長手方向が1.0mm、幅方向が0.5mm、厚み方向が0.5mmであった。また、いずれも、バリスタ層は、厚みが約70μm、層数が2層、1層当りの面積が約0.06mm2であった。 Next, the sintered body element is barrel-polished to expose internal electrodes on both end faces of the sintered body element, and then an Ag paste is applied and dried and baked at 750 to 850 ° C., and then Ni-Sn plating is formed. Thus, 15 types of laminated varistors in Embodiment 2 were produced. As for the external dimensions of the laminated varistors in the produced second embodiment, the longitudinal direction was 1.0 mm, the width direction was 0.5 mm, and the thickness direction was 0.5 mm. In any case, the varistor layer had a thickness of about 70 μm, two layers, and an area per layer of about 0.06 mm 2 .
これら上記の15種類の本実施の形態2における積層バリスタについて、電気特性を評価した。電気特性は、実施の形態1と同様に、バリスタ電圧V1mA、非直線性αの指標として電圧比V1mA/V10μA、および静電容量を評価した。そして、これらに加えて、ESD耐性を評価した。ESD耐性は、IEC61000−1−4に準拠したESD電圧8kV(充電容量150pF、放電抵抗330Ω)を、静電気放電シミュレータを用いて素子に印加した前後の特性変化から評価した。また、ESD耐性の評価結果として、ESD電圧を印加した後のバリスタ電圧の初期値からの変化率ΔV1mAを示す。本実施の形態2における積層バリスタの電気特性の評価結果を、その用いた組成物の試料番号とともに(表2)に示す。(表2)において、*印を付したものは本発明の範囲外の比較例である。 The electrical characteristics of these 15 types of laminated varistors according to the second embodiment were evaluated. As for the electrical characteristics, the varistor voltage V 1 mA , the voltage ratio V 1 mA / V 10 μA , and the capacitance were evaluated as an index of the non-linearity α, as in the first embodiment. And in addition to these, ESD tolerance was evaluated. The ESD resistance was evaluated from a change in characteristics before and after applying an ESD voltage of 8 kV (charging capacity: 150 pF, discharging resistance: 330Ω) based on IEC61000-1-4 to the device using an electrostatic discharge simulator. Moreover, the change rate ΔV 1 mA from the initial value of the varistor voltage after the ESD voltage is applied is shown as an evaluation result of the ESD resistance. The evaluation results of the electrical characteristics of the laminated varistor in Embodiment 2 are shown in Table 2 together with the sample number of the composition used. In Table 2, those marked with * are comparative examples outside the scope of the present invention.
(表2)の評価結果から明らかなように、比較例の試料番号101(試料番号2の組成)は非直線性が悪く、静電容量も大きく、また、比較例の試料番号106(試料番号16の組成)は非直線性が悪く、バリスタ電圧が高く、そして、比較例の試料番号112(試料番号39の組成)は静電容量が3pF以上と大きく、いずれも、優れた非直線性、低バリスタ電圧、低静電容量のバリスタを目的とする電気特性を満足するものではない。また、ESD耐性は、いずれも、変化率ΔV1mAが−50%以上と大きく実用的な特性ではない。 As is clear from the evaluation results of (Table 2), sample number 101 (composition of sample number 2) of the comparative example has poor nonlinearity and large capacitance, and sample number 106 (sample number) of the comparative example. 16 composition) has poor nonlinearity, the varistor voltage is high, and the sample number 112 (composition of sample number 39) of the comparative example has a large capacitance of 3 pF or more. It does not satisfy the electrical characteristics intended for varistors with low varistor voltage and low capacitance. In addition, the ESD resistance is not a practical characteristic because the change rate ΔV 1 mA is as large as −50% or more.
一方、試料番号102〜105、試料番号107〜111、および試料番号113〜115の本発明の積層バリスタは、いずれも、バリスタ電圧V1mAが28〜45V、非直線性αが1.3以下、静電容量が0.5〜1.3pFであり、比較例に比べてバランスのとれた電気特性を有し、低バリスタ電圧、低静電容量のバリスタとして、優れた電気特性を有するものであった。また、ESD耐性も、いずれも、変化率ΔV1mAが約−21%以下と小さく、優れたESD耐性を有しているものであった。これらの電気特性は、従来のPr系、Bi系の組成では得られない特性領域の低バリスタ電圧および低静電容量値であるとともに、非常に優れたESD耐性を有することを示している。この優れたESD耐性は、バリスタ層が、熱的安定性に優れた粒界組織であることに加え、微細組織の均一化した多結晶体となっているために得られるものである。 On the other hand, the laminated varistors of the present invention of sample numbers 102 to 105, sample numbers 107 to 111, and sample numbers 113 to 115 are all varistor voltage V 1 mA of 28 to 45 V, nonlinearity α is 1.3 or less, Capacitance is 0.5 to 1.3 pF, has a balanced electrical characteristic compared to the comparative example, and has excellent electrical characteristics as a varistor with a low varistor voltage and a low capacitance. It was. Also, the ESD resistance was excellent in ESD resistance with a small change rate ΔV 1 mA of about −21% or less. These electrical characteristics indicate a low varistor voltage and a low capacitance value in a characteristic region that cannot be obtained by the conventional Pr-based and Bi-based compositions, and also have extremely excellent ESD resistance. This excellent ESD resistance is obtained because the varistor layer is a polycrystalline body having a uniform microstructure in addition to a grain boundary structure excellent in thermal stability.
