JP5207425B2 - Hydrogen gas sensor and manufacturing method thereof - Google Patents

Hydrogen gas sensor and manufacturing method thereof Download PDF

Info

Publication number
JP5207425B2
JP5207425B2 JP2012257072A JP2012257072A JP5207425B2 JP 5207425 B2 JP5207425 B2 JP 5207425B2 JP 2012257072 A JP2012257072 A JP 2012257072A JP 2012257072 A JP2012257072 A JP 2012257072A JP 5207425 B2 JP5207425 B2 JP 5207425B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
fine
less
thin film
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012257072A
Other languages
Japanese (ja)
Other versions
JP2013040961A (en
Inventor
信義 原
泉 武藤
星▲いく▼ 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2012257072A priority Critical patent/JP5207425B2/en
Publication of JP2013040961A publication Critical patent/JP2013040961A/en
Application granted granted Critical
Publication of JP5207425B2 publication Critical patent/JP5207425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

本発明は、水素ガスセンサ及びその製造方法に関し、自動車用燃料電池や家庭用燃料電池などの水素ガスを扱う各種装置から漏れる水素ガスを検知するのに用いる水素ガスセンサ又は水素ガスを扱う装置内の水素ガス濃度を制御するなどの用途に適した水素ガスセンサ及びその製造方法に関する。   The present invention relates to a hydrogen gas sensor and a method of manufacturing the same, and relates to a hydrogen gas sensor used for detecting hydrogen gas leaking from various devices handling hydrogen gas, such as automobile fuel cells and household fuel cells, or hydrogen in a device handling hydrogen gas. The present invention relates to a hydrogen gas sensor suitable for applications such as controlling gas concentration and a method for manufacturing the same.

水素ガスセンサとしては、光学式、接触燃焼式、半導体式、起電力式、電流検知式(電
池型)などの種々のものが考案されている。水素ガスセンサとしては、高い検出感度と良
好な応答性を有し、水素ガス選択性に優れ、しかも高耐久性と安価であること求められている。この目標を狙った技術として、例えば、特許文献1(特開2003-166972号公報)に
は、水素選択性に優れるセンサとして、プロトンと酸化物イオンを伝導する固体電解質の表面に二つの電極を配置し、電極間の電流を計測し水素濃度を検知するセンサが開示されている。また、特許文献2(特開2005-172756号公報)には、一対の電極間に挟まれた水
素を吸排可能な粒状の水素吸収層を有し、この層の体積と静電容量の変化を計測する技術が開示されている。さらに、特許文献3(特開2006-317196号公報)には、小型で安価な
センサとして、アモルファス合金を検出層とし水素吸蔵により電気抵抗や電磁気的性質が変化することを利用したセンサに関する技術が開示されている。また、非特許文献1には、陽極酸化により形成された酸化チタンナノチューブアレイの表面にパラジウムをコーティングした水素ガスセンサが開示されている。
Various hydrogen gas sensors such as an optical type, catalytic combustion type, semiconductor type, electromotive force type, and current detection type (battery type) have been devised. Hydrogen gas sensors are required to have high detection sensitivity and good responsiveness, excellent hydrogen gas selectivity, high durability, and low cost. As a technique aiming at this goal, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2003-166972) discloses two electrodes on the surface of a solid electrolyte that conducts protons and oxide ions as a sensor having excellent hydrogen selectivity. A sensor that disposes and measures the current between the electrodes and detects the hydrogen concentration is disclosed. Patent Document 2 (Japanese Patent Laid-Open No. 2005-172756) has a granular hydrogen absorption layer capable of absorbing and discharging hydrogen sandwiched between a pair of electrodes, and changes in volume and capacitance of this layer. Techniques for measuring are disclosed. Furthermore, Patent Document 3 (Japanese Patent Laid-Open No. 2006-317196) discloses a technique relating to a sensor that uses an amorphous alloy as a detection layer and changes in electrical resistance and electromagnetic properties due to hydrogen storage as a small and inexpensive sensor. It is disclosed. Non-Patent Document 1 discloses a hydrogen gas sensor in which palladium is coated on the surface of a titanium oxide nanotube array formed by anodization.

特開2003-166972号公報JP2003-166972A 特開2005-172756号公報JP 2005-172756 A 特開2006-317196号公報JP 2006-317196 A

“Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements” (G.K. Mor et al. /Thin Solid Films 496 (2006) 42-48)“Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements” (G.K.Mor et al. / Thin Solid Films 496 (2006) 42-48)

しかしながら、簡便な構造で耐久性が高く、しかも高い検出感度と良好な応答時間を有し、水素選択性に優れるという実用化に十分な条件を満たす水素センサは依然として得られておらず、その製造方法も知られていない。   However, a hydrogen sensor that has a simple structure, high durability, high detection sensitivity, good response time, and excellent hydrogen selectivity has not yet been obtained. The method is not known.

本発明は上記事情に鑑みなされたもので、その目的とするところは、簡便な構造で耐久性が高く、しかも高い検出感度と良好な応答時間を有し、水素ガス選択性に優れた水素センサを提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is a hydrogen sensor having a simple structure, high durability, high detection sensitivity, good response time, and excellent hydrogen gas selectivity. Is to provide.

本発明者は、上記未解決の課題を解決するため種々の試験研究を行い、本発明を完成させた。本発明の主旨は、以下の通りである。   In order to solve the above-mentioned unsolved problems, the present inventor conducted various test studies and completed the present invention. The gist of the present invention is as follows.

