JP5211773B2 - ECG waveform measuring device - Google Patents

ECG waveform measuring device Download PDF

Info

Publication number
JP5211773B2
JP5211773B2 JP2008064797A JP2008064797A JP5211773B2 JP 5211773 B2 JP5211773 B2 JP 5211773B2 JP 2008064797 A JP2008064797 A JP 2008064797A JP 2008064797 A JP2008064797 A JP 2008064797A JP 5211773 B2 JP5211773 B2 JP 5211773B2
Authority
JP
Japan
Prior art keywords
electrode
unit
effective
measurement
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008064797A
Other languages
Japanese (ja)
Other versions
JP2009219554A (en
Inventor
里代子 篠原
謙一 柳井
和也 井野川
皓也 岩竹
晋治 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008064797A priority Critical patent/JP5211773B2/en
Publication of JP2009219554A publication Critical patent/JP2009219554A/en
Application granted granted Critical
Publication of JP5211773B2 publication Critical patent/JP5211773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、被験者に負担をかけることなく被験者の心電信号を計測する静電容量結合型の心電波形計測装置に関する。   The present invention relates to a capacitively coupled electrocardiographic waveform measuring apparatus that measures a subject's electrocardiographic signal without imposing a burden on the subject.

従来より、車中において、被験者であるドライバの心電信号を、着衣のまま簡便に計測することを可能とする心電波形計測装置として、心電信号の生成に必要な生体信号を被験者から検出するための計測用電極を、被験者の皮膚に直接貼り付けるのではなく被験者に対向させて配備する静電容量型のものが知られている。   Conventionally, as an electrocardiographic waveform measurement device that enables simple measurement of the electrocardiogram signal of the driver who is the subject in the car while wearing the clothes, the vital signal required for generating the electrocardiogram signal is detected from the subject. An electrostatic capacitance type electrode is known in which a measurement electrode for performing the measurement is not directly attached to the skin of the subject but is placed facing the subject.

そして、この場合、計測用電極は、シートに着座した被験者によって圧接される部位、具体的には、シートベルト(例えば、特許文献1参照)やシート(例えば特許文献2参照)に設置することが考えられている。
特開2007− 82938号公報 特開2007−301175号公報
In this case, the measurement electrode can be installed on a part to be pressed by a subject seated on the seat, specifically, a seat belt (see, for example, Patent Document 1) or a seat (see, for example, Patent Document 2). It is considered.
JP 2007-82938 A JP 2007-301175 A

しかし、静電容量結合型の心電波形計測装置では、計測用電極と被験者との間の静電容量によって、計測用電極で検出される生体信号の振幅(電圧レベル)が変化し、また、その静電容量は、計測用電極と被験者との接触状態(接触面積、密着度等)によって大きく変化する。従って、被験者の体動や座り方によって接触状態が変化すると、有効な生体信号(ひいては心電信号)を検出することができない場合があるという問題があった。   However, in the capacitively coupled electrocardiographic waveform measurement device, the amplitude (voltage level) of the biological signal detected by the measurement electrode changes due to the capacitance between the measurement electrode and the subject, The capacitance varies greatly depending on the contact state (contact area, adhesion degree, etc.) between the measurement electrode and the subject. Therefore, there has been a problem that when the contact state changes depending on the body movement or sitting of the subject, an effective biological signal (and thus an electrocardiographic signal) may not be detected.

即ち、個々の計測用電極における等価回路は、図16に示すように、計測用電極によって形成されるコンデンサと、差動増幅器によって表される。
コンデンサのインピーダンスをZ、計測用電極間の抵抗値をR、被験者にて発生する生体信号をVsとすると、計測用電極で計測される生体信号Vは、(1)式で表される。但し、Zは、コンデンサの容量をC、生体信号の周波数をfとして、(2)式で表される。
That is, as shown in FIG. 16, an equivalent circuit in each measurement electrode is represented by a capacitor formed by the measurement electrode and a differential amplifier.
When the impedance of the capacitor is Z, the resistance value between the measurement electrodes is R, and the biological signal generated by the subject is Vs, the biological signal V measured by the measurement electrode is expressed by the following equation (1). However, Z is expressed by equation (2), where C is the capacitance of the capacitor and f is the frequency of the biological signal.

V=R/(Z+R)・Vs (1)
Vs=1/(2πfC) (2)
(1)(2)式からわかるように、コンデンサの容量Cが小さいほど、コンデンサのインピーダンスZが大きくなり、計測される生体信号Vは低下する。
V = R / (Z + R) .Vs (1)
Vs = 1 / (2πfC) (2)
As can be seen from the equations (1) and (2), the smaller the capacitance C of the capacitor, the greater the impedance Z of the capacitor, and the measured biological signal V decreases.

ここで、図17は、(1)式から得られる入出力比V/Vsの理論値と、入出力比V/Vsの実測値とを示すグラフである。図からわかるように、入出力比V/Vsの実測値は、コンデンサの容量Cが大きい場合(グラフでは4nF以上)は、ほぼ理論値通りの値が得られるが、コンデンサの容量Cが小さい場合(グラフでは2nF以下)は、理論値からはずれ大きく外れた値となることがわかる。   Here, FIG. 17 is a graph showing the theoretical value of the input / output ratio V / Vs obtained from the equation (1) and the actual value of the input / output ratio V / Vs. As can be seen from the figure, when the capacitance C of the capacitor is large (4 nF or more in the graph), the measured value of the input / output ratio V / Vs is almost the theoretical value, but when the capacitance C of the capacitor is small. (2nF or less in the graph) is a value that deviates from the theoretical value and greatly deviates.

なお、実測値の測定条件は、入力信号:1mV、10Hzのsin波、サンプリング周波数:1kHz、介挿布:綿、絹、フィルム、測定用電極面積:直径120mmである。
本発明は、上記問題点を解決するために、静電容量結合型の心電波形計測装置において、計測用電極と被験者との接触状態が変化に関わらず信頼度の高い心電信号の計測を可能とすることを目的とする。
The measurement conditions for the actual measurement values are: input signal: 1 mV, sine wave of 10 Hz, sampling frequency: 1 kHz, insertion cloth: cotton, silk, film, measurement electrode area: diameter 120 mm.
In order to solve the above-described problems, the present invention is a capacitively coupled electrocardiographic waveform measuring apparatus that performs highly reliable measurement of an electrocardiographic signal regardless of changes in the contact state between a measurement electrode and a subject. The purpose is to make it possible.

上記目的を達成するためになされた発明である請求項1に記載の心電波形計測装置は、シートに着座した被験者と接触する場所又はシート内部に位置する中間電極および一対の差分電極からなる3つの測定用電極を備えており、心電信号生成手段が、中間電極の電位を基準電位として、一対の差分電極間の電位差を示す信号を心電信号として生成する。   The electrocardiographic waveform measuring device according to claim 1, which is an invention made to achieve the above object, comprises an intermediate electrode and a pair of differential electrodes that are located in or in contact with a subject seated on the seat or inside the seat. The electrocardiogram signal generating means generates a signal indicating a potential difference between the pair of differential electrodes as an electrocardiogram signal, with the potential of the intermediate electrode as a reference potential.

このとき、推定手段が、測定用電極毎に、これら測定用電極と被験者との間の静電容量を推定し、その推定結果に基づき、補正手段が、心電信号生成手段にて生成される心電信号の信号レベルを補正する。   At this time, the estimation means estimates the capacitance between the measurement electrodes and the subject for each measurement electrode, and based on the estimation result, the correction means is generated by the electrocardiogram signal generation means. Correct the ECG signal level.

具体的には、測定用電極の静電容量が小さいほど、一対の差分電極で検出される信号の電圧レベルが低下するため、補正手段は、その低下分を補償するように補正すればよい。
このように構成された本発明の心電波形計測装置によれば、測定用電極と被験者との間の静電容量を推定し、その推定結果に基づいて心電信号の信号レベルを補正しているため、測定用電極と被験者との接触状態(ひいては静電容量の大きさ)によらず信頼度の高い心電信号の計測結果を得ることができる。
Specifically, the smaller the electrostatic capacitance of the measurement electrode, the lower the voltage level of the signal detected by the pair of differential electrodes. Therefore, the correction means may correct so as to compensate for the decrease.
According to the electrocardiogram waveform measuring apparatus of the present invention configured as described above, the capacitance between the measurement electrode and the subject is estimated, and the signal level of the electrocardiogram signal is corrected based on the estimation result. Therefore, a highly reliable electrocardiographic signal measurement result can be obtained regardless of the contact state between the measurement electrode and the subject (and hence the capacitance).

ところで、請求項2に記載のように、測定用電極が、それぞれ単一の単位電極からなる場合、推定手段を次のように構成してもよい。
即ち、測定用電極毎に、これら測定用電極の複数の部位にそれぞれ設けられた複数の圧力センサからなる圧力検出手段を設け、有効センサ抽出手段が、圧力検出手段を構成する圧力センサのうち、出力が予め設定された有効閾値以上となるものを有効センサとして抽出する。また、接触情報算出手段が、測定用電極毎に、これら測定用電極と被験者との間の接触面積を有効センサの数に基づいて算出すると共に、測定用電極と被験者との接触圧を有効センサでの検出圧力に基づいて算出する。
By the way, as described in claim 2, when the measurement electrodes are each composed of a single unit electrode, the estimation means may be configured as follows.
That is, for each measurement electrode, there is provided a pressure detection means composed of a plurality of pressure sensors respectively provided at a plurality of portions of the measurement electrode, and the effective sensor extraction means is a pressure sensor constituting the pressure detection means, A sensor whose output is equal to or greater than a preset valid threshold is extracted as a valid sensor. Further, the contact information calculation means calculates, for each measurement electrode, the contact area between the measurement electrode and the subject based on the number of effective sensors, and calculates the contact pressure between the measurement electrode and the subject. Calculated based on the detected pressure at.

そして、推定手段は、この接触情報算出手段にて算出された接触面積と接触圧とに基づいて静電容量を推定する。
このように構成された本発明の心電波形計測装置によれば、測定用電極の中で被験者と確実に接触している部位の面積(接触面積)、及びその部位に加わる圧力(接触圧)を用いて、測定用電極と被験者との間の静電容量を推定しているため、静電容量の推定精度、ひいては心電信号の計測結果の信頼度をより向上させることができる。
Then, the estimation means estimates the capacitance based on the contact area and contact pressure calculated by the contact information calculation means.
According to the electrocardiographic waveform measuring apparatus of the present invention configured as described above, the area (contact area) of the part that is reliably in contact with the subject in the measurement electrode, and the pressure applied to the part (contact pressure) Since the electrostatic capacitance between the measurement electrode and the subject is estimated using, the estimation accuracy of the electrostatic capacitance, and thus the reliability of the measurement result of the electrocardiogram signal can be further improved.

即ち、二つの電極(ここでは測定用電極と人体)間の静電容量Cは、電極間の距離をd、接触面積をS、電極間の誘電率をεとして、(3)式で表され、接触圧は距離dに影響を与えて静電容量Cを変化させるものと考えられる。   That is, the capacitance C between two electrodes (here, the measurement electrode and the human body) is expressed by the equation (3), where d is the distance between the electrodes, S is the contact area, and ε is the dielectric constant between the electrodes. The contact pressure is considered to affect the distance d and change the capacitance C.

C=ε×S/d (3)
ここで、図18は、測定用電極に加わる圧力(接触圧)と静電容量との関係を、測定用電極と皮膚表面との接触状態(綿1枚又は2枚を介挿)、測定用電極の面積(直径30mm,60mm,120mm)を変化させて測定した結果を示すグラフである(入力信号:1mV、10Hzのsin波、サンプリング周波数:1kHz)。グラフからは、接触面積や接触圧が大きいほど、測定用電極と皮膚表面との間に介挿される綿が少ないほど、静電容量が大きくなることがわかる。
C = ε × S / d (3)
Here, FIG. 18 shows the relationship between the pressure (contact pressure) applied to the measurement electrode and the capacitance, the contact state between the measurement electrode and the skin surface (with one or two pieces of cotton interposed), and measurement. It is a graph which shows the result of having changed and measured the area (diameter 30mm, 60mm, 120mm) of an electrode (input signal: 1mV, sine wave of 10Hz, sampling frequency: 1kHz). From the graph, it can be seen that the larger the contact area and the contact pressure, the larger the capacitance, the smaller the cotton inserted between the measurement electrode and the skin surface.

なお、推定手段が静電容量を推定する際に必要となる、静電容量と接触面積及び接触圧との相関関係は、予め実験等によって求めておけばよい。
また、請求項3に記載のように、測定用電極のいずれかとして使用される四つ以上の単位電極と、指定された割当設定に従って、単位電極を、測定用電極のいずれかに割り当てる電極割当手段とを備えている場合、推定手段を次のように構成してもよい。
In addition, what is necessary is just to obtain | require previously the correlation of an electrostatic capacitance, a contact area, and a contact pressure required when an estimation means estimates an electrostatic capacitance by experiment.
Further, according to claim 3, four or more unit electrodes used as any of the measurement electrodes and an electrode assignment for assigning the unit electrodes to any of the measurement electrodes according to a designated assignment setting And the estimation means may be configured as follows.

即ち、単位電極毎に設けられた複数の圧力センサからなる圧力検出手段を備え、有効センサ抽出手段が、圧力検出手段を構成する圧力センサのうち、出力が予め設定された有効閾値以上となるものを有効センサとして抽出し、分割手段が、有効センサに対応する単位電極である有効電極のそれぞれを、測定用電極のいずれかに割り当てると共に、電極割当手段に対する割当設定を生成する。また、接触情報算出手段が、測定用電極毎に、測定用電極と前記被験者との接触圧を前記有効センサでの検出圧力に基づいて算出する。   That is, a pressure detection unit comprising a plurality of pressure sensors provided for each unit electrode is provided, and the effective sensor extraction unit is a pressure sensor constituting the pressure detection unit whose output is equal to or greater than a preset effective threshold value. Are divided as effective sensors, and the dividing means assigns each of the effective electrodes, which are unit electrodes corresponding to the effective sensors, to any of the measurement electrodes, and generates assignment settings for the electrode assignment means. Further, the contact information calculation means calculates, for each measurement electrode, the contact pressure between the measurement electrode and the subject based on the pressure detected by the effective sensor.

そして、推定手段は、この接触情報算出手段にて算出された接触圧と単位電極面積に基づいて静電容量を推定する。
このように構成された本発明の心電波形計測装置によれば、単位電極と被験者との接触状態に応じて、被験者と確実に接触している有効電極のみを、柔軟に測定用電極に割り当てることができるため、心電信号の計測結果の信頼度をより向上させることができる。
Then, the estimating means estimates the capacitance based on the contact pressure and unit electrode area calculated by the contact information calculating means.
According to the electrocardiographic waveform measuring apparatus of the present invention configured as described above, only the effective electrode that is reliably in contact with the subject is flexibly assigned to the measurement electrode according to the contact state between the unit electrode and the subject. Therefore, the reliability of the electrocardiographic signal measurement result can be further improved.

なお、請求項4に記載のように、中間電極として使用される単位電極は固定的に割り当てられ、分割手段は、中間電極に割り当てられるもの以外の単位電極を2分割して前記一対の差分電極に割り当てるように構成されていてもよい。   The unit electrode used as the intermediate electrode is fixedly assigned, and the dividing unit divides the unit electrode other than the one assigned to the intermediate electrode into two to divide the pair of differential electrodes. It may be configured to be assigned to.

また、請求項5に記載のように、単位電極は、中間電極に優先的に割り当てられる優先電極群と、それ以外の通常電極群とからなり、分割手段は、優先電極群及び通常電極群とも、これら電極群に含まれる有効センサの数が予め規定された使用閾値以上である場合には、優先電極群中の有効電極を中間電極に割り当てると共に、通常電極群中の有効電極を2分割して前記の差分電極に割り当て、優先電極群及び通常電極群のうち一方だけが有効センサの数が使用閾値以上である場合には、その一方の電極群中の有効電極を3分割して、中間電極及び一対の差分電極に割り当てるように構成されていてもよい。   Further, as described in claim 5, the unit electrode includes a priority electrode group preferentially assigned to the intermediate electrode and other normal electrode groups, and the dividing means includes both the priority electrode group and the normal electrode group. When the number of effective sensors included in these electrode groups is equal to or greater than a predetermined use threshold, the effective electrodes in the priority electrode group are assigned to the intermediate electrodes, and the effective electrodes in the normal electrode group are divided into two. When the number of effective sensors in one of the priority electrode group and the normal electrode group is equal to or greater than the use threshold, the effective electrode in the one electrode group is divided into three parts, You may be comprised so that it may allocate to an electrode and a pair of difference electrode.

このように構成された本発明の心電波形計測装置によれば、測定用電極への単位電極の割り当てを、その時々の状況に応じてより柔軟に行うことができ、信頼度の高い心電信号の計測結果が得られる可能性をより向上させることができる。   According to the electrocardiogram waveform measuring apparatus of the present invention configured as described above, the unit electrode can be assigned to the measurement electrode more flexibly according to the situation at the time, and a highly reliable electrocardiogram. The possibility of obtaining the measurement result of the issue can be further improved.

ところで、請求項6に記載のように、分割手段は、それぞれの合計容量が略等しくなるように有効電極を分割することが望ましい。
この場合、各測定用電極が略同じ静電容量を持つことになり、心電信号の生成に必要な二つの生体信号を略同じ条件で取得することができるため、心電信号の計測結果の信頼度をより向上させることができる。
By the way, as described in claim 6, it is desirable that the dividing means divides the effective electrode so that the total capacity of each of them is substantially equal.
In this case, each measurement electrode has substantially the same capacitance, and two biological signals necessary for generating the electrocardiogram signal can be acquired under substantially the same conditions. Reliability can be further improved.

また、請求項7に記載のように、分割手段は、分割すべき電極群中の前記有効電極が形成する有効領域の形状が縦長である場合は、分割された領域が縦方向に並び、有効領域の形状が横長である場合は、分割された領域が横方向に並ぶように有効電極を分割する(各測定用電極に割り当てる)ことが望ましい。   According to a seventh aspect of the present invention, when the effective area formed by the effective electrode in the electrode group to be divided is vertically long, the dividing means is arranged in the vertical direction and the divided areas are arranged in the vertical direction. When the shape of the region is horizontally long, it is desirable to divide the effective electrode (assign it to each measurement electrode) so that the divided regions are aligned in the horizontal direction.

このように構成された本発明の心電波形計測装置によれば、分割された個々の領域内での接触圧の偏りを抑制することができ、静電容量の推定精度を向上させることができる。
次に、請求項8に記載の心電波形計測装置では、信頼度判定手段が、接触情報算出手段での算出結果又は推定手段での推定結果に基づいて、補正手段にて補正された心電信号の信頼度を判定する。
According to the electrocardiographic waveform measuring apparatus of the present invention configured as described above, it is possible to suppress the deviation of the contact pressure in each divided region, and it is possible to improve the estimation accuracy of the capacitance. .
Next, in the electrocardiogram waveform measuring apparatus according to claim 8, the electrocardiogram corrected by the correcting means based on the calculation result by the contact information calculating means or the estimation result by the estimating means. Determine the reliability of the issue.

即ち、測定用電極の静電容量がある程度以上小さくなると、図17に示すように、生成される心電信号の精度が著しく低下し、また、接触面積や接触圧がある程度以上小さくなると、静電容量の推定精度自体が低下してしまうため、このような心電信号の信頼度を示す情報を提供することによって、当該装置が計測した心電信号を利用する装置や処理の信頼度も確保することができる。   That is, when the capacitance of the measurement electrode is reduced to a certain degree or more, as shown in FIG. 17, the accuracy of the generated electrocardiogram signal is remarkably lowered, and when the contact area or the contact pressure is reduced to a certain degree or more, Since the capacity estimation accuracy itself is lowered, providing information indicating the reliability of the electrocardiogram signal as described above ensures the reliability of the device and the process using the electrocardiogram signal measured by the device. be able to.

そして、具体的には、信頼度判定手段を、例えば請求項9に記載のように、測定用電極の中でいずれか一つでも、接触情報算出手段にて算出される接触圧又は有効センサの数が予め設定された下限値未満となる、或いは、推定手段にて推定された一対の差分電極の静電容量がいずれも、予め設定された容量閾値未満となる場合に、信頼度が低い又は中程度と判定するように構成してもよい。   Specifically, the reliability determination means is, for example, a contact pressure calculated by the contact information calculation means or an effective sensor of any one of the measurement electrodes as described in claim 9. The reliability is low when the number is less than a preset lower limit value, or the capacitances of the pair of differential electrodes estimated by the estimation means are both less than a preset capacitance threshold value, or You may comprise so that it may determine with medium.

なお、測定用電極に含まれる有効センサの数に、単位電極面積を乗じたものが、被験者と測定用電極とが有効に接している接触面積と考えることができる。
また、信頼度判定手段を、例えば請求項10に記載のように、測定用電極がいずれも、接触情報算出手段にて算出される接触圧又は有効センサの数が下限値以上であり、且つ、推定手段にて推定された一対の差分電極の静電容量がいずれも、予め設定された容量閾値以上となる場合に、信頼度が高いと判定するように構成してもよい。
In addition, what multiplied the number of the effective sensors contained in the measurement electrode by the unit electrode area can be considered as a contact area where the subject and the measurement electrode are in effective contact.
Further, in the reliability determination means, for example, as described in claim 10, in any of the measurement electrodes, the contact pressure calculated by the contact information calculation means or the number of effective sensors is equal to or more than a lower limit, and You may comprise so that it may determine with reliability when the electrostatic capacitance of a pair of difference electrode estimated by the estimation means becomes more than a predetermined capacity | capacitance threshold value.

次に、請求項11に記載の心電波形計測装置では、接触状態監視手段が、単位電極毎に圧力検出手段での最新の検出結果と前回の検出結果との差分値を求め、単位電極の中に差分値が予め設定された差分閾値以上となるものが存在する場合に、測定用電極と被験者との接触状態が不安定であるものとして、補正手段にて補正された心電信号の信頼度が低いとの判定、又は心電信号の出力の禁止を行う。   Next, in the electrocardiographic waveform measuring apparatus according to claim 11, the contact state monitoring means obtains a difference value between the latest detection result of the pressure detection means and the previous detection result for each unit electrode, and the unit electrode The reliability of the electrocardiogram signal corrected by the correction means, assuming that the contact state between the measurement electrode and the subject is unstable when there is a difference value that is greater than or equal to a preset difference threshold value. It is judged that the degree is low, or the output of the electrocardiogram signal is prohibited.

このように構成された本発明の心電波形計測装置によれば、当該装置が計測した心電信号を利用する装置や処理の信頼度も確保することができる。
なお、請求項12に記載のように、心電信号生成手段にて生成された心電信号を増幅する増幅器を備えている場合、補正手段は、推定手段での推定結果に従って、増幅器の増幅率を変化させることにより、心電信号を補正するように構成してもよい。
According to the electrocardiogram waveform measuring apparatus of the present invention configured as described above, it is possible to ensure the reliability of the apparatus and the process using the electrocardiographic signal measured by the apparatus.
In addition, when the amplifier for amplifying the electrocardiogram signal generated by the electrocardiogram signal generation unit is provided as described in claim 12, the correction unit determines the amplification factor of the amplifier according to the estimation result of the estimation unit. It may be configured to correct the electrocardiogram signal by changing.

以下に本発明の実施形態を図面と共に説明する。
[第1実施形態]
図1は、本発明が適用された第1実施形態の心電波形計測装置1の全体構成を示すブロック図である。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a block diagram showing an overall configuration of an electrocardiographic waveform measuring apparatus 1 according to the first embodiment to which the present invention is applied.

なお、心電波形計測装置1は、車両に搭載され、運転シートに着座したドライバー(被験者)から発せられる電位信号(生体信号)を検出し、その生体信号に基づいて、心電波形を表す心電データDHを生成するものである。   The electrocardiographic waveform measuring apparatus 1 is a heart mounted on a vehicle, detects a potential signal (biological signal) emitted from a driver (subject) seated on a driving seat, and represents an electrocardiographic waveform based on the biological signal. Electric data DH is generated.

<全体構成>
図1に示すように、心電波形計測装置1は、運転シートに着座したドライバーと接触する位置に設けられた複数(本実施形態では3個)の測定用電極D1〜D3、及び各測定用電極D1〜D3に対応して設けられ、それぞれがn個、合計m(=3n)個の圧力センサB〜Bで構成された圧力センサ群BG1〜BG3からなる信号検出部2と、信号検出部2を構成する各測定用電極D1〜D3から得られる信号に基づいて心電信号を生成する心電信号生成部3と、心電信号生成部3で生成された心電信号を、指定された増幅率Aで増幅する可変増幅器4と、可変増幅器4の出力をデジタルデータ(以下、心電データDHという)に変換するA/D変換器5と、信号検出部2を構成する各圧力センサB〜Bから得られる信号に基づいて、可変増幅器4の増幅率Aを指定すると共に、心電データDHの信頼度を表す確度データDKを生成する補正制御部6とを備えている。
<Overall configuration>
As shown in FIG. 1, the electrocardiographic waveform measuring apparatus 1 includes a plurality (three in this embodiment) of measurement electrodes D1 to D3 provided for contact with a driver seated on a driving seat, and each measurement electrode. provided corresponding to the electrode D1 to D3, respectively it is n, the sum m (= 3n) signal detector 2 made of pieces of the pressure sensor B 1 .about.B pressure sensors BG1~BG3 constituted by m, the signal An electrocardiogram signal generation unit 3 that generates an electrocardiogram signal based on signals obtained from the measurement electrodes D1 to D3 constituting the detection unit 2, and an electrocardiogram signal generated by the electrocardiogram signal generation unit 3 are designated. The variable amplifier 4 that amplifies with the amplification factor A, the A / D converter 5 that converts the output of the variable amplifier 4 into digital data (hereinafter referred to as electrocardiographic data DH), and each pressure that constitutes the signal detector 2 based on a signal obtained from the sensor B 1 .about.B m , As well as specify the amplification factor A of the variable amplifier 4, and a correction control unit 6 for generating likelihood data DK indicating the reliability of the electrocardiograph data DH.

<信号検出部>
ここで、図2は、(a)が信号検出部2を構成する測定用電極D1〜D3及び圧力センサ群BG1〜BG3の設置位置、及び使用状態を示す説明図、(b)が測定用電極D1〜D3,圧力センサ群BG1〜BG3,圧力センサB〜Bの位置関係を示す説明図である。
<Signal detection unit>
2A is an explanatory diagram showing the installation positions and usage states of the measurement electrodes D1 to D3 and the pressure sensor groups BG1 to BG3 constituting the signal detection unit 2, and FIG. 2B is an measurement electrode. D1 to D3, the pressure sensors BG1~BG3, is an explanatory view showing the positional relationship of the pressure sensor B 1 ~B m.

図2に示すように、測定用電極D1は運転シートの背もたれ部の上部に、測定用電極D2は運転シートの背もたれ部の下部に、測定用電極D3は運転シートの座部にそれぞれ配置されていると共に、各測定用電極D1〜D3の裏面には、それぞれn個の圧力センサB〜B,Bn+1 〜B2n,B2n+i〜Bを均等な間隔でマトリクス状に配置してなる圧力センサ群BGiが設けられている。 As shown in FIG. 2, the measurement electrode D1 is disposed on the upper portion of the backrest portion of the operation seat, the measurement electrode D2 is disposed on the lower portion of the backrest portion of the operation seat, and the measurement electrode D3 is disposed on the seat portion of the operation seat. In addition, n pressure sensors B 1 to B n , B n + 1 to B 2n , and B 2n + i to B m are arranged in a matrix at equal intervals on the back surfaces of the measurement electrodes D1 to D3. A pressure sensor group BGi is provided.

なお、運転シートの背もたれ部に位置する測定用電極D1,D2は、運転シートに着座したドライバーの平均的な心臓の位置(高さ)を挟んで、その上下に位置するように配置されている。   The measurement electrodes D1 and D2 positioned on the backrest portion of the driving seat are arranged so as to be positioned above and below the average heart position (height) of the driver seated on the driving seat. .

そして、被験者であるドライバーが運転シートに着座すると、衣服を挟んで測定用電極Diと人体との間に容量性結合が形成され、ドライバーから発せられる生体信号が測定用電極Diを介して検出される。また、圧力センサB〜Bにより、測定用電極Diをマトリクス状にn分割した各部位毎に、その部位に加わる圧力が検出される。 When the driver, who is the subject, sits on the driving seat, a capacitive coupling is formed between the measurement electrode Di and the human body across the clothes, and a biological signal emitted from the driver is detected via the measurement electrode Di. The Further, the pressure sensor B 1 .about.B m, the measurement electrodes Di for each site is divided into n in a matrix, pressure applied to the site is detected.

<心電信号生成部>
心電信号生成部3は、図1に示すように、測定用電極D1,D2(以下「差分電極」ともいう)にそれぞれ接続されたボルテージフォロア回路31,32と、測定用電極D3(以下「中間電極」ともいう)の電位を基準電位として、両ボルテージフォロア回路31,32から出力される電圧信号の差分を増幅する差動増幅器33と、差動増幅器33の出力を増幅する増幅回路34と、増幅回路34の出力からノイズ成分を除去するバンドパスフィルタ35とを備えている。
<Electrocardiogram signal generator>
As shown in FIG. 1, the electrocardiogram signal generation unit 3 includes voltage follower circuits 31 and 32 connected to measurement electrodes D1 and D2 (hereinafter also referred to as “difference electrodes”) and measurement electrodes D3 (hereinafter referred to as “differential electrodes”). A differential amplifier 33 that amplifies the difference between the voltage signals output from both voltage follower circuits 31 and 32, and an amplifier circuit 34 that amplifies the output of the differential amplifier 33. And a band-pass filter 35 for removing noise components from the output of the amplifier circuit 34.

つまり、心電信号生成部3では、差分電極D1,D2の電位差に比例した信号を心電信号として生成するようにされている。
<補正制御部>
補正制御部6は、圧力センサB〜Bから得られる検出信号(電圧レベル)を、それぞれデジタルデータ(以下「検出データ」という)VP〜VPに変換するA/D変換器61と、CPU,ROM,RAMを中心に構成された周知のマイクロコンピュータからなる演算処理部62とを備えている。
That is, the electrocardiogram signal generator 3 generates a signal proportional to the potential difference between the differential electrodes D1 and D2 as an electrocardiogram signal.
<Correction control unit>
The correction control unit 6 includes an A / D converter 61 that converts detection signals (voltage levels) obtained from the pressure sensors B 1 to B m into digital data (hereinafter referred to as “detection data”) VP 1 to VP m , respectively. And an arithmetic processing unit 62 composed of a well-known microcomputer mainly composed of a CPU, a ROM, and a RAM.

そして、演算処理部62では、A/D変換器61を介して検出データVP〜VPを繰り返し取得するデータ取得処理と、データ取得処理により検出データVP〜VPが一通り取得される毎に、その検出データVP〜VPに基づいて、可変増幅器4の増幅率Aを設定すると共に、心電データDHの信頼度を表す確度データDKを生成する補正処理とを少なくとも実行する。 Then, the arithmetic processing unit 62, a data acquisition process repeatedly acquiring detection data VP 1 ~VP m via the A / D converter 61, detects the data VP 1 ~VP m by the data acquisition process is acquired one way Every time, the amplification factor A of the variable amplifier 4 is set based on the detection data VP 1 to VP m , and at least correction processing for generating accuracy data DK representing the reliability of the electrocardiogram data DH is executed.

<補正処理>
次に、演算処理部62が実行する補正処理を、図3に示すフローチャートに沿って説明する。
<Correction process>
Next, correction processing executed by the arithmetic processing unit 62 will be described with reference to the flowchart shown in FIG.

本処理が起動すると、まず、S110では、データ取得処理で取得され、電圧レベルを表す検出データVP〜VPを、圧力を表す圧力データP〜Pに変換し、続くS120では、圧力センサB〜Bの中で、圧力データPが予め設定された有効閾値Pth以上となるものを有効センサEBとして抽出する。 When this processing is started, first, in S110, are acquired by the data acquisition process, the detection data VP 1 ~VP m representing the voltage level is converted into pressure data P 1 to P m representing the pressure, in the subsequent S120, the pressure among the sensors B 1 ~B m, pressure data P k extracts what the preset effective threshold Pth or more as an active sensor EB k.

S130では、圧力センサ群BGi(i=1,2,3)毎に、その圧力センサ群BGiに属する有効センサEBの数をカウントしたものを測定用電極Diの接触面積Si、有効センサEBで検出された圧力データPの平均値を測定用電極Diの接触圧PAiとして算出する。 In S130, for each pressure sensor group BGi (i = 1,2,3), the contact area Si of the measuring electrode Di those obtained by counting the number of valid sensor EB k belonging to the pressure sensor group BGi, effective sensor EB k The average value of the pressure data Pk detected in step 1 is calculated as the contact pressure PAi of the measurement electrode Di.

S140では、各測定用電極D1〜D3の接触面積S1〜S3が、いずれも予め設定された面積下限値Sth(本実施形態では0)より大きいか否かを判断する。なお、面積下限値Sthは、0に限るものではなく、例えば、後述(S150)する静電容量Cの推定時に、その推定精度が確保される接触面積Sの下限値等に設定してもよい。   In S140, it is determined whether or not the contact areas S1 to S3 of the respective measurement electrodes D1 to D3 are larger than a preset area lower limit value Sth (0 in the present embodiment). The area lower limit value Sth is not limited to 0, and may be set to, for example, the lower limit value of the contact area S that ensures the estimation accuracy when estimating the capacitance C described later (S150). .

そして、S140にて肯定判断されると、S150にて、接触面積S1,S2、接触圧PA1,PA2に基づいて、差分電極D1,D2の静電容量C1,C2を推定する。
具体的には、予め接触面積S、接触圧PAをパラメータとして、静電容量Cとの関係を実験的に測定することで得られたグラフ(図4(a)参照)から生成した変換テーブルを用いる。なお、推定の方法はこれに限らず、グラフからS,PA,Cの関係を関数によって表し、その関数にS,PAを代入することでCを算出してもよい。
If an affirmative determination is made in S140, the capacitances C1, C2 of the differential electrodes D1, D2 are estimated in S150 based on the contact areas S1, S2 and the contact pressures PA1, PA2.
Specifically, a conversion table generated from a graph (see FIG. 4A) obtained by experimentally measuring the relationship with the capacitance C using the contact area S and the contact pressure PA as parameters in advance. Use. The estimation method is not limited to this, and the relationship between S, PA, and C may be represented by a function from a graph, and C may be calculated by substituting S and PA into the function.

S160では、S150にて推定された静電容量C1,C2がいずれも予め設定された容量閾値Cth以上であるか否かを判断し、肯定判断された場合は、S170にて、当該装置1で生成される心電データDHの信頼度が高いことを示す確度データDKを生成,出力してS190に進む。なお、容量閾値Cthは、例えば、図17に示すグラフに基づいて、実測値が理論値と略等しくなる下限の値(図では4nF程度)に設定すればよい。   In S160, it is determined whether or not both of the capacitances C1 and C2 estimated in S150 are equal to or larger than a preset capacitance threshold Cth. If an affirmative determination is made, the apparatus 1 in S170 The accuracy data DK indicating that the reliability of the generated electrocardiogram data DH is high is generated and output, and the process proceeds to S190. Note that the capacity threshold value Cth may be set to a lower limit value (about 4 nF in the figure) at which the actually measured value is substantially equal to the theoretical value based on the graph shown in FIG.

一方、静電容量C1,C2の少なくとも一方が容量閾値Cthより小さく、S160にて否定判断された場合は、S180にて、当該装置1で生成される心電データDHの信頼度が中であることを示す確度データDKを生成,出力してS190に進む。   On the other hand, if at least one of the capacitances C1 and C2 is smaller than the capacitance threshold Cth and a negative determination is made in S160, the reliability of the electrocardiogram data DH generated by the device 1 is medium in S180. The accuracy data DK indicating this is generated and output, and the process proceeds to S190.

S190では、静電容量C1,C2に基づいて、可変増幅器4の増幅率Aを設定して本処理を終了する。なお、増幅率Aの設定は、具体的には、図4(b)に示すグラフを用い、静電容量C1,C2の平均値から増幅率Aを決定する。なお、図4(b)のグラフは、測定用電極Diにおける入出力比((1)式参照)が一定となるよう、即ち、静電容量Ciが小さいことによって生じる入出力比の低下を補償するように設定する。   In S190, the amplification factor A of the variable amplifier 4 is set on the basis of the capacitances C1 and C2, and this process ends. Specifically, the amplification factor A is determined by using the graph shown in FIG. 4B and determining the amplification factor A from the average value of the capacitances C1 and C2. Note that the graph of FIG. 4B compensates for a decrease in the input / output ratio that occurs when the input / output ratio at the measurement electrode Di (see equation (1)) is constant, that is, the capacitance Ci is small. Set to

先のS130にて算出された接触面積S1〜S3のうち、少なくとも一つが面積下限値Sthより小さく、S140にて否定判断された場合は、S200にて、当該装置1で生成される心電データDHの信頼度が低いことを示す確度データDKを生成,出力し、続くS210にて、可変増幅器4の増幅率Aを、予め規定されたデフォルト値に設定して、本処理を終了する。   If at least one of the contact areas S1 to S3 calculated in the previous S130 is smaller than the area lower limit value Sth and a negative determination is made in S140, the electrocardiographic data generated by the device 1 in S200. Accuracy data DK indicating that the reliability of DH is low is generated and output. In subsequent S210, the amplification factor A of the variable amplifier 4 is set to a predetermined default value, and this processing is terminated.

<効果>
以上説明したように、心電波形計測装置1によれば、測定用電極D1〜D3と被験者との間の静電容量C1〜C3を推定し、その推定結果に基づいて可変増幅器4の増幅率Aを設定することにより、心電信号の信号レベルを補正しているため、測定用電極D1〜D3と被験者との接触状態(ひいては静電容量C1〜C3の大きさのばらつき)によらず信頼度の高い心電信号の計測結果を得ることができる。
<Effect>
As described above, according to the electrocardiogram waveform measuring apparatus 1, the capacitances C1 to C3 between the measurement electrodes D1 to D3 and the subject are estimated, and the amplification factor of the variable amplifier 4 is based on the estimation result. Since the signal level of the electrocardiogram signal is corrected by setting A, it is reliable regardless of the contact state between the measurement electrodes D1 to D3 and the subject (and hence the variation in the size of the capacitances C1 to C3). It is possible to obtain a high-degree electrocardiographic signal measurement result.

また心電波形計測装置1では、接触面積S1〜S3が面積下限値Sth以下のものが存在する場合には、当該装置1が生成する心電データDHの信頼度が低いことを表す確度データDKを生成し、接触面積S1〜S3がいずれも面積下限値より大きく、且つ、差分電極D1,D2の静電容量C1,C2がいずれも容量閾値Cth以上である場合には、心電データDHの信頼度が高いことを表す確度データDKを生成し、それ以外の場合は、心電データDHの信頼度が中程度であることを表す確度データDKを生成するようにされている。   Further, in the electrocardiogram waveform measuring apparatus 1, when there is a contact area S1 to S3 having an area lower limit value Sth or less, the accuracy data DK indicating that the electrocardiographic data DH generated by the apparatus 1 has low reliability. When the contact areas S1 to S3 are all larger than the area lower limit value and the capacitances C1 and C2 of the differential electrodes D1 and D2 are both equal to or larger than the capacitance threshold Cth, the electrocardiographic data DH The accuracy data DK indicating that the reliability is high is generated. In other cases, the accuracy data DK indicating that the reliability of the electrocardiogram data DH is medium is generated.

従って、心電波形計測装置1によれば、このような確度データDKを提供することによって、当該装置1で生成した心電データDHを利用する装置や処理の信頼度も確保することができる。
[第2実施形態]
次に第2実施形態について説明する。
Therefore, according to the electrocardiogram waveform measuring apparatus 1, by providing such accuracy data DK, it is possible to ensure the reliability of the apparatus and processing that use the electrocardiographic data DH generated by the apparatus 1.
[Second Embodiment]
Next, a second embodiment will be described.

図5は、第2実施形態の心電波形計測装置10の全体構成を示すブロック図、図6は、第1実施形態の心電波形計測装置1とは相違する部分の構成を示す説明図である。
なお、本実施形態の心電波形計測装置10は、第1実施形態の心電波形計測装置1とは、信号検出部12の及び心電信号生成部13の構成が異なると共に、補正制御部6aの演算処理部62aが実行する補正処理の内容(図7,8参照)が異なり、これに伴って切替信号Xを出力することが異なるだけであるため、この相違する部分を中心に説明する。
FIG. 5 is a block diagram showing an overall configuration of the electrocardiogram waveform measuring apparatus 10 of the second embodiment, and FIG. 6 is an explanatory diagram showing a configuration of a part different from the electrocardiogram waveform measuring apparatus 1 of the first embodiment. is there.
The electrocardiogram waveform measurement apparatus 10 of the present embodiment is different from the electrocardiogram waveform measurement apparatus 1 of the first embodiment in the configuration of the signal detection unit 12 and the electrocardiogram signal generation unit 13, and the correction control unit 6a. The contents of the correction processing (see FIGS. 7 and 8) executed by the arithmetic processing unit 62a are different, and the only difference is that the switching signal X is output. Accordingly, this difference will be mainly described.

<信号検出部>
信号検出部12は、図5及び図6(a)に示すように、第1実施形態における測定用電極D1,D2の代わりに、単位電極群DG1,DG2が設けられていると共に、第1実施形態と同様の測定用電極D3が設けられている。
<Signal detection unit>
As shown in FIG. 5 and FIG. 6A, the signal detection unit 12 is provided with unit electrode groups DG1 and DG2 instead of the measurement electrodes D1 and D2 in the first embodiment. A measurement electrode D3 similar to that of the embodiment is provided.

なお、単位電極群DG1,DG2は、各n個の単位電極DT〜DT,DTn+1 〜DT2nをマトリクス状に配置することで構成されている。
また、信号検出部12は、単位電極群DG1,DG2を構成する単位電極DT〜DT2nのそれぞれに対応して設けられ、それぞれがn個、合計2n個の圧力センサB〜B2nで構成された圧力センサ群BG1,BG2と、測定用電極D3にマトリクス状に配置されたn個の圧力センサB2n+1〜B(m=3n)で構成された圧力センサ群BG3とを備えている。
The unit electrode groups DG1 and DG2 are configured by arranging n unit electrodes DT 1 to DT n and DT n + 1 to DT 2n in a matrix.
The signal detection unit 12 is provided corresponding to each of the unit electrodes DT 1 to DT 2n constituting the unit electrode groups DG1 and DG2, and each includes n pressure sensors B 1 to B 2n in total. The pressure sensor groups BG1 and BG2 configured, and the pressure sensor group BG3 configured by n pressure sensors B 2n + 1 to B m (m = 3n) arranged in a matrix on the measurement electrode D3 are provided. .

<心電信号生成部>
心電信号生成部13は、図5に示すように、切替信号Xに従って、単位電極群DG1,DG2を構成する単位電極DT〜DT2nの中から選択した二つの電極グループ(測定用電極D1,D2に相当)からの出力を、それぞれボルテージフォロア回路31,32の入力として供給するスイッチ回路36を備えている点以外は、第1実施形態の心電信号生成部3と同様に構成されている。
<Electrocardiogram signal generator>
Electrocardiographic signal generator 13, as shown in FIG. 5, the switching according to the signal X, the unit electrode group DG1, the unit electrodes constituting DG2 DT 1 to DT two electrode groups selected from among the 2n (measuring electrodes D1 , D2) is provided in the same manner as the electrocardiogram signal generator 3 of the first embodiment, except that it includes a switch circuit 36 that supplies the output from the voltage follower circuits 31 and 32, respectively. Yes.

スイッチ回路36は、図6(b)に示すように、入力端が単位電極DT〜DT2nのいずれかに接続され、三つの出力端のうち、二つがそれぞれボルテージフォロア回路31,32の入力端に接続され、残りの一つが未接続(NC)にされた2n個の1入力3出力スイッチSW〜SW2nからなる(図6(b)ではNC端子を省略して示す)。 As shown in FIG. 6B, the switch circuit 36 has an input terminal connected to any one of the unit electrodes DT 1 to DT 2n , and two of the three output terminals are input to the voltage follower circuits 31 and 32, respectively. is connected to the end (shown by omitting the NC terminal in FIG. 6 (b)) the remaining one consists of unconnected (NC) to have been of 2n 1 input 3 output switch SW 1 to SW 2n.

なお、これらのスイッチSW〜SW2nは、切替信号Xに従って、すべて独立に操作可能に構成されており、単位電極DT〜DT2nの中から、排他的に任意個ずつ選択して、測定用電極D1,D2として設定することが可能なようにされている。 Note that these switches SW 1 to SW 2n are all configured to be independently operable in accordance with the switching signal X, and an arbitrary number of units electrodes DT 1 to DT 2n are exclusively selected and measured. The electrodes D1 and D2 can be set.

<補正処理>
次に、演算処理部62aが実行する補正処理を、図7に示すフローチャートに沿って説明する。なお、図中の丸A記号については、後述の第3実施形態で説明する。
<Correction process>
Next, correction processing executed by the arithmetic processing unit 62a will be described with reference to the flowchart shown in FIG. Note that the circle A symbol in the figure will be described in a third embodiment described later.