以上説明したように、本発明の電圧非直線性抵抗体組成物を用いて作製した本発明の積層バリスタは、低バリスタ電圧、低静電容量で、非常に優れたESD耐性を有し、各種電子機器におけるESD対策に適したバリスタが実現できる。 As described above, the multilayer varistor of the present invention produced using the voltage nonlinear resistor composition of the present invention has a low varistor voltage, a low capacitance, a very excellent ESD resistance, A varistor suitable for ESD countermeasures in electronic equipment can be realized.
また、本発明の電圧非直線性抵抗体組成物は、1000〜1100℃の焼成温度で緻密な焼結体が得られるので、安価な内部電極材料のAgPd合金ペーストを用いることができるので製造コストも安くできる。 In addition, the voltage non-linear resistor composition of the present invention can produce a dense sintered body at a firing temperature of 1000 to 1100 ° C., so that an inexpensive AgPd alloy paste of an internal electrode material can be used. Can also be cheap.
なお、一般的に、ESD耐性の変化率ΔV1mAが30%以内の変動であれば、実用上問題なく使用可能であるため、本発明の電圧非直線性抵抗体組成物を用いた積層バリスタにおいては、このESD耐性の変化率の許容範囲内で、さらにバリスタ電圧の低圧化、あるいは静電容量の低容量化を図ることも十分可能である。なお、バリスタ電圧の低圧化には、電極間のバリスタ層の厚みを薄くすることで、静電容量の低容量化にはバリスタ層の厚みを逆に厚くすることや電極面積によって任意に調整可能である。また、耐ESD電圧の要求レベルや用途によって、バリスタ電圧や静電容量などの電気特性を調整することも可能である。 In general, if the change rate ΔV 1 mA of the ESD resistance is within 30%, it can be used without any practical problem. Therefore, in the multilayer varistor using the voltage nonlinear resistor composition of the present invention, It is also possible to further reduce the varistor voltage or lower the capacitance within the allowable range of the change rate of the ESD resistance. The varistor voltage can be lowered by reducing the thickness of the varistor layer between the electrodes. To reduce the capacitance, the varistor layer can be increased by increasing the thickness of the varistor layer or arbitrarily adjusted by the electrode area. It is. It is also possible to adjust electrical characteristics such as varistor voltage and capacitance according to the required level and application of the ESD resistance voltage.
本発明に係る電圧非直線性抵抗体組成物は、その電気特性として、低いバリスタ電圧、優れた非直線性、極めて低い誘電率が得られ、また、結晶粒子も小さく均一であり、優れたESD耐性が得られる。そして、この電圧非直線性抵抗体組成物を用いた本発明に係る積層バリスタは、低バリスタ電圧、低静電容量で、非常に優れたESD耐性を有し、各種電子機器におけるESD対策に適したバリスタとして特に有用である。 The voltage non-linear resistor composition according to the present invention has low varistor voltage, excellent non-linearity, and extremely low dielectric constant as its electrical characteristics, and also has small and uniform crystal grains and excellent ESD. Tolerance is obtained. The multilayer varistor according to the present invention using this voltage non-linear resistor composition has a low varistor voltage, a low capacitance, a very excellent ESD resistance, and is suitable for ESD countermeasures in various electronic devices. It is particularly useful as a varistor.