本発明の水素ガスセンサの構成は、絶縁体の基板表面に、微細孔又は微細筒が形成された貴金属を含むチタン合金の陽極酸化被膜からなるセンサ素子を備え、前記センサ素子が、パラジウム又は白金を質量百分率0.01%以上含むチタン合金の陽極酸化皮膜であることを特徴とする。 Configuration of a hydrogen gas sensor of the present invention, the substrate surface of the insulator, comprising a sensor element composed of an anode oxide film of the titanium alloy containing fine holes or fine tube is formed noble metal, wherein the sensor element is palladium or platinum Is an anodized film of a titanium alloy containing 0.01% or more by mass percentage.

本発明の水素ガスセンサの第1の製造方法は、絶縁体の基板表面にパラジウム又は白金を質量百分率0.01%以上含むチタン合金の薄膜を作製する作製ステップと、前記薄膜を陽極酸化し、内径500nm以下の微細孔あるいは外径1000nm以下の微細筒が形成された陽極酸化被膜を生成する生成ステップとを備えることを特徴とする。 The first manufacturing method of the hydrogen gas sensor of the present invention includes a production step of producing a thin film of a titanium alloy containing 0.01% or more by mass of palladium or platinum on the surface of an insulating substrate, anodizing the thin film, And a generation step of generating an anodic oxide film in which fine holes of 500 nm or less or fine cylinders of an outer diameter of 1000 nm or less are formed.

本発明の水素ガスセンサの第2の製造方法は、上記第1の製造方法において、前記生成ステップでは、前記内径500nm以下の微細孔として、内径50nm以下の微細孔が形成され、前記外径1000nm以下の微細筒として、外径100nm以下の微細筒が形成されることを特徴とする。 The second manufacturing method of the hydrogen gas sensor of the present invention is the above-described first manufacturing method, wherein in the generating step, a fine hole having an inner diameter of 50 nm or less is formed as the fine hole having an inner diameter of 500 nm or less, and the outer diameter is 1000 nm or less. As the fine cylinder, a fine cylinder having an outer diameter of 100 nm or less is formed .

本発明の水素ガスセンサの第3の製造方法は、絶縁体の基板表面にパラジウム又は白金を質量百分率0.01%以上含むチタン合金の薄膜を作製するステップと、前記薄膜を陽極酸化し、微細孔又は微細筒が形成された陽極酸化被膜を生成するステップとを備えることを特徴とする。 A third method for producing a hydrogen gas sensor according to the present invention comprises a step of producing a titanium alloy thin film containing 0.01% or more by mass of palladium or platinum on the surface of an insulating substrate , anodizing the thin film, Or a step of generating an anodized film on which a fine cylinder is formed .

本発明の水素ガスセンサの第4の製造方法は、第1乃至第3の製造方法のいずれかにおいて、前記薄膜をイオンビームスパッタ法で作製することを特徴とする。 A fourth method for producing a hydrogen gas sensor according to the present invention is characterized in that, in any of the first to third production methods, the thin film is produced by an ion beam sputtering method.

本発明の水素ガスセンサは、水素検知部に非常に表面積の広い微細孔あるいは微細筒状構造を有するチタン酸化物を用いているため低濃度の水素ガスを高感度に検知することができる。また、必要に応じて微量のパラジウムや白金などの貴金属を含むチタン合金の陽極酸化皮膜を検知手段とすることで、さらに感度及び応答時間が向上し、且つ耐久性が高く実用に適している。さらに、水素ガスセンサの製造方法としても、絶縁体の基板表面にチタン薄膜又はチタン合金薄膜を形成した後、チタン薄膜又はチタン合金薄膜を陽極酸化する手法であるため、製造工程が簡便で低コスト化を図ることができる。   The hydrogen gas sensor of the present invention uses a titanium oxide having a very large surface area of fine holes or a fine cylindrical structure in the hydrogen detection part, so that low concentration hydrogen gas can be detected with high sensitivity. Further, if necessary, an anodized film of a titanium alloy containing a trace amount of noble metal such as palladium or platinum is used as a detection means, so that sensitivity and response time are further improved and durability is high and suitable for practical use. Furthermore, as a method for manufacturing a hydrogen gas sensor, the titanium thin film or titanium alloy thin film is formed on the surface of the insulator substrate, and then the titanium thin film or titanium alloy thin film is anodized. Can be achieved.

本発明に実施の形態における水素ガスセンサの断面構成図および計測回路の 模式図である。1 is a cross-sectional configuration diagram of a hydrogen gas sensor and a schematic diagram of a measurement circuit according to an embodiment of the present invention. 本発明の実施の形態における水素ガスセンサの正面構成図および計測回路の 模式図である。FIG. 2 is a front configuration diagram of a hydrogen gas sensor and a schematic diagram of a measurement circuit in an embodiment of the present invention. 微細孔及び微細筒の拡大模式図である。It is an expansion schematic diagram of a fine hole and a fine cylinder. 微細筒の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of a fine cylinder. 陽極酸化処理及び熱処理を行った試験片の形状を示す図(正面図)である。It is a figure (front view) which shows the shape of the test piece which performed the anodizing process and heat processing.

以下に、本発明を実施するための最良の形態について述べる。しかしながら、かかる実施の形態例が、本発明の技術的範囲を限定するものではない。   The best mode for carrying out the present invention will be described below. However, such an embodiment does not limit the technical scope of the present invention.

