JP5211656B2 - Toroidal surface evaluation method - Google Patents

Toroidal surface evaluation method Download PDF

Info

Publication number
JP5211656B2
JP5211656B2 JP2007307178A JP2007307178A JP5211656B2 JP 5211656 B2 JP5211656 B2 JP 5211656B2 JP 2007307178 A JP2007307178 A JP 2007307178A JP 2007307178 A JP2007307178 A JP 2007307178A JP 5211656 B2 JP5211656 B2 JP 5211656B2
Authority
JP
Japan
Prior art keywords
value
toroidal surface
shape
toroidal
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007307178A
Other languages
Japanese (ja)
Other versions
JP2009128340A (en
Inventor
茂樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007307178A priority Critical patent/JP5211656B2/en
Publication of JP2009128340A publication Critical patent/JP2009128340A/en
Application granted granted Critical
Publication of JP5211656B2 publication Critical patent/JP5211656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、各種光学装置、光学測定装置等に利用されるトロイダル鏡などのトロイダル面(トーリック面ともいう)の形状を評価するトロイダル面評価方法に関する。   The present invention relates to a toroidal surface evaluation method for evaluating the shape of a toroidal surface (also referred to as a toric surface) such as a toroidal mirror used in various optical devices and optical measuring devices.

反射面が非球面形状である凹面トロイダル鏡は、点光源からの斜め入射光を非点収差を抑えながら集光することができる、という特徴を持つ。そのため、分光光度計などの各種の光学測定装置や光学読み取り機構などを組み込んだシステムに広く利用されている。   The concave toroidal mirror whose reflecting surface is aspherical has a feature that it can collect obliquely incident light from a point light source while suppressing astigmatism. Therefore, it is widely used in systems incorporating various optical measuring devices such as spectrophotometers and optical reading mechanisms.

図1に示すように、一般的に凹面トロイダル鏡1の反射面であるトロイダル面2の形状は、互いに直交するX軸、Y軸に沿った方向の2つの曲率半径、即ち、水平方向の曲率半径Rh、垂直方向の曲率半径Rvといったパラメータで表される。また、それ以外に、軸の回転、より詳しくは、X軸、Y軸に直交するZ軸の周りのX軸及びY軸の回転(図2(a)参照)や、軸の傾き(X軸とY軸との直角度のずれ)(図2(b)参照)も集光特性に影響を及ぼすから、これらもトロイダル面2の形状を表現するパラメータであると言える。凹面トロイダル鏡1が所望の集光特性を達成するには、上記のようなパラメータが仕様値(設計値)を基準にした所定の公差の範囲に収まるように当該トロイダル鏡1を製造する必要がある。   As shown in FIG. 1, the shape of the toroidal surface 2 that is generally the reflecting surface of the concave toroidal mirror 1 has two radii of curvature in the direction along the X axis and Y axis perpendicular to each other, that is, the curvature in the horizontal direction. It is expressed by parameters such as a radius Rh and a radius of curvature Rv in the vertical direction. In addition, the rotation of the shaft, more specifically, the rotation of the X axis and the Y axis around the Z axis orthogonal to the X axis and the Y axis (see FIG. 2A), the inclination of the axis (X axis) (Shift of perpendicularity between Y axis and Y axis) (see FIG. 2B) also affects the light condensing characteristics, and these can also be said to be parameters expressing the shape of the toroidal surface 2. In order for the concave toroidal mirror 1 to achieve a desired light collecting characteristic, it is necessary to manufacture the toroidal mirror 1 so that the parameters as described above fall within a predetermined tolerance range based on the specification value (design value). is there.

製造されたトロイダル鏡のトロイダル面の形状を評価する手法としては、従来、光学干渉計を用いた測定や接触式又は非接触式の表面形状測定器を用いた測定が一般的である(例えば特許文献1、非特許文献1参照)。しかしながら、従来のこうした手法では、十分に高い精度で上記のようなパラメータを求めることは困難であった。   Conventionally, as a method for evaluating the shape of the toroidal surface of the manufactured toroidal mirror, measurement using an optical interferometer and measurement using a contact type or non-contact type surface shape measuring instrument are generally used (for example, patents). Reference 1 and non-patent reference 1). However, with such a conventional method, it has been difficult to obtain the above parameters with sufficiently high accuracy.

特開平6-11322号公報Japanese Unexamined Patent Publication No. 6-13132 加藤茂樹、「非球面光学素子トロイダルミラー」、島津評論、第64巻、第1・2号、平成19年9月28日発行Shigeki Kato, “Aspherical Optical Element Toroidal Mirror”, Shimazu Review, Vol. 64, No. 1, Issue 2, September 28, 2007

本発明は上記課題を解決するために成されたものであり、その目的とするところは、凹面トロイダル鏡の反射面などのトロイダル面の形状を高い精度で評価することができる評価方法を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an evaluation method capable of evaluating the shape of a toroidal surface such as a reflecting surface of a concave toroidal mirror with high accuracy. That is.

上記課題を解決するために成された本発明に係るトロイダル面評価方法は、
a)評価対象のトロイダル面を接触式又は非接触式の三次元測定手法により形状測定して前記トロイダル面の形状の実測値を取得する実測ステップと、
b)前記評価対象のトロイダル面の形状を表現するパラメータの仕様値を中心とする公差の範囲を前記パラメータの仮値の変化範囲として設定し、該変化範囲内で仮値を変化させつつ該仮値から計算されたトロイダル理想面の形状と前記実測値の形状の差を算出し、その差に基づく評価値が最小になるような仮値を求める最適化ステップと、
c)前記最適化ステップにより最終的に得られた仮値を前記パラメータの計算結果として出力する出力ステップと、
を含むことを特徴としている。
Toroidal surface evaluation method according to the present invention made to solve the above problems,
the measured obtaining a shape of the measured values of the toroidal surface and the shape measured by the three-dimensional measurement method of the contact or contactless a toroidal surface of a) evaluated,
Set the range of tolerance centered on the specifications of the parameters representing the shape of the toroidal surface of b) the evaluation as a change range of the provisional value of the parameter, while varying said tentative value within said alteration range, An optimization step of calculating a difference between the shape of the toroidal ideal surface calculated from the provisional value and the shape of the actual measurement value, and obtaining a provisional value that minimizes an evaluation value based on the difference;
c) an output step of outputting the temporary value finally obtained by the optimization step as a calculation result of the parameter;
It is characterized by including.

ここで、トロイダル面の形状を表現するパラメータは、水平方向の曲率半径、垂直方向の曲率半径と、軸の回転、及び軸の傾き、又はそれらに相当するもの、例えば軸の直角度など、とすることができる。   Here, the parameters expressing the shape of the toroidal surface are the radius of curvature in the horizontal direction, the radius of curvature in the vertical direction, the rotation of the shaft, the inclination of the shaft, or the equivalent thereof, for example, the squareness of the shaft, etc. can do.

また、上記三次元測定手法としては、干渉計、非接触(光学式)三次元測定装置など、従来から知られている各種の手法を用いることができる。   As the three-dimensional measurement method, various conventionally known methods such as an interferometer and a non-contact (optical) three-dimensional measurement device can be used.

また、上記パラメータの仮値と実測値との差に基づく評価値は、最も単純なものとしてPV値(最大点と最小点との差)を用いてもよいが、好ましくは、最小二乗化法による平均値を用いるとよい。   The evaluation value based on the difference between the tentative value and the actual measurement value of the parameter may use the PV value (difference between the maximum point and the minimum point) as the simplest, but preferably the least square method It is good to use the average value by.

本発明に係るトロイダル面評価方法によれば、直接的な測定ではないものの、トロイダル面形状を表現する上述のようなパラメータについて、理想の面形状である仕様値を基準とした公差の範囲内で最も確からしい値を計算上求めることができる。特に、凹面トロイダル鏡では通常、曲率半径によって公差が相違するが、そうした公差の相違を考慮に入れた高い精度でのパラメータの算出が可能である。これにより、例えば製造された凹面トロイダル鏡の面形状を精度良く把握することができ、製造工程の開発や管理、製品の評価・管理などに幅広く利用することができる。   According to the toroidal surface evaluation method according to the present invention, although not a direct measurement, the above-described parameters expressing the toroidal surface shape are within the tolerance range based on the specification value that is the ideal surface shape. The most probable value can be calculated. In particular, a concave toroidal mirror usually has different tolerances depending on the radius of curvature, but it is possible to calculate parameters with high accuracy in consideration of such tolerance differences. Thereby, for example, the surface shape of the manufactured concave toroidal mirror can be grasped with high accuracy, and can be widely used for development and management of manufacturing processes, evaluation and management of products, and the like.

以下、本発明に係るトロイダル面評価方法の一実施形態について、図3のフローチャートを参照して説明する。
評価対象のトロイダル面について、そのトロイダル面を製造する際の仕様値(設計値)とその仕様値からのずれの程度を規定する公差とが、予め情報として与えられる。
Hereinafter, an embodiment of the toroidal surface evaluation method according to the present invention will be described with reference to the flowchart of FIG.
With respect to the toroidal surface to be evaluated, a specification value (design value) at the time of manufacturing the toroidal surface and a tolerance that defines the degree of deviation from the specification value are given as information in advance.

まず、上記評価対象のトロイダル面について、例えば非接触三次元測定器を用いて形状測定を実行し(ステップS1)、水平方向曲率半径、垂直方向曲率半径、軸の回転、軸の傾き、といった実測値データを取得する(ステップS2)。必要な実測値データが得られれば、形状測定の手法は特に問わない。また、軸の傾きは軸の直角度としても同じであることは当然である。多くの場合、こうして得られる実測値は実際にはそれほど高い精度ではない。   First, for the toroidal surface to be evaluated, shape measurement is performed using, for example, a non-contact three-dimensional measuring instrument (step S1), and actual measurements such as horizontal curvature radius, vertical curvature radius, shaft rotation, and shaft inclination are performed. Value data is acquired (step S2). The shape measurement method is not particularly limited as long as necessary actual measurement data is obtained. Of course, the inclination of the shaft is the same as the perpendicularity of the shaft. In many cases, the actual values obtained in this way are not actually very accurate.

次に、上記実測値を用いた計算処理を実行する。これ以降の計算処理は、例えば汎用のパーソナルコンピュータで専用のプログラムを動作させ、上記実測値や仕様値、公差などを入力情報として与えることにより実行することができる。   Next, a calculation process using the measured value is executed. The subsequent calculation processing can be executed by, for example, operating a dedicated program on a general-purpose personal computer and giving the measured value, specification value, tolerance, etc. as input information.

まず、軸の回転及び傾きの2つのパラメータを上記仕様値に固定し、他の2つのパラメータ、つまり曲率半径Rh、Rvの仮値をそれぞれの仕様値を中心とする公差の範囲内で所定のステップ幅で変化させ、その変化毎に、その仮値と実測値との差のPV値を計算する。そうして順次求めたPV値を比較し、最小のPV値を与える曲率半径Rh、Rvの仮値を求める(ステップS3、S4)。このときに得られた仮値をそれぞれRhop 、Rvop、とする。   First, the two parameters of shaft rotation and inclination are fixed to the above-mentioned specification values, and the other two parameters, that is, the provisional values of the curvature radii Rh and Rv are set within a tolerance range around the respective specification values. The PV value of the difference between the temporary value and the actual measurement value is calculated for each change. Then, the PV values obtained sequentially are compared, and provisional values of the curvature radii Rh and Rv giving the minimum PV value are obtained (steps S3 and S4). The temporary values obtained at this time are Rhop and Rvop, respectively.

次に、曲率半径Rh、Rvの値を上記Rhop 、Rvopに固定し、残りの2つのパラメータ、つまり軸の回転及び傾き、の仮値をそれぞれの仕様値を中心とする公差の範囲内で所定のステップ幅で変化させ、その変化毎に、その仮値と実測値との差のPV値を計算する。そうして順次求めたPV値を比較し、最小のPV値を与える、軸の回転及び傾きの仮値を求める(ステップS5、S6)。   Next, the values of the curvature radii Rh and Rv are fixed to the above Rhop and Rvop, and the provisional values of the remaining two parameters, that is, the rotation and inclination of the shaft, are determined within a tolerance range centered on the respective specification values. The PV value of the difference between the provisional value and the actual measurement value is calculated for each change. Then, the PV values obtained sequentially are compared, and provisional values of rotation and inclination of the shaft that give the minimum PV value are obtained (steps S5 and S6).

上記ステップS4、S6で最終的に得られた各パラメータの仮値が、最も正確に評価対象のトロイダル面の形状を表す値であると考えられるから、これらの仮値を最終的な計算結果として出力し、例えばパーソナルコンピュータのディスプレイ画面上に表示する(ステップS7)。以上で計算処理を終了する。   Since the temporary values of the parameters finally obtained in steps S4 and S6 are considered to be values that most accurately represent the shape of the toroidal surface to be evaluated, these temporary values are used as the final calculation results. For example, it is displayed on a display screen of a personal computer (step S7). This completes the calculation process.

なお、上記説明では実測値と仮値との差のPV値を評価値として用いたが、より好ましくは最小二乗法による平均値など、ばらつきやのノイズの混入などを考慮した評価値を用いるとよい。   In the above description, the PV value of the difference between the actually measured value and the provisional value is used as the evaluation value. However, it is more preferable to use an evaluation value that takes into account variations and noises such as an average value by the least square method. Good.

また、上記手順では、まず軸の回転及び傾きを仕様値に固定した上で曲率半径の仮値を変化させ、その後に曲率半径を固定して軸の回転及び傾きの仮値を変化させるようにしたが、これは4つの仮値を全て変化させると計算が煩雑になるためであって、手順は上記のものに限定されないのは明らかである。例えば、先に曲率半径を仕様値に固定し、軸の回転及び傾きの仮値を変化させて最小のPV値を与える仮値を求めた上で、それから軸の回転及び傾きを固定し、2つの曲率半径の仮値を変化させて最小のPV値を与える仮値を求めるようにしてもよい。また、4つのパラメータの仮値を1つずつ順に変化させて、最小のPV値を与える仮値をそれぞれ求めるようにしてもよい。   In the above procedure, first, the temporary value of the curvature radius is changed after fixing the rotation and inclination of the shaft to the specification value, and then the temporary value of the rotation and inclination of the shaft is changed by fixing the curvature radius. However, this is because the calculation becomes complicated if all four provisional values are changed, and it is clear that the procedure is not limited to the above. For example, the radius of curvature is fixed to the specification value first, the provisional value for changing the provisional value of the rotation and inclination of the shaft to obtain the minimum PV value is obtained, and then the rotation and inclination of the shaft are fixed. The provisional value that gives the minimum PV value may be obtained by changing the provisional value of the two curvature radii. Alternatively, the provisional values of the four parameters may be sequentially changed one by one to obtain the provisional values that give the minimum PV values.

また、上記説明では、三次元測定器でトロイダル面を実測した後に、パーソナルコンピュータで計算処理を行っているが、これらをシステム化し、三次元測定手段で実測された結果を用いて自動的に計算処理を行い、計算結果を出力するような評価システムを構築することもできる。また、汎用のパーソナルコンピュータ上で上述したような計算処理を実行させるプログラムを提供することもできる。   In the above description, the toroidal surface is actually measured with a three-dimensional measuring instrument and then calculation processing is performed with a personal computer. However, these are systematized and automatically calculated using the results measured by the three-dimensional measuring means. It is also possible to construct an evaluation system that performs processing and outputs a calculation result. It is also possible to provide a program for executing the above-described calculation processing on a general-purpose personal computer.

上述した実施形態のトロイダル面評価方法の具体的な適用例について述べる。
評価対象のトロイダル面の仕様は、水平方向曲率半径Rh:282.8(mm)、垂直方向曲率半径Rv:141.4(mm)、曲率半径公差:2%、軸直角度:90°、軸直角度公差:±15'、軸傾き:0°、軸傾き公差:±15'、である。つまり、このトロイダル理想面の形状を表すパラメータは、水平方向曲率半径Rh:282.8(mm)、垂直方向曲率半径Rv:141.4(mm)、軸の回転:0°、軸の直角度:90°、である。
A specific application example of the toroidal surface evaluation method of the above-described embodiment will be described.
The specifications of the toroidal surface to be evaluated are: horizontal curvature radius Rh: 282.8 (mm), vertical curvature radius Rv: 141.4 (mm), curvature radius tolerance: 2%, shaft perpendicularity: 90 °, shaft perpendicularity tolerance: ± 15 ', axis inclination: 0 °, axis inclination tolerance: ± 15'. That is, the parameters representing the shape of the ideal toroidal surface are as follows: horizontal curvature radius Rh: 282.8 (mm), vertical curvature radius Rv: 141.4 (mm), shaft rotation: 0 °, shaft perpendicularity: 90 °, It is.

このトロイダル面を三次元測定器(三鷹光器株式会社製 非接触三次元測定装置NH-3N)で測定して得た実測値と上記仕様値との差をPV値で求めると、約19.5λ(λ=632.8nm)であった。このときの形状の差を三次元表示したのが図4(a)である。   When the difference between the measured value obtained by measuring this toroidal surface with a three-dimensional measuring device (non-contact three-dimensional measuring device NH-3N manufactured by Mitaka Kogyo Co., Ltd.) and the above specification value is obtained, it is about 19.5λ. (Λ = 632.8 nm). FIG. 4A shows a three-dimensional display of the difference in shape at this time.

上記パラメータの仮値を上記仕様値から公差の範囲で変化させ、PV値が最小になる仮値を求めた。その結果、水平方向曲率半径Rh:285.48(mm)、垂直方向曲率半径Rv:143.52(mm)、軸の回転:-11'、軸の直角度:90°-9'、で、PV値は最小の1.143λとなった。このときの形状の差を三次元表示したのが図4(b)である。   The provisional value of the parameter was changed within the tolerance range from the specification value, and the provisional value that minimizes the PV value was obtained. As a result, horizontal curvature radius Rh: 285.48 (mm), vertical curvature radius Rv: 143.52 (mm), shaft rotation: -11 ', shaft squareness: 90 ° -9', PV value is the smallest Of 1.143λ. FIG. 4B shows the three-dimensional display of the difference in shape at this time.

図4(b)を図4(a)と比較すれば、差が大幅に縮小していることが理解できる。これは最小のPV値を与える仮値が実際のトロイダル面のパラメータをより正確に表していることを意味する。こうして最終的に得られた仮値、即ち、水平方向曲率半径Rh:285.48(mm)、垂直方向曲率半径Rv:143.52(mm)、軸の回転:-11'、軸の直角度:90°-9'、を評価対象のトロイダル面の形状を表すパラメータの計算結果として出力すればよい。   If FIG. 4B is compared with FIG. 4A, it can be understood that the difference is greatly reduced. This means that the provisional value giving the minimum PV value more accurately represents the actual toroidal surface parameter. The provisional values finally obtained in this way, that is, the radius of curvature Rh in the horizontal direction: 285.48 (mm), the radius of curvature in the vertical direction Rv: 143.52 (mm), the rotation of the shaft: −11 ′, and the perpendicularity of the shaft: 90 ° − 9 ′ may be output as a calculation result of a parameter representing the shape of the toroidal surface to be evaluated.

トロイダル鏡の形状の一例を示す図。The figure which shows an example of the shape of a toroidal mirror. トロイダル鏡の形状のずれの一例を説明するための図。The figure for demonstrating an example of the shift | offset | difference of the shape of a toroidal mirror. 本発明の一実施形態であるトロイダル面評価方法の手順を示すフローチャート。The flowchart which shows the procedure of the toroidal surface evaluation method which is one Embodiment of this invention. 凹面トロイダル鏡の形状の実測値と仕様値との差の三次元表示例(a)及び同じ実測値と最小のPV値を与える仮値との差の三次元表示例(b)。A three-dimensional display example (a) of the difference between the actually measured value and the specification value of the shape of the concave toroidal mirror and a three-dimensional display example (b) of the difference between the same actually measured value and the provisional value that gives the minimum PV value.

符号の説明Explanation of symbols

1…凹面トロイダル鏡
2…トロイダル面
1 ... concave toroidal mirror 2 ... toroidal surface

Claims (3)

a)評価対象のトロイダル面を接触式又は非接触式の三次元測定手法により形状測定して前記トロイダル面の形状の実測値を取得する実測ステップと、
b)前記評価対象のトロイダル面の形状を表現するパラメータの仕様値を中心とする公差の範囲を前記パラメータの仮値の変化範囲として設定し、該変化範囲内で仮値を変化させつつ該仮値から計算されたトロイダル理想面の形状と前記実測値の形状の差を算出し、その差に基づく評価値が最小になるような仮値を求める最適化ステップと、
c)前記最適化ステップにより最終的に得られた仮値を前記パラメータの計算結果として出力する出力ステップと、
を含むトロイダル面評価方法。
the measured obtaining a shape of the measured values of the toroidal surface and the shape measured by the three-dimensional measurement method of the contact or contactless a toroidal surface of a) evaluated,
Set the range of tolerance centered on the specifications of the parameters representing the shape of the toroidal surface of b) the evaluation as a change range of the provisional value of the parameter, while varying said tentative value within said alteration range, An optimization step of calculating a difference between the shape of the toroidal ideal surface calculated from the provisional value and the shape of the actual measurement value, and obtaining a provisional value that minimizes an evaluation value based on the difference;
c) an output step of outputting the temporary value finally obtained by the optimization step as a calculation result of the parameter;
Toroidal surface evaluation method including
請求項1に記載のトロイダル面評価方法であって、前記パラメータは、水平方向の曲率半径、垂直方向の曲率半径と、軸の回転、及び軸の傾き、又はそれらに相当するものであることを特徴とするトロイダル面評価方法。   2. The toroidal surface evaluation method according to claim 1, wherein the parameters are a curvature radius in the horizontal direction, a curvature radius in the vertical direction, a rotation of the shaft, and a tilt of the shaft, or the equivalent thereof. Characteristic toroidal surface evaluation method. 請求項1又は2に記載のトロイダル面評価方法であって、前記評価値はPV値(最大点と最小点との差)又は最小二乗化法による平均値のいずれかであることを特徴とするトロイダル面評価方法。   The toroidal surface evaluation method according to claim 1 or 2, wherein the evaluation value is either a PV value (difference between a maximum point and a minimum point) or an average value obtained by a least square method. Toroidal surface evaluation method.
JP2007307178A 2007-11-28 2007-11-28 Toroidal surface evaluation method Active JP5211656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307178A JP5211656B2 (en) 2007-11-28 2007-11-28 Toroidal surface evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307178A JP5211656B2 (en) 2007-11-28 2007-11-28 Toroidal surface evaluation method

Publications (2)

Publication Number Publication Date
JP2009128340A JP2009128340A (en) 2009-06-11
JP5211656B2 true JP5211656B2 (en) 2013-06-12

Family

ID=40819394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307178A Active JP5211656B2 (en) 2007-11-28 2007-11-28 Toroidal surface evaluation method

Country Status (1)

Country Link
JP (1) JP5211656B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132564B2 (en) * 2013-01-25 2017-05-24 オリンパス株式会社 Ring lighting adapter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587542A (en) * 1991-09-30 1993-04-06 Ricoh Co Ltd Method and device for measuring curved surface
JPH05118829A (en) * 1991-10-29 1993-05-14 Ricoh Co Ltd Method and apparatus for measuring radius of curvature
JPH0743173A (en) * 1993-07-29 1995-02-10 Mitsutoyo Corp Measurement data collating device
DE19908706A1 (en) * 1999-02-26 2000-11-02 Werth Messtechnik Gmbh Method for determining the deviations of the geometric dimensions and / or the position of an object from predeterminable target values of the geometric dimensions and / or the position of the object
JP3773838B2 (en) * 2000-12-05 2006-05-10 日本電産サンキョー株式会社 Surface shape measuring apparatus and surface shape measuring method
JP2003344040A (en) * 2002-05-24 2003-12-03 Canon Inc Error distribution method
JP2005022917A (en) * 2003-07-01 2005-01-27 Canon Inc Molding method of optical element and manufacturing method of shaping die
JP2006329791A (en) * 2005-05-25 2006-12-07 Olympus Corp Shape evaluation method

Also Published As

Publication number Publication date
JP2009128340A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
Janecki Edge effect elimination in the recursive implementation of Gaussian filters
JP2000186978A (en) Evaluation method and evaluating device for spectacle lens
EP2233905A2 (en) Transmitted wavefront measuring method, refractive-index distribution measuring method, method of manufacturing optical element, and transmitted wavefront measuring apparatus
Evans PVr—a robust amplitude parameter for optical surface specification
CN107991770B (en) Method for determining the refractive index profile of a cylindrical optical object
Wang et al. Towards self-calibrated lens metrology by differentiable refractive deflectometry
Su et al. Swing-arm optical coordinate measuring machine: modal estimation of systematic errors from dual probe shear measurements
JP5211656B2 (en) Toroidal surface evaluation method
Wang et al. Marker-free stitching deflectometry for three-dimensional measurement of the specular surface
Jester et al. Wavelet methods for the representation, analysis and simulation of optical surfaces
Arezki et al. A novel hybrid trust region minimax fitting algorithm for accurate dimensional metrology of aspherical shapes
JP2019511706A (en) Method and system for compensating for non-linear torsional response in optical shape sensing using skewed multi-core fibers
JP2007303900A (en) Optical performance evaluation method of spectacle lens
JP2011247875A (en) Method, program and apparatus for evaluating shape of optical element
Wang et al. Calibration of geometrical aberration in transmitted wavefront testing of refractive optics with deflectometry
JP6300729B2 (en) Method of deforming a progressive ophthalmic surface
Küng et al. Application of a virtual coordinate measuring machine for measurement uncertainty estimation of aspherical lens parameters
Fuchs Tolerancing aspheric surfaces in optical design
Abdullah et al. Profile measurement based on focus variation method for geometrical defect evaluation: a case study of cold forged propeller blade
TWI424198B (en) Lens, lens array, and lens evaluation device
Cordero-Dávila et al. Local and global surface errors evaluation using Ronchi test, without both approximation and integration
Kang et al. Evaluating binary defocusing quantitatively in real-time for fringe projection profilometry
CN112560974B (en) Information fusion and vehicle information acquisition method and device
US9964444B2 (en) Imaging spectrometer design tool for evaluating freeform optics
Lee et al. Photorealistic ray tracing to visualize automobile side mirror reflective scenes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R151 Written notification of patent or utility model registration

Ref document number: 5211656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3