Claims (7)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008311904A JP5212059B2 (en) | 2008-03-14 | 2008-12-08 | Voltage nonlinear resistor composition and multilayer varistor |
US12/401,920 US7973638B2 (en) | 2008-03-14 | 2009-03-11 | Voltage non-linear resistor ceramic composition and multilayer varistor using the same |
CN 200910128634 CN101531508B (en) | 2008-03-14 | 2009-03-16 | Voltage non-linear resistor ceramic composition and multilayer varistor using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008065394 | 2008-03-14 | ||
JP2008065394 | 2008-03-14 | ||
JP2008311904A JP5212059B2 (en) | 2008-03-14 | 2008-12-08 | Voltage nonlinear resistor composition and multilayer varistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009246335A JP2009246335A (en) | 2009-10-22 |
JP5212059B2 true JP5212059B2 (en) | 2013-06-19 |
Family
ID=41102392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008311904A Active JP5212059B2 (en) | 2008-03-14 | 2008-12-08 | Voltage nonlinear resistor composition and multilayer varistor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5212059B2 (en) |
CN (1) | CN101531508B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5594462B2 (en) * | 2010-04-05 | 2014-09-24 | Tdk株式会社 | Voltage nonlinear resistor ceramic composition and electronic component |
US9242902B2 (en) | 2010-04-05 | 2016-01-26 | Tdk Corporation | Nonlinear resistor ceramic composition and electronic component |
JPWO2013175794A1 (en) * | 2012-05-25 | 2016-01-12 | パナソニックIpマネジメント株式会社 | Voltage nonlinear resistor and multilayer varistor using the same |
CN110942874A (en) * | 2019-12-04 | 2020-03-31 | 句容市博远电子有限公司 | Thermistor added with calcium oxide and preparation method thereof |
CN112321296A (en) * | 2020-10-23 | 2021-02-05 | 中国科学院上海硅酸盐研究所 | Bismuth-free zinc oxide piezoresistor ceramic chip and preparation method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5260985A (en) * | 1975-11-14 | 1977-05-19 | Otowa Electric | Voltageenonnlinearrresistive element |
JPH01253903A (en) * | 1988-04-04 | 1989-10-11 | Mitsubishi Electric Corp | Manufacture of zinc oxide type lighting arrester element |
WO1990011606A1 (en) * | 1989-03-22 | 1990-10-04 | Matsushita Electric Industrial Co., Ltd. | Laminated and grain boundary insulated type semiconductive ceramic capacitor and method of producing the same |
JPH07201532A (en) * | 1993-12-27 | 1995-08-04 | Tdk Corp | Voltage non-linear resistor porcelain composition and voltage non-linear resistor porcelain |
US6017504A (en) * | 1998-07-16 | 2000-01-25 | Universite Laval | Process for synthesizing perovskites using high energy milling |
JP2003298134A (en) * | 2002-01-31 | 2003-10-17 | Toyota Motor Corp | Laminated piezoelectric actuator |
JP2004022976A (en) * | 2002-06-19 | 2004-01-22 | Murata Mfg Co Ltd | Stacked voltage nonlinear resistor and method of manufacturing the same |
JP4123957B2 (en) * | 2003-02-10 | 2008-07-23 | 株式会社村田製作所 | Voltage dependent resistor |
JP2007005500A (en) * | 2005-06-22 | 2007-01-11 | Koa Corp | Zinc oxide laminated varistor and its manufacturing method |
-
2008
- 2008-12-08 JP JP2008311904A patent/JP5212059B2/en active Active
-
2009
- 2009-03-16 CN CN 200910128634 patent/CN101531508B/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009246335A (en) | 2009-10-22 |
CN101531508B (en) | 2013-10-16 |
CN101531508A (en) | 2009-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100414331B1 (en) | Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same | |
KR101015035B1 (en) | Varistor | |
WO2010122732A1 (en) | Surge absorbing element | |
KR100307681B1 (en) | Dielectric ceramic composition, Laminated ceramic capacitor and Method for producing the laminate ceramic capacitor | |
KR100960522B1 (en) | Voltage nonlinear resistor porcelain composition, electronic component and laminated chip varistor | |
JP5212059B2 (en) | Voltage nonlinear resistor composition and multilayer varistor | |
JP5910317B2 (en) | Dielectric porcelain composition and electronic component | |
KR101767672B1 (en) | Dielectric ceramic composition and electronic component | |
US9343522B2 (en) | Ceramic powder, semiconductor ceramic capacitor, and method for manufacturing same | |
JP6089220B2 (en) | Voltage nonlinear resistor composition and multilayer varistor using the same | |
JP5212060B2 (en) | Voltage nonlinear resistor composition and multilayer varistor | |
WO2013175794A1 (en) | Voltage nonlinear resistor and multilayer varistor using same | |
JP7037945B2 (en) | Ceramic capacitors and their manufacturing methods | |
CN105359236B (en) | Laminated ceramic capacitor | |
JP5217984B2 (en) | Voltage nonlinear resistor composition and multilayer varistor | |
US9242902B2 (en) | Nonlinear resistor ceramic composition and electronic component | |
KR101751790B1 (en) | Dielectric ceramic composition and electronic component | |
JP6665710B2 (en) | Dielectric composition and electronic component | |
JP2022088409A (en) | Ceramic capacitor | |
CN112592175A (en) | Dielectric ceramic and multilayer ceramic capacitor | |
JP2713040B2 (en) | Semiconductor porcelain composition and method for producing the same | |
JP2016146380A (en) | Voltage nonlinearity resistor composition, and varistor and laminate varistor that use the same | |
JP2630156B2 (en) | Semiconductor porcelain composition and method for producing the same | |
JPH09148180A (en) | Laminated capacitor | |
JPH06204005A (en) | Semiconductor ceramic composite material and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111129 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20111213 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20121214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130211 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5212059 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160308 Year of fee payment: 3 |