図1及び図2は、本発明の実施形態にかかる水素ガスセンサの概略構成図を示す。図1は断面図、図2は正面図である。本発明は、水素濃度に依存してセンサ素子の電気抵抗が変化することを利用した水素ガスセンサであり、電気絶縁性の基板3上のセンサ素子1、すなわち微細孔又は微細筒(いわゆるナノチューブ)10を有する構造のチタン酸化物を基本構成要素としている。   1 and 2 are schematic configuration diagrams of a hydrogen gas sensor according to an embodiment of the present invention. 1 is a cross-sectional view, and FIG. 2 is a front view. The present invention is a hydrogen gas sensor that utilizes the change in electrical resistance of a sensor element depending on the hydrogen concentration, and is a sensor element 1 on an electrically insulating substrate 3, that is, a fine hole or a fine tube (so-called nanotube) 10. The basic component is a titanium oxide having a structure having

このチタン酸化物からなるセンサ素子1は、絶縁体の基板3上に形成されている必要がある。これは、水素濃度に依存してセンサ素子1の電気抵抗のみを検出するために必須である。そして、センサ素子1の微細孔及び微細筒10の長軸方向が基板の法線方向に配向している必要がある。実施例で後述するとおり、微細孔及び微細筒10の長軸方向が基板の法線方向に配向していないと、センサ感度が低くなり、実用上充分な感度を得ることができない。   The sensor element 1 made of titanium oxide needs to be formed on an insulating substrate 3. This is essential for detecting only the electrical resistance of the sensor element 1 depending on the hydrogen concentration. And the micro hole of the sensor element 1 and the major axis direction of the micro cylinder 10 need to be oriented in the normal direction of the substrate. As will be described later in Examples, if the major axis direction of the micropores and the microcylinder 10 is not oriented in the normal direction of the substrate, the sensor sensitivity is lowered, and practically sufficient sensitivity cannot be obtained.

センサ素子1は、基板3上の純チタンあるいはチタン合金薄膜2を陽極酸化して得られる陽極酸化被膜として形成され、センサ素子1に導電性ペースト(例えば銀ペースト)4を塗布してリード線を接続し、抵抗計5により電気抵抗変化を計測する。また、電気抵抗は計測が容易でありセンサ構造を簡易化、小型化、低コスト化することが容易である。   The sensor element 1 is formed as an anodic oxide film obtained by anodizing a pure titanium or titanium alloy thin film 2 on a substrate 3. A conductive paste (for example, silver paste) 4 is applied to the sensor element 1 to provide lead wires. Connect and measure the electrical resistance change with the resistance meter 5. In addition, the electrical resistance can be easily measured, and the sensor structure can be easily simplified, reduced in size, and reduced in cost.

図3は、微細孔及び微細筒の拡大模式図である。図2の点線円aの拡大模式図であり、図3(a)は微細孔10a、図3(b)は微細筒10bを示す。本明細書では、微細孔10a及び微細筒10bを総称して、微細孔及び微細筒10と記載する。   FIG. 3 is an enlarged schematic view of the fine holes and the fine cylinders. FIG. 3 is an enlarged schematic diagram of a dotted circle a in FIG. 2, FIG. 3A shows a fine hole 10a, and FIG. 3B shows a fine cylinder 10b. In the present specification, the fine hole 10a and the fine cylinder 10b are collectively referred to as a fine hole and a fine cylinder 10.

図4は、微細筒10bの電子顕微鏡写真を示す図(断面図)である。図4は、白金が添加されたチタン合金の陽極酸化被膜であり、微細筒10bに含まれる白金粒子(黒粒状に見えるもの)も示される。   FIG. 4 is a diagram (sectional view) showing an electron micrograph of the fine cylinder 10b. FIG. 4 shows an anodized film of a titanium alloy to which platinum is added, and also shows platinum particles (those that appear black) contained in the fine cylinder 10b.

微細孔及び微細筒10の形成により、微細孔の内面及び微細筒の中空部分の内周面が、水素ガスに接触する表面積を増大させる。微細孔及び微細筒は、センサ素子1の水素ガスに接触する表面積を増大させる点で同一の機能を有する。また、微細筒の中空部分(内周面)の内径は微細筒の外径に相関する。従って、微細孔の内径又は微細筒の外径を小さくするほど、一定面積における微細孔又は微細筒の数は増大し、それに応じて、センサ素子(チタン酸化物)1の表面積を増大させることができる。なお、微細筒については、隣接する微細筒との間に空間が存在する場合は、微細筒の外周面もセンサ素子1の表面積となる。   By forming the fine holes and the fine cylinder 10, the inner surface of the fine holes and the inner peripheral surface of the hollow part of the fine cylinder increase the surface area in contact with the hydrogen gas. The fine hole and the fine cylinder have the same function in that the surface area of the sensor element 1 that contacts the hydrogen gas is increased. The inner diameter of the hollow portion (inner peripheral surface) of the fine cylinder correlates with the outer diameter of the fine cylinder. Therefore, the smaller the inner diameter of the microholes or the outer diameter of the microcylinders, the greater the number of microholes or microcylinders in a certain area, and accordingly, the surface area of the sensor element (titanium oxide) 1 can be increased. it can. In addition, about a fine cylinder, when space exists between adjacent fine cylinders, the outer peripheral surface of a fine cylinder also becomes a surface area of the sensor element 1.

本発明では、センサ素子1を、内径500nm以下の微細孔あるいは外径1000nm以下の微細
筒が形成されたチタン酸化物を主成分とするものとしている。ここで言う主成分とは、体積分率として50パーセント以上がチタン酸化物であることである。チタン酸化物に水素ガスが吸着あるいは吸蔵されると電気抵抗が変化する特性を有し、水素選択性に優れており、該特性を利用して水素ガスが検出されるが、チタン酸化物の体積分率50%を下回ると、水素ガス濃度に依存して抵抗値が大きく変化するセンサ素子を提供することはできなくなる。
In the present invention, the sensor element 1 is mainly composed of titanium oxide in which a fine hole having an inner diameter of 500 nm or less or a fine cylinder having an outer diameter of 1000 nm or less is formed. The main component here means that 50% or more of the volume fraction is titanium oxide. When hydrogen gas is adsorbed or occluded in titanium oxide, it has the property that electric resistance changes and is excellent in hydrogen selectivity, and hydrogen gas is detected using this property. If the fraction is less than 50%, it becomes impossible to provide a sensor element whose resistance value varies greatly depending on the hydrogen gas concentration.

また、水素ガスに接触するチタン酸化物の表面積を大きくするほど、電気抵抗の変化率も高まり、水素ガスの検出感度も高くなる。実用上充分な感度を得るためには、チタン酸化物表面に微細孔を作製する場合、その内径は500nm以下とする必要がある。これよりも
内径が大きいと、電気抵抗の変化が小さくなり、応答時間も遅くなるので、実用には不適である。また、早い応答時間(例えば、1桁超の抵抗値変化するまでの時間が10秒以内)での充分な感度を得るには、内径を50nm以下とすることが好ましい。
Further, as the surface area of the titanium oxide in contact with the hydrogen gas is increased, the rate of change in electrical resistance is increased and the detection sensitivity of hydrogen gas is increased. In order to obtain a practically sufficient sensitivity, when a micropore is formed on the titanium oxide surface, the inner diameter needs to be 500 nm or less. If the inner diameter is larger than this, the change in electrical resistance becomes small and the response time becomes slow, which is not suitable for practical use. In order to obtain sufficient sensitivity with a fast response time (for example, the time until the resistance value changes by more than one digit is within 10 seconds), the inner diameter is preferably 50 nm or less.

また、チタン酸化物表面に微細筒を作製する場合、その外径は1000nm以下とする必要がある。外径は小さいほど好ましいが、1000nm以下であれば実用上充分な性能が得られる。また、早い応答時間(例えば、1桁超の抵抗値変化するまでの時間が10秒以内)での充分な感度を得るには、外径を100nm以下とすることが好ましい。なお、ここで、実用上充
分な感度とは、体積分率で1000ppm程度の水素ガスに対して一桁以上の抵抗値変化を得ら
れる感度を意味している。
Moreover, when producing a fine cylinder on the titanium oxide surface, the outer diameter needs to be 1000 nm or less. The smaller the outer diameter, the better. However, if it is 1000 nm or less, practically sufficient performance can be obtained. In order to obtain sufficient sensitivity with a fast response time (for example, the time until the resistance value changes by more than one digit is within 10 seconds), the outer diameter is preferably 100 nm or less. Here, the practically sufficient sensitivity means a sensitivity capable of obtaining a resistance value change of one digit or more with respect to hydrogen gas having a volume fraction of about 1000 ppm.

センサ素子1としては、必要に応じて、質量百分率で0.01%以上のパラジウムもしくは0.01%以上の白金を含むチタン合金の陽極酸化被膜を用いることができる。パラジウムと白金は貴金属であり、水素吸着あるいは水素吸蔵反応の触媒として機能し、センサ感度及び応答時間を向上させる機能がある。チタン酸化物内には、パラジウム又は白金がナノ粒子として均一分散し、水素ガスが接触する面全域にわたってパラジウム又は白金のナノ粒子が存在するため、感度及び応答時間の向上に大きく資する。質量百分率0.01%以上の添加により、感度及び応答時間を向上させる効果が得られる。   As the sensor element 1, an anodic oxide film of titanium alloy containing 0.01% or more palladium or 0.01% or more platinum by mass percentage can be used as necessary. Palladium and platinum are noble metals, function as a catalyst for hydrogen adsorption or hydrogen storage reaction, and have a function of improving sensor sensitivity and response time. In the titanium oxide, palladium or platinum is uniformly dispersed as nanoparticles, and palladium or platinum nanoparticles exist over the entire surface in contact with hydrogen gas, which greatly contributes to improvement in sensitivity and response time. By adding 0.01% or more by mass percentage, the effect of improving sensitivity and response time can be obtained.

パラジウム又は白金を含むチタン合金薄膜の陽極酸化被膜とすることで、純チタン薄膜の陽極酸化被膜にパラジウム又は白金をコーティングした構成と比較して、パラジウム又は白金をコーティングする工程を省略することができ、製造工程が簡略化され、製造コストが低減される。また、パラジウム又は白金をコーティングする場合は、陽極酸化被膜に対してパラジウム又は白金層が剥離しやすい欠点を有するが、パラジウム又は白金を含むチタン合金薄膜の陽極酸化被膜とすることで、パラジウム又は白金が陽極酸化被膜と一体化して存在するので、剥離の問題は生じず、取り扱いも容易となり、耐久性が向上する。なお、当該効果は、微細孔又は微細筒の径を問わない。   By using an anodized film of a titanium alloy thin film containing palladium or platinum, the step of coating palladium or platinum can be omitted compared to a structure in which an anodized film of pure titanium thin film is coated with palladium or platinum. The manufacturing process is simplified and the manufacturing cost is reduced. In addition, when palladium or platinum is coated, the palladium or platinum layer has a defect that the anodic oxide film is easily peeled off. However, by forming an anodic oxide film of a titanium alloy thin film containing palladium or platinum, palladium or platinum is used. Since it is integrated with the anodized film, there is no problem of peeling, handling becomes easy, and durability is improved. In addition, the said effect does not ask | require the diameter of a fine hole or a fine cylinder.

センサ素子1の製造方法は次の通りである。センサ素子1は、絶縁体の基板表面に純チタン薄膜又はチタン合金薄膜を形成した後、純チタン薄膜又はチタン合金薄膜の全量を陽極酸化することにより製造される。   The manufacturing method of the sensor element 1 is as follows. The sensor element 1 is manufactured by forming a pure titanium thin film or a titanium alloy thin film on an insulating substrate surface and then anodizing the entire amount of the pure titanium thin film or the titanium alloy thin film.

陽極酸化は電解液中で合金を陽極に接続して電圧を加える方法であり、電圧と電流を制御することでセンサ素子を、内径500nm以下の微細孔あるいは外径1000nm以下の微細筒が
形成され且つ微細孔及び前記微細筒の長軸方向が基板の法線方向に配向する構造のチタン酸化物であり陽極酸化被膜を容易に作製することができる。陽極酸化処理時間を制御することで、微細孔の内径及び微細筒の外径を制御可能である。
Anodization is a method in which an alloy is connected to an anode in an electrolyte and a voltage is applied. By controlling the voltage and current, a fine hole with an inner diameter of 500 nm or less or a fine cylinder with an outer diameter of 1000 nm or less is formed. In addition, it is a titanium oxide having a structure in which the long axis direction of the fine holes and the fine cylinder is oriented in the normal direction of the substrate, and an anodized film can be easily produced. By controlling the anodizing time, the inner diameter of the fine holes and the outer diameter of the fine cylinders can be controlled.

予め絶縁体の基板表面に純チタン薄膜又はチタン合金薄膜を形成した後、純チタン薄膜又はチタン合金薄膜の全量を陽極酸化することで、センサ素子と絶縁基板を一体化して製造することができ、センサ素子を作製した後、基板に貼り合わせるよりもコスト的に安価になる。また、両層の接着剤が電気抵抗変化を検出する際の障害となるという要因を排除することも可能となる。なお、微細孔配列構造又は微細筒配列構造のいずれにするかは、陽極酸化処理における各種条件(例えば、電解液組成、温度、電流密度)を制御することにより制御可能である。   After forming a pure titanium thin film or a titanium alloy thin film on the substrate surface of the insulator in advance, the whole amount of the pure titanium thin film or the titanium alloy thin film can be anodized, so that the sensor element and the insulating substrate can be integrated and manufactured. After the sensor element is manufactured, the cost is lower than when the sensor element is bonded to the substrate. It is also possible to eliminate the factor that the adhesives of both layers become an obstacle when detecting a change in electrical resistance. It should be noted that either the fine hole arrangement structure or the fine cylinder arrangement structure can be controlled by controlling various conditions (for example, electrolyte composition, temperature, current density) in the anodizing treatment.

さらに、純チタン薄膜又はチタン合金薄膜として、イオンビームスパッタ法で作製した薄膜を用いることで組成及び厚さが面内で一定に制御される。その結果、微細孔及び微細筒の長軸方向が基板の法線方向に配向しやすくなり、感度が高くなる。   Furthermore, as a pure titanium thin film or a titanium alloy thin film, a composition and a thickness are controlled to be constant in a plane by using a thin film manufactured by an ion beam sputtering method. As a result, the major axis direction of the microholes and microcylinders is easily oriented in the normal direction of the substrate, and the sensitivity is increased.

表1に示す組み合わせでセンサ素子1を有する水素ガスセンサを作製し、水素ガスの検出を行った。いずれの場合も、イオンビームスパッタ蒸着装置を用い、市販のスライドガラスを基板として、純チタン、チタン−パラジウム合金及びチタン−白金合金の薄膜を基板上に170nmの厚さで形成した。その後、グリセリンと水を1:1に混合した溶液に質量
百分率で0.5%のNH4を添加した溶液中で、白金を対極として試験片に3〜25Vの電圧を加えた。試験片は基板の中央部分のみを陽極酸化した。この際、センサのセンサ素子となる試験片の中央部分については、170nmの厚さ全量を陽極酸化した。その後、500℃
で5時間の熱処理を加えた。
Hydrogen gas sensors having sensor elements 1 with the combinations shown in Table 1 were produced, and hydrogen gas was detected. In either case, a thin film of pure titanium, titanium-palladium alloy and titanium-platinum alloy was formed on the substrate with a thickness of 170 nm using a commercially available slide glass as a substrate using an ion beam sputtering deposition apparatus. Thereafter, a voltage of 3 to 25 V was applied to the test piece using platinum as a counter electrode in a solution obtained by adding 0.5% by mass of NH4 to a solution in which glycerin and water were mixed 1: 1. Only the center part of the substrate was anodized. At this time, the entire thickness of 170 nm was anodized for the central portion of the test piece serving as the sensor element of the sensor. Then 500 ° C
And 5 hours heat treatment was applied.

図5は、陽極酸化処理及び熱処理を行った試験片の形状を示す図(正面図)である。熱処理後、図5に示すように両端を切断し、中央部分のみとし、そこに図1及び図2に示すように銀ペースト4を塗り、そこに抵抗計測のためのリード線を取り付けた。熱処理は400〜700℃で試したが、センサ特性には差異は見られなかった。水素ガスの検出試験は、水素が体積比率で1000ppmの水素−窒素混合を流し、290℃の条件でセンサ素子1の抵抗値の変化をエレクトロメータ(抵抗計)で計測した。なお、微細孔や微細筒の寸法や配向状態は走査電子顕微鏡観察により計測した。   FIG. 5 is a diagram (front view) showing the shape of a test piece subjected to anodization treatment and heat treatment. After the heat treatment, both ends were cut as shown in FIG. 5 to form only the central portion, and silver paste 4 was applied thereto as shown in FIGS. 1 and 2, and lead wires for resistance measurement were attached thereto. The heat treatment was tried at 400 to 700 ° C., but no difference was found in the sensor characteristics. In the hydrogen gas detection test, a hydrogen-nitrogen mixture with 1000 ppm by volume of hydrogen was flowed, and the change in the resistance value of the sensor element 1 was measured with an electrometer (resistance meter) under the condition of 290 ° C. In addition, the dimension and orientation state of the fine hole and the fine cylinder were measured by observation with a scanning electron microscope.

表1において、感度の評価は、1000ppmの水素−窒素混合を導入する前(100%窒素
)と後での抵抗値の変化が1桁以内のものを×とし、1桁超のものを△、○、◎とした。△、○、◎、◎◎、◎◎◎は応答時間で判別した。すなわち、ガスを切り替えた後、1桁超の抵抗値低下が認められるまでに100秒以上かかったものを△、30秒未満10秒以上のものを○、10秒未満3秒以上のものを◎、3秒未満1秒以上のものを◎◎、そして1秒未満のものを◎◎◎と示す。
In Table 1, the sensitivity is evaluated by x when the change in resistance value is within one digit before and after introducing 1000 ppm of hydrogen-nitrogen mixture (100% nitrogen), and Δ when the change is more than one digit. ○ and ◎. Δ, ○, ◎, ◎◎, ◎◎◎ were determined by response time. That is, after switching the gas, it took △ for more than 100 seconds until a resistance value decrease of more than one digit was recognized, ○ for less than 30 seconds for 10 seconds or more, ○ for less than 10 seconds for 3 seconds or more Those with less than 3 seconds and 1 second or more are shown as ◎, and those with less than 1 second are shown as ◎.

まず、番号1は本発明の比較例である。陽極酸化の電圧を低く、処理時間を短くすることで、陽極酸化皮膜表面が平滑なもの(微細孔又は微細筒を有しない)を作製した例であるが、センサ感度の評価が悪いことが分かる。番号2も比較例である。これは、微細孔を形成したものであるが、微細孔の内径が1000nmであり、必要なセンサ感度を得られなかった。   First, number 1 is a comparative example of the present invention. This is an example in which the anodized film has a smooth surface (no micropores or microcylinders) by lowering the anodizing voltage and shortening the processing time, but the sensor sensitivity is poorly evaluated. . Number 2 is also a comparative example. This is a micropore formed, but the inner diameter of the micropore was 1000 nm, and the required sensor sensitivity could not be obtained.

これに対して、微細孔の内径を490nmから10nmの範囲で変化させた番号3〜6では、セ
ンサ感度が充分高くなっていることが分かる。特に、番号5及び6に示すように、微細孔の内径を50nm以下に制御すると更に応答時間も向上することが分かる。
On the other hand, it can be seen that the sensor sensitivity is sufficiently high in the numbers 3 to 6 in which the inner diameter of the micropore is changed in the range of 490 nm to 10 nm. In particular, as shown by numbers 5 and 6, it can be seen that the response time is further improved when the inner diameter of the micropores is controlled to 50 nm or less.

次いで、番号7は、チタン酸化物を微細筒状としたものであるが、微細筒の外径が1350nmであり、センサ感度としても不充分なものとなっている。これに対して、番号8〜11は、微細筒の外径を950nmから20nmに制御したものであるが、高いセンサ感度(抵抗値の変化が1桁超)が得られている。特に、番号10及び11に示すように、微細筒の外径を100nm以下にしたものであるが、更に応答時間も向上していることが分かる。   Next, number 7 is titanium oxide in a fine cylinder shape, but the outer diameter of the fine cylinder is 1350 nm, which is insufficient as sensor sensitivity. On the other hand, numbers 8 to 11 are those in which the outer diameter of the fine cylinder is controlled from 950 nm to 20 nm, and high sensor sensitivity (change in resistance value is more than one digit) is obtained. In particular, as indicated by numbers 10 and 11, the outer diameter of the fine cylinder is 100 nm or less, but it can be seen that the response time is further improved.

番号12は比較例である。陽極酸化の電圧は高く、処理時間を極端に短くすることで、微細筒の長軸方向が絶縁体の基板の法線方向に配向していない場合である。この場合にも必要なセンサ感度(抵抗値の変化が1桁超)を得られなかった。   Number 12 is a comparative example. This is a case where the anodization voltage is high and the long axis direction of the fine cylinder is not oriented in the normal direction of the insulating substrate by shortening the processing time extremely. Also in this case, the necessary sensor sensitivity (resistance value change over one digit) could not be obtained.

番号13〜23は、チタン−パラジウム合金の陽極酸化被膜を用いた例である。添加割合は、質量百分率で0.01%、0.2%、2%であり、それぞれ微細孔の内径又は微細筒の外径の寸法を変えて計測した。全例とも、1000pppmの水素−窒素混合ガスに対して抵抗値の変化が1桁超であるが、特に、微細筒の外径100nm以下又は微細孔の内径50nm以下
のものは、その応答時間が、純チタンの陽極酸化被膜(番号1〜11)と比較して、同等又はそれ以上であり、さらに、パラジウムの添加割合が多いほど向上していることが分かる。微細筒の外径100nm以下又は微細孔の内径50nm以下であって且つパラジウムを0.2
%以上含むもの(番号19〜23)は、応答時間が3秒未満と高速であり、特に、番号23の条件では、1秒未満という極めて高速な応答時間が得られた。
Numbers 13 to 23 are examples using an anodized film of a titanium-palladium alloy. The addition ratio was 0.01%, 0.2%, and 2% in terms of mass percentage, and the measurement was performed by changing the inner diameter of the fine hole or the outer diameter of the fine cylinder. In all cases, the change in resistance value is more than an order of magnitude with respect to 1000 pppm hydrogen-nitrogen mixed gas. Especially, the response time is less than 100 nm for the outer diameter of the fine cylinder or 50 nm for the inner diameter of the fine hole. It can be seen that it is equal to or higher than that of pure titanium anodic oxide coatings (Nos. 1 to 11), and further improved as the proportion of palladium added increases. The outer diameter of the fine cylinder is 100 nm or less or the inner diameter of the fine hole is 50 nm or less, and palladium is 0.2
% (Numbers 19 to 23) includes a high response time of less than 3 seconds. In particular, under the condition of number 23, an extremely high response time of less than 1 second was obtained.

同じく、番号24〜36は、チタン−白金合金の陽極酸化被膜を用いた例である。パラジウム添加の例(番号13〜23)と同様に、添加割合は、0.01%、0.2%、2%であり、それぞれ微細孔の内径又は微細筒の外径の寸法を変えて計測した。全例とも、1000pppmの水素−窒素混合ガスに対して抵抗値の変化が1桁超であるが、特に、微細筒の外径100nm以下又は微細孔の内径50nm以下のものは、その応答時間が、純チタンの陽極酸化被膜(番号1〜11)と比較して、同等又はそれ以上であり、さらに、白金の添加割合が多いほど向上していることが分かる。微細筒の外径100nm以下又は微細孔の内径50nm以下であって且つ白金を0.2%以上含むもの(番号30〜34)は、応答時間が3秒未満と高速であり、特に、番号34の条件では、1秒未満という極めて高速な応答時間が得られた。   Similarly, numbers 24 to 36 are examples using an anodized film of titanium-platinum alloy. Similar to the examples of palladium addition (Nos. 13 to 23), the addition ratios are 0.01%, 0.2%, and 2%, and the measurement is performed by changing the inner diameter of the fine holes or the outer diameter of the fine cylinder, respectively. did. In all cases, the change in resistance value is more than an order of magnitude with respect to 1000pppm hydrogen-nitrogen mixed gas. It can be seen that it is equal to or higher than that of pure titanium anodic oxide coatings (numbers 1 to 11), and further improved as the addition ratio of platinum increases. The fine cylinder having an outer diameter of 100 nm or less or an inner diameter of the fine hole of 50 nm or less and containing 0.2% or more of platinum (numbers 30 to 34) has a high response time of less than 3 seconds. Under these conditions, an extremely fast response time of less than 1 second was obtained.

本発明の活用例としては、自動車用燃料電池、家庭用燃料電池などの水素ガスを扱う各種装置から漏れる比較的低濃度の水素ガスを検知するのに用いる水素ガスセンサ 、ある
いは水素ガスを扱う装置内の比較的高濃度の水素ガスを制御するなどの用途に適した水素ガスセンサおよび製造方法として利用可能である。
Examples of the use of the present invention include a hydrogen gas sensor used to detect hydrogen gas at a relatively low concentration leaking from various devices that handle hydrogen gas, such as automobile fuel cells and household fuel cells, or a device that handles hydrogen gas. It can be used as a hydrogen gas sensor and a manufacturing method suitable for applications such as controlling a relatively high concentration of hydrogen gas.

1:センサ素子、2:純チタン薄膜あるいはチタン合金薄膜、3:絶縁基板、4:導電性ペースト、5:抵抗計 1: sensor element, 2: pure titanium thin film or titanium alloy thin film, 3: insulating substrate, 4: conductive paste, 5: resistance meter

Claims (5)

絶縁体の基板表面に、微細孔又は微細筒が形成された貴金属を含むチタン合金の陽極酸化被膜からなるセンサ素子を備え、前記センサ素子は、パラジウム又は白金を質量百分率0.01%以上含むチタン合金の陽極酸化皮膜であることを特徴とする水素ガスセンサ。 A sensor element made of an anodized film of a titanium alloy containing a noble metal in which fine holes or fine cylinders are formed on a substrate surface of an insulator is provided, and the sensor element is titanium containing 0.01% or more by mass of palladium or platinum. A hydrogen gas sensor which is an anodized film of an alloy. 絶縁体の基板表面にパラジウム又は白金を質量百分率0.01%以上含むチタン合金の薄膜を作製する作製ステップと、
前記薄膜を陽極酸化し、内径500nm以下の微細孔あるいは外径1000nm以下の微細筒が形成された陽極酸化被膜を生成する生成ステップとを備えることを特徴とする水素ガスセンサの製造方法。
A production step of producing a thin film of a titanium alloy containing 0.01% or more by mass of palladium or platinum on the substrate surface of the insulator;
A method for producing a hydrogen gas sensor, comprising: anodizing the thin film to produce an anodized film in which fine holes having an inner diameter of 500 nm or less or fine cylinders having an outer diameter of 1000 nm or less are formed.
請求項において、
前記生成ステップでは、前記内径500nm以下の微細孔として、内径50nm以下の微細孔が形成され、前記外径1000nm以下の微細筒として、外径100nm以下の微細筒が形成されることを特徴とする水素ガスセンサの製造方法。
In claim 2 ,
In the generating step, micropores with an inner diameter of 50 nm or less are formed as the micropores with an inner diameter of 500 nm or less, and microtubes with an outer diameter of 100 nm or less are formed as the microtubules with an outer diameter of 1000 nm or less. Manufacturing method of hydrogen gas sensor.
絶縁体の基板表面にパラジウム又は白金を質量百分率0.01%以上含むチタン合金の薄膜を作製するステップと、
前記薄膜を陽極酸化し、微細孔又は微細筒が形成された陽極酸化被膜を生成するステップとを備えることを特徴とする水素ガスセンサの製造方法。
Producing a thin film of a titanium alloy containing palladium or platinum in a mass percentage of 0.01% or more on the substrate surface of the insulator;
And a step of anodizing the thin film to produce an anodized film in which fine holes or fine cylinders are formed .
請求項2乃至4のいずれかにおいて、
前記薄膜をイオンビームスパッタ法で作製することを特徴とする水素ガスセンサの製造方法。
In any of claims 2 to 4 ,
A method for producing a hydrogen gas sensor, wherein the thin film is produced by an ion beam sputtering method.
JP2012257072A 2012-11-26 2012-11-26 Hydrogen gas sensor and manufacturing method thereof Active JP5207425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012257072A JP5207425B2 (en) 2012-11-26 2012-11-26 Hydrogen gas sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012257072A JP5207425B2 (en) 2012-11-26 2012-11-26 Hydrogen gas sensor and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008269569A Division JP5176236B2 (en) 2008-10-20 2008-10-20 Hydrogen gas sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013040961A JP2013040961A (en) 2013-02-28
JP5207425B2 true JP5207425B2 (en) 2013-06-12

Family

ID=47889459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012257072A Active JP5207425B2 (en) 2012-11-26 2012-11-26 Hydrogen gas sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5207425B2 (en)

Also Published As

Publication number Publication date
JP2013040961A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
Ab Kadir et al. Anodized nanoporous WO 3 Schottky contact structures for hydrogen and ethanol sensing
Portet et al. Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique
JP4547852B2 (en) Manufacturing method of electrical parts
Mirvakili et al. Vertically Aligned Niobium Nanowire Arrays for Fast‐Charging Micro‐Supercapacitors
Andreas et al. Self-discharge in manganese oxide electrochemical capacitor electrodes in aqueous electrolytes with comparisons to faradaic and charge redistribution models
Behzadi Pour et al. Hydrogen sensors: palladium-based electrode
Sharma et al. Porous glassy carbon formed by rapid pyrolysis of phenol-formaldehyde resins and its performance as electrode material for electrochemical double layer capacitors
KR101878343B1 (en) Method of measuring hydrogen gas using sensor for hydrogen gas
Xiao et al. A toolbox of reference electrodes for lithium batteries
Han et al. Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of In2O3 based gas sensor
KR20130033939A (en) Fabrication method for gas sensor and temperature sensor based on suspended carbon nanowires
TW201805622A (en) Miniature gas sensor and manufacturing method thereof finishing a suspended gas sensing structure on a silicon substrate
Chakrabarti et al. Scalable cross-point resistive switching memory and mechanism through an understanding of H 2 O 2/glucose sensing using an IrO x/Al 2 O 3/W structure
Xu et al. The effects of antimony thin film thickness on antimony pH electrode coated with nafion membrane
JP2014528590A (en) Sensor and sensor manufacturing method
RU2686878C1 (en) Single-electrode gas sensor based on oxidised titanium, procedure for its fabrication, sensor device and multi-sensor line based on its
JP5176236B2 (en) Hydrogen gas sensor and manufacturing method thereof
Joshi et al. Low-cost and fast-response resistive humidity sensor comprising biopolymer-derived carbon thin film and carbon microelectrodes
KR102154291B1 (en) Hydrogen gas sensor and method for manufacturing the same
JP5207425B2 (en) Hydrogen gas sensor and manufacturing method thereof
Liu et al. A titanium nitride nanotube array for potentiometric sensing of pH
Steyskal et al. In situ characterization of hydrogen absorption in nanoporous palladium produced by dealloying
KR20100108732A (en) Thin film for detecting gases, gas sensor including the same and method of fabricating thin film for detecting gases
CN106198678A (en) A kind of Jenner's metre hole thin film three electrode ionization type SO 2 sensor
US20120125770A1 (en) Hydrogen gas sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250