本処理が起動すると、まず、S310では、データ取得処理で取得され、電圧レベルを表す検出データVP〜VPを、圧力を表す圧力データP〜Pに変換し、続くS320では、S310にて今回変換された圧力データP(i=1〜m)をP(t)、前回の起動時に変換された圧力データPをP(t−1)で表すものとして、(4)式により、圧力データの差分値ΔPiを算出する。 When this processing is started, first, in S310, are acquired by the data acquisition process, the detection data VP 1 ~VP m representing the voltage level is converted into pressure data P 1 to P m representing the pressure, in the subsequent S320, S310 The pressure data P i (i = 1 to m) converted at this time is expressed as P i (t), and the pressure data P i converted at the previous activation is expressed as P i (t−1). ) To calculate the difference value ΔPi of the pressure data.

ΔP=P(t)−P(t−1) (4)
続くS330では、S320で算出した差分値ΔP〜ΔPの中に、一つでも予め設定された振動判定閾値THp以上のものがあるか否かを判断し、否定判断された場合は、振動が生じていない、即ち、被験者と単位電極群DG1,DG2および測定用電極D3との接触状態は安定しているものとして、S340に進む。
ΔP i = P i (t) −P i (t−1) (4)
In subsequent S330, it is determined whether or not at least one of the difference values ΔP 1 to ΔP m calculated in S320 is greater than or equal to a preset vibration determination threshold value THp. If a negative determination is made, vibration is determined. Is not generated, that is, the contact state between the subject and the unit electrode groups DG1 and DG2 and the measurement electrode D3 is stable, and the process proceeds to S340.

S340では、本処理の前回の起動時に振動が生じていると判断(即ち、S330にて否定判断)されたか否かを判断し、否定判断された場合、即ち、前記の起動時にも振動が生じておらず、安定した接触状態が継続していると判断された場合は、そのまま本処理を終了する。   In S340, it is determined whether or not vibration has occurred at the previous activation of this process (that is, negative determination is made in S330). If the determination is negative, that is, vibration has occurred even at the time of activation. However, if it is determined that the stable contact state continues, this processing is terminated as it is.

一方、S340にて肯定判断された場合、即ち、不安定な接触状態から安定した接触状態に変化したと判断された場合は、S350にて、各単位電極DT〜DT2nの静電容量CT〜CT2nを算出してS360に進む。この場合、単位電極DT(j=1〜2n)の面積を接触面積S、単位電極DTに対応する圧力センサBにて検出された圧力データPを接触圧Pとして、先に説明したS150の場合と同様に変換テーブルを用いて、静電容量CTを求める。 On the other hand, if an affirmative determination is obtained at S340, i.e., if it is determined to have changed to the stable contact state from an unstable contact state, at S350, the capacitance CT of the respective unit electrodes DT 1 to DT 2n 1 to CT 2n are calculated, and the process proceeds to S360. In this case, the area of the unit electrode DT j (j = 1 to 2n) is defined as the contact area S, and the pressure data P j detected by the pressure sensor B j corresponding to the unit electrode DT j is defined as the contact pressure P. Similarly to the case of S150, the capacitance CT j is obtained using the conversion table.

S360では、単位電極DTの中で、対応する圧力センサBにて検出された圧力データPが、予め設定された有効閾値Pth以上となるものを、有効電極EDk(有効センサEBk)として抽出する。 In S360, in a unit electrode DT j, the corresponding pressure sensor B j at the detected pressure data P j is what the preset effective threshold Pth or more, as an active electrode EDk (effective sensor EBk) Extract.

S370では、有効電極EDkが形成する単位電極群DG1,DG2上の領域(以下「有効領域」という)を2分割し、その分割した二つの有効領域を一対の差分電極D1,D2とすることにより、各有効電極EDkを一対の差分電極D1,D2のいずれかに割り当てる有効領域分割処理を実行し、続くS380では、有効領域分割処理での処理結果に基づいて、切替信号Xを生成することにより、スイッチ回路36の接続状態を切り替える。   In S370, the region on the unit electrode groups DG1 and DG2 formed by the effective electrode EDk (hereinafter referred to as “effective region”) is divided into two, and the two divided effective regions are defined as a pair of differential electrodes D1 and D2. Then, an effective area dividing process for assigning each effective electrode EDk to one of the pair of difference electrodes D1 and D2 is executed, and in subsequent S380, by generating the switching signal X based on the processing result in the effective area dividing process. The connection state of the switch circuit 36 is switched.

S390では、S370にて分割された二つの領域(即ち、測定用電極D1,D2)の静電容量C1,C2がいずれも予め設定された容量閾値Cth以上であるか否かを判断し、肯定判断する。なお、静電容量Ciは、測定用電極Diを構成する全ての有効電極EDkの静電容量CTkを加算することにより算出する。   In S390, it is determined whether or not the capacitances C1 and C2 of the two regions (that is, the measurement electrodes D1 and D2) divided in S370 are both equal to or greater than a preset capacitance threshold Cth. to decide. The capacitance Ci is calculated by adding the capacitances CTk of all the effective electrodes EDk constituting the measurement electrode Di.

そして、静電容量C1,C2のいずれもが容量閾値Cth以上であり、S390にて肯定判断された場合は、S400にて、当該装置1で生成される心電データDHの信頼度が高いことを示す確度データDKを生成,出力してS420に進む。   If both of the capacitances C1 and C2 are equal to or greater than the capacitance threshold Cth and an affirmative determination is made in S390, the reliability of the electrocardiographic data DH generated by the device 1 is high in S400. Is generated and output, and the process proceeds to S420.

一方、静電容量C1,C2の少なくとも一方が容量閾値Cthより小さく、S390にて否定判断された場合は、S410にて、当該装置1で生成される心電データDHの信頼度が中程度であることを示す確度データDKを生成,出力してS420に進む。   On the other hand, if at least one of the capacitances C1 and C2 is smaller than the capacitance threshold Cth and a negative determination is made in S390, the reliability of the electrocardiogram data DH generated by the device 1 is medium in S410. The accuracy data DK indicating the presence is generated and output, and the process proceeds to S420.

S420では、先に説明したS190と同様に、静電容量C1,C2に基づいて、可変増幅器4の増幅率Aを設定して本処理を終了する。
先のS320にて算出された圧力データの差分値ΔP〜ΔPの中に振動判定閾値THp以上のものが一つ以上存在し、S330にて肯定判断された場合は、S430にて、当該装置1で生成される心電データDHの信頼度が低いことを示す確度データDKを生成,出力し、続くS440にて、先に説明したS210と同様に、可変増幅器4の増幅率Aをデフォルト値に設定して、本処理を終了する。
In S420, similar to S190 described above, the amplification factor A of the variable amplifier 4 is set based on the electrostatic capacitances C1 and C2, and this process is terminated.
If one or more of the pressure data difference values ΔP 1 to ΔP m calculated in the previous S320 is greater than or equal to the vibration determination threshold THp and an affirmative determination is made in S330, then in S430, The accuracy data DK indicating that the reliability of the electrocardiogram data DH generated by the device 1 is low is generated and output, and in the subsequent S440, the amplification factor A of the variable amplifier 4 is defaulted as in S210 described above. Set to a value, and the process ends.

<有効領域分割処理>
次に、先のS370にて実行する有効電極分割処理の詳細を、図8に示すフローチャートに沿って説明する。
<Effective area division processing>
Next, the details of the effective electrode dividing process executed in S370 will be described with reference to the flowchart shown in FIG.

本処理では、まず、S510にて、全ての有効電極EDkによって形成される領域のサイズを求める。具体的には、単位電極BTの配列方向に沿って横幅W、縦幅Hを、横方向および縦方向に有効電極EDkがいくつ並んでいるかで表す。 In this process, first, in S510, the size of the region formed by all the effective electrodes EDk is obtained. Specifically, the horizontal width W and the vertical width H along the arrangement direction of the unit electrodes BT j are represented by how many effective electrodes EDk are arranged in the horizontal direction and the vertical direction.

続くS520では、横幅Wが縦幅H以上であるか否かを判断し、肯定判断された場合は、S530にて、二つの領域が横方向に並び、且つ、各領域に属する有効領域の合計容量が略等しくなるように有効領域を分割して、本処理を終了する。   In subsequent S520, it is determined whether or not the horizontal width W is greater than or equal to the vertical width H. If an affirmative determination is made, in S530, the two regions are aligned in the horizontal direction and the total of the effective regions belonging to each region is determined. The effective area is divided so that the capacities are substantially equal, and this process is terminated.

一方、S520にて否定判断された場合は、二つの領域が縦方向に並び、且つ、各領域に属する有効領域の合計容量が略等しくなるように有効領域を分割して本処理を終了する。   On the other hand, if a negative determination is made in S520, the effective area is divided so that the two areas are arranged in the vertical direction and the total capacity of the effective areas belonging to each area is substantially equal, and the present process is terminated.

図9は、有効領域を分割する際の具体例を示す説明図である。
ここでは、単位電極群DG1,DG2は、それぞれ21(7×3)個の単位電極DTからなるものとする。また、ハッチングが施された単位電極が有効電極であり、また、有効電極上に示された数字は、静電容量CTを表すものとする。
FIG. 9 is an explanatory diagram showing a specific example when the effective area is divided.
Here, the unit electrode groups DG1 and DG2 are each composed of 21 (7 × 3) unit electrodes DT. Further, the hatched unit electrode is an effective electrode, and the number shown on the effective electrode represents the capacitance CT.

図中(a)(b)は、有効領域が横長(W>H)である場合を示したものである。
この場合、いずれも、測定用電極D1,D2となる分割された二つの領域が、横方向に並ぶように分割され、しかも、分割された領域の合計容量C1,C2が、(a)ではC1=59,C2=58、(b)ではC1=29,C2=27であり、ほぼ等しくなっている。
In the figure, (a) and (b) show the case where the effective area is horizontally long (W> H).
In this case, in each case, the two divided regions to be the measurement electrodes D1 and D2 are divided so as to be arranged in the horizontal direction, and the total capacitances C1 and C2 of the divided regions are C1 in (a). = 59, C2 = 58, and in (b), C1 = 29 and C2 = 27, which are almost equal.

図中(c)は、有効領域が縦長(W<H)である場合を示したものであり、測定用電極D1,D2となる分割された二つの領域が、縦方向に並ぶように分割され、しかも、分割された領域の合計容量C1,C2が、C1=43,C2=44となっている。   In the figure, (c) shows a case where the effective area is vertically long (W <H), and the two divided areas to be the measurement electrodes D1, D2 are divided so as to be aligned in the vertical direction. In addition, the total capacities C1 and C2 of the divided areas are C1 = 43 and C2 = 44.

図中(d)は横幅,縦幅が等しい(W=H)場合を示したものであり、横長の場合と同様に、測定用電極D1,D2となる分割された二つの領域が、横方向に並ぶように分割され、しかも、分割された領域の合計容量C1,C2が、C1=54,C2=51となっている。   In the figure, (d) shows the case where the horizontal width and the vertical width are equal (W = H). As in the case of the horizontal length, the two divided regions to be the measurement electrodes D1 and D2 are in the horizontal direction. In addition, the total capacities C1 and C2 of the divided areas are C1 = 54 and C2 = 51.

<効果>
以上説明したように、心電波形計測装置10では、単位電極DT〜DT2nに加わる圧力を検出することによって、被験者と接触状態にある有効電極EDkを抽出し、その有効電極EDkが形成する有効領域を二分割することで測定用電極D1,D2を形成し、更に、その測定用電極D1,D2と被験者との間の静電容量C1,C2を推定した結果に基づいて可変増幅器4の増幅率Aを設定することにより、心電信号の信号レベルを補正している。
<Effect>
As described above, in the electrocardiographic waveform measurement apparatus 10, by detecting the pressure applied to the unit electrodes DT 1 to DT 2n, it extracts the effective electrode EDk in contact with a subject, the effective electrode EDk forms The measurement electrodes D1 and D2 are formed by dividing the effective region into two parts, and the capacitances C1 and C2 between the measurement electrodes D1 and D2 and the subject are estimated based on the result of estimation of the variable amplifier 4 By setting the amplification factor A, the signal level of the electrocardiogram signal is corrected.

従って、心電波形計測装置10によれば、単位電極群DG1,DG2と被験者との接触状態によらず信頼度の高い心電信号の計測結果を得ることができる。
また、心電波形計測装置10では、全ての単位電極DTについて、対応する圧力センサBを介して検出される最新の圧力データP(t)と前回の検出結果P(t−1)との差分値ΔPを求め、この差分値ΔPが振動判定閾値THp以上となるものが存在する場合に、単位電極群DG1,DG2と被験者との接触状態が不安定であるものとして、当該装置10が生成する心電データDHの信頼度が低いことを表す確度データDKを生成するようにされている。
Therefore, according to the electrocardiogram waveform measuring apparatus 10, a highly reliable electrocardiographic signal measurement result can be obtained regardless of the contact state between the unit electrode groups DG1 and DG2 and the subject.
Also, in the electrocardiogram waveform measuring apparatus 10, the latest pressure data P j (t) detected via the corresponding pressure sensor B j and the previous detection result P j (t−1) for all the unit electrodes DT j. a difference value [Delta] P j with) determined, if the difference value [Delta] P j exists that the vibration determination threshold THp above, as the state of contact between the unit electrode groups DG1, DG2 and the subject is unstable, The accuracy data DK indicating that the reliability of the electrocardiogram data DH generated by the device 10 is low is generated.

従って、心電波形計測装置10によれば、このような確度データDKを提供することによって、当該装置1で生成した心電データDHを利用する装置や処理の信頼度も確保することができる。   Therefore, according to the electrocardiogram waveform measuring apparatus 10, by providing such accuracy data DK, it is possible to ensure the reliability of the apparatus and processing that use the electrocardiographic data DH generated by the apparatus 1.

また、心電波形計測装置10では、有効電極EDkが形成する有効領域を分割する際に、有効領域の形状が縦長W<Hである場合は、分割された領域(ひいては測定用電極D1,D2)が縦方向に並び、有効領域の形状が横長または縦幅と横幅が等しい(W≧H)である場合は、分割された領域が横方向に並ぶように分割している。   Further, in the electrocardiogram waveform measuring apparatus 10, when the effective region formed by the effective electrode EDk is divided, if the shape of the effective region is vertically long W <H, the divided region (and thus the measurement electrodes D1, D2). ) Are arranged in the vertical direction, and the shape of the effective area is horizontally long or the width and width are equal (W ≧ H), the divided areas are divided in the horizontal direction.

従って、心電波形計測装置10によれば、分割された個々の領域内での接触圧の偏りを抑制することができ、静電容量C1,C2の推定精度を向上させることができる。
[第3実施形態]
次に第3実施形態について説明する。
Therefore, according to the electrocardiogram waveform measuring apparatus 10, it is possible to suppress the bias of the contact pressure in each divided region, and it is possible to improve the estimation accuracy of the capacitances C1 and C2.
[Third Embodiment]
Next, a third embodiment will be described.

図10は、第3実施形態の心電波形計測装置10aの全体構成を示すブロック図、図11,図12は、第2実施形態の心電波形計測装置10とは相違する部分の構成を示す説明図である。   FIG. 10 is a block diagram showing the overall configuration of the electrocardiogram waveform measuring apparatus 10a of the third embodiment, and FIGS. 11 and 12 show the configuration of parts different from the electrocardiogram waveform measuring apparatus 10 of the second embodiment. It is explanatory drawing.

なお、本実施形態の心電波形計測装置10aは、第2実施形態の心電波形計測装置10とは、信号検出部12aの構成(図11参照)及び心電信号生成部13aの構成(図12参照)と、補正制御部6の演算処理部62が実行する補正処理の内容(図13参照)が異なるだけであるため、この相違する部分を中心に説明する。   The electrocardiographic waveform measurement apparatus 10a of the present embodiment is different from the electrocardiographic waveform measurement apparatus 10 of the second embodiment in the configuration of the signal detection unit 12a (see FIG. 11) and the configuration of the electrocardiogram signal generation unit 13a (see FIG. 12) and the content of the correction processing (see FIG. 13) executed by the arithmetic processing unit 62 of the correction control unit 6 are different, and this difference will be mainly described.

<信号検出部>
信号検出部12aは、図10及び図11に示すように、第2実施形態における測定用電極D3の代わりに、単位電極群DG1,DG2と同様に、n個の単位電極DT2n+1〜DT(m=3n)をマトリクス状に配置することで構成された単位電極群DG3が設けられている。
<Signal detection unit>
As shown in FIGS. 10 and 11, the signal detection unit 12 a uses n unit electrodes DT 2n + 1 to DT m (as in the unit electrode groups DG1 and DG2) instead of the measurement electrode D3 in the second embodiment. A unit electrode group DG3 configured by arranging m = 3n) in a matrix is provided.

圧力センサ群BG3を構成するn個の圧力センサB2n+1〜Bは、単位電極群DG3を構成する単位電極DT2n+1〜DTのそれぞれに対応して設けられている。
<心電信号生成部>
心電信号生成部13aは、図10に示すように、切替信号Xに従って、単位電極群DG1〜DG3を構成する単位電極DT〜DTの中から選択した三つの電極グループ(測定用電極D1〜D3に相当)からの出力を、それぞれボルテージフォロア回路31,32の入力、及び差動増幅器33の基準電位として供給するスイッチ回路36aを備えている点以外は、第1実施形態の心電信号生成部3と同様に構成されている。
The n pressure sensors B 2n + 1 to B m constituting the pressure sensor group BG3 are provided corresponding to the unit electrodes DT 2n + 1 to DT m constituting the unit electrode group DG3.
<Electrocardiogram signal generator>
Electrocardiograph signal generation unit 13a, as shown in FIG. 10, the switching according to the signal X, the three electrode groups selected from among unit electrode DT 1 to DT m constituting the unit electrode group DG1~DG3 (measurement electrode D1 ECG signal of the first embodiment except that it includes a switch circuit 36a that supplies outputs from the voltage follower circuits 31 and 32 as a reference potential of the differential amplifier 33, respectively. The configuration is the same as that of the generation unit 3.

スイッチ回路36aは、図12に示すように、入力端が単位電極DT〜DTのいずれかに接続され、四つの出力端のうち、三つがそれぞれボルテージフォロア回路31,32の入力端、差動増幅器33の基準電位入力端に接続され、残りの一つが未接続(N.C)にされたm個の1入力4出力スイッチSW〜SWからなる(図12ではN.C端子を省略して示す)。 As shown in FIG. 12, the switch circuit 36a has an input terminal connected to any one of the unit electrodes DT 1 to DT m , and three of the four output terminals are the input terminals of the voltage follower circuits 31 and 32, and the difference between them. connected to a reference potential input terminal of the dynamic amplifier 33, the remaining one consists of unconnected (N.C) to have been the m 1 inputs and four outputs switch SW 1 to SW m to (in FIG. 12 N.C terminal Abbreviated).

なお、これらのスイッチSW〜SWは、切替信号Xに従って、すべて独立に操作可能に構成されており、単位電極DT1〜DTmの中から、排他的に任意個ずつ選択して、測定用電極D1〜D3として設定することが可能なようにされている。 Note that these switches SW 1 to SW m are all configured to be independently operable in accordance with the switching signal X, and any one of the unit electrodes DT 1 to DTm can be exclusively selected to measure electrodes. It can be set as D1 to D3.

<補正処理>
次に、演算処理部62が実行する補正処理は、第2実施形態では、単位電極群DG1,DG2や、単位電極DT〜DT2nに対して実行している処理を、単位電極群DG1〜DG3や、単位電極DT〜DTに対して実行する点と、S370にて実行する有効領域分割処理の内容が、第2実施形態とは異なっている。
<Correction process>
Next, correction processing arithmetic processing unit 62 executes, in the second embodiment, the unit electrode groups DG1, DG2 and the process running to the unit electrode DT 1 to DT 2n, the unit electrode group DG1~ DG3 and the point to be performed on the unit electrode DT 1 to DT m, the content of the effective area dividing process executed in S370, is different from the second embodiment.

<有効領域分割処理>
その有効電極分割処理の詳細を、図13に示すフローチャートに沿って説明する。但し、以下では、単位電極群DG1,DG2をエリアAR1、単位電極群DG3をエリアAR2とも呼ぶ。
<Effective area division processing>
Details of the effective electrode division processing will be described with reference to the flowchart shown in FIG. However, hereinafter, the unit electrode groups DG1 and DG2 are also referred to as an area AR1, and the unit electrode group DG3 is also referred to as an area AR2.

本処理では、まず、S610にて、両エリアAR1,AR2とも、そのエリアに属する有効電極EDkの数(即ち、有効領域の面積)が、予め設定された規定値以上であるか否かを判断し、肯定判断された場合は、S620にて、エリアAR1内の有効領域を2分割し、分割した各領域を測定用電極(一対の差動電極)D1,D2に割り当てると共に、エリアAR2(即ち単位電極群DG3)内の有効領域を測定用電極(中間電極)D3に割り当てて本処理を終了する。   In this process, first, in S610, it is determined whether or not the number of effective electrodes EDk belonging to the areas AR1 and AR2 (that is, the area of the effective region) is equal to or larger than a preset specified value. If the determination is affirmative, in S620, the effective area in the area AR1 is divided into two, and the divided areas are assigned to the measurement electrodes (a pair of differential electrodes) D1 and D2, and the area AR2 (that is, The effective area in the unit electrode group DG3) is assigned to the measurement electrode (intermediate electrode) D3, and this process is terminated.

先のS610にて否定判断された場合は、S630にて、両エリアAR1,AR2とも、そのエリアに属する有効電極EDkの数が、規定値未満であるか否かを判断し、肯定判断された場合は、本処理を抜けてS430に移行する。   If a negative determination is made in S610, it is determined in S630 whether or not the number of effective electrodes EDk belonging to the areas AR1 and AR2 is less than a specified value in both areas AR1 and AR2. In such a case, the process exits from this process and proceeds to S430.

一方、S630にて否定判断された場合、即ち、エリアAR1,AR2のうち、一方は有効電極EDkの数が規定値以上であるが、他方は有効電極EDkの数が規定値未満である場合は、S640にて、有効電極EDkの数が規定値以上である方のエリア内の有効領域を3分割し、分割した各領域を、測定用電極(一対の差動電極,中間電極)D1〜D3に割り当てて、本処理を終了する。   On the other hand, when a negative determination is made in S630, that is, when one of the areas AR1 and AR2 has the number of effective electrodes EDk equal to or greater than a specified value, the other has a number of effective electrodes EDk that is less than the specified value. , S640 divides the effective area in the area where the number of effective electrodes EDk is equal to or greater than the specified value into three, and divides the divided areas into measurement electrodes (a pair of differential electrodes and intermediate electrodes) D1 to D3. This processing is terminated.

なお、S620にてエリアAR1内の有効領域を2分割する場合は、第2実施形態の有効領域分割処理と同様の処理を実行する。一方、S640にて有効電極を3分割する場合は、例えば、図14(a)(b)に示すように、有効領域の形状が横長である場合、または、図14(d)に示すように、有効領域の横幅と縦幅とが等しい場合は、分割された領域(ひいては測定用電極D1〜D3)が横方向に並び、図14(c)に示すように、有効領域の形状が縦長である場合は分割された領域が縦方向に並ぶように分割してすればよい。   Note that, when the effective area in the area AR1 is divided into two in S620, the same process as the effective area dividing process of the second embodiment is executed. On the other hand, when the effective electrode is divided into three at S640, for example, as shown in FIGS. 14 (a) and 14 (b), when the shape of the effective region is horizontally long, or as shown in FIG. 14 (d). When the horizontal width and the vertical width of the effective area are equal, the divided areas (and thus the measurement electrodes D1 to D3) are arranged in the horizontal direction, and the shape of the effective area is vertically long as shown in FIG. In some cases, it may be divided so that the divided areas are arranged in the vertical direction.

また、図15に示すように、有効領域のうち下方に位置する1/3の有効領域を測定用電極(中間電極)D3に割り当て、残った2/3の有効領域の横幅,縦幅に応じて、その残った2/3の有効領域を、横方向又は縦方向に再分割して、その再分割した有効領域を測定用電極(一対の差動電極)D1,D2に割り当てるようにしてもよい。なお、図15(a)〜(d)は、再分割した領域がいずれも横方向に並ぶように分割されている。   Further, as shown in FIG. 15, the effective region of the lower one of the effective regions is assigned to the measurement electrode (intermediate electrode) D3, and the remaining 2/3 effective regions are in accordance with the horizontal width and the vertical width. Then, the remaining 2/3 effective area is subdivided in the horizontal direction or the vertical direction, and the subdivided effective area is allocated to the measurement electrodes (a pair of differential electrodes) D1 and D2. Good. 15A to 15D are divided so that the re-divided areas are all aligned in the horizontal direction.

更に、有効領域を分割する際には、分割された各領域における合計容量C1〜C3が、いずれもほぼ等しくなるように分割することが望ましい。
<効果>
以上説明したように、心電波形計測装置10aでは、一対の差動電極として使用される測定用電極D1,D2だけでなく、中間電極として使用される測定用電極D3も、有効電極EDkで構成された有効領域を分割することで設定されているため、単位電極群DG1〜DG3と被験者との間の接触状態が様々に変化したとしても、より柔軟に対応することができ、信頼度の高い心電データDHを生成できる可能性を高めることができる。
[他の実施形態]
上記実施形態では、心電データDHの信頼度が低いと判断した場合、その旨を表す確度データDKの生成,出力(S200,S430)と、スイッチ回路36,36aの接続や可変増幅器4の増幅率Aをデフォルト設定(S210,S440)にしているが、このような場合には、心電データDHの出力自体を禁止するように構成してもよい。
Furthermore, when the effective area is divided, it is desirable to divide the total capacity C1 to C3 in each of the divided areas so that they are almost equal.
<Effect>
As described above, in the electrocardiogram waveform measuring apparatus 10a, not only the measurement electrodes D1 and D2 used as a pair of differential electrodes but also the measurement electrode D3 used as an intermediate electrode is configured by the effective electrode EDk. Therefore, even if the contact state between the unit electrode groups DG1 to DG3 and the subject changes variously, it is possible to respond more flexibly and have high reliability. The possibility that the electrocardiogram data DH can be generated can be increased.
[Other Embodiments]
In the above embodiment, when it is determined that the reliability of the electrocardiogram data DH is low, the generation and output (S200, S430) of the accuracy data DK representing that fact, the connection of the switch circuits 36 and 36a, and the amplification of the variable amplifier 4 Although the rate A is set to the default setting (S210, S440), in such a case, the output of the electrocardiographic data DH itself may be prohibited.

第1実施形態では、心電データの信頼度が低いか否かの判断(S140)を、接触面積S1〜S3を用いて行っているが、接触圧PA1〜PA3を用いて行ってもよい。   In the first embodiment, whether or not the reliability of the electrocardiographic data is low is determined using the contact areas S1 to S3, but may be performed using the contact pressures PA1 to PA3.

第1実施形態の心電波形計測装置の構成を示すブロック図。The block diagram which shows the structure of the electrocardiogram waveform measuring apparatus of 1st Embodiment. 測定用電極の配置、及び測定用電極と圧力センサとの位置関係を示す説明図。Explanatory drawing which shows arrangement | positioning of the electrode for a measurement, and the positional relationship of the electrode for a measurement and a pressure sensor. 圧力センサでの検出結果に基づいて、心電信号の増幅率を設定する補正処理の内容を示すフローチャート。The flowchart which shows the content of the correction process which sets the gain of an electrocardiogram signal based on the detection result in a pressure sensor. 静電容量の推定、及び増幅率の設定に使用するテーブルの内容を示すグラフ。The graph which shows the content of the table used for the estimation of an electrostatic capacitance, and the setting of an amplification factor. 第2実施形態の心電波形計測装置の構成を示すブロック図。The block diagram which shows the structure of the electrocardiogram waveform measuring apparatus of 2nd Embodiment. 信号検出部及びスイッチ回路の詳細を示す説明図。Explanatory drawing which shows the detail of a signal detection part and a switch circuit. 第2実施形態における補正処理の内容を示すフローチャート。The flowchart which shows the content of the correction process in 2nd Embodiment. 補正処理内で実行する有効領域分割処理の内容を示すフローチャート。The flowchart which shows the content of the effective area | region division | segmentation process performed within a correction process. 有効領域分割処理に基づく具体的な動作例を示す説明図。Explanatory drawing which shows the specific operation example based on an effective area | region division | segmentation process. 第3実施形態の心電波形計測装置の構成を示すブロック図。The block diagram which shows the structure of the electrocardiogram waveform measuring apparatus of 3rd Embodiment. 信号検出部の詳細を示す説明図。Explanatory drawing which shows the detail of a signal detection part. スイッチ回路の詳細を示す回路図。The circuit diagram which shows the detail of a switch circuit. 有効領域分割処理の内容を示すフローチャート。The flowchart which shows the content of the effective area | region division process. 有効領域分割処理に基づく具体的な動作例を示す説明図。Explanatory drawing which shows the specific operation example based on an effective area | region division | segmentation process. 有効領域分割処理に基づく具体的な動作例を示す説明図。Explanatory drawing which shows the specific operation example based on an effective area | region division | segmentation process. 心電波形計測装置の計測用電極における等価回路を示す回路図。The circuit diagram which shows the equivalent circuit in the electrode for a measurement of an electrocardiogram waveform measuring device. 計測用電極における静電容量と入出力比との関係を示す理論値および実測値のグラフ。The graph of the theoretical value and actual value which show the relationship between the electrostatic capacitance in a measurement electrode, and an input-output ratio. 計測用電極と被験者との接触状態(接触圧,電極面積,介挿物)が、静電容量に与える影響を示すグラフ。The graph which shows the influence which the contact state (a contact pressure, an electrode area, and an insertion object) with a measurement electrode and a test subject has on electrostatic capacity.

符号の説明Explanation of symbols

1,10,10a…心電波形計測装置 2,12,12a…信号検出部 3,13,13a…心電信号生成部 4…可変増幅器 5,61…A/D変換器 6,6a…補正制御部 31,32…ボルテージフォロア回路 33…差動増幅器 34…増幅回路 35…バンドパスフィルタ 36,36a…スイッチ回路 62,62a…演算処理部   DESCRIPTION OF SYMBOLS 1, 10, 10a ... Electrocardiogram waveform measuring device 2, 12, 12a ... Signal detection part 3, 13, 13a ... Electrocardiogram signal generation part 4 ... Variable amplifier 5, 61 ... A / D converter 6, 6a ... Correction control Units 31, 32 ... Voltage follower circuit 33 ... Differential amplifier 34 ... Amplifier circuit 35 ... Bandpass filter 36,36a ... Switch circuit 62,62a ... Operation processing unit

Claims (12)

シートに着座した被験者と接触する場所又はシート内部に位置する中間電極および一対の差分電極からなる3つの測定用電極と、
前記中間電極の電位を基準電位として、前記一対の差分電極間の電位差を示す信号を心電信号として生成する心電信号生成手段と、
前記測定用電極毎に、該測定用電極と前記被験者との間の静電容量を推定する推定手段と、
記推定手段での推定結果に基づき、前記心電信号生成手段にて生成される心電信号の信号レベルを補正する補正手段と、
を備えることを特徴とする心電波形計測装置。
Three measuring electrodes consisting of an intermediate electrode and a pair of differential electrodes located in the seat or in contact with the subject seated on the seat;
An electrocardiogram signal generating means for generating a signal indicating a potential difference between the pair of differential electrodes as an electrocardiogram signal, using the potential of the intermediate electrode as a reference potential;
For each measurement electrode, an estimation means for estimating the capacitance between the measurement electrode and the subject;
Based on the estimation result of the previous Ki推 constant means, and correcting means for correcting the signal level of the electrocardiographic signal generated by the electrocardiograph signal generating means,
An electrocardiographic waveform measuring apparatus comprising:
前記測定用電極は、それぞれ単一の単位電極からなり、
前記推定手段は、
前記測定用電極毎に、該測定用電極の複数の部位にそれぞれ設けられた複数の圧力センサからなる圧力検出手段と、
前記圧力検出手段を構成する圧力センサのうち、出力が予め設定された有効閾値以上となるものを有効センサとして抽出する有効センサ抽出手段と、
前記測定用電極毎に、該測定用電極と前記被験者との間の接触面積を前記有効センサの数に基づいて算出すると共に、前記測定用電極と前記被験者との接触圧を前記有効センサでの検出圧力に基づいて算出する接触情報算出手段と、
を備え、前記接触情報算出手段にて算出された前記接触面積と前記接触圧とに基づいて前記静電容量を推定することを特徴とする請求項1に記載の心電波形計測装置。
Each of the measurement electrodes comprises a single unit electrode,
The estimation means includes
A pressure detection means comprising a plurality of pressure sensors respectively provided at a plurality of sites of the measurement electrode for each of the measurement electrodes;
Effective sensor extraction means for extracting, as an effective sensor, an output whose output is equal to or greater than a preset effective threshold value among the pressure sensors constituting the pressure detection means;
For each measurement electrode, the contact area between the measurement electrode and the subject is calculated based on the number of effective sensors, and the contact pressure between the measurement electrode and the subject is calculated using the effective sensor. Contact information calculation means for calculating based on the detected pressure;
The electrocardiographic waveform measurement apparatus according to claim 1, wherein the capacitance is estimated based on the contact area and the contact pressure calculated by the contact information calculation unit.
前記測定用電極のいずれかとして使用される四つ以上の単位電極と、
指定された割当設定に従って、前記単位電極を、前記測定用電極のいずれかに割り当てる電極割当手段と、
を備え、
前記推定手段は、
前記単位電極毎に設けられた複数の圧力センサからなる圧力検出手段と、
前記圧力検出手段を構成する圧力センサのうち、出力が予め設定された有効閾値以上となるものを有効センサとして抽出する有効センサ抽出手段と、
前記有効センサに対応する単位電極である有効電極のそれぞれを、前記測定用電極のいずれかに割り当てると共に、前記電極割当手段に対する前記割当設定を生成する分割手段と、
前記測定用電極毎に、前記測定用電極と前記被験者との接触圧を前記有効センサでの検出圧力に基づいて算出する接触情報算出手段と、
を備え、前記接触情報算出手段にて算出された前記接触圧と単位電極面積に基づいて前記静電容量を推定することを特徴とする請求項1に記載の心電波形計測装置。
Four or more unit electrodes used as any of the measurement electrodes;
An electrode assigning means for assigning the unit electrode to one of the measurement electrodes according to a designated assignment setting;
With
The estimation means includes
Pressure detecting means comprising a plurality of pressure sensors provided for each unit electrode;
Effective sensor extraction means for extracting, as an effective sensor, an output whose output is equal to or greater than a preset effective threshold value among the pressure sensors constituting the pressure detection means;
Each of the effective electrodes, which are unit electrodes corresponding to the effective sensor, is allocated to any of the measurement electrodes, and a dividing unit that generates the allocation setting for the electrode allocation unit,
Contact information calculation means for calculating a contact pressure between the measurement electrode and the subject based on a detection pressure of the effective sensor for each measurement electrode;
The electrocardiographic waveform measurement apparatus according to claim 1, wherein the capacitance is estimated based on the contact pressure and unit electrode area calculated by the contact information calculation unit.
前記中間電極として使用される単位電極は固定的に割り当てられ、
前記分割手段は、前記中間電極に割り当てられるもの以外の単位電極を2分割して前記一対の差分電極に割り当てることを特徴とする請求項3に記載の心電波形計測装置。
The unit electrode used as the intermediate electrode is fixedly assigned,
The electrocardiographic waveform measuring apparatus according to claim 3, wherein the dividing unit divides a unit electrode other than that assigned to the intermediate electrode into two and assigns the unit electrode to the pair of differential electrodes.
前記単位電極は、前記中間電極に優先的に割り当てられる優先電極群と、それ以外の通常電極群とからなり、
前記分割手段は、
前記優先電極群及び通常電極群とも、該電極群に含まれる前記有効センサの数が予め規定された使用閾値以上である場合には、前記優先電極群中の有効電極を前記中間電極に割り当てると共に、前記通常電極群中の有効電極を2分割して前記一対の差分電極に割り当て、前記優先電極群及び通常電極群のうち一方だけが前記有効センサの数が前記使用閾値以上である場合には、その一方の電極群中の有効電極を3分割して、前記中間電極及び前記一対の差分電極に割り当てることを特徴とする請求項3に記載の心電波形計測装置。
The unit electrode is composed of a priority electrode group that is preferentially assigned to the intermediate electrode, and other normal electrode groups,
The dividing means includes
In both the priority electrode group and the normal electrode group, when the number of the effective sensors included in the electrode group is equal to or greater than a predetermined use threshold, the effective electrode in the priority electrode group is assigned to the intermediate electrode. The effective electrode in the normal electrode group is divided into two and assigned to the pair of differential electrodes, and only one of the priority electrode group and the normal electrode group has the number of effective sensors equal to or greater than the use threshold value. The electrocardiographic waveform measurement apparatus according to claim 3, wherein an effective electrode in one of the electrode groups is divided into three and assigned to the intermediate electrode and the pair of differential electrodes.
前記分割手段は、それぞれの合計容量が略等しくなるように前記有効電極を分割することを特徴とする請求項3乃至請求項5のいずれかに記載の心電波形計測装置。   6. The electrocardiogram waveform measuring apparatus according to claim 3, wherein the dividing unit divides the effective electrode so that the total capacity of each of the dividing means is substantially equal. 前記分割手段は、分割すべき電極群中の前記有効電極が形成する有効領域の形状が縦長である場合は、分割された領域が縦方向に並び、前記有効領域の形状が横長である場合は、分割された領域が横方向に並ぶように前記有効電極を分割することを特徴とする請求項3乃至請求項6のいずれかに記載の心電波形計測装置。   When the effective area formed by the effective electrode in the electrode group to be divided is vertically long, the dividing means is arranged in the vertical direction, and when the effective area is horizontally long The electrocardiographic waveform measurement apparatus according to claim 3, wherein the effective electrode is divided so that the divided regions are arranged in a horizontal direction. 前記接触情報算出手段での算出結果又は前記推定手段での推定結果に基づいて、前記補正手段にて補正された心電信号の信頼度を判定する信頼度判定手段を備えることを特徴とする請求項2乃至請求項7のいずれかに記載の心電波形計測装置。   A reliability determination unit that determines the reliability of the electrocardiogram signal corrected by the correction unit based on a calculation result of the contact information calculation unit or an estimation result of the estimation unit is provided. The electrocardiographic waveform measurement apparatus according to any one of Items 2 to 7. 前記信頼度判定手段は、前記測定用電極の中でいずれか一つでも、前記接触情報算出手段にて算出される前記接触圧又は前記有効センサの数が予め設定された下限値未満となる、或いは、前記推定手段にて推定された前記一対の差分電極の静電容量がいずれも、予め設定された容量閾値未満となる場合に、信頼度が低い又は中程度と判定することを特徴とする請求項8に記載の心電波形計測装置。   The reliability determination means is any one of the measurement electrodes, and the contact pressure calculated by the contact information calculation means or the number of effective sensors is less than a preset lower limit value. Alternatively, when both of the capacitances of the pair of differential electrodes estimated by the estimation unit are less than a preset capacitance threshold, it is determined that the reliability is low or medium. The electrocardiographic waveform measuring apparatus according to claim 8. 前記信頼度判定手段は、前記測定用電極がいずれも、前記接触情報算出手段にて算出される前記接触圧又は前記有効センサの数が前記下限値以上であり、且つ、前記推定手段にて推定された前記一対の差分電極の静電容量がいずれも、予め設定された容量閾値以上となる場合に、信頼度が高いと判定することを特徴とする請求項9に記載の心電波形計測装置。 In the reliability determination means, any of the measurement electrodes has the contact pressure calculated by the contact information calculation means or the number of effective sensors equal to or greater than the lower limit value, and is estimated by the estimation means. both the capacitance of the pair of differential electrodes is, when the preset volume threshold above, the electrocardiographic waveform according to Motomeko 9 shall be the determining means determines that the reliability is high Measuring device. 前記単位電極毎に前記圧力検出手段での最新の検出結果と前回の検出結果との差分値を求め、前記単位電極の中に前記差分値が予め設定された差分閾値以上となるものが存在する場合に、前記測定用電極と前記被験者との接触状態が不安定であるものとして、前記補正手段にて補正された心電信号の信頼度が低いとの判定、又は前記心電信号の出力の禁止を行う接触状態監視手段を備えることを特徴とする請求項2乃至請求項10のいずれかに記載の心電波形計測装置。   For each unit electrode, a difference value between the latest detection result in the pressure detection means and the previous detection result is obtained, and there is a unit electrode in which the difference value is greater than or equal to a preset difference threshold value. If the contact state between the measurement electrode and the subject is unstable, it is determined that the reliability of the electrocardiogram signal corrected by the correction means is low, or the output of the electrocardiogram signal is The electrocardiographic waveform measuring apparatus according to claim 2, further comprising a contact state monitoring unit that performs prohibition. 前記心電信号生成手段にて生成された心電信号を増幅する増幅器を備え、
前記補正手段は、前記推定手段での推定結果に従って、前記増幅器の増幅率を変化させることにより、前記心電信号を補正することを特徴とする請求項1乃至請求項11のいずれかに記載の心電波形計測装置。
An amplifier for amplifying the electrocardiogram signal generated by the electrocardiogram signal generation means;
12. The correction unit according to claim 1, wherein the correction unit corrects the electrocardiogram signal by changing an amplification factor of the amplifier according to an estimation result of the estimation unit. ECG waveform measuring device.
JP2008064797A 2008-03-13 2008-03-13 ECG waveform measuring device Expired - Fee Related JP5211773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064797A JP5211773B2 (en) 2008-03-13 2008-03-13 ECG waveform measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064797A JP5211773B2 (en) 2008-03-13 2008-03-13 ECG waveform measuring device

Publications (2)

Publication Number Publication Date
JP2009219554A JP2009219554A (en) 2009-10-01
JP5211773B2 true JP5211773B2 (en) 2013-06-12

Family

ID=41237015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064797A Expired - Fee Related JP5211773B2 (en) 2008-03-13 2008-03-13 ECG waveform measuring device

Country Status (1)

Country Link
JP (1) JP5211773B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102499679B (en) * 2011-10-12 2013-08-07 中国人民解放军第四军医大学 Electrical impedance scanning imaging detection probe with pressure sensitivity
JPWO2014184868A1 (en) * 2013-05-14 2017-02-23 株式会社東芝 Electronic device and biological signal measuring method
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US20190167139A1 (en) 2017-12-05 2019-06-06 Gust H. Bardy Subcutaneous P-Wave Centric Insertable Cardiac Monitor For Long Term Electrocardiographic Monitoring
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
WO2015048194A1 (en) 2013-09-25 2015-04-02 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch
WO2016125214A1 (en) * 2015-02-06 2016-08-11 パナソニックIpマネジメント株式会社 Biological-signal acquisition device and biological-signal acquisition method
JP6800564B2 (en) * 2015-05-15 2020-12-16 テイ・エス テック株式会社 Vehicle seat
JP2018102710A (en) * 2016-12-27 2018-07-05 株式会社豊田中央研究所 Electrocardiographic measurement apparatus, method, and program
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
CN113397558A (en) * 2021-06-16 2021-09-17 兰州大学 Human physiological signal acquisition circuit and terminal equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326084A (en) * 1998-05-12 1999-11-26 Isuzu Motors Ltd Driver condition detecting device
JP4141426B2 (en) * 2004-03-29 2008-08-27 三洋電機株式会社 Capacitive pressure sensor and heart rate / respiration measurement device using the same
JP3962033B2 (en) * 2004-05-14 2007-08-22 株式会社フジ医療器 Massage machine
JP4738958B2 (en) * 2005-09-26 2011-08-03 学校法人立命館 ECG measurement device
JP2007301175A (en) * 2006-05-11 2007-11-22 Goto Ikueikai Bioelectric signal collecting device

Also Published As

Publication number Publication date
JP2009219554A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5211773B2 (en) ECG waveform measuring device
JP4738958B2 (en) ECG measurement device
CN102137621B (en) Compensation of motion artifacts in capacitive measurement of electrophysiological signals
JP5898863B2 (en) Biological signal measuring apparatus and method, interface apparatus, biological signal noise removing apparatus and detecting apparatus, and computer-readable recording medium
JP6068820B2 (en) Vehicle seat
JP6025187B2 (en) Bioelectric signal measurement circuit
US10016144B2 (en) Biological signal acquisition device and method for acquiring biological signal
KR101947676B1 (en) Method and apparatus for measuring bio signal
JP4711718B2 (en) ECG and electrode pads
JP5698587B2 (en) Microelectrode to remove motion artifacts
JP2010046310A (en) Electrocardiographic device for vehicle
US20140213882A1 (en) Electrode structure for measuring bio-signal and apparatus for measuring electrocardiogram using the same
JP2009142576A (en) Reference capacity-coupled heart rate measuring apparatus
JP2011024902A (en) Electrocardiographic device for vehicle
JP4962735B2 (en) Biological information acquisition device
US7907995B2 (en) Electrocardiography chart apparatus and method thereof
KR102083559B1 (en) Electrode for living body, apparatus and method for processing biological signal
JP2012040241A (en) Electrocardiographic complex measuring device
KR20210145212A (en) Contact state detection device and wearable device
CN104095629A (en) Electrocardiograph, and method for measuring electrocardiogram
JP2012239474A (en) Heartbeat measuring device, heartbeat measuring method and heartbeat measuring program
KR20110000844A (en) Biological signal sensing system and method using touch pad
KR20140082314A (en) Apparatus and Method for Analyzing Examinee&#39;s Status using ECG Signal dectected on Bed
JP2011200558A (en) Biological information acquiring apparatus
CN108601523B (en) Circuit and method for electrosurgical unit signal detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R151 Written notification of patent or utility model registration

Ref document number: 5211773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees