JP5211626B2 - Equipment with battery - Google Patents

Equipment with battery Download PDF

Info

Publication number
JP5211626B2
JP5211626B2 JP2007263223A JP2007263223A JP5211626B2 JP 5211626 B2 JP5211626 B2 JP 5211626B2 JP 2007263223 A JP2007263223 A JP 2007263223A JP 2007263223 A JP2007263223 A JP 2007263223A JP 5211626 B2 JP5211626 B2 JP 5211626B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
external terminal
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007263223A
Other languages
Japanese (ja)
Other versions
JP2009093917A (en
Inventor
美和子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007263223A priority Critical patent/JP5211626B2/en
Publication of JP2009093917A publication Critical patent/JP2009093917A/en
Application granted granted Critical
Publication of JP5211626B2 publication Critical patent/JP5211626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

本発明はバッテリ付き機器に関する。 The present invention relates to a battery with equipment.

停電や電源変動などの電源トラブルに対処するために、電源とコンピュータなどの負荷との間に無停電電源装置を接続する方法がある。この無停電電源装置は、停電や電源変動などの電源トラブルが発生すると、内部バッテリを電源として負荷に電力を供給することで、負荷に供給される電力を安定に維持することができる。
図9は、無停電電源装置の概略構成を示すブロック図である。
There is a method of connecting an uninterruptible power supply between a power source and a load such as a computer in order to cope with a power source trouble such as a power failure or power fluctuation. This uninterruptible power supply can stably maintain the power supplied to the load by supplying power to the load using the internal battery as a power source when a power trouble such as a power failure or power fluctuation occurs.
FIG. 9 is a block diagram illustrating a schematic configuration of the uninterruptible power supply.

図9において、無停電電源装置には、電力を貯蔵するバッテリ部104が設けられ、バッテリ部104はコネクタ105を介して電力変換回路部102に接続されている。なお、電力変換回路部102には、コンバータ回路やチョッパ回路などが搭載され、スイッチング動作によって直流を交流に変換することができる。ここで、バッテリ部104からはバッテリ部104の正極端子および負極端子を電力変換回路部102にそれぞれ接続するための給電線106、107が引き出され、バッテリ部104は給電線106、107を介して電力変換回路部102のプリント基板に接続される。 In FIG. 9, the uninterruptible power supply is provided with a battery unit 104 that stores electric power, and the battery unit 104 is connected to the power conversion circuit unit 102 via a connector 105 . Note that the power conversion circuit unit 102 includes a converter circuit, a chopper circuit, and the like, and can convert direct current into alternating current through a switching operation. Here, power supply lines 106 and 107 for connecting the positive terminal and the negative terminal of the battery part 104 to the power conversion circuit part 102 are drawn out from the battery part 104. The battery part 104 is connected via the power supply lines 106 and 107. It is connected to the printed circuit board of the power conversion circuit unit 102.

そして、通常時には、商用電源101から負荷103に電力が供給される。そして、停電や電源変動などの電源トラブルが発生すると、負荷103への電力の供給経路がバッテリ部104側に切り替えられ、バッテリ部104から供給される直流が電力変換回路部102にて交流に変換された後、負荷103に電力が供給される。
ここで、バッテリ部104に搭載されるバッテリとしては、正極と負極とが交互に積層された構造、すなわち、セルが一方向に直列に積層された構造が広く用いられている。
In normal times, power is supplied from the commercial power supply 101 to the load 103. When a power supply trouble such as a power failure or power fluctuation occurs, the power supply path to the load 103 is switched to the battery unit 104 side, and the direct current supplied from the battery unit 104 is converted into an alternating current by the power conversion circuit unit 102. After that, electric power is supplied to the load 103.
Here, as the battery mounted on the battery unit 104, a structure in which positive electrodes and negative electrodes are alternately stacked, that is, a structure in which cells are stacked in series in one direction is widely used.

図10(a)は従来のバッテリの概略構成を模式的に示す斜視図、図10(b)は図10(a)のバッテリの概略構成を模式的に示す平面図、図10(c)は図10(a)のバッテリの給電線の電圧分布を示す図である。
図10において、長さLのバッテリ111には、複数のセル112が設けられ、セル112は一方向に直列に積層されている。ここで、バッテリ111内には、両端のセル112の正極と負極にそれぞれ接続された正極内部端子B11および負極内部端子B11´が設けられるとともに、バッテリ111外には、バッテリ111を電力変換回路部102に接続するための正極外部端子A11および負極外部端子A11´が設けられている。
FIG. 10A is a perspective view schematically showing a schematic configuration of a conventional battery, FIG. 10B is a plan view schematically showing the schematic configuration of the battery in FIG. 10A, and FIG. It is a figure which shows the voltage distribution of the feeder of the battery of Fig.10 (a).
In FIG. 10, a battery 111 having a length L is provided with a plurality of cells 112, and the cells 112 are stacked in series in one direction. Here, in the battery 111, a positive electrode internal terminal B11 and a negative electrode internal terminal B11 ′ connected to the positive electrode and the negative electrode of the cell 112 at both ends are provided, and the battery 111 is connected to the power conversion circuit unit outside the battery 111. A positive external terminal A 11 and a negative external terminal A 11 ′ for connection to 102 are provided.

ここで、バッテリ111の正極内部端子B11は負極内部端子B11´に対して反対側に配置されるとともに、バッテリ111の正極外部端子A11は負極外部端子A11´側に配置されている。そして、正極内部端子B11と正極外部端子A11とは給電線113を介して接続され、負極内部端子B11´と負極外部端子A11´とは給電線114を介して接続されている。   Here, the positive electrode internal terminal B11 of the battery 111 is disposed on the opposite side to the negative electrode internal terminal B11 ′, and the positive electrode external terminal A11 of the battery 111 is disposed on the negative electrode external terminal A11 ′ side. The positive electrode internal terminal B11 and the positive electrode external terminal A11 are connected via a power supply line 113, and the negative electrode internal terminal B11 ′ and the negative electrode external terminal A11 ′ are connected via a power supply line 114.

ここで、給電線113のインピーダンスは、正極外部端子A11で最も低く、正極内部端子B11で最も高くなる。そのため、図9の電力変換回路部102のスイッチング素子のスイッチング動作などで発生したノイズが高周波電流としてバッテリ111に伝わると、バッテリ111の正極内部端子B11で反射が起こり、この反射波が入射波と重ね合わされることによって、図10(c)に示すように、給電線113上で1/4波長を給電線長さlとする定在波が発生し、給電線長さlによって波長が決まる放射ノイズが発生する。 Here, the impedance of the feeder 113 is lowest at the positive external terminal A11 and highest at the positive internal terminal B11. Therefore, when noise generated by the switching operation of the switching element of the power conversion circuit unit 102 in FIG. 9 is transmitted to the battery 111 as a high-frequency current, reflection occurs at the positive electrode internal terminal B11 of the battery 111, and this reflected wave becomes an incident wave. As a result of the superposition, as shown in FIG. 10C, a standing wave having a quarter wavelength of the feed line length l is generated on the feed line 113, and the wavelength is determined by the feed line length l. Noise is generated.

この給電線長さlと放射ノイズの波長λとの関係は、以下の式で表すことができる。
l=1/4λ (1)
λ=C/(f√(εμ)) (2)
f=C/(4l√(εμ)) (3)
ただし、
C:光速(=3×10)[m/sec]
l:給電線長さ[m]
f:共振周波数(定在波が発生する周波数)
λ:波長[m]
ε:給電線の比誘電率
μ:給電線の比透磁率
そして、ノイズ規制値が定められている上限の周波数は機器の種類によって決められている。
また、無停電電源装置に用いられるバッテリは、その出力電圧を大きくするために、複数台を直列接続することがある。
The relationship between the feeder line length l and the wavelength λ of the radiation noise can be expressed by the following equation.
l = 1 / 4λ (1)
λ = C / (f√ (ε r μ r )) (2)
f = C / (4l√ (ε r μ r )) (3)
However,
C: speed of light (= 3 × 10 8 ) [m / sec]
l: Feed line length [m]
f: Resonance frequency (frequency at which standing wave is generated)
λ: wavelength [m]
[epsilon] r : relative dielectric constant of the feeder line [mu] r : relative permeability of the feeder line The upper limit frequency at which the noise regulation value is determined is determined by the type of device.
Moreover, the battery used for an uninterruptible power supply device may connect two or more series in series in order to enlarge the output voltage.

図11(a)は従来のバッテリの概略構成のその他の例を模式的に示す斜視図、図11(b)は図11(a)のバッテリの概略構成を模式的に示す平面図、図11(c)は図11(a)のバッテリの給電線の電圧分布を示す図である。
図11において、バッテリ121a、121bには、複数のセル122a、122bがそれぞれ設けられ、セル122a、122bはそれぞれ一方向に直列に積層されている。ここで、バッテリ121a内には、一端のセル122aの正極に接続された正極内部端子B12が設けられるとともに、バッテリ121a外には、バッテリ121aの正極を電力変換回路部102に接続するための正極外部端子A12が設けられている。また、バッテリ121b内には、一端のセル122bの負極に接続された負極内部端子B12´が設けられるとともに、バッテリ121b外には、バッテリ121bの負極を電力変換回路部102に接続するための負極外部端子A12´が設けられている。そして、バッテリ121aの他端のセル122aの負極とバッテリ121bの他端のセル122bの正極とを接続導体124を介して接続することで、バッテリ121a、121bは互いに直列接続されている。
FIG. 11A is a perspective view schematically showing another example of the schematic configuration of the conventional battery, FIG. 11B is a plan view schematically showing the schematic configuration of the battery in FIG. (C) is a figure which shows the voltage distribution of the feeder of the battery of Fig.11 (a).
In FIG. 11, batteries 121a and 121b are provided with a plurality of cells 122a and 122b, respectively, and the cells 122a and 122b are respectively stacked in series in one direction. Here, a positive internal terminal B12 connected to the positive electrode of the cell 122a at one end is provided in the battery 121a, and a positive electrode for connecting the positive electrode of the battery 121a to the power conversion circuit unit 102 outside the battery 121a. An external terminal A12 is provided. In addition, a negative electrode internal terminal B12 ′ connected to the negative electrode of the cell 122b at one end is provided in the battery 121b, and a negative electrode for connecting the negative electrode of the battery 121b to the power conversion circuit unit 102 outside the battery 121b. An external terminal A12 ′ is provided. The batteries 121a and 121b are connected in series by connecting the negative electrode of the cell 122a at the other end of the battery 121a and the positive electrode of the cell 122b at the other end of the battery 121b via the connection conductor 124.

ここで、バッテリ121aの正極内部端子B12は、バッテリ121bの負極内部端子B12´に対して反対側に配置されるとともに、バッテリ121aの正極外部端子A12は、バッテリ121bの負極外部端子A12´側に配置されている。そして、正極内部端子B12と正極外部端子A12とは給電線123を介して接続され、負極内部端子B12´と負極外部端子A12´とは給電線124を介して接続されている。   Here, the positive internal terminal B12 of the battery 121a is disposed on the opposite side to the negative internal terminal B12 ′ of the battery 121b, and the positive external terminal A12 of the battery 121a is on the negative external terminal A12 ′ side of the battery 121b. Has been placed. The positive electrode internal terminal B12 and the positive electrode external terminal A12 are connected via a power supply line 123, and the negative electrode internal terminal B12 ′ and the negative electrode external terminal A12 ′ are connected via a power supply line 124.

ここで、給電線123のインピーダンスは、正極外部端子A12で最も低く、正極内部端子B12で最も高くなる。また、給電線124のインピーダンスは、正極外部端子A12’で最も低く、正極内部端子B12’で最も高くなる。そのため、図9の電力変換回路部102のスイッチング素子のスイッチング動作などで発生したノイズが高周波電流としてバッテリ121a、121bに伝わると、バッテリ121a、121bの正極内部端子B12、B12’でそれぞれ反射が起こり、この反射波が入射波と重ね合わせられることによって、図11(c)に示すように、給電線123、124上で1/4波長を給電線長さlとする定在波がそれぞれ発生し、給電線長さlによって波長が決まる放射ノイズがそれぞれ発生する。 Here, the impedance of the feeder 123 is lowest at the positive external terminal A12 and highest at the positive internal terminal B12. The impedance of the feeder 124 is lowest at the positive external terminal A12 ′ and highest at the positive internal terminal B12 ′. Therefore, when noise generated by the switching operation of the switching element of the power conversion circuit unit 102 in FIG. 9 is transmitted to the batteries 121a and 121b as high-frequency current, reflection occurs at the positive internal terminals B12 and B12 ′ of the batteries 121a and 121b, respectively. By superimposing this reflected wave on the incident wave, as shown in FIG. 11 (c), standing waves having a 1/4 wavelength as the feed line length l are generated on the feed lines 123 and 124, respectively. Then, radiation noise whose wavelength is determined by the feed line length l is generated.

また、例えば、特許文献1には、バッテリの給電線上で生じる定在波に起因する放射ノイズを抑制するために、バッテリの端部とグランドとを容量結合により高周波的に接続し、アンテナとして機能する給電線の端部の電圧をゼロにする方法が開示されている。 Further, for example, in Patent Document 1, in order to suppress radiation noise caused by a standing wave generated on the battery power supply line, the end of the battery and the ground are connected at high frequency by capacitive coupling, and function as an antenna. A method is disclosed in which the voltage at the end of the feeder line is zero.

しかしながら、特許文献1に開示された方法では、バッテリの端部とグランドとを容量結合させる必要があり、その容量結合が装置の構造上困難である場合には、バッテリの給電線上で生じる定在波に起因する放射ノイズを抑制することができないという問題があった。
そこで、本発明の目的は、バッテリの端部とグランドとを容量結合させることなく、給電線上で生じる定在波に起因する放射ノイズの影響を低減することが可能なバッテリ付き機器を提供することである。
However, in the method disclosed in Patent Document 1, it is necessary to capacitively couple the end portion of the battery and the ground, and when the capacitive coupling is difficult due to the structure of the device, the standing that occurs on the power supply line of the battery. There has been a problem that radiation noise caused by waves cannot be suppressed.
An object of the present invention, without capacitive coupling and an end portion of the battery and ground, to provide a battery with equipment capable of reducing the influence of radiation noise due to the standing wave occurring in the feed line That is.

上述した課題を解決するために、請求項1記載の発明は、直列に積層された複数のセルと、前記複数のセルのうち最も両端に位置するセルの電極にそれぞれ給電線を介して接続された外部端子とを有するバッテリと、前記バッテリの前記外部端子に接続された回路部とを備えたバッテリ付き機器であって、前記給電線の長さをl、前記給電線の比誘電率をε、前記給電線の比透磁率をμとしたとき、前記給電線上で生じる定在波の周波数f=C/(4l√(ε・μ))、ただし、C:光速[m/sがノイズ規制値で定められている上限の周波数よりも高くなるように、前記給電線の長さ設定されていることを特徴とする In order to solve the above-described problem, the invention according to claim 1 is connected to the plurality of cells stacked in series and the electrode of the cell located at both ends of the plurality of cells via a feeder line. A battery-equipped device comprising a battery having an external terminal and a circuit unit connected to the external terminal of the battery , wherein the length of the power supply line is l [ m ] and the relative dielectric of the power supply line When the rate is ε r and the relative permeability of the feed line is μ r , the frequency of the standing wave generated on the feed line is f = C / (4l√ (ε r · μ r )), where C: light speed [m / s] so is higher than the frequency of the upper limit is defined by the noise regulation value, wherein the length of the feeder line is set.

また、請求項記載の発明は、請求項記載のバッテリ付き機器において、前記バッテリは2つ設けられ、当該2つのバッテリが一列に配置されていると共に、前記2つのバッテリのうち第1のバッテリの正極と第2のバッテリの負極が接続導体により接続され、かつ前記第1のバッテリの負極と前記第2のバッテリの正極に前記給電線がそれぞれ接続されていることを特徴とする。 Further, an invention according to claim 2, wherein, in the battery with equipment according to claim 1, wherein the battery is provided two, together with the two batteries are arranged in a row, the first of said two batteries positive electrode and the negative electrode of the second battery of the battery are connected by connecting conductors, and wherein the feed line to the positive pole of the first negative electrode and the second battery of the battery are connected.

また、請求項記載の発明は、請求項記載のバッテリ付き機器において、前記バッテリは2つ設けられ、当該2つのバッテリが上下に重なり合って配置されていると共に、前記2つのバッテリのうち第1のバッテリの正極と第2のバッテリの負極が接続導体により接続され、前記第1のバッテリの負極と前記第2のバッテリの正極に前記給電線がそれぞれ接続されていることを特徴とする。 The invention of claim 3, wherein, in the battery with equipment according to claim 1, wherein the battery is provided two, together with the two batteries are arranged overlapping in a vertical, first of said two battery positive electrode and the negative electrode of the second battery of the first battery is connected by the connection conductor, characterized in that the feed line to the positive electrode and the negative electrode of the first battery and the second battery is connected, respectively.

また、請求項記載の発明は、請求項記載のバッテリ付き機器において、前記バッテリは3つ設けられ、当該3つのバッテリが上下に重なり合って配置されていると共に、前記3つのバッテリのうち第1のバッテリの正極と第3のバッテリの負極が第1の接続導体により接続されていると共に、前記第1のバッテリの負極と第2のバッテリの正極が第2の接続導体により接続され、かつ前記第2のバッテリの負極と前記第3のバッテリの正極に前記給電線がそれぞれ接続されていることを特徴とする。 The invention of claim 4, wherein, in the battery with equipment according to claim 1, wherein the battery is provided three, together with the three batteries are disposed overlapping vertically, first among the three battery with positive electrode and the negative electrode of the third battery of one battery is connected by the first connecting conductor, the negative electrode and the positive electrode of the second battery of the first battery is connected by a second connecting conductor, and The power supply line is connected to the negative electrode of the second battery and the positive electrode of the third battery , respectively.

また、請求項記載の発明は、請求項記載のバッテリ付き機器において、複数のセルが一列に配列され且つ隣り合うセル同士が直列に接続された複数のセル集合体を前記バッテリが有することを特徴とする。 Further, in the invention according to claim 5 , in the battery-equipped device according to claim 1 , the battery has a plurality of cell aggregates in which a plurality of cells are arranged in a line and adjacent cells are connected in series. It is characterized by.

以上説明したように、本発明によれば、バッテリの給電線の長さを短くすることで、給電線上で生じる定在波に起因する放射ノイズについてノイズ規制値で定められている上限の周波数よりも高くすることが可能となり、バッテリの端部とグランドとを容量結合させることなく、給電線上で生じる定在波に起因する放射ノイズの影響を低減することが可能となる。 As described above, according to the present invention, by shortening the length of the battery power supply line, the radiation noise caused by the standing wave generated on the power supply line is more than the upper limit frequency defined by the noise regulation value. Therefore, it is possible to reduce the influence of radiation noise caused by the standing wave generated on the feeder line without capacitively coupling the end of the battery and the ground.

以下、本発明の実施形態に係るバッテリについて図面を参照しながら説明する。なお、以下の説明では、放射ノイズについてのノイズ規制値が1GHz以下の周波数に対して設けられ、バッテリ内部のセルから外部に引き出された給電線の比誘電率εrが3.4、比透磁率μrが1の場合を例にとる。この例では、給電線長さlが約4.1cm以上になると、1GHz以下の周波数で定存波が発生する。 Hereinafter, a battery according to an embodiment of the present invention will be described with reference to the drawings. In the following description, the noise regulation value for radiated noise is provided for frequencies of 1 GHz or less, and the relative permittivity ε r of the feeder line drawn out from the cell inside the battery is 3.4, relative permeability. Take the case where the magnetic susceptibility μ r is 1 as an example. In this example, when the feed line length l is about 4.1 cm or more, a standing wave is generated at a frequency of 1 GHz or less.

図1は、本発明の第1実施形態に係るバッテリの概略構成を模式的に示す斜視図である。
図1において、バッテリ11には、複数のセル12が設けられ、セル12は一方向に直列に積層されている。ここで、バッテリ11内には、両端のセル12の正極と負極にそれぞれ接続された正極内部端子B1および負極内部端子B1´が設けられるとともに、バッテリ11外には、バッテリ11を図9の電力変換回路部102に接続するための正極外部端子A1および負極外部端子A1´が設けられている。
FIG. 1 is a perspective view schematically showing a schematic configuration of the battery according to the first embodiment of the present invention.
In FIG. 1, a battery 11 is provided with a plurality of cells 12, and the cells 12 are stacked in series in one direction. Here, a positive electrode internal terminal B1 and a negative electrode internal terminal B1 ′ connected to the positive electrode and the negative electrode of the cell 12 at both ends are provided in the battery 11, and the battery 11 is connected to the power of FIG. A positive external terminal A1 and a negative external terminal A1 ′ for connection to the conversion circuit unit 102 are provided.

ここで、バッテリ11の正極内部端子B1は負極内部端子B1´に対して反対側に配置されるとともに、バッテリ11の正極外部端子A1は負極外部端子A1´に対して反対側に配置され、正極内部端子B1および正極外部端子A1はバッテリ11の一端に配置され、負極内部端子B1´および負極外部端子A1´はバッテリ11の他端に配置される。そして、正極内部端子B1と正極外部端子A1とは給電線13を介して接続され、負極内部端子B1´と負極外部端子A1´とは給電線14を介して接続されている。   Here, the positive electrode internal terminal B1 of the battery 11 is disposed on the opposite side to the negative electrode internal terminal B1 ′, and the positive electrode external terminal A1 of the battery 11 is disposed on the opposite side to the negative electrode external terminal A1 ′. The internal terminal B 1 and the positive external terminal A 1 are disposed at one end of the battery 11, and the negative internal terminal B 1 ′ and the negative external terminal A 1 ′ are disposed at the other end of the battery 11. The positive electrode internal terminal B1 and the positive electrode external terminal A1 are connected via the power supply line 13, and the negative electrode internal terminal B1 ′ and the negative electrode external terminal A1 ′ are connected via the power supply line 14.

これにより、バッテリ11の長さLに依存することなく、給電線13、14の長さlを決めることができ、給電線13、14の長さlを短くすることが可能となることから、給電線13、14上で生じる定在波に起因する放射ノイズについて規制値で定められている上限の周波数よりも高くすることが可能となり、給電線13、14上で生じる定在波に起因する放射ノイズの影響を低減することが可能となる。 Thereby, without depending on the length L of the battery 11, the length l of the feeder lines 13 and 14 can be determined, and the length l of the feeder lines 13 and 14 can be shortened. The radiation noise caused by the standing waves generated on the feeder lines 13 and 14 can be made higher than the upper limit frequency defined by the regulation value, and is caused by the standing waves generated on the feeder lines 13 and 14. It becomes possible to reduce the influence of radiation noise.

例えば、図10の構成では、給電線113の長さlは給電線114の長さよりも長くなり、バッテリ11の長さLが5cmとすると、給電線113の長さlも5cmとなり、(3)式から813MHz以下の周波数で定在波が発生する。
これに対して、図1の構成では、給電線13の長さlを給電線14の長さと等しくすることができ、バッテリ11の長さLが5cmであっても、給電線13の長さlを3cmとすることが可能となる。このため、(3)式から定在波が発生する周波数を1.36GHzとすることができ、ノイズ規制値が設けられている1GHz以下の周波数以下の周波数では、定在波の発生を抑えることができる。
For example, in the configuration of FIG. 10, the length l of the power supply line 113 is longer than the length of the power supply line 114. If the length L of the battery 11 is 5 cm, the length l of the power supply line 113 is also 5 cm. ) To generate a standing wave at a frequency of 813 MHz or less.
On the other hand, in the configuration of FIG. 1, the length l of the power supply line 13 can be made equal to the length of the power supply line 14, and the length of the power supply line 13 can be obtained even when the length L of the battery 11 is 5 cm. l can be 3 cm. For this reason, the frequency at which the standing wave is generated can be set to 1.36 GHz from the equation (3), and the generation of the standing wave is suppressed at a frequency equal to or lower than the frequency of 1 GHz or less where the noise regulation value is provided. Can do.

図2は、本発明の第2実施形態に係るバッテリの概略構成を模式的に示す斜視図である。
図2において、バッテリ21には、複数のセル22が設けられ、セル22は一方向に直列に積層されている。ここで、バッテリ21内には、両端のセル22の正極と負極にそれぞれ接続された正極内部端子B2および負極内部端子B2´が設けられるとともに、バッテリ21外には、バッテリ21を図9の電力変換回路部102に接続するための正極外部端子A2および負極外部端子A2´が設けられている。
FIG. 2 is a perspective view schematically showing a schematic configuration of the battery according to the second embodiment of the present invention.
In FIG. 2, the battery 21 is provided with a plurality of cells 22, and the cells 22 are stacked in series in one direction. Here, a positive electrode internal terminal B2 and a negative electrode internal terminal B2 ′ connected to the positive electrode and the negative electrode of the cell 22 at both ends are provided in the battery 21, and the battery 21 is connected to the power of FIG. A positive external terminal A2 and a negative external terminal A2 ′ for connection to the conversion circuit unit 102 are provided.

ここで、バッテリ21の正極内部端子B2は負極内部端子B2´に対して反対側に配置されるとともに、バッテリ21の正極外部端子A2および負極外部端子A2´は、バッテリ21の中央部に隣接して配置されている。そして、正極内部端子B2と正極外部端子A2とは給電線23を介して接続され、負極内部端子B2´と負極外部端子A2´とは給電線24を介して接続されている。   Here, the positive internal terminal B2 of the battery 21 is disposed on the opposite side to the negative internal terminal B2 ′, and the positive external terminal A2 and the negative external terminal A2 ′ of the battery 21 are adjacent to the center of the battery 21. Are arranged. The positive electrode internal terminal B2 and the positive electrode external terminal A2 are connected via a power supply line 23, and the negative electrode internal terminal B2 ′ and the negative electrode external terminal A2 ′ are connected via a power supply line 24.

これにより、給電線23の長さlを給電線24の長さと等しくすることができ、給電線23の長さlをバッテリ21の長さLよりも短くすることが可能となることから、給電線13、14上で生じる定在波に起因する放射ノイズの影響を低減することが可能となるとともに、正極外部端子A2および負極外部端子A2’を近づけて配置することができ、そのような機器の構造上の要請に対応することができる。 Thus, the length l of the feeder line 23 can be made equal to the length of the feeder line 24, and the length l of the feeder line 23 can be made shorter than the length L of the battery 21. It is possible to reduce the influence of radiation noise caused by standing waves generated on the electric wires 13 and 14, and the positive electrode external terminal A2 and the negative electrode external terminal A2 ′ can be arranged close to each other, such a device. To meet the structural requirements of

図3は、本発明の第3実施形態に係るバッテリの概略構成を模式的に示す斜視図である。
図3において、バッテリ31a、31bには、複数のセル32a、32bがそれぞれ設けられ、セル32a、32bはそれぞれ一方向に直列に積層されている。そして、バッテリ31bは、セル32bの積層方向がセル32aの積層方向に沿うようにバッテリ31aに隣接して配置されている。ここで、バッテリ31bから最も遠い位置にあるセル32aの正極と、バッテリ31aから最も遠い位置にあるセル32bの負極とは、接続導体35を介して接続されている。また、バッテリ31a内には、バッテリ31bに最も近い位置にあるセル32aの負極に接続された負極内部端子B3´が設けられるとともに、バッテリ31a外には、バッテリ31aの負極を図9の電力変換回路部102の負極に接続するための負極外部端子A3´が設けられている。また、バッテリ31b内には、バッテリ31aに最も近い位置にあるセル32bの正極に接続された正極内部端子B3が設けられるとともに、バッテリ31b外には、バッテリ31bの正極を図9の電力変換回路部102の正極に接続するための正極外部端子A3が設けられている。
FIG. 3 is a perspective view schematically showing a schematic configuration of the battery according to the third embodiment of the present invention.
In FIG. 3, batteries 31a and 31b are provided with a plurality of cells 32a and 32b, respectively, and the cells 32a and 32b are stacked in series in one direction. The battery 31b is disposed adjacent to the battery 31a so that the stacking direction of the cells 32b is along the stacking direction of the cells 32a. Here, the positive electrode of the cell 32a farthest from the battery 31b and the negative electrode of the cell 32b farthest from the battery 31a are connected via a connection conductor 35. In addition, a negative electrode internal terminal B3 ′ connected to the negative electrode of the cell 32a located closest to the battery 31b is provided in the battery 31a, and the negative electrode of the battery 31a is connected to the power conversion of FIG. 9 outside the battery 31a. A negative external terminal A <b> 3 ′ for connection to the negative electrode of the circuit unit 102 is provided. In addition, a positive electrode internal terminal B3 connected to the positive electrode of the cell 32b located closest to the battery 31a is provided in the battery 31b, and the positive electrode of the battery 31b is connected to the power conversion circuit of FIG. 9 outside the battery 31b. A positive external terminal A3 for connection to the positive electrode of the unit 102 is provided.

ここで、バッテリ32aの負極内部端子B3´とバッテリ32bの正極内部端子B3は、バッテリ32aとバッテリ32bとの境界面の近傍に隣接して配置されるとともに、バッテリ32aの負極外部端子A3´とバッテリ32bの正極外部端子A3は、バッテリ32aとバッテリ32bとの境界面の近傍に隣接して配置されている。そして、正極内部端子B3と正極外部端子A3とは給電線33を介して接続され、負極内部端子B3´と負極外部端子A3´とは給電線34を介して接続されている。   Here, the negative electrode internal terminal B3 ′ of the battery 32a and the positive electrode internal terminal B3 of the battery 32b are disposed adjacent to the vicinity of the boundary surface between the battery 32a and the battery 32b, and the negative electrode external terminal A3 ′ of the battery 32a. The positive external terminal A3 of the battery 32b is disposed adjacent to the vicinity of the boundary surface between the battery 32a and the battery 32b. The positive electrode internal terminal B3 and the positive electrode external terminal A3 are connected via a power supply line 33, and the negative electrode internal terminal B3 ′ and the negative electrode external terminal A3 ′ are connected via a power supply line.

これにより、複数台のバテリ31a、31bを直列接続した場合においても、バッテリ31a、31bの長さに依存することなく、給電線33、34の長さlを決めることができ、給電線33、34の長さlを短くすることが可能となることから、給電線33、34上で生じる定在波に起因する放射ノイズについてノイズ規制値で定められている上限の周波数よりも高くすることが可能となり、給電線33、34上で生じる定在波に起因する放射ノイズの影響を低減することが可能となる。 Thus, even when a plurality of batteries 31a and 31b are connected in series, the length l of the feeders 33 and 34 can be determined without depending on the length of the batteries 31a and 31b. Since the length l of 34 can be shortened, the radiation noise caused by the standing waves generated on the feeder lines 33 and 34 can be set higher than the upper limit frequency defined by the noise regulation value. It becomes possible, and it becomes possible to reduce the influence of the radiation noise resulting from the standing wave generated on the feeder lines 33 and 34.

図4は、本発明の第4実施形態に係るバッテリの概略構成を模式的に示す斜視図である。
図4において、バッテリ41a、41bには、複数のセル42a、42bがそれぞれ設けられ、セル42a、42bはそれぞれ一方向に直列に積層されている。そして、バッテリ41bは、セル42bの積層方向がセル42aの積層方向に対して逆方向を向くようにバッテリ41a上に重ねて配置されている。ここで、バッテリ41aの一端のセル42aの正極と、バッテリ41bの一端のセル42bの負極とは、接続導体45を介して接続されている。また、バッテリ41a内には、バッテリ41aの他端のセル42aの負極に接続された負極内部端子B4´が設けられるとともに、バッテリ41a外には、バッテリ41aの負極を図9の電力変換回路部102の負極に接続するための負極外部端子A4´が設けられている。また、バッテリ41b内には、バッテリ41bの他端のセル42bの正極に接続された正極内部端子B4が設けられるとともに、バッテリ41b外には、バッテリ41bの正極を図9の電力変換回路部102の正極に接続するための正極外部端子A4が設けられている。
FIG. 4 is a perspective view schematically showing a schematic configuration of the battery according to the fourth embodiment of the present invention.
In FIG. 4, the batteries 41a and 41b are provided with a plurality of cells 42a and 42b, respectively, and the cells 42a and 42b are stacked in series in one direction. The battery 41b is placed on the battery 41a so that the stacking direction of the cells 42b is opposite to the stacking direction of the cells 42a. Here, the positive electrode of the cell 42 a at one end of the battery 41 a and the negative electrode of the cell 42 b at one end of the battery 41 b are connected via a connection conductor 45. In addition, a negative electrode internal terminal B4 ′ connected to the negative electrode of the cell 42a at the other end of the battery 41a is provided in the battery 41a, and the negative electrode of the battery 41a is connected to the power conversion circuit unit of FIG. 9 outside the battery 41a. A negative electrode external terminal A 4 ′ for connection to the negative electrode 102 is provided. Further, a positive internal terminal B4 connected to the positive electrode of the cell 42b at the other end of the battery 41b is provided in the battery 41b, and the positive electrode of the battery 41b is connected to the power conversion circuit unit 102 in FIG. 9 outside the battery 41b. A positive external terminal A4 for connecting to the positive electrode is provided.

ここで、バッテリ42aの負極内部端子B4’とバッテリ42bの正極内部端子B4は互いに隣接して配置されるとともに、バッテリ42aの負極外部端子A4’とバッテリ42bの正極外部端子4Aは互いに隣接して配置されている。そして、正極内部端子B4と正極外部端子A4とは給電線43を介して接続され、負極内部端子B4’と負極外部端子A4’とは給電線44を介して接続されている。
これにより、複数台のバッテリ41a、41bを直列接続した場合においても、給電線43、44の長さlを短かくすることが可能となるとともに、バッテリ41a、41b全体の長さを抑えることができ、給電線43、44上で生じる定在波に起因する放射ノイズの影響を低減することが可能となるとともに、バッテリ41a、41bの設置スペースの制約を緩和することができる。
Here, the negative electrode internal terminal B4 ′ of the battery 42a and the positive electrode internal terminal B4 of the battery 42b are disposed adjacent to each other, and the negative electrode external terminal A4 ′ of the battery 42a and the positive electrode external terminal 4A of the battery 42b are adjacent to each other. Is arranged. The positive electrode internal terminal B4 and the positive electrode external terminal A4 are connected via a power supply line 43, and the negative electrode internal terminal B4 ′ and the negative electrode external terminal A4 ′ are connected via a power supply line 44.
As a result, even when a plurality of batteries 41a and 41b are connected in series, the length l of the feed lines 43 and 44 can be shortened, and the length of the entire batteries 41a and 41b can be suppressed. In addition, it is possible to reduce the influence of radiation noise caused by standing waves generated on the feeder lines 43 and 44, and it is possible to relax restrictions on the installation space of the batteries 41a and 41b.

図5は、本発明の第5実施形態に係るバッテリの概略構成を模式的に示す斜視図である。
図5において、バッテリ51a〜51cには、複数のセル52a〜52cがそれぞれ設けられ、セル52a〜52cはそれぞれ一方向に直列に積層されている。そして、バッテリ51bは、セル52bの積層方向がセル52aの積層方向と同一方向を向くようにバッテリ51a上に重ねて配置され、バッテリ51cは、セル52cの積層方向がセル52bの積層方向に対して逆方向を向くようにバッテリ51b上に重ねて配置されている。ここで、バッテリ51aの一端のセル52aの負極と、セル52aと反対方向に配置されたバッテリ51bの一端のセル52bの正極とは、接続導体55を介して接続されている。また、バッテリ51aの他端のセル52aの正極と、セル52aと同一方向に配置されたバッテリ51cの一端のセル52cの負極とは、接続導体56を介して接続されている。
FIG. 5 is a perspective view schematically showing a schematic configuration of the battery according to the fifth embodiment of the present invention.
In FIG. 5, batteries 51a to 51c are provided with a plurality of cells 52a to 52c, respectively, and the cells 52a to 52c are stacked in series in one direction. The battery 51b is placed on the battery 51a so that the stacking direction of the cells 52b faces the same direction as the stacking direction of the cells 52a, and the battery 51c has a stacking direction of the cells 52c with respect to the stacking direction of the cells 52b. Are arranged on the battery 51b so as to face in the opposite direction. Here, the negative electrode of the cell 52 a at one end of the battery 51 a and the positive electrode of the cell 52 b at one end of the battery 51 b arranged in the opposite direction to the cell 52 a are connected via a connection conductor 55. Further, the positive electrode of the cell 52 a at the other end of the battery 51 a and the negative electrode of the cell 52 c at one end of the battery 51 c arranged in the same direction as the cell 52 a are connected via a connection conductor 56.

また、バッテリ51b内には、バッテリ51bの他端のセル52bの負極に接続された負極内部端子B5´が設けられるとともに、バッテリ51b外には、バッテリ51bの負極を図9の電力変換回路部102の負極に接続するための負極外部端子A5´が設けられている。また、バッテリ51c内には、バッテリ51cの他端のセル52cの正極に接続された正極内部端子B5が設けられるとともに、バッテリ51c外には、バッテリ51cの正極を図9の電力変換回路部102の正極に接続するための正極外部端子A5が設けられている。   Further, a negative electrode internal terminal B5 ′ connected to the negative electrode of the cell 52b at the other end of the battery 51b is provided in the battery 51b, and the negative electrode of the battery 51b is connected to the power conversion circuit unit of FIG. 9 outside the battery 51b. A negative electrode external terminal A5 ′ for connection to the negative electrode 102 is provided. In addition, a positive electrode internal terminal B5 connected to the positive electrode of the cell 52c at the other end of the battery 51c is provided in the battery 51c, and the positive electrode of the battery 51c is connected to the power conversion circuit unit 102 in FIG. 9 outside the battery 51c. A positive external terminal A5 for connecting to the positive electrode is provided.

ここで、バッテリ52bの負極内部端子B5´とバッテリ52cの正極内部端子B5は互いに隣接して配置されるとともに、バッテリ52bの負極外部端子A5´とバッテリ52cの正極外部端子A5は互いに隣接して配置されている。そして、正極内部端子B5と正極外部端子A5とは給電線53を介して接続され、負極内部端子B5´と負極外部端子A5´とは給電線54を介して接続されている。   Here, the negative electrode internal terminal B5 ′ of the battery 52b and the positive electrode internal terminal B5 of the battery 52c are disposed adjacent to each other, and the negative electrode external terminal A5 ′ of the battery 52b and the positive electrode external terminal A5 of the battery 52c are adjacent to each other. Has been placed. The positive electrode internal terminal B5 and the positive electrode external terminal A5 are connected via a power supply line 53, and the negative electrode internal terminal B5 ′ and the negative electrode external terminal A5 ′ are connected via a power supply line.

これにより、複数台のバッテリ51a〜51cを直列接続した場合においても、給電線53、54の長さlを短くすることが可能となるとともに、バッテリ51a〜51c全体の長さを抑えることができ、給電線53、54上で生じる定在波に起因する放射ノイズの影響を低減することが可能となるとともに、バッテリ51a〜51cの設置スペースの制約を緩和しつつ、出力電圧を大きくすることができる。 As a result, even when a plurality of batteries 51a to 51c are connected in series, the length l of the power supply lines 53 and 54 can be shortened, and the overall length of the batteries 51a to 51c can be suppressed. It is possible to reduce the influence of radiation noise caused by standing waves generated on the feeder lines 53 and 54, and to increase the output voltage while relaxing restrictions on the installation space of the batteries 51a to 51c. it can.

図6(a)は、本発明の第6実施形態に係るバッテリの概略構成を模式的に示す斜視図、図6(b)は、本発明の第7実施形態に係るバッテリの概略構成を模式的に示す斜視図である。
図6(a)において、バッテリ61には、複数のセル62が設けられ、セル62は一方向に直列に積層されている。ここで、バッテリ61の一端にあるセル62の正極と、バッテリ61の他端にあるセル62の負極とは、接続導体65を介して接続されている。また、積層されたセル62はバッテリ61の中央部で分断され、分断されたセル62の正極に接続された正極内部端子B6および分断されたセル62の負極に接続された負極内部端子B6´がバッテリ61内に設けられるとともに、バッテリ61外には、バッテリ61を図9の電力変換回路部102に接続するための正極外部端子A6および負極外部端子A6´がバッテリ61の中央部に隣接して設けられている。そして、正極内部端子B6と正極外部端子A6とは給電線63を介して接続され、負極内部端子B6´と負極外部端子A6´とは給電線64を介して接続されている。
FIG. 6A is a perspective view schematically showing a schematic configuration of the battery according to the sixth embodiment of the present invention, and FIG. 6B schematically shows the schematic configuration of the battery according to the seventh embodiment of the present invention. FIG.
In FIG. 6A, the battery 61 is provided with a plurality of cells 62, and the cells 62 are stacked in series in one direction. Here, the positive electrode of the cell 62 at one end of the battery 61 and the negative electrode of the cell 62 at the other end of the battery 61 are connected via a connection conductor 65. The stacked cells 62 are divided at the center of the battery 61, and a positive electrode internal terminal B6 connected to the positive electrode of the divided cell 62 and a negative electrode internal terminal B6 ′ connected to the negative electrode of the divided cell 62 are provided. Aside from the battery 61, a positive external terminal A6 and a negative external terminal A6 ′ for connecting the battery 61 to the power conversion circuit unit 102 of FIG. Is provided. The positive electrode internal terminal B6 and the positive electrode external terminal A6 are connected via a power supply line 63, and the negative electrode internal terminal B6 ′ and the negative electrode external terminal A6 ′ are connected via a power supply line 64.

また、図6(b)において、バッテリ71には、複数のセル72が設けられ、セル72は一方向に直列に積層されている。ここで、バッテリ71の一端にあるセル72の正極と、バッテリ71の他端にあるセル72の負極とは、接続導体75を介して接続されている。また、積層されたセル72はバッテリ71の端部で分断され、分断されたセル72の正極に接続された正極内部端子B7および分断されたセル72の負極に接続された負極内部端子B7´がバッテリ71内に設けられるとともに、バッテリ71外には、バッテリ71を図9の電力変換回路部102に接続するための正極外部端子A7および負極外部端子A7´がバッテリ71の端部に隣接して設けられている。そして、正極内部端子B7と正極外部端子A7とは給電線73を介して接続され、負極内部端子B7´と負極外部端子A7´とは給電線74を介して接続されている。   In FIG. 6B, the battery 71 is provided with a plurality of cells 72, and the cells 72 are stacked in series in one direction. Here, the positive electrode of the cell 72 at one end of the battery 71 and the negative electrode of the cell 72 at the other end of the battery 71 are connected via a connection conductor 75. The stacked cells 72 are divided at the end of the battery 71, and a positive electrode internal terminal B7 connected to the positive electrode of the divided cell 72 and a negative electrode internal terminal B7 ′ connected to the negative electrode of the divided cell 72 are provided. Aside from the battery 71, a positive external terminal A7 and a negative external terminal A7 ′ for connecting the battery 71 to the power conversion circuit unit 102 in FIG. Is provided. The positive electrode internal terminal B 7 and the positive electrode external terminal A 7 are connected via a power supply line 73, and the negative electrode internal terminal B 7 ′ and the negative electrode external terminal A 7 ′ are connected via a power supply line 74.

これにより、バッテリ61、71の長さに依存することなく、給電線63、64、73、74の長さlを決めることができ、給電線63、64、73、74の長さlを短くすることが可能となるとともに、正極外部端子A6、A7および負極外部端子A6’、A7’をそれぞれ近づけて配置することができ、給電線63、64、73、74上で生じる定在波に起因する放射ノイズの影響を低減することが可能となるとともに、正極外部端子A6、A7と負極外部端子A6’、A7’との離間距離に対する要請に対応することができる。 Thereby, the length l of the feeder lines 63, 64, 73, and 74 can be determined without depending on the length of the batteries 61 and 71, and the length l of the feeder lines 63, 64, 73, and 74 is shortened. The positive external terminals A6, A7 and the negative external terminals A6 ′, A7 ′ can be arranged close to each other, and are caused by standing waves generated on the feeder lines 63, 64, 73, 74. It is possible to reduce the influence of the radiated noise, and to meet the demand for the separation distance between the positive external terminals A6 and A7 and the negative external terminals A6 ′ and A7 ′.

図7(a)は、本発明の第8実施形態に係るバッテリの概略構成を模式的に示す斜視図、図7(b)は、本発明の第9実施形態に係るバッテリの概略構成を模式的に示す斜視図である。
図7(a)において、バッテリ81には、複数のセル82が設けられ、セル82は2列に並べて配置されている。ここで、一方の列のセル82は一方向に直列に積層されるとともに、他方の列のセル82はもう一方の列のセル82の積層方向に対して逆方向を向くように直列に積層されている。
FIG. 7A is a perspective view schematically showing a schematic configuration of the battery according to the eighth embodiment of the present invention, and FIG. 7B schematically shows the schematic configuration of the battery according to the ninth embodiment of the present invention. FIG.
In FIG. 7A, the battery 81 is provided with a plurality of cells 82, and the cells 82 are arranged in two rows. Here, the cells 82 in one column are stacked in series in one direction, and the cells 82 in the other column are stacked in series so as to face the opposite direction to the stacking direction of the cells 82 in the other column. ing.

そして、一方の列の一端のセル82の正極と、他方の列の一端のセル82の負極とは、接続導体85を介して接続されている。また、一方の列の他端のセル82の負極に接続された負極内部端子B8´および他方の列の他端のセル82の正極に接続された正極内部端子B8がバッテリ81内に設けられるとともに、バッテリ81外には、バッテリ81を図9の電力変換回路部102に接続するための正極外部端子A8および負極外部端子A8´がバッテリ81の端部に隣接して設けられている。ここで、負極内部端子B8´と正極内部端子B8は互いに隣接して配置されるとともに、負極外部端子A8´と正極外部端子A8は互いに隣接して配置されている。そして、正極内部端子B8と正極外部端子A8とは給電線83を介して接続され、負極内部端子B8´と負極外部端子A8´とは給電線84を介して接続されている。   The positive electrode of the cell 82 at one end of one column and the negative electrode of the cell 82 at one end of the other column are connected via a connection conductor 85. In addition, a negative electrode internal terminal B 8 ′ connected to the negative electrode of the cell 82 at the other end of one column and a positive electrode internal terminal B 8 connected to the positive electrode of the cell 82 at the other end of the other column are provided in the battery 81. Outside the battery 81, a positive external terminal A 8 and a negative external terminal A 8 ′ for connecting the battery 81 to the power conversion circuit unit 102 of FIG. 9 are provided adjacent to the end of the battery 81. Here, the negative electrode internal terminal B8 ′ and the positive electrode internal terminal B8 are disposed adjacent to each other, and the negative electrode external terminal A8 ′ and the positive electrode external terminal A8 are disposed adjacent to each other. The positive electrode internal terminal B8 and the positive electrode external terminal A8 are connected via a power supply line 83, and the negative electrode internal terminal B8 ′ and the negative electrode external terminal A8 ′ are connected via a power supply line 84.

これにより、バッテリ81の長さに依存することなく、給電線83、84の長さlを決めることができ、給電線83、84の長さlを短くすることが可能となることから、給電線83、84上で生じる定在波に起因する放射ノイズの影響を低減することが可能となるとともに、単一のバッテリ81を用いた場合においても、バッテリ81の長さの増大を抑えつつ、出力電圧を大きくすることができる。
なお、接続導体85としては電線状の導体を用いるようにしてもよいし、図7(b)に示すように、平板状の接続導体86を用いるようにしてもよい。また、接続導体86はセパレータを兼ねるようにしてもよい。
Accordingly, the length l of the power supply lines 83 and 84 can be determined without depending on the length of the battery 81, and the length l of the power supply lines 83 and 84 can be shortened. While it becomes possible to reduce the influence of radiation noise caused by standing waves generated on the electric wires 83 and 84, even when a single battery 81 is used, while suppressing an increase in the length of the battery 81, The output voltage can be increased.
As the connection conductor 85, a wire-shaped conductor may be used, or as shown in FIG. 7B, a flat connection conductor 86 may be used. The connection conductor 86 may also serve as a separator.

図8は、本発明の第10実施形態に係るバッテリの概略構成を模式的に示す斜視図である。
図8において、バッテリ91には、複数のセル92が設けられ、セル92は3列に並べて配置されている。ここで、第1列および第2列のセル92は一方向に直列に積層されるとともに、第3列のセル92は第1列および第2列のセル92の積層方向に対して逆方向を向くように直列に積層されている。
FIG. 8 is a perspective view schematically showing a schematic configuration of the battery according to the tenth embodiment of the present invention.
In FIG. 8, a battery 91 is provided with a plurality of cells 92, and the cells 92 are arranged in three rows. Here, the cells 92 in the first column and the second column are stacked in series in one direction, and the cells 92 in the third column are opposite to the stacking direction of the cells 92 in the first column and the second column. They are stacked in series so that they face.

そして、第1列の一端のセル92の負極と、第2列の一端のセル92の正極とは、接続導体95を介して接続されている。また、第1列の他端のセル92の正極と、第3列の一端のセル92の負極とは、接続導体96を介して接続されている。また、第2列の他端のセル92の負極に接続された負極内部端子B9´および第3列の他端のセル92の正極に接続された正極内部端子B9がバッテリ91内に設けられるとともに、バッテリ91外には、バッテリ91を図9の電力変換回路部102に接続するための正極外部端子A9および負極外部端子A9´が設けられている。ここで、負極内部端子B9´と正極内部端子B9は互いに隣接して配置されるとともに、負極外部端子A9´と正極外部端子A9は互いに隣接して配置されている。そして、正極内部端子B9と正極外部端子A9とは給電線93を介して接続され、負極内部端子B9´と負極外部端子A9´とは給電線94を介して接続されている。   The negative electrode of the cell 92 at one end of the first row and the positive electrode of the cell 92 at one end of the second row are connected via a connection conductor 95. In addition, the positive electrode of the cell 92 at the other end of the first row and the negative electrode of the cell 92 at the one end of the third row are connected via a connection conductor 96. In addition, a negative electrode internal terminal B 9 ′ connected to the negative electrode of the cell 92 at the other end of the second row and a positive electrode internal terminal B 9 connected to the positive electrode of the cell 92 at the other end of the third row are provided in the battery 91. Outside the battery 91, a positive external terminal A9 and a negative external terminal A9 ′ for connecting the battery 91 to the power conversion circuit unit 102 of FIG. 9 are provided. Here, the negative electrode internal terminal B9 ′ and the positive electrode internal terminal B9 are disposed adjacent to each other, and the negative electrode external terminal A9 ′ and the positive electrode external terminal A9 are disposed adjacent to each other. The positive electrode internal terminal B9 and the positive electrode external terminal A9 are connected via a power supply line 93, and the negative electrode internal terminal B9 'and the negative electrode external terminal A9' are connected via a power supply line 94.

これにより、バッテリ91の長さに依存することなく、給電線93、94の長さlを決めることができ、給電線93、94の長さlを短くすることが可能となることから、給電線93、94上で生じる定在波に起因する放射ノイズの影響を低減することが可能となるとともに、単一のバッテリ91を用いた場合においても、バッテリ91の長さの増大を抑えつつ、出力電圧を大きくすることができる。
なお、上述した実施形態では、無停電電源装置に用いられるバッテリを例にとって説明したが、無停電電源装置に限定されることなく、バッテリ付きの全ての電子機器に適用することができる。また、バッテリの種類や形状や容量は特に制限を設ける必要はなく、給電線の種類や形状は特に制限を設ける必要はない。
Accordingly, the length l of the power supply lines 93 and 94 can be determined without depending on the length of the battery 91, and the length l of the power supply lines 93 and 94 can be shortened. While it becomes possible to reduce the influence of radiation noise caused by standing waves generated on the electric wires 93 and 94, even when a single battery 91 is used, while suppressing an increase in the length of the battery 91, The output voltage can be increased.
In addition, although embodiment mentioned above demonstrated taking the battery used for an uninterruptible power supply as an example, it can apply to all the electronic devices with a battery, without being limited to an uninterruptible power supply. Further, the type, shape, and capacity of the battery need not be particularly limited, and the type and shape of the feeder line need not be particularly limited.

本発明の第1実施形態に係るバッテリの概略構成を模式的に示す斜視図である。It is a perspective view which shows typically schematic structure of the battery which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るバッテリの概略構成を模式的に示す斜視図である。It is a perspective view which shows typically schematic structure of the battery which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るバッテリの概略構成を模式的に示す斜視図である。It is a perspective view which shows typically schematic structure of the battery which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るバッテリの概略構成を模式的に示す斜視図である。It is a perspective view which shows typically schematic structure of the battery which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るバッテリの概略構成を模式的に示す斜視図である。It is a perspective view which shows typically schematic structure of the battery which concerns on 5th Embodiment of this invention. 図6(a)は、本発明の第6実施形態に係るバッテリの概略構成を模式的に示す斜視図、図6(b)は、本発明の第7実施形態に係るバッテリの概略構成を模式的に示す斜視図である。FIG. 6A is a perspective view schematically showing a schematic configuration of the battery according to the sixth embodiment of the present invention, and FIG. 6B schematically shows the schematic configuration of the battery according to the seventh embodiment of the present invention. FIG. 図7(a)は、本発明の第8実施形態に係るバッテリの概略構成を模式的に示す斜視図、図7(b)は、本発明の第9実施形態に係るバッテリの概略構成を模式的に示す斜視図である。FIG. 7A is a perspective view schematically showing a schematic configuration of the battery according to the eighth embodiment of the present invention, and FIG. 7B schematically shows the schematic configuration of the battery according to the ninth embodiment of the present invention. FIG. 本発明の第10実施形態に係るバッテリの概略構成を模式的に示す斜視図である。It is a perspective view which shows typically schematic structure of the battery which concerns on 10th Embodiment of this invention. 無停電電源装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of an uninterruptible power supply. 図10(a)は従来のバッテリの概略構成を模式的に示す斜視図、図10(b)は図10(a)のバッテリの概略構成を模式的に示す平面図、図10(c)は図10(a)のバッテリの給電線の電圧分布を示す図である。FIG. 10A is a perspective view schematically showing a schematic configuration of a conventional battery, FIG. 10B is a plan view schematically showing the schematic configuration of the battery in FIG. 10A, and FIG. It is a figure which shows the voltage distribution of the feeder of the battery of Fig.10 (a). 図11(a)は従来のバッテリの概略構成のその他の例を模式的に示す斜視図、図11(b)は図11(a)のバッテリの概略構成を模式的に示す平面図、図11(c)は図11(a)のバッテリの給電線の電圧分布を示す図である。FIG. 11A is a perspective view schematically showing another example of the schematic configuration of the conventional battery, FIG. 11B is a plan view schematically showing the schematic configuration of the battery in FIG. (C) is a figure which shows the voltage distribution of the feeder of the battery of Fig.11 (a).

符号の説明Explanation of symbols

11、21、31a、31b、41a、41b、51a〜51c、61、71、81、91 バッテリ
12、22、32a、32b、42a、42b、52a〜52c、62、72、82、92 セル
13、14、23、24、33、34、43、44、53、54、63、64、73、74、83、84、93、94 給電線
A1、A2、A3、A4、A5、A6、A7、A8、A9 正極外部端子
A1´、A2´、A3´、A4´、A5´、A6´、A7´、A8´、A9´ 負極外部端子
B1、B2、B3、B4、B5、B6、B7、B8、B9 正極内部端子
B1´、B2´、B3´、B4´、B5´、B6´、B7´、B8´、B9´ 負極内部端子
35、45、55、56、65、75、85、86、95、96 接続導体
11, 21, 31a, 31b, 41a, 41b, 51a-51c, 61, 71, 81, 91 Battery 12, 22, 32a, 32b, 42a, 42b, 52a-52c, 62, 72, 82, 92 Cell 13, 14, 23, 24, 33, 34, 43, 44, 53, 54, 63, 64, 73, 74, 83, 84, 93, 94 Feed line A1, A2, A3, A4, A5, A6, A7, A8 A9 Positive external terminal A1 ′, A2 ′, A3 ′, A4 ′, A5 ′, A6 ′, A7 ′, A8 ′, A9 ′ Negative external terminal B1, B2, B3, B4, B5, B6, B7, B8, B9 Positive internal terminal B1 ′, B2 ′, B3 ′, B4 ′, B5 ′, B6 ′, B7 ′, B8 ′, B9 ′ Negative internal terminal 35, 45, 55, 56, 65, 75, 85, 86, 95 96 Connection conductor

Claims (5)

直列に積層された複数のセルと、前記複数のセルのうち最も両端に位置するセルの電極にそれぞれ給電線を介して接続された外部端子とを有するバッテリと、前記バッテリの前記外部端子に接続された回路部とを備えたバッテリ付き機器であって、
前記給電線の長さをl、前記給電線の比誘電率をε、前記給電線の比透磁率をμとしたとき、前記給電線上で生じる定在波の周波数f=C/(4l√(ε・μ))、ただし、C:光速[m/s]がノイズ規制値で定められている上限の周波数よりも高くなるように、前記給電線の長さ設定されていることを特徴とするバッテリ付き機器
A battery having a plurality of cells stacked in series, and an external terminal connected to the electrode of the cell located at both ends of each of the plurality of cells through a feeder, and connected to the external terminal of the battery A battery-equipped device comprising a circuit portion ,
When the length of the feed line is l [ m ] , the relative permittivity of the feed line is ε r , and the relative permeability of the feed line is μ r , the frequency f of the standing wave generated on the feed line f = C / (4l√ (ε r · μ r)), however, C: so that the light velocity [m / s] is higher than the frequency of the upper limit is defined by the noise regulation value, the length of the feed line A battery-equipped device characterized by being set .
前記バッテリは2つ設けられ、当該2つのバッテリが一列に配置されていると共に、前記2つのバッテリのうち第1のバッテリの正極と第2のバッテリの負極が接続導体により接続され、かつ前記第1のバッテリの負極と前記第2のバッテリの正極に前記給電線がそれぞれ接続されていることを特徴とする請求項記載のバッテリ付き機器。 The battery is provided two, together with the two batteries are arranged in a row, the negative electrode of the positive electrode and the second battery of the first battery of the two batteries are connected by a connecting conductor, and the second with battery device according to claim 1, wherein the feed line to the positive pole of the negative electrode of the first battery second battery is characterized in that it is connected. 前記バッテリは2つ設けられ、当該2つのバッテリが上下に重なり合って配置されていると共に、前記2つのバッテリのうち第1のバッテリの正極と第2のバッテリの負極が接続導体により接続され、前記第1のバッテリの負極と前記第2のバッテリの正極に前記給電線がそれぞれ接続されていることを特徴とする請求項記載のバッテリ付き機器。 The battery is provided two, together with the two batteries are arranged overlapping in the vertical, the first positive electrode and the negative electrode of the second battery of the battery of the two batteries are connected by connecting conductors, the with battery device according to claim 1, wherein said feed line is connected to the positive pole of the first negative electrode and the second battery battery. 前記バッテリは3つ設けられ、当該3つのバッテリが上下に重なり合って配置されていると共に、前記3つのバッテリのうち第1のバッテリの正極と第3のバッテリの負極が第1の接続導体により接続されていると共に、前記第1のバッテリの負極と第2のバッテリの正極が第2の接続導体により接続され、かつ前記第2のバッテリの負極と前記第3のバッテリの正極に前記給電線がそれぞれ接続されていることを特徴とする請求項記載のバッテリ付き機器。 The battery is provided three connections, together with the three batteries are arranged overlapping in the vertical, the anode of the positive electrode and the third battery of the first battery of the three battery by the first connecting conductor And the negative electrode of the first battery and the positive electrode of the second battery are connected by a second connection conductor, and the power supply line is connected to the negative electrode of the second battery and the positive electrode of the third battery. The battery-equipped device according to claim 1, wherein the devices are connected to each other. 前記バッテリは、複数のセルが一列に配置され且つ隣り合うセル同士が直列に接続されたセル集合体を有することを特徴とする請求項記載のバッテリ付き機器。 The battery with battery device according to claim 1, wherein the cell between a plurality of cells adjacent and are arranged in a row has a cell assembly are connected in series.
JP2007263223A 2007-10-09 2007-10-09 Equipment with battery Expired - Fee Related JP5211626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007263223A JP5211626B2 (en) 2007-10-09 2007-10-09 Equipment with battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007263223A JP5211626B2 (en) 2007-10-09 2007-10-09 Equipment with battery

Publications (2)

Publication Number Publication Date
JP2009093917A JP2009093917A (en) 2009-04-30
JP5211626B2 true JP5211626B2 (en) 2013-06-12

Family

ID=40665705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263223A Expired - Fee Related JP5211626B2 (en) 2007-10-09 2007-10-09 Equipment with battery

Country Status (1)

Country Link
JP (1) JP5211626B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162445A (en) * 1997-11-28 1999-06-18 Yazaki Corp Connecting structure of battery and electrical junction box
JP3829552B2 (en) * 1999-04-26 2006-10-04 株式会社日立製作所 Information processing apparatus with battery pack and battery pack

Also Published As

Publication number Publication date
JP2009093917A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5403073B2 (en) Power receiving device and power transmitting device
CN101394023B (en) Antenna apparatus
US8304854B2 (en) Semiconductor integrated circuit chip, multilayer chip capacitor and semiconductor integrated circuit chip package
CN109585971A (en) Battery module for traction battery
CN102035356B (en) Current transformer system
CN103181060B (en) Power transmission system and powered shell
JP5981202B2 (en) Power transmission system
CN104348223B (en) Wireless charging unit is integrated in wireless device
CN100452544C (en) Connection structure between plurality of boards of portable terminal
EP3432409A1 (en) Cell supervision circuit carrier, battery system and electric vehicle
US10056788B2 (en) Wireless transmission device
US20170352470A1 (en) Transformer
CN111130310A (en) Laminated busbar and electronic equipment
US8823216B2 (en) Signal transmission device, filter, and inter-substrate communication device
JP5211626B2 (en) Equipment with battery
US10881002B2 (en) Capacitor module, resonator, wireless power transmission device, wireless power reception device, and wireless power transmission system
US20140265624A1 (en) Piezoelectric transformer, piezoelectric transformer module, and wireless power transmission system
JP6088814B2 (en) Wireless power transmission system
US20200195027A1 (en) Power storage system and container type power storage system
JP5708298B2 (en) Power converter
KR20210046340A (en) Battery module
US20240113399A1 (en) Electrochemical apparatus and electrical device
US11762026B2 (en) Battery monitoring apparatus
US20240072579A1 (en) Coil assembly for wireless power transmission and power transmission system
CN101521304B (en) Filter device for eliminating electric redundancy in circuit and electric